
Host Integration Server 2000Host Integration Server 2000

Copyright© 2017 Microsoft Corporation

The content in this document is retired and is no longer updated or supported. Some links might not work. Retired content represents the
latest updated version of this content.

 Microsoft Host Integration Server 2000

Microsoft Host Integration Server provides comprehensive host access and integration, extending Microsoft Windows to other
systems by integrating host applications, data sources, messaging, and security systems. This enables the reuse of IBM mainframe
and midrange data and applications across distributed environments.

Host Integration Server offers a strong, dependable, and secure platform on which to leverage and extend existing investments in
SNA and Web technologies. Host Integration Server enables rapid adaptation to new business opportunities while preserving
existing infrastructure investments.

In This Library Section Essentials
Microsoft Host Integration Server 2000 Developer's Guide
Microsoft Host Integration Server 2000 Product Overview
Technical Articles

Product Documentation (Books Online)
IT Resources
Additional Product Documentation

Frequently Asked Questions
Host Integration Server Community
Newsgroup

https://msdn.microsoft.com/en-us/library/ms943082(v=msdn.10).aspx
http://www.microsoft.com/hiserver/techinfo/productdoc/books.asp
http://www.microsoft.com/technet/prodtechnol/host/default.mspx
http://www.microsoft.com/hiserver/techinfo/productdoc/default_2000.asp
http://www.microsoft.com/hiserver/techinfo/faq.asp
http://www.microsoft.com/hiserver/community/
http://www.microsoft.com/hiserver/community/newsgroups/default.asp

Microsoft Host Integration Server 2000

Microsoft Host Integration Server 2000 Developer's Guide
Microsoft® Host Integration Server 2000 provides comprehensive bi-directional services for integrating Microsoft Windows®
with legacy systems. Host Integration Server 2000 extends Windows to other platforms by providing interoperability in three
areas:

Application Integration Services
Data Integration Services
Network Integration Services

For more information on the features and use of Host Integration Server 2000, see the topics in the Getting Started section of the
on-line help.

Most of the services provided by Host Integration Server 2000 expose a programming interface which allows you to extend the
functionality of the product and integrate it more tightly in your own environment. This guide describes these interfaces, and
provides guidance on how to use them.

This section contains:

Application Integration
Data Integration
SNA Application Programming
Internationalization
SNA Print Server Data Filters
Device Interface Specification Drivers
Administration and Management Programming
Client Binary Setup
Appendices and Glossary

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Application Integration
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information required to develop
software to integrate applications in an environment using Microsoft Host Integration Server 2000.

This section contains:

Introduction to Application Integration
MSMQ-MQSeries Bridge Programming
MSMQ-MQSeries Bridge Reference
Application Integration Samples

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Introduction to Application Integration
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop software
to integrate applications in an environment using Microsoft® Host Integration Server 2000. Several methods are provided using
Host Integration Server for integrating applications:

COM Transaction Integrator (COMTI) to integrate COM applications with CICS and IMS transactions on IBM mainframes and
minicomputers (see the COM Transaction Integrator for CICS and IMS section under Application Integration Services in the
Host Integration Server user documentation).
MSMQ-MQSeries Bridge to develop applications to send messages between IBM MQSeries and Microsoft Message Queue
Server (MSMQ) in an environment using the Microsoft MSMQ-MQSeries Bridge in Microsoft Host Integration Server 2000.
Data access and data tools to develop applications for data access, data replication, and data tools for integrating with
AS/400 and VSAM files on IBM mainframes and minicomputers and IBM DB2 databases hosted on IBM VMS, OS/390,
AS/400, IBM AIX, Microsoft Windows® 2000, and Microsoft Windows NT® Server (see Introduction to Data Integration).

COMTI allows developers to integrate mainframe-based transaction programs (TPs) with component-based Windows
applications. With COMTI, you can integrate existing mainframe-base transaction programs with Windows-based COM or
distributed COM (DCOM) applications. You may not even have to modify your mainframe TP if the business logic is separate from
the presentation logic. The wizards available in the COMTI Component Builder and COMTI Manager guide you through the
process, step-by-step.

COMTI is appropriate when a synchronous or transactional solution is needed where both systems being integrated are running
at all times. For applications only requiring an asynchronous integration solution, a messaging-based solution using the MSMQ-
MQSeries Bridge is preferred over COMTI.

This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop
applications to send messages between IBM MQSeries and Microsoft Message Queue Server (MSMQ) in an environment using
the Microsoft MSMQ-MQSeries Bridge in Microsoft Host Integration Server 2000. This section provides documentation for
developers on programming issues using the MSMQ-MQSeries Bridge including message queue naming, message conversion,
and the MSMQ-MQSeries Bridge Extensions.

Applications that integrate message queuing and the use MSMQ-MQSeries Bridge in a Host Integration Server 2000 environment
can be developed using several different development tools and application programming interfaces including:

C or C++ applications that use the MSMQ-MQSeries Bridge Extensions to extend the MSMQ-MQSeries Bridge.
Microsoft Visual Basic® applications that use MSMQ-MQSeries Bridge Extensions to extend the MSMQ-MQSeries Bridge.

To use this guide effectively, you should be familiar with:

Microsoft Host Integration Server 2000
One of the following operating environments:

Microsoft Windows 2000
Microsoft Windows NT Server or Workstation
Microsoft Windows 98
Microsoft Windows 95

Microsoft Message Queue Server
IBM MQSeries

Depending on the application programming interface and development tools used, you should be familiar with:

Microsoft COM objects
Active Server Pages

This section contains:

Additional Resources

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Additional Resources
This guide does not describe the products, architectures, or standards developed by other companies or organizations. For
information about Microsoft Windows 2000, Microsoft Windows NT Server, and other operating systems, consult your product
documentation.

For information about SNA architecture, refer to your system network documentation.

The following documents provide additional information about the Microsoft Message Queue Server:

Message Queuing (MSMQ) in the Microsoft Developer Network (MSDN®) Platform Software Development Kit

For more information about SNA see the following manuals:

IBM Systems Network Architecture: Technical Overview
IBM Systems Network Architecture: Concepts and Products
IBM SNA Format and Protocol Reference Manual: Architectural Logic

For more information about IBM MQSeries, see the following manuals:

IBM MQSeries: An Introduction to Messaging and Queuing (Document Number GC33-0805)
IBM MQSeries Intercommunication (Document Number SC33-1872)
IIBM MQSeries Messages (Document Number GC33-1876)

For background information about logical unit (LU) 6.2, Advanced Program-to-Program Communications (APPC), or the Common
Programming Interface for Communications (CPI-C), see the following manuals:

IBM SNA: Technical Overview
IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2
IBM SNA: Formats
IBM Systems Network Architecture: Introduction to APPC
IBM Systems Network Architecture: Transaction Programmer’s Reference Manual for LU Type 6.2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MSMQ-MQSeries Bridge Programming
The MSMQ-MQSeries Bridge provides the ability to send and receive messages between Microsoft Message Queue Server
(MSMQ) and IBM MQSeries and easily and efficiently. The MSMQ-MQSeries Bridge Extensions allow a programmer to develop
and control how these message transfers will occur and how properties of a message are translated.

The main programming issues when using the MSMQ-MQSeries Bridge Extensions fall into three areas:

Queue addressing
Message conversion
Limitations to specific API functions

Queue addressing deals with how to specify the name of an MQSeries destination queue in an MSMQ API call, or the name of an
MSMQ destination queue in an MQSeries API call. Message conversion deals with how the MSMQ-MQSeries Bridge converts
MSMQ message properties to MQSeries message data structures, and how the MSMQ-MQSeries Bridge converts MQSeries
message data structures to MSMQ properties. These topics are covered in detail in separate sections below. Limitations to the
MSMQ-MQSeries Bridge Extensions are discussed in detail in the section on programming considerations.

This section contains:

Platforms Supported by MSMQ-MQSeries Bridge Extensions
Queue Addressing Using MSMQ-MQSeries Bridge
Converting Messages Using MSMQ-MQSeries Bridge
The MSMQ-MQSeries Bridge Extensions Mechanism
Programming Considerations Using MSMQ-MQSeries Bridge Extensions
Registry Settings Used by MSMQ-MQSeries Bridge Extensions

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Platforms Supported by MSMQ-MQSeries Bridge Extensions
The Microsoft MSMQ-MQSeries Bridge Extensions can access message queues on the following IBM MQSeries systems through
SNA LU6.2 or TCP/IP using Microsoft® Host Integration Server 2000 and the MSMQ-MQSeries Bridge:

IBM MQSeries for OS/390 Version 2 Release 1 (V2.1)
IBM MQSeries for AS/400 Version 4 Release 3 (V4R3MO)
IBM MQSeries for Windows NT Version 5 Release 1 (V5.1)
IBM MQSeries for Windows NT Version 5 (V5.0)
IBM MQSeries for Windows NT Version 2 (V2.0)

The Microsoft MSMQ-MQSeries Bridge Extensions require the following computer-to-host connectivity software when using SNA
LU6.2 as the network transport:

Microsoft Host Integration Server 2000
Microsoft Host Integration Server 2000 End User Client
Microsoft Host Integration Server 2000 Administrator Client

The Microsoft MSMQ-MQSeries Bridge Extensions require that the Microsoft MSMQ-MQSeries Bridge be installed on one of the
following operating systems:

Microsoft Windows® 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Data Center
Microsoft Windows NT® Server 4.0 Enterprise Edition with Service Pack 6a or later

On Windows 2000, the MSMQ-MQSeries Bridge requires that Message Queuing be set up as an MSMQ server, not a workgroup,
with routing enabled. On Windows NT 4.0 Enterprise Edition, the prerequisites require MSMQ 1.0 be installed (MSMQ can be
installed from the Windows NT 4.0 Option Pack) and MSMQ be set up as a Routing Server, Primary Enterprise Controller (PEC),
Primary Site Controller (PSC) or Backup Site Controller (BSC).

The Microsoft MSMQ-MQSeries Bridge Manager used to configure and manage the MSMQ-MQSeries Bridge can be installed on
one of the following operating systems:

Microsoft Windows 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Data Center
Microsoft Windows 2000 Professional
Microsoft Windows 2000 with Terminal Service
Microsoft Windows NT Server 4.0 Enterprise Edition with Service Pack 6a or later
Microsoft Windows NT Server 4.0 with Service Pack 6a or later
Microsoft Windows NT Server 4.0 Terminal Server Edition with Service Pack 6 or later
Microsoft Windows NT Workstation 4.0 with Service Pack 6a or later

On Windows 2000 Professional or Windows 2000 with Terminal Service, the MSMQ-MQSeries Bridge Manager requires that
Message Queuing not be set up in a workgroup. On Windows NT Workstation 4.0 or Windows NT Server 4.0 Terminal Server
Edition, any configuration of MSMQ 1.0 is supported.

The MSMQ-MQSeries Bridge supplied with Host Integration Server 2000 supports only the Windows 2000 and the Intel Windows
NT 4.0 Enterprise Edition platforms. Older versions of SNA Server 4.0 supported Windows NT on the Alpha architecture, however
this configuration is not supported by the MSMQ-MQSeries Bridge.

IBM MQSeries support is available on a variety of other platforms. The MQSeries-MSMQ Bridge has not been tested with these
other implementations.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Queue Addressing Using MSMQ-MQSeries Bridge
This section explains how to specify the name of an MQSeries destination queue in an MSMQ call, or the name of an MSMQ
destination queue in an MQSeries call. This information is needed to specify the destination queue where you are sending a
message.

This section contains:

Addressing an MQSeries Queue in MSMQ
Sending a Message to an MQSeries Queue in MSMQ
Addressing an MSMQ Queue in MQSeries
Sending a Message to an MSMQ Queue in MQSeries

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Addressing an MQSeries Queue in MSMQ
In MSMQ, address MQSeries queues as if they are on the MSMQ network. For the MSMQ machine name, specify the MQSeries
Queue Manager name. For the MSMQ queue name specify the MQSeries queue name.

For example, if the MQSeries Queue Manager is MQS1 and the queue name is MQS_QUEUE4, then the MSMQ path name is
MQS1\MQS_QUEUE4.

 Note For detailed information on queue addressing, see the section on Queue format names under Converting Messages
from MSMQ to MQSeries

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending a Message to an MQSeries Queue in MSMQ
To send a message to an MQSeries queue, follow the normal MSMQ procedure. Determine the MSMQ format name
corresponding to the path name. More precisely, you must determine the format name of the MSMQ foreign queue representing
the MQSeries queue. If the foreign queue does not already exist, you can create it and determine its format name by calling
MQCreateQueue. If the foreign queue already exists, then you can call MQPathNameToFormatName, or you can determine
the format name in the MSMQ Explorer.

Call MQOpenQueue with the format name argument to open the queue for send access.

Call MQSendMessage and specify the destination queue handle returned by MQOpenQueue.

In the MSMQ-to-MQSeries direction, MSMQ-MQSeries Bridge sends transacted messages using the MSMQ->MQS message pipe
and untransacted messages using the MSMQ->MQS Transactional message pipe.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Addressing an MSMQ Queue in MQSeries
There are two ways to address an MSMQ queue from MQSeries:

By the MSMQ format name
By the MSMQ path name

By either method, you specify the name in the object descriptor (MQOD structure) of the MQSeries message.

 Note MSMQ-MQSeries Bridge supports the following types of format names:

Converting Messages Sent from MQSeries to MSMQ

 PUBLIC=<GUID>
 PRIVATE=<machine GUID>\<file number>
 DIRECT=OS:<Path name>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending a Message to an MSMQ Queue in MQSeries
To send a message from MQSeries to MSMQ, use the following procedure. Specify the MSMQ format or path name of the
destination queue in the object descriptor. Call MQOPEN to open the queue. Call MQPUT or MQPUT1 to send the message.

The addressing syntax lets you send a message by either MQS->MSMQ message pipe or MQS->MSMQ Transactional message
pipe. For an explanation of the service types, see the section on Normal and High Service.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Converting Messages Using MSMQ-MQSeries Bridge
This section describes how the MSMQ-MQSeries Bridge converts MSMQ message properties to MQSeries message data
structures and how MQSeries data structures are converted to MSMQ message properties.

When the MSMQ-MQSeries Bridge transmits a message, it converts the message properties between the MSMQ and MQSeries
formats. When equivalent properties exist in the two systems, the MSMQ-MQSeries Bridge assigns the property values directly.
For example, the MSMQ messagebody property is converted to the MQSeries messagebuffer. The MSMQ messagebodylength is
converted to the MQSeries messagebufferlength.

When partially equivalent properties exist in the two systems, the MSMQ-MQSeries Bridge assigns the properties according to
conversion rules. For example, the MQSeries property MQMD.Report is converted to the MSMQ properties
PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL.

When a property has no equivalent, the MSMQ-MQSeries Bridge either ignores the property or assigns a default value. For
example, the MSMQ property PROPID_M_AUTH_LEVEL refers to a specific MSMQ authentication method that is not supported
by MQSeries. In a message sent from MSMQ to MQSeries, this property is ignored. In a message received by MSMQ from
MQSeries, the MSMQ-MQSeries Bridge assigns the MSMQ default value to the property.

You can supplement or override the conversions described here using the MSMQ message extension property
(PROPID_M_EXTENSION). For information on overriding the default conversions, see Message Extensions.

When you send a message from MSMQ (Microsoft Message Queue) to IBM MQSeries, MSMQ-MQSeries Bridge converts the
MSMQ message properties to an MQSeries data structure. In order to do this, MSMQ-MQSeries Bridge maps the various
message properties of the MSMQ message as nearly as possible to equivalent MQSeries fields. The following sections describe
the conversion rules by which this is done.

This section contains:

Converting Messages Sent from MSMQ to MQSeries
Converting Messages Sent from MQSeries to MSMQ

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Converting Messages Sent from MSMQ to MQSeries
The information in this section applies to messages that you send from MSMQ to MQSeries. For messages sent from MQSeries to
MSMQ, see Converting Messages from MQSeries to MSMQ.

This section is divided into two main subsections, which provide essentially the same information but from complementary points
of view.

The first section on Converting MSMQ Properties describes the conversion rules from the sender's point of view. This section
explains how MSMQ-MQSeries Bridge converts each MSMQ property that you include in a message.

The second section on Building an MQSeries Message explains the rules from the receiver's point of view. Read this section to
learn how MSMQ-MQSeries Bridge builds a complete MQSeries message containing all the needed fields, whether or not they
have exact MSMQ equivalents.

You can supplement or override the conversions described here using the MSMQ message extension property
(PROPID_M_EXTENSION).

This section contains:

Converting MSMQ Properties
Building an MQSeries Message

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Converting MSMQ Properties
This section explains how MSMQ-MQSeries Bridge converts the MSMQ properties that you include in a message to MQSeries.
For information on MQSeries fields that have no MSMQ equivalents, see the following section on Building an MQSeries Message.

Message Body (PROPID_M_BODY)
The MSMQ message body is equivalent to the MQPUT or MQGET message buffer of MQSeries. The length of the MQPUT buffer
is the MSMQ message body size.

The following table lists the MSMQ properties and the MQSeries fields to which they are converted:

MSMQ Property Converted to MQSeries Field
PROPID_M_BODY Message buffer
PROPID_M_BODY_SIZE Message buffer length

Queue Format Names (PROPID_M_..._QUEUE)
Each MSMQ message contains the format name of a destination queue, and optionally the format names of response and/or
administration queues. The MSMQ-MQSeries Bridge converts the names to the equivalent MQSeries object and queue manager
names.

If a message contains both a response queue and an administration queue, MSMQ-MQSeries Bridge ignores the administration
queue.

The following table lists the MSMQ properties and the MQSeries fields to which they are converted:

MSMQ Properties Converted to MQSeries Fields
PROPID_M_DEST_QUEUE and
PROPID_M_DEST_QUEUE_LEN

MQOD.ObjectName and MQOD.ObjectQMgrName

PROPID_M_RESP_QUEUE and
PROPID_M_RESP_QUEUE_LEN

MQMD.ReplyToQ and
MQMD.ReplyToQMgr

PROPID_M_ADMIN_QUEUE and
PROPID_M_ADMIN_QUEUE_LEN

MQMD.ReplyToQ and
MQMD.ReplyToQMgr

Message Class (PROPID_M_CLASS)
MSMQ-MQSeries Bridge converts the MSMQ message class (PROPID_M_CLASS) to the MQSeries message type and feedback. It
translates the message class values according to the following table.

Value of MSMQ property Converted to MQSeries value
PROPID_M_CLASS MQMD.MsgType MQMD.Feedback
MQMSG_CLASS_NORMAL MQMT_REQUEST

or MQMT_DATAGRAM
MQFB_NONE

MQMSG_CLASS_ACK_REACH_QUEUE MQMT_REPORT MQFB_COA
MQMSG_CLASS_ACK_RECEIVE MQFB_COD
MQMSG_CLASS_NACK_RECEIVE_TIMEOUT MQFB_EXPIRATION
MQMSG_CLASS_NACK_REACH_QUEUE_
TIMEOUT

 MQFB_EXPIRATION

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA MQRC_Q_FULL
MQMSG_CLASS_NACK_ACCESS_DENIED MQRC_NOT_AUTHORIZED
MQMSG_CLASS_NACK_ERROR MQFB_APPL_TYPE_ERROR
Any other value MQFB_NONE

Note that for MQMSG_CLASS_NORMAL is converted to MQMD_REQUEST if the message includes a response queue
(PROPID_M_RESP_QUEUE) or if PROPID_M_RESP_QUEUE is missing, NULL, or an empty string.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Message Expiration (PROPID_M_TIME...)
MSMQ provides two message expiration properties, PROPID_M_TIME_TO_REACH_QUEUE and
PROPID_M_TIME_TO_BE_RECEIVED, both in units of seconds. MQSeries provides a single expiration field, MQMD.Expiry, whose
units are tenths of a second.

MSMQ-MQSeries Bridge converts the values as follows:

Value of MSMQ properties
PROPID_M_TIME_TO_REACH_QUEUE and PROPID_M_TIME_TO_BE_RECEI
VED

Converted to MQSeries value of MQMD.Expi
ry

Both values are INFINITEa MQEI_UNLIMITED
One or both values are not INFINITE 10 times the smaller of the two MSMQ values

Note that MSMQ typically interprets INFINITE as 90 days. In practice, the MSMQ-MQSeries Bridge does not apply the INFINITE
conversion because MSMQ decrements the values slightly during transmission. If you need an MQMD.Expiry value of exactly
MQEI_UNLIMITED, you should send this value in the message extension.

Message Acknowledgment (PROPID_M_ACKNOWLEDGE)
MSMQ-MQSeries Bridge supports the MSMQ and MQSeries acknowledgment mechanisms. You can send an MSMQ message to
MQSeries and receive an automatic acknowledgment from the MQSeries Queue Manager.

To do this, set the MSMQ acknowledgment property (PROPID_M_ACKNOWLEDGE) to a value that requests an acknowledgment.
Also specify the administration or response queue name (PROPID_M_ADMIN_QUEUE or PROPID_M_RESP_QUEUE), to which the
acknowledgment is sent (see the section on Queue Format Names).

MSMQ-MQSeries Bridge converts the acknowledgment property to the MQSeries MQMD.Report field, as listed in the following
table. When MQSeries receives the message, it returns the appropriate acknowledgment via MSMQ-MQSeries Bridge.

Value of MSMQ Property PROPID_M_ACKNOWLEDGE Converted to MQSeries value of MQMD.Report
MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE MQRO_EXCEPTION | MQRO_COAb
MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE MQRO_EXCEPTION | MQRO_EXPIRATION | MQRO_CODb
MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE MQRO_EXCEPTION
MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE MQRO_EXCEPTION | MQRO_EXPIRATIONb
MQMSG_ACKNOWLEDGMENT_NONE MQRO_NONE

If both PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL are included in an MSMQ message, the value of the MQSeries
MQMD.Report field is computed by a bitwise or of the values converted from the two MSMQ properties (see Other MSMQ
Properties).

If the MSMQ_PROPID_M_ACKNOWLEDGE property has a value of MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE, the
value of MQSeries MQMD.Report field is computed by a bitwise or of MQRO_EXCEPTION and MQRO_COA.

If the MSMQ_PROPID_M_ACKNOWLEDGE property has a value of MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE, the value of
MQSeries MQMD.Report field is computed by a bitwise or of MQRO_EXCEPTION, MQRO_EXPIRATION,

and MQRO_COD.

If the MSMQ PROPID_M_ACKNOWLEDGE property has a value of MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE, the value of
MQSeries MQMD.Report field is computed by a bitwise or of MQRO_EXCEPTION and MQRO_EXPIRATION.

Other MSMQ Properties with Equivalent Properties
The following MSMQ properties have MQSeries equivalents. The MSMQ-MQSeries Bridge converts the values of each property as
listed in the table.

To save space in the table, the prefixes PROPID_M_ and MQMD are omitted from the MSMQ property names and the MQSeries
field names, respectively. For example, the first row of data means that PROPID_M_BODY_TYPE is converted to MQMD.Format.

MSMQ property Converted to MQSeries
PROPID_M_ Value MQMD. Value

BODY_TYPE VT_BSTR
Any other value

Format MQFMT_STRING
MQFMT_NONE

CORRELATIONID Value (20 bytes) CorrelId "FQ2Q" + value
DELIVERY MQMSG_DELIVERY_

RECOVERABLE
EXPRESS

Persistence MQPER_

PERSISTENT
NOT_PERSISTENT

JOURNAL MQMSG_

DEADLETTER
MQMSG_JOURNAL
MQMSG_JOURNAL_NONE

Reporta MQRO_

DEAD_LETTER_Q
(Ignored)
DISCARD_MSG

LABEL
LABEL_LEN

Value ApplIdentityData Value (MQCHAR32)

MSGID Value (20 bytes) MsgId "FQ2Q" + value
PRIORITY 0

1
2
3
4
5
6
7

Priority 1
3
4
5
6
7
8
9

SENTTIME Seconds since Jan. 1, 1970 PutDate

PutTime

YYYMMDD format

HHMMSSTH format

If both PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL are included in an MSMQ message, the MQSeries MQMD.Report
field is computed by a bitwise or of the values converted from the two MSMQ properties (see Message Acknowledgement).

Unconverted Properties
The following MSMQ properties have no equivalents in MQSeries. The MSMQ-MQSeries Bridge ignores these properties and
does not transmit them to MQSeries.

PROPID_M_APPSPECIFIC
PROPID_M_ARRIVEDTIME
PROPID_M_AUTH_LEVEL
PROPID_M_AUTHENTICATED
PROPID_M_CONNECTOR_TYPE
PROPID_M_DEST_SYMM_KEY
PROPID_M_DEST_SYMM_KEY_LEN
PROPID_M_ENCRYPTION_ALG
PROPID_M_HASH_ALG
PROPID_M_PRIV_LEVEL
PROPID_M_PROV_NAME
PROPID_M_PROV_NAME_LEN
PROPID_M_PROV_TYPE
PROPID_M_SECURITY_CONTEXT
PROPID_M_SENDER_CERT
PROPID_M_SENDER_CERT_LEN
PROPID_M_SENDERID
PROPID_M_SENDERID_LEN
PROPID_M_SENDERID_TYPE
PROPID_M_SIGNATURE
PROPID_M_SIGNATURE_LEN

PROPID_M_SRC_MACHINE_ID
PROPID_M_TRACE
PROPID_M_VERSION

Transaction Properties
The following MSMQ properties are not converted to MQSeries fields or values.

PROPID_M_XACT_STATUS_QUEUE
PROPID_M_XACT_STATUS_QUEUE_LEN

See the section on Transaction Support Using MSMQ-MQSeries Bridge for more information on transactions.

Microsoft Host Integration Server 2000

Building an MQSeries Message
This section explains how the MSMQ-MQSeries Bridge builds a complete MQSeries message, including all needed fields whether
or not they have MSMQ equivalents. The conversion to MQSeries fields from MSMQ properties is listed from the MQSeries
perspective.

For information on these same conversion rules from the MSMQ perspective, see the previous section on
Converting MSMQ Properties.

Message Buffer
The MQPUT or MQGET message buffer of MQSeries is equivalent to the message body property of MSMQ. The length of the
MQPUT buffer is the MSMQ message body size.

The following table lists the MQSeries fields and the MSMQ properties from which they are converted.

MQSeries Fields Converted from MSMQ Property
Message buffer PROPID_M_BODY
Message buffer length PROPID_M_BODY_SIZE

Object Descriptor (MQOD)
The MSMQ-MQSeries Bridge retrieves the MQSeries object descriptor fields from the MSMQ format name of the destination
queue.

The following table lists the MQSeries fields and the MSMQ properties from which they are converted.

MQSeries Fields Converted from MSMQ Property
MQOD.ObjectName and
MQOD.ObjectQMgrName

PROPID_M_DEST_QUEUE and
PROPID_M_DEST_QUEUE_LEN

Message Descriptor (MQMD)
Some fields of the MQSeries message descriptor have no equivalent in MSMQ. The MSMQ-MQSeries Bridge assigns default
values to these fields. Alternatively, you can pass explicit values of the MQMD fields using the MSMQ message extension property
(PROPID_M_EXTENSION).

The following table lists the MQSeries fields and the default value assigned by MSMQ-MQSeries Bridge.

MQSeries MQMD Fields Default Value Assigned by
MSMQ-MQSeries Bridge

MQMD.AccountingToken MQACT_NONE
MQMD.CodeCharSetId MQCCSI_Q_MGR
MQMD.Encoding MQENC_NATIVE
MQMD.PutApplName NULL
MQMD.PutApplType NULL
MQMD.StrucId MQMD_STRUC_ID
MQMD.Version MQMD_VERSION_1

Some fields of the MQSeries message descriptor have no equivalent in MSMQ and the MSMQ-MQSeries Bridge does not assign
default values to these fields. You can assign explicit values for these MQMD fields using the MSMQ message extension property
(PROPID_M_EXTENSION).

The following table lists the MQSeries fields for which no default value is assigned by MSMQ-MQSeries Bridge.

MQSeries MQMD Fields Default Value Assigned by
MSMQ-MQSeries Bridge

MQMD.UserIdentifier No default value is assigned

Many of the MQMD fields are equivalent to one or more MSMQ properties. The conversion rules are listed in the following table.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

You can override the conversion rules by passing explicit MQMD values in the MSMQ message extension property.

To save space in the table, the prefix MQMD. is omitted from the MQSeries field names. For example, the first row of data means
that MQMD.ApplIdentityData is built from the MSMQ properties PROPID_M_LABEL and PROPID_M_LABEL_LEN.

MQSeries MQ
MD Field

MQSeries MQMD Field Va
lue

Converted From
MSMQ Property

ApplIdentity Value (MQCHAR32) The value of PROPID_M_LABEL and PROPID_M_LABEL_LEN
CorrelId "FQ2Q" + value The value of PROPID_M_CORRELATIONID (20 bytes).
Expiry MQEI_UNLIMITED Both PROPID_M_TIME_TO_BE_RECEIVED and PROPID_M_TIME_TO_REACH_QUEUE

have value of INFINITE
Expiry 10 times the smaller of the t

wo MSMQ values
PROPID_M_TIME_TO_BE_RECEIVED or PROPID_M_TIME_TO_REACH_QUEUE have a
value that is not INFINITE

Feedback MQFB_EXPIRATION PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_RECEIVE_TIMEOUT
Feedback MQFB_APPL_TYPE_ERROR PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT
Feedback MQRC_Q_FULL PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_Q_EXCEED_QUOTA
Feedback MQRC_NOT_AUTHORIZED PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_ACCESS_DENIED
Feedback MQFB_COA PROPID_M_CLASS has a value of MQMSG_CLASS_ACK_REACH_QUEUE
Feedback MQFB_COD PROPID_M_CLASS has a value of MQMSG_CLASS_ACK_RECEIVE
Feedback MQFB_NONE PROPID_M_CLASS has any other value
Format MQFMT_STRING PROPID_M_BODY_TYPE has a value of VT_BSTR
Format MQFMT_NONE PROPID_M_BODY_TYPE has any other value
MsgId "FQ2Q" + value The value of PROPID_M_MSGID (20 bytes)
MsgType MQMT_DATAGRAM PROPID_M_CLASS has a value of MQMSG_CLASS_NORMAL
MsgType MQMT_REQUESTREPORT PROPID_M_CLASS has any other value
Persistence MQPER_PERSISTENT PROPID_M_DELIVERY has a value of MQMSG_DELIVERY_RECOVERABLE
Persistence MQPER_NOT_PERSISTENT PROPID_M_DELIVERY has a value of MQMSG_DELIVERY_EXPRESS
Priority 1 PROPID_M_PRIORITY has a value of 0
Priority 3 PROPID_M_PRIORITY has a value of 1
Priority 4 PROPID_M_PRIORITY has a value of 2
Priority 5 PROPID_M_PRIORITY has a value of 3
Priority 6 PROPID_M_PRIORITY has a value of 4
Priority 7 PROPID_M_PRIORITY has a value of 5
Priority 8 PROPID_M_PRIORITY has a value of 6
Priority 9 PROPID_M_PRIORITY has a value of 7
PutDate YYYMMDD format The date from the MSMQ PROPID_M_SENTTIME property which has a value of seco

nds since Jan. 1, 1970
PutTime HHMMSSTH format The time from the MSMQ PROPID_M_SENTTIME property which has a value of seco

nds since Jan. 1, 1970
ReplyToQ Retrieved from MSMQ form

at name
The MSMQ format name from PROPID_M_RESP_QUEUE if this property is included
and is not NULL or an empty string.

ReplyToQ Retrieved from MSMQ form
at name

The MSMQ format name from PROPID_M_ADMIN_QUEUE if PROPID_M_RESP_QUE
UE is not included or is NULL or an empty string.

ReplyToQMgr Retrieve from MSMQ format
name

The MSMQ format name from PROPID_M_RESP_QUEUE if this property is included
and is not NULL or an empty string.

ReplyToQMgr Retrieve from MSMQ format
name

The MSMQ format name from PROPID_M_ADMIN_QUEUE if PROPID_M_RESP_QUE
UE is not included or is NULL or an empty string.

Report MQRO_EXCEPTION|COA PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_FULL_R
EACH_QUEUE

Report MQRO_EXCEPTION|EXPIRAT
ION|COD

PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_FULL_R
ECEIVE

Report MQRO_EXCEPTION PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_NACK_R
EACH_QUEUE

Report MQRO_EXCEPTION| EXPIRA
TION

PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_NACK_R
ECEIVE

Report MQRO_NONE PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_NONE
Report MQRO_DEAD_LETTER_Q PROPID_M_JOURNAL has a value of MQMSG_DEADLETTER

Report The MSMQ value is ignored PROPID_M_JOURNAL has a value of MQMSG_JOURNAL
Report MQRO_DISCARD_MSG PROPID_M_JOURNAL has a value of MQMSG_JOURNAL_NONE

In practice, the MSMQ-MQSeries Bridge does not assign MQEI_UNLIMITED as value for MQMD.Expiry because MSMQ interprets
INFINITE values typically as 90 days and decrements them slightly during transmission. To assign an MQMD.Expiry value of
exactly MQEI_UNLIMITED, send this value in the message extension.

The MSMQ-MQSeries Bridge assigns MQMT_DATAGRAM as value for MQMD.MsgType if the MSMQ PROPID_M_RESP_QUEUE is
missing, NULL, or an empty string. Otherwise a value of MQMT_REQUEST is assigned to MQMD.MsgType.

If both PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL are included in an MSMQ message, MQMD.Report is computed by
a bitwise or of the values converted from the two MSMQ properties.

Microsoft Host Integration Server 2000

Converting Messages Sent from MQSeries to MSMQ
When you send a message from IBM MQSeries to MSMQ, the MSMQ-MQSeries Bridge converts the message from an MQSeries
data structure to an MSMQ message property. In order to do this, MSMQ-MQSeries Bridge maps the various data fields of the
MQSeries message as nearly as possible to equivalent MSMQ message properties.

This section describes the conversion rules by which this is done. The information in this section applies to messages that you
send from MQSeries to MSMQ. For messages sent from MSMQ to MQSeries, see the preceding section on
Converting Messages Sent from MSMQ to MQSeries.

The section is divided into two main subsections, which provide essentially the same information but from complementary points
of view. The first section, Converting MQSeries Fields, describes the conversion rules from the sender's point of view. This section
explains how the MSMQ-MQSeries Bridge converts each MQSeries field that you include in a message. The second section,
Building an MSMQ Message, explains the rules from the receiver's point of view. Read this section to learn how MSMQ-MQSeries
Bridge builds a complete MSMQ message containing all the needed properties, whether or not they have exact MQSeries
equivalents.

Besides the conversions described here, the MSMQ-MQSeries Bridge transmits the original MQSeries message descriptor fields
in the MSMQ message extension property (PROPID_M_EXTENSION). For information on this subject, see the section on Message
Extension.

This section contains:

Converting MQSeries Fields
Building an MSMQ Message

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Converting MQSeries Fields
This section explains how the MSMQ-MQSeries Bridge converts the fields of an MQSeries message to MSMQ. For information on
MSMQ properties that have no MQSeries equivalents, see the section below on Building an MSMQ Message.

Message Buffer
The MQGET or MQPUT buffer of MQSeries is equivalent to the message body property of MSMQ.

The following table lists the MQSeries fields and the MSMQ properties that they are converted to.

MQSeries Fields Converted to MSMQ Property
Message buffer PROPID_M_BODY
Message buffer length PROPID_M_BODY_SIZE

Object Descriptor (MQOD)

The MSMQ-MQSeries Bridge converts the MQSeries remote queue manager and queue names to the MSMQ destination queue
name. The MQSeries fields are interpreted as an MSMQ format name or path name, as described below.

The following table lists the MQSeries fields and the MSMQ properties that they are converted to.

MQSeries Fields Converted to MSMQ Property
MQOD.ObjectName and
MQOD.ObjectQMgrName

PROPID_M_DEST_QUEUE and
PROPID_M_DEST_QUEUE_LEN

Character Substitutions in Object Descriptor Conversion
Certain characters are supported in MSMQ format names but not in MQSeries names. When you assign the MQSeries
MQOD.ObjectName, the MSMQ-MQSeries Bridge performs character substitutions to the MSMQ format names. The table below
lists special characters in MQSeries names and what these characters are converted to in MSMQ format names by the MSMQ-
MQSeries Bridge.

Characters in MQSeries MQOD Field Names Characters Substituted in MSMQ Format Names
/ (forward slash)) : (colon) or \ (backslash)
_ (underscore) - (hyphen) or = (equal)
P_ (at start of MQOD.ObjectName) PRIVATE=

The MSMQ-MQSeries Bridge converts the characters back when it transmits the MQSeries message to MSMQ. The characters are
interpreted according to context to generate a legal MSMQ name. For example, MSMQ-MQSeries Bridge converts the format
name

to

Note that this character substitution is only for format names, not for machine or path names. If you want to address MSMQ path
names, do not include hyphens or other characters not supported by MQSeries. For example, the path name

is legal in MSMQ, but you cannot specify the hyphen character in MQSeries.

Format Name Method of Object Descriptor Conversion
Subject to the following conditions, the MSMQ-MQSeries Bridge interprets the MQSeries MQOD.ObjectName field as the format

DIRECT_OS/MACHINE2/QUEUE4

DIRECT=OS:MACHINE2\QUEUE4.

MACHINE2\MY-QUEUE

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

name of the MSMQ destination queue:

The MQOD.ObjectQMgrName is an MQSeries alias for an MSMQ machine.

The MQOD.ObjectName begins with PUBLIC_, P_, or DIRECT_OS/.

If these conditions apply, the MSMQ-MQSeries Bridge converts the MQSeries MQOD.ObjectName to the MSMQ format name of
the destination queue using one of the following methods based on the value of MQOD.ObjectName:

If you know the GUID of the destination queue, the PUBLIC=<GUID> syntax gives better performance than the DIRECT=OS:<path
name> syntax. Also note that non-transacted private queues are supported only on the MSMQ-MQSeries Bridge computer.

Path Name Method of Object Descriptor Conversion
If the conditions for the format name method do not hold, the MSMQ-MQSeries Bridge interprets
MQOD.ObjectQMgrName\MQOD.ObjectName as an MSMQ path name. The remote queue manager name must be an alias for
an MSMQ machine that you have previously defined in MQSeries.

For example, if MQOD.ObjectQMgrName is MACHINE2 and MQOD.ObjectName is QUEUE4, the MSMQ-MQSeries Bridge sends
the message to an MSMQ queue having the path name MACHINE2\QUEUE4.

The MSMQ-MQSeries Bridge determines the MSMQ format name corresponding to this path name in order to forward the
message.

Note that the MQSeries name fields are limited to 48 characters each. If the path name is longer than this, use the format name
method instead.

Queue Alias Method of Object Descriptor Conversion
Optionally, you can address an MSMQ queue using an MQSeries queue alias. If you use this method, set MQOD.ObjectName to
the queue alias. Leave MQOD.ObjectQMgrName blank, or set it to the MQSeries Queue Manager where the transmission queue is
located.

Examples of Object Descriptor Conversion
In the following examples, you want to send a message to an MSMQ destination having the following identifiers:

MSMQ-MQSeries Bridge is installed on a machine called BRIDGEMQ1. You have defined the aliases BRIDGEMQ1 and
BRIDGEMQ1% for this machine in MQSeries. In the MSMQ-MQSeries Bridge Manager, you have configured BRIDGEMQ1 for
MQS->MSMQ message pipe and BRIDGEMQ1% for MQS->MSMQ transactional message pipe.

You may address a message to this queue in any of the following ways:

Format Name method

Using the format name method and MQS->MSMQ message pipe, the MQSeries name would become:

-or-

PUBLIC=<GUID>
PRIVATE=<machine GUID>\<file number>
DIRECT=OS:<path name>.

Machine name = MACHINE2
Queue name = QUEUE4
GUID = A56F41B4-9869-11D0-AF8F-0000E8D1C3A7

MQOD.ObjectQMgrName = "BRIDGEMQ1"
MQOD.ObjectName = "PUBLIC_A56F41B4_9869_11D0_AF8F_0000E8D1C3A7"

MQOD.ObjectQMgrName = "BRIDGEMQ1"

Using the format name method and MQS->MSMQ transactional message pipe, the MQSeries name would become

-or-

Optionally, you can define the MQSeries aliases MACHINE2 and MACHINE2% for the MSMQ destination machine. You now have
two additional ways to address the queue:

Using the path name method and MQS->MSMQ message pipe, the MQSeries name would become

Using the path name method and MQS->MSMQ transactional message pipe, the MQSeries name would become

In yet another option, you can define the MQSeries aliases QUEUE4 and QUEUE4% for the MSMQ destination queues. If you do
this, you can address the queue using the following syntax:

Using the queue alias method and normal service, the MQSeries name would become

Using the queue alias method and high service, the MQSeries name would become

Message Descriptor (MQMD)

The MSMQ-MQSeries Bridge converts most of the MQSeries Field values to MSMQ property values.

MQMD.Report Field
The MSMQ-MQSeries Bridge supports the MQSeries and MSMQ acknowledgment mechanisms. You can send an MSMQ
message to MQSeries and receive an automatic acknowledgment from the MSMQ Queue Manager.

To do this, set the MQMD.Report field of the MQSeries message to a value that requests an acknowledgment. Also set the
MQMD.ReplyToQ and MQMD.ReplyToQMgr fields, which specify where the acknowledgment is sent.

The MSMQ-MQSeries Bridge converts MQMD.Report to the MSMQ acknowledgment property. When MSMQ receives the
message, it returns the appropriate acknowledgment via the MSMQ-MQSeries Bridge.

The MSMQ-MQSeries Bridge also supports the MQSeries and MSMQ dead letter mechanism. For this purpose, MSMQ-MQSeries
Bridge converts the MQMD.Report values to the MSMQ journaling property.

The conversions are listed in the following table.

Value of MQSeries Field MQMD.Rep
ort

Converted to MSMQ Property an Value

MQOD.ObjectName = "DIRECT_OS/MACHINE2/QUEUE4"

MQOD.ObjectQMgrName = "BRIDGEMQ1%"
MQOD.ObjectName = "PUBLIC_A56F41B4_9869_11D0_AF8F_0000E8D1C3A7"

MQOD.ObjectQMgrName = "BRIDGEMQ1%"
MQOD.ObjectName = "DIRECT_OS/MACHINE2/QUEUE4"

MQOD.ObjectQMgrName = "MACHINE2"
MQOD.ObjectName = "QUEUE4"

MQOD.ObjectQMgrName = "MACHINE2%";
MQOD.ObjectName = "QUEUE4"

MQOD.ObjectQMgrName = ""
MQOD.ObjectName = "QUEUE4"

MQOD.ObjectQMgrName = ""
MQOD.ObjectName = "QUEUE4%"

MQRO_NONE The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NON
E

MQRO_EXCEPTION The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NAC
K_REACH_QUEUE

MQRO_EXCEPTION_WITH_DATA (Note
1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NAC
K_REACH_QUEUE

MQRO_EXCEPTION_WITH_FULL_DATA (
Note 1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NAC
K_REACH_QUEUE

MQRO_EXPIRATION The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NAC
K_RECEIVE

MQRO_EXPIRATION_WITH_DATA (Note
1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NAC
K_RECEIVE

MQRO_EXPIRATION_WITH_FULL_DATA
(Note 1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NAC
K_RECEIVE

MQRO_COA The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_FULL
_REACH_QUEUE

MQRO_COA_WITH_DATA (Note 1) The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_FULL
_REACH_QUEUE

MQRO_COA_WITH_FULL_DATA (Note 1) The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_FULL
_REACH_QUEUE

MQRO_DEAD_LETTER_Q The value of PROPID_M_JOURNAL is set to MQMSG_DEADLETTER
MQRO_DISCARD_MSG The value of PROPID_M_JOURNAL is set to MQMSG_JOURNAL_NONE
MQRO_NEW_MSG_ID (Not converted)
MQRO_PASS_MSG_ID (Not converted)
MQRO_COPY_MSG_ID_TO_CORREL_ID (Not converted)
MQRO_PASS_CORREL_ID (Not converted)

 Note For these report values, the MSMQ-MQSeries Bridge duplicates part or all of the message buffer in the
MSMQ message extension (PROPID_M_EXTENSION). The increased message size may degrade performance.

MQMD.MsgType and MQMD.Feedback Fields
The values of the MQSeries MQMD.MsgType and MQMD.Feedback fields are converted to the MSMQ message class property.

The conversions are listed in the following table based on the value of MQMD.MsgType when MQMD.Feedback is MQFB_NONE.

Value of MQSeries MQMD.MsgType Converted to Value of MSMQ PROP_M_CLASS
MQMT_SYSTEM_FIRST MQMSG_CLASS_NORMAL
MQMT_SYSTEM_LAST MQMSG_CLASS_NORMAL
MQMT_DATAGRAM MQMSG_CLASS_NORMAL
MQMT_REQUEST MQMSG_CLASS_NORMAL
MQMT_REPLY MQMSG_CLASS_NORMAL
MQMT_APPL_FIRST MQMSG_CLASS_NORMAL
MQMT_APPL_LAST MQMSG_CLASS_NORMAL

The conversions are listed in the following table based on the value of MQMD.Feedback when MQMD.MsgType is
MQMT_REPORT.

Value of MQSeries MQMD.Feedback Converted to Value of MSMQ PROP_M_CLASS
MQFB_EXPIRATION MQMSG_CLASS_NACK_RECEIVE_TIMEOUT
MQFB_COA MQMSG_CLASS_ACK_REACH_QUEUE
MQFB_COD MQMSG_CLASS_ACK_RECEIVE
MQFB_APPL_TYPE_ERROR MQMSG_CLASS_NACK_ERROR
MQFB_DATA_LENGTH_ZERO MQMSG_CLASS_NACK_ERROR
MQFB_DATA_LENGTH_NEGATIVE MQMSG_CLASS_NACK_ERROR
MQFB_DATA_LENGTH_TOO_BIG MQMSG_CLASS_NACK_ERROR
MQFB_BUFFER_OVERFLOW MQMSG_CLASS_NACK_ERROR
MQFB_LENGTH_OFF_BY_ONE MQMSG_CLASS_NACK_ERROR

MQFB_NONE (Not converted)
MQFB_SYSTEM_FIRST (Not converted)
MQFB_SYSTEM_LAST (Not converted)
MQFB_APPL_FIRST (Not converted)
MQFB_APPL_LAST (Not converted)
MQFB_TM_ERROR (Not converted)
MQFB_IIH_ERROR (Not converted)
MQFB_NOT_AUTHORIZED_FOR_IMS (Not converted)
MQFB_IMS_ERROR (Not converted)
MQFB_IMS_FIRST (Not converted)
MQFB_IMS_LAST (Not converted)
MQFB_QUIT (Not supported)
MQRC_NOT_AUTHORIZED MQMSG_CLASS_NACK_ACCESS_DENIED
MQRC_Q_FULL MQMSG_CLASS_NACK_Q_EXCEED_QUOTA
MQRC_PERSISTENT_NOT_ALLOWED MQMSG_CLASS_NACK_ERROR
MQRC_MSG_TOO_BIG_FOR_Q_MGR MQMSG_CLASS_NACK_ERROR
MQRC_MSG_TOO_BIG_FOR_Q MQMSG_CLASS_NACK_ERROR
MQRC_PUT_INHBITED (Not converted)

MQMD.ReplyToQ and MQMD.ReplyToQMgr Fields
The MSMQ-MQSeries Bridge converts the MQSeries ReplyToQMgr and ReplyToQ fields to an MSMQ format name. The name is
assigned both to the response queue property and to the administration queue property of the new MSMQ message.

The MSMQ-MQSeries Bridge interprets the ReplyToQMgr and the ReplytoQ fields in the same way as the destination queue
name:

If MQMD.ReplyToQMgr is the MSMQ-MQSeries Bridge machine name and MQMD.ReplyToQ begins with PUBLIC_, P_, or
DIRECT_OS/, MSMQ-MQSeries Bridge interprets MQMD.ReplyToQ as an MSMQ format name.

Otherwise, the MSMQ-MQSeries Bridge interprets MQMD.ReplyToQMgr\MQMD.ReplyToQ as an MSMQ path name and
determines the MSMQ format name.

For information on character substitutions within the names and other syntax information, see the section on Object Descriptor.

The following table lists the MQSeries fields and the MSMQ properties that they are converted to.

MQSeries Fields Converted to MSMQ Property
MQOD.ReplyToQMgr and
MQOD.ReplyToQ

PROPID_M_RESP_QUEUE

MQOD.ReplyToQMgr and
MQOD.ReplyToQ

PROPID_M_ADMIN_QUEUE
(same value as PROPID_M_RESP_QUEUE)

Other MQMD Fields

The following table lists the conversions of additional MQMD fields, besides the ones described above, to MSMQ properties.

 Note To save space in the table, the prefixes MQMD. and PROPID_M_ are omitted from the MQSeries field names
and the MSMQ property names, respectively. For example, the first row of data means that
MQMD.ApplIdentityData is converted to PROPID_M_LABEL and PROPID_M_LABEL_LEN.

MQSeries field Converted to MSMQ
MQMD. Value PROPID_M_ Value
ApplIdentityData Value (MQCHAR32) LABEL Value
CorrelId Value (MQBYTE24) CORRELATIONID Last 20 bytes of value
Expiry MQEI_UNLIMITED

Value > 0 (tenths of seconds)

TIME_TO_BE_RECEIVED INFINITE

Value/10 (seconds)
Format MQFMT_STRING

Any other value
BODY_TYPE VT_BSTR

Not converted

Persistence MQPER_

PERSISTENT
NOT_PERSISTENT

DELIVERY MQMSG_DELIVERY_

RECOVERABLE
EXPRESS

Priority 0, 1
2, 3
4
5
6
7
8
9

PRIORITY 0
1
2
3
4
5
6
7

UserIdentifier Value SENDERID SID value (if the user is registered in Windows NT)

Not converted (if the user is not registered)

Unconverted MQSeries MQMD Fields
The following MQSeries fields have no equivalents in MSMQ. The MSMQ-MQSeries Bridge ignores these fields and does not
transmit them to MSMQ.

Like all MQMD fields, MSMQ-MQSeries Bridge stores the fields in the MSMQ message extension property.

MQMD.AccountingToken
MQMD.ApplOriginData
MQMD.BackoutCount
MQMD.Encoding
MQMD.MsgId
MQMD.PutApplName
MQMD.PutApplType
MQMD.PutDate
MQMD.PutTime
MQMD.StrucId

When the value of MQMD.CodeCharSetID is MQCCSI_Q_QMG, the MSMQ-MQSeries Bridge ignores this field and does not
transmit it to MSMQ. When the value of MQMD.CodeCharSetID is MQCCSI_Q_QMG, this value is not supported by the MSMQ-
MQSeries Bridge.

When the value of MQMD.Version is "MQPMO_VERSION_1", the MSMQ-MQSeries Bridge ignores this field and does not
transmit it to MSMQ.

Microsoft Host Integration Server 2000

Building an MSMQ Message
This section explains how the MSMQ-MQSeries Bridge builds a complete MSMQ message, including all needed properties,
whether or not they have MQSeries equivalents.

Message Body (PROPID_M_BODY)

The MSMQ message body is equivalent to the MQPUT or MQGET message buffer of MQSeries. The length of the MQPUT buffer
is the MSMQ message body size.

The following table lists the MSMQ properties and the MQSeries fields from which they are converted.

MSMQ Property Converted from MQSeries Field
PROPID_M_BODY Message buffer
PROPID_M_BODY_SIZE Message buffer length

Queue Format Names (PROPID_M_..._QUEUE)

MSMQ-MQSeries Bridge retrieves the MSMQ format names of the destination, response, and administration queues from the
MQSeries queue and queue manager names.

The following table lists the MSMQ properties and the MQSeries fields from which they are converted.

MSMQ Properties Converted from MQSeries Fields
PROPID_M_DEST_QUEUE and
PROPID_M_DEST_QUEUE_LEN

MQOD.ObjectName and MQOD.ObjectQMgrName

PROPID_M_RESP_QUEUE and
PROPID_M_RESP_QUEUE_LEN

MQMD.ReplyToQ and
MQMD.ReplyToQMgr

PROPID_M_ADMIN_QUEUE and
PROPID_M_ADMIN_QUEUE_LEN

MQMD.ReplyToQ and
MQMD.ReplyToQMgr

Message Class (PROPID_M_CLASS)
The MSMQ-MQSeries Bridge assigns the MSMQ message class based on the MQSeries MQMD.MsgType and MQMD.Feedback
values. For detailed information, see the section MQMD.MsgType and MQMD.Feedback Fields.

The following table lists the MSMQ properties and the MQSeries fields from which they are converted.

MSMQ Properties Converted from MQSeries Fields
PROPID_M_CLASS MQMD.MsgType and MQMD.Feedback

Message Expiration (PROPID_M_TIME...)

The MSMQ-MQSeries Bridge converts the MQSeries MQMD.Expiry value (in tenths of seconds) to the MSMQ
PROPID_M_TIME_TO_BE_RECEIVED (in seconds). If MQMD.Expiry is set to MQEI_UNLIMITED, then the value of MSMQ
PROPID_M_TIME_TO_BE_RECEIVED is set to INFINITE. For other values of MQMD.Expiry greater than zero, the value of MSMQ
PROPID_M_TIME_TO_BE_RECEIVED is converted by dividing MQMD.Expiry by 10. The MSMQ-MQSeries Bridge does not set
PROPID_M_TIME_TO_REACH_QUEUE.

VALUE of MSMQ Properties Converted from MQSeries Fields
PROPID_M_TIME_TO_BE_RECEIVED MQMD.Expiry

Message Acknowledgment and Journaling (PROPID_M_ACKNOWLEDGE, PROPID_M_JOURNAL)

The MSMQ message acknowledgment and journaling are converted from values of MQMD.Report. For details, see the section
above on MQMD.Report.

MSMQ property Converted from MQSeries
PROPID_M_ACKNOWLEDGE
PROPID_M_JOURNAL

MQMD.Report

Other MSMQ Properties (PROPID_M_...)

Fields without MQSeries equivalents

Some MSMQ properties have no equivalent in MQSeries. The MSMQ-MQSeries Bridge assigns the following values to these

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

properties.

MSMQ property Value assigned by MSMQ-MQSeries Bridge
PROPID_M_APPSPECIFIC None
PROPID_M_AUTH_LEVEL Default
PROPID_M_CONNECTOR_TYPE None
PROPID_M_DEST_QUEUE Default
PROPID_M_DEST_QUEUE_LEN Default
PROPID_M_DEST_SYMM_KEY None
PROPID_M_ENCRYPTION_ALG None
PROPID_M_HASH_ALG None
PROPID_M_MSGID Assigned by MSMQ
PROPID_M_PRIV_LEVEL Default
PROPID_M_PROV_NAME None
PROPID_M_PROV_TYPE None
PROPID_M_SECURITY_CONTEXT Default
PROPID_M_SENDER_CERT Default
PROPID_M_SENTTIME Time when MSMQ-MQSeries Bridge transmits the message to MSMQ
PROPID_M_SIGNATURE None
PROPID_M_SRC_MACHINE_ID GUID of the MSMQ-MQSeries Bridge machine
PROPID_M_TRACE Default
PROPID_M_VERSION 0x0010

Equivalent MSMQ Properties
The following MSMQ properties have MQSeries equivalents. The MSMQ-MQSeries Bridge converts the values of each property as
listed in the table.

To save space in the table, the prefixes PROPID_M_ and MQMD. are omitted from the MSMQ property names and the
MQSeries field names, respectively. For example, the first row of data means that PROPID_M_BODY_TYPE is converted
from MQMD.Format.

MSMQ property Converted from MQSeries
PROPID_M_ Value MQMD. Value
BODY_TYPE VT_BSTR

Not converted (default)
Format MQFMT_STRING

Any other value
CORRELATIONID Last 20 bytes of value MsgId Value (MQBYTE24)
DELIVERY MQMSG_DELIVERY_

RECOVERABLE
EXPRESS

Persistence MQPER_

PERSISTENT
NOT_PERSISTENT

LABEL
LABEL_LEN

Value ApplIdentityData Value (MQCHAR32)

PRIORITY 0
1
2
3
4
5
6
7

Priority 0, 1
2, 3
4
5
6
7
8
9

SENDERID
SENDERID_TYPE

SID value
MQMSG_SENDERID_TYPE_
SID

Not converted
MQMSG_SENDERID_TYPE_
NONE

UserIdentifier Value, if the user is registered in Windows NT

If the user is not registered in Windows NT

Microsoft Host Integration Server 2000

The MSMQ-MQSeries Bridge Extensions Mechanism
Besides the automatic conversion of MSMQ (Microsoft Message Queue) and IBM MQSeries messages, the Microsoft® MSMQ-
MQSeries Bridge provides a mechanism for sending and receiving explicit MQSeries field values. The Microsoft® MSMQ-
MQSeries Bridge Extension Property API supports the message extension property (PROPID_M_EXTENSION) of Microsoft
Message Queue Server (MSMQ). The message extension property provides a way for applications to attach any type of data—in
essence, custom properties—to an MSMQ message.

Similar to the MSMQ message body property (PROPID_M_BODY), the message extension can have any length. However, the
message extension has a defined structure that lets an application label its data with a GUID (Globally Unique Identifier) code.
Applications can attach multiple extension fields, each labeled with its own GUID and all included in a single message extension
property. This is done using the MSMQ message extension property (PROPID_M_EXTENSION).

This section contains:

Data Structure of a Message Extension
How MSMQ-MQSeries Bridge Creates a Message Extension
How MSMQ-MQSeries Bridge Converts a Message Extension
Using Message Extensions
Programming a Message Extension
The_MSMQ_MQSeries_Bridge_Extension_Property_API

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Structure of a Message Extension
A message extension is an MSMQ message property of arbitrary length. The property symbol of a message extension is
PROPID_M_EXTENSION and its type indicator is VT_UI1|VT_VECTOR. A message extension is a sequential buffer containing any
number of MSMQ extension fields.

Each extension field comprises three subfields:

Subfield Length of Subfield (bytes) Description
GUID 16 A GUID identifier, typically of the application that created the extension field.
Length 4 The Length of the Data subfield in bytes.
Data Value of the length subfield Any data that is part of the message extension.

For use with the MSMQ-MQSeries Bridge, the GUID identifier is set to the MSMQ-MQSeries Bridge GUID value.

The MSMQ message extension length property, PROPID_M_EXTENSION_LEN, is of type indicator VT_UI4 and represents the
overall size in bytes of all message extensions attached to a message. MSMQ sets the message extension length automatically
when you send a message. When you receive or peek at a message, you can look into the message extension length to detect
whether the message contains any message extension fields and to determine the necessary receive buffer size.

The MSMQ-MQSeries Bridge Extension API functions work with an alternative data representation for a message extension, called
an EP object. An EP object contains the same fields and subfields as a message extension, but in a format adapted for
programming.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

How MSMQ-MQSeries Bridge Creates a Message Extension
When the MSMQ-MQSeries Bridge processes a message from MQSeries, it creates a PROPID_M_EXTENSION property, which it
includes in the message that it transmits to MSMQ.

This section contains:

MQMD Extension Field
Error Extension Field
Other Extension Fields

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MQMD Extension Field
Ordinarily, the message extension contains a single extension field with the following structure:

The MSMQ-MQSeries Bridge GUID code is stored in the GUID subfield of the extension.

The sizeof(MQMD) is stored in the length subfield of the extension.

The MQMD is copied byte-for-byte into the data buffer of the extension.

The MSMQ-MQSeries Bridge GUID is the value of the sg_MSMQExtMQMD constant which is defined in the mqsrext.h include file
found in the SDK\Include subdirectory.

The MQMD extension has the following GUID for MQMD version 2.

static const GUID sg_MSMQExtMQMDE =
{ 0x18ae68f5, 0x989b, 0x11d3,
 { 0x8d, 0xf9, 0x0, 0x0, 0xf8, 0x1a, 0xea, 0x1f }
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error Extension Field
If the MSMQ-MQSeries Bridge encounters an MQSeries error when it transmits a message from MSMQ, it records the error in the
extension property and places the message on the dead letter queue.

To do this, the MSMQ-MQSeries Bridge adds an extension property to the MSMQ message, if it doesn't already exist. Within the
extension property, MSMQ-MQSeries Bridge creates an extension field containing the following data:

The GUID subfield contains a MSMQ-MQSeries Bridge error GUID (different from the GUID used for MQMD).

The length subfield contains the value 4.

The data subfield contains a reason code, identical to the codes returned by the MQSeries function MQPUT.

The MSMQ-MQSeries Bridge error GUID is the value of the sg_MSMQExtReasonCode constant, which is defined in the mqsrext.h
include file found in the SDK\Include subdirectory.

If desired, an MSMQ application can read messages from the dead letter queue and interpret the reason codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Other Extension Fields
If you send an MQSeries message having certain values of MQMD.Report, the MSMQ-MQSeries Bridge adds a second extension
field to the new MSMQ message. This field is for internal use only, not for use in your applications. The MSMQ-MQSeries Bridge
distinguishes the Report extension field from the MQMD and error extension fields by labeling them with different GUIDs.

For further information, see Converting Messages Sent from MQSeries to MSMQ.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

How MSMQ-MQSeries Bridge Converts a Message Extension
If you send an MSMQ message including a message extension to MQSeries, the MSMQ-MQSeries Bridge converts the extension
in the following way:

The MSMQ-MQSeries Bridge looks for an extension field identified by the MSMQ-MQSeries Bridge GUID. If it finds one, it reads
the MQMD structure from the extension field.

MSMQ-MQSeries Bridge ignores any other extension fields that may be present in the message extension.

MSMQ-MQSeries Bridge includes the MQMD structure that it reads from the extension field in the new MQSeries message.

The MQMD structure in the message extension overrides the default MQMD conversions, which are described in the section on
Converting Messages Sent from MSMQ to MQSeries.

A few exceptions to the above rules are described in the following sections.

This section contains:

Sender and User Identifiers
Version Identifiers

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sender and User Identifiers
MSMQ-MQSeries Bridge reads the value of MQMD.UserIdentifier stored in the message extension and assigns the value to the
MQMD.UserIdentifier field in the new MQSeries message.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Version Identifiers
MQSeries uses the following fields for version identification:

MQMD.StrucId
MQMD.Version

When the MSMQ-MQSeries Bridge converts a message extension, it confirms that the values of these fields are for a version of
MQSeries that the Bridge supports. If they are not, MSMQ-MQSeries Bridge places the message on the dead letter queue and
does not transmit it to MQSeries.

For the supported versions of MQSeries, see Platforms Supported By MSMQ-MQSeries Bridge Extensions. For the permitted
values of the version identification fields, see Converting Messages Sent from MSMQ to MQSeries.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using Message Extensions
This section suggests a few ways that you can use the message extension property in your messaging applications.

This section contains:

Sending an MQSeries Message to MSMQ
Sending an MSMQ Message to MQSeries

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending an MQSeries Message to MSMQ
MSMQ-MQSeries Bridge stores the complete MQMD structure of an MQSeries message in an MSMQ message extension. An
MSMQ application can read the extension and retrieve the original MQMD structure.

In this way, an MSMQ application can retrieve the original values of every MQMD field, regardless of the MSMQ-MQSeries Bridge
conversions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending an MSMQ Message to MQSeries
When you send an MSMQ message to MQSeries, you can include a message extension. This can be an extension that you
originally received from MQSeries, or one that you created yourself. MSMQ-MQSeries Bridge reads the message extension and
uses it to set the MQMD fields of the converted message that it sends to MQSeries.

You can use this feature for two purposes:

To override the default conversions described in the section Converting Messages Sent from MSMQ to MQSeries

To supplement the default conversions by assigning MQMD fields that have no MSMQ equivalent

The following are some examples of fields that have no equivalents or only partial equivalents (different permitted values or
length) among the MSMQ message properties:

MQMD.AccountingToken
MQMD.ApplOriginData
MQMD.CorrelId
MQMD.MsgId
MQMD.MsgType
MQMD.PutApplName
MQMD.PutApplType
MQMD.ReplyToQ
MQMD.ReplyToQMgr
MQMD.Report

Suppose you want to send a message to an MQSeries application including an MQMD.MsgType value of MQMD_REPLY. The
default message conversions provide no way to set this particular value. You can send the value by storing an MQMD data
structure in a message extension.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming a Message Extension
In an MSMQ application, you can program a message extension containing an arbitrary number of extension fields. For use with
MSMQ-MQSeries Bridge, build the extension according to the following specifications.

It is recommended that you use MSMQ-MQSeries Bridge Extension Property API to construct the extension with the required
syntax. Create a PROPID_M_EXTENSION property containing at least one extension field.

Store the MSMQ-MQSeries Bridge GUID code in the GUID subfield of exactly one extension field. The GUID is the value of the
sg_MSMQExtMQMD constant, which is defined in the mqsrext.h include file of the Extension Property API. Store the
sizeof(MQMD) in the length subfield. Copy a complete MQMD structure byte-for-byte into the data buffer subfield.

When you send the message to MQSeries, the MSMQ-MQSeries Bridge converts the extension field identified by the MSMQ-
MQSeries Bridge GUID. Any other extension fields are ignored.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The MSMQ-MQSeries Bridge Extension Property API
The MSMQ-MQSeries Bridge Extension Property API is recommended for programming and working with message extensions.
The API provides a library of functions that help you create and interpret message extensions. The MSMQ-MQSeries Bridge
Extension Property API is supplied as part of the Host Integration Server SDK.

Your MSMQ applications can use the API to:

Read message extensions that you receive from MQSeries
Create or modify message extensions that you send to MQSeries
Read or create message extensions for any other MSMQ messaging purpose

The MSMQ-MQSeries Bridge Extension Property API lets you create and work with the MSMQ message extension property easily.
This section provides a few guidelines for using the API functions.

The MSMQ-MQSeries Bridge Extension Property API operates directly on the EP representation of a message extension. In
particular, the API functions support the following programming approach:

Creating or deleting an EP object.
Creating, finding, reading, writing, or deleting extension fields in an EP object.

Converting an EP object to a message extension. (PROPID_M_EXTENSION) that you can send in an MSMQ message.

Converting a message extension that you received in an MSMQ message to an EP object.

You cannot send an EP object directly in an MSMQ message. You must first convert it to a message extension
(PROPID_M_EXTENSION).

To use the message extension API, include the MSMQext.h header file in your applications. This header files contains constants and
function prototypes for the Extension Property API functions. This header file is located in the SDK\Include directory on the Host
Integration Server CD-ROM and is installed when the SDK package is selected.

If you are using the API in conjunction with MSMQ-MQSeries Bridge, also include the mqsrext.h header file located in the
SDK\Include directory. This file defines the GUID that labels the extension fields.

The Extension Property API functions are handle-based. The following is a summary of the MSMQ-MQSeries Bridge Extension
Property API functions. For complete details, see the individual function descriptions in the MSMQ-MQSeries Bridge Extensions
Reference.

Function Description
EPAdd Adds a new extension field to an EP object.
EPClose Frees the extension handle and associated memory of an EP object.
EPDelete Deletes an extension field from an EP object.
EPDeleteAll Deletes all extension fields or all extensions fields matching a specific GUID from an EP object.
EPGet Positions to and optionally retrieves a requested extension field from an EP object, storing the GUID, length, and data

subfields in separate variables. EPGet can also be used to locate extension fields containing a specified GUID.
EPGetBuffer Converts an EP object to a message extension and packs the message extension into the supplied buffer.
EPOpen Creates an EP object and optionally unpacks the supplied message extension buffer into it.
EPUpdate Writes new data to an existing extension field of an EP object.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Considerations Using MSMQ-MQSeries Bridge
Extensions
The limitations of specific API functions results from the fact that MSMQ-MQSeries Bridge transmits messages, not API calls,
between queuing systems. The Microsoft MSMQ-MQSeries Bridge transmits messages across the MSMQ-MQSeries interface. The
MSMQ-MQSeries Bridge does not transmit API calls across the interface. Thus, MSMQ API calls operate only within the MSMQ
environment, and MQSeries API calls operate only within the MQSeries environment. This principle limits the ways you can create
and access queues.

All MSMQ API functions operate only within the MSMQ environment, up to and including foreign computers and queues. For
example, you can use the following functions:

MQLocateBegin, MQLocateNext, and MQLocateEnd to search for foreign queues

MQGetMachineProperties, MQGetPrivateComputerInformation, MQGetQueueProperties, and MQGetQueueSecurity
functions to retrieve the properties of foreign queues

MQOpenQueue to open a foreign queue

MQSetQueueProperties and MQSetQueueSecurity to set the properties of foreign queues

MQCloseQueue to close a foreign queue

When creating a queue, you can call the MSMQ function MQCreateQueue to create a foreign queue representing an MQSeries
queue, but you cannot create the actual MQSeries queue itself. Similarly, you cannot create an MSMQ Queue by calling the
MQSeries function MQOPEN.

To communicate across the MSMQ-MQSeries interface, your MSMQ and MQSeries applications should each create their own
queues. Alternatively, you can use administration tools such as the MSMQ Manager or the MQSeries command interface to create
the queues.

For proper message delivery, you must ensure that the destination queue for each message actually exists.

You can use the MSMQ MQPathNameToFormatName function to determine an MSMQ format name for an MQSeries queue.
The format name actually refers to the MSMQ foreign queue. The MSMQ-MQSeries Bridge processes the format name that it
finds in a message and directs the message to the MQSeries queue.

When opening a queue, a call to the MSMQ function MQOpenQueue opens the foreign queue, not the MQSeries queue itself.
The MSMQ-MQSeries Bridge opens the MQSeries queue as necessary when it transmits a message. If you are sending messages
to more that one MQSeries queue, you must open each one separately using its own MSMQ format name.

In the opposite direction, the MQSeries function MQOPEN opens the transmission queue for the MSMQ machine. The MSMQ-
MQSeries Bridge opens the MSMQ queue when it transmits a message.

When sending an MSMQ message to a foreign queue with MQSendMessage, MSMQ delivers the message to the connector
queue in the MSMQ-MQSeries Bridge machine. The MSMQ-MQSeries Bridge converts and transmits the message to MQSeries
queue. MQSeries delivers a message sent by MQPUT to a transmission queue. The MSMQ-MQSeries Bridge reads the message
from the MQSeries transmission queue. After converting the message from MQSeries to MSMQ message properties, MSMQ-
MQSeries Bridge transmits the message to the destination MSMQ queue.

When receiving a message, the MSMQ-MQSeries Bridge does not transmit receive requests across the MSMQ-MQSeries
interface. An MSMQ application can receive a message only from a native MSMQ queue (the MQReceiveMessage function). An
MQSeries application can receive only from a native MQSeries queue (the MQGET function).

When sending a message from MQSeries to MSMQ, if you want the MQSeries message to have a value for MQMD.
ApplIdentityData, you need the set both of the following:

Set the open option with MQOO_SET_IDENTITY_CONTEXT
Set the put option with MQPMO_SET_IDENTITY_CONTEXT

When a message is retrieved from MSMQ, the MSMQ-MQSeries Bridge will have converted the MSMQ PROPID_M_LABEL and
PROPID_M_LABEL_LEN properties from the MQSeries MQMD.ApplIdentityData field value.

The MQMDE extension has the following GUID for MQMD version 2.

static const GUID sg_MSMQExtMQMDE =
{ 0x18ae68f5, 0x989b, 0x11d3,

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This section contains:

Transaction Support Using MSMQ-MQSeries Bridge
Security Using MSMQ-MQSeries Bridge
Troubleshooting the MSMQ-MQSeries Bridge Extensions

 { 0x8d, 0xf9, 0x0, 0x0, 0xf8, 0x1a, 0xea, 0x1f }
};

Microsoft Host Integration Server 2000

Transaction Support Using MSMQ-MQSeries Bridge
The MSMQ-MQSeries Bridge supports both MSMQ and MQSeries transactions. The procedure for sending a group of transacted
messages is similar in either direction, from MSMQ to MQSeries or from MQSeries to MSMQ. Your application should follow
these three basic procedures:

Open a transaction
Send the messages
Commit the transaction

At this point, the group of messages reaches the MSMQ connector queue or the MQSeries transmission queue. Only then does
the MSMQ-MQSeries Bridge transmit the messages to the other messaging system. If your application aborts the transaction
instead of committing, MSMQ-MQSeries Bridge does not handle the messages at all.

Even after you commit a transaction, it is still possible that MSMQ-MQSeries Bridge cannot transmit all the messages. This may
occur, for example, if some of the messages are addressed to queues that don't exist in the recipient messaging system. MSMQ-
MQSeries Bridge places any undeliverable messages on its dead letter queue.

In the MSMQ-to-MQSeries direction, the MSMQ-MQSeries Bridge sends transacted messages by a transactional message pipe
and untransacted messages by regular message pipe. In the MQSeries-to-MSMQ direction, MQS->MSMQ message pipe, and
MQS->MSMQ transactional message pipe do not depend on transaction status.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Security Using MSMQ-MQSeries Bridge
Message authentication and message body encryption are supported from the MSMQ sending application up to the MSMQ-
MQSeries Bridge. Authentication and message body encryption from the MSMQ-MQSeries Bridge to MQSeries, or from
MQSeries to MSMQ, are not currently supported.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Troubleshooting the MSMQ-MQSeries Bridge Extensions
The Microsoft MSMQ-MQSeries Bridge generally ignores warnings that it receives from MSMQ or MQSeries, but errors are not
ignored. Where possible, the MSMQ-MQSeries Bridge transmits messages despite any warnings.

If the MSMQ-MQSeries Bridge is unable to transmit a message to MSMQ or MQSeries, it places the message on one of its dead
letter queues. This can happen, for example, if a message contains an unsupported MSMQ or MQSeries version identifier or if
MSMQ-MQSeries Bridge encounters an error in the recipient messaging system.

The dead letter queues are MSMQ queues located on the MSMQ-MQSeries Bridge machine. There are two dead letter queues
used for this purpose with the following names:

Dead Letter Queue Names Comments
MQBridge dead letter Used for untransacted messages when errors occur.
MQBridge xact dead letter Used for transacted messages when errors occur.

Note that these are different from the MSMQ and MQSeries dead letter queues, where the messaging systems place expired or
incorrectly addressed messages.

You can determine whether there are messages on the dead letter queues using the MSMQ-MQSeries Bridge Manager.

If the MSMQ-MQSeries Bridge cannot deliver a message to MQSeries, it records the error in the extension property
PROPID_M_EXTENSION of the original MSMQ message and places the message on the dead letter queue. This extension property
can be examined to determine the nature of the error encountered.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings Used By MSMQ-MQSeries Bridge Extensions
The Microsoft MSMQ-MQSeries Bridge Extensions uses a number of registry settings for configuration and proper operation. The
configuration registry settings are located under the HKEY_LOCAL_MACHINE\Software\Microsoft\SNA
Server\CurrentVersion\Setup key. These registry settings include the following subkeys:

Sub
key

Comment

Roo
tDir

Stores the path to root directory where the Host Integration Server was installed. The system directory below this root direct
ory is the location where the MSMQ-MQSeries Bridge Extensions DLL and other support DLLs are installed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MSMQ-MQSeries Bridge Reference
This section of the Microsoft® Host Integration Server 2000 Developer's Guide lists the extensions and components that make up
the MSMQ-MQSeries bridge.

This section contains:

MSMQ-MQSeries Bridge Extensions Reference
SDK Components for MSMQ-MQSeries Bridge Extensions

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MSMQ-MQSeries Bridge Extensions Reference
This section provides an alphabetic reference to all of the API calls for the MSMQ-MQSeries Bridge Extension Property API.

This section contains:

EPAdd
EPClose
EPDelete
EPDeleteAll
EPGet
EPGetBuffer
EPOpen
EPUpdate

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPAdd
The EPAdd function adds a new extension field at the end of an existing EP object and optionally returns a cursor pointing to the
new extension field in the EP object.

Parameters

hExtension
Supplied parameter. The EP object handle to the EP object that is to have data added.

pFieldID
Supplied parameter. A pointer to the GUID of the new extension field. A GUID is 16 bytes in length.

pFieldData
Supplied parameter. A pointer to the buffer containing the data for the new extension field.

dwDataLength
Supplied parameter. The length of the buffer containing the data for the new extension field.

phCursor
Supplied and returned parameter. A pointer to a cursor, which points to the new extension field. If phCursor is NULL when this
function is called, the cursor is not created.

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_ALLOC_FAIL
The function failed because memory could not be allocated for the internal data buffers used to extend the EP object.

MQ_ERROR_INVALID_HANDLE
The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER
The function failed because one or more of the parameters passed to this function are invalid.

Remarks

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension field.
The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

The following example illustrates how to use this function.

See Also

EPDelete, EPDeleteAll

HRESULT EPAdd(
 HANDLE hExtension,
 PCGUID pFieldID
 void *pFieldData,
 DWORD dwDataLength,
 PHANDLE phCursor
);

HANDLE hExt;
HANDLE hCursor;
GUID guid;
...
/* Add a new field containing the data "test" */
EPAdd(hExt, &guid, "test", 5, NULL);

/* Add a new field and create a cursor */
EPAdd(hExt, &guid, "another test", 13, &hCursor);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPClose
The EPClose function closes an open EP object freeing the extension handle and associated memory of an EP object. The entire
contents of the object are deleted.

Parameters

phExtension
Supplied and returned parameter. A pointer to an existing EP object handle to close.

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_INVALID_HANDLE
The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER
The function failed because the parameter passed to this function is invalid.

Remarks

If the EP object handle is successfully closed, phExtension is reset to NULL on output.

See Also

EPOpen

HRESULT EPClose(
 PHANDLE phExtension
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPDelete
The EPDelete function deletes a single extension field from an existing EP object.

Parameters

hExtension
Supplied parameter. The EP object handle to the EP object that is to have extension field deleted.

phCursor
Supplied and returned parameter. On input, phCursor is a cursor pointing to the extension field to be deleted. On output,
phCursor is set to the next extension field in the extension, or to NULL if there are no more fields.

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_INVALID_HANDLE
The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER
The function failed because one or more of the parameters passed to this function are invalid.

Remarks

After successful deletion, the cursor is set to point to the next field after the deleted one. If the last field is deleted, the cursor is set
to NULL (to the beginning).

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension field.
The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

See Also

EPDeleteAll

HRESULT EPDelete(
 HANDLE hExtension,
 PHANDLE phCursor
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPDeleteAll
The EPDeleteAll function deletes all extension fields from an existing EP object or all extension fields matching a specific GUID.

Parameters

hExtension
Supplied parameter. The EP object handle to the EP object that is to have extension field deleted.

pFieldsId
Supplied parameter. A pointer to a 16-byte buffer containing the GUID of the fields to delete. If this parameter is NULL, all
extension fields are deleted.

phCursor
Supplied and returned parameter. On output, this field is a pointer to an extension field cursor. The cursor is positioned at the
first field of the next higher GUID after the one that was deleted. If there are no more GUIDs or if all fields were deleted,
phCursor is set to NULL. The phCursor may be NULL on input if no cursor is desired.

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_EXTENSION_FIELD_NOT_FOUND
The function failed because the extension field matching the specified GUID could not be found.

MQ_ERROR_INVALID_HANDLE
The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER
The function failed because one or more of the parameters passed to this function are invalid.

Remarks

If the phCursor parameter is not NULL, *phCursor will point to the next field after all the deleted ones (even if
MQ_ERROR_EXTENSION_FIELD_NOT_FOUND is returned). If the last field is deleted, the cursor is set to NULL.

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension field.
The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

The following example illustrates how to use this function.

See Also

EPDelete

HRESULT EPDeleteAll(
 HANDLE hExtension,
 PCGUID pFieldsId,
 PHANDLE phCursor
);

HANDLE hExt;
GUID guid;
HANDLE hCursor;
...
/* Delete all fields having a specified GUID and set a cursor */
EPDeleteAll(hExt, &guid, &hCursor);

/* Delete all extension fields */
EPDeleteAll(hExt, NULL, NULL);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPGet
The EPGet function reads a specified extension field from an EP object, storing the GUID, length, and data subfields in separate
variables. EPGet can also be used to locate extension fields containing a specified GUID

Parameters

hExtension
Supplied parameter. The EP object handle.

Directive
Supplied parameter. This parameter and phCursor together control the behavior of the function. Possible values and their usage
are discussed in the table following this parameter list.

phCursor
Supplied and returned parameter. A pointer to a cursor, which points to the matching extension field. If phCursor is NULL, the
first field having a GUID matching pFieldID is read, and the cursor is positioned to this field. See the Directive argument for
specific details.

pFieldID
Supplied and returned parameter. If the Directive argument is EP_NEXT_KEY_FIELD, pFieldId is a pointer to a 16-byte buffer
containing the GUID to be read. If the Directive argument is EP_CURRENT_FIELD or EP_NEXT_FIELD, on output this parameter is
a pointer to a 16-byte buffer where the function stores the GUID. The GUID can be NULL if the GUID output is not desired.

pFieldData
Supplied and returned parameter. On input, a pointer to a buffer where the function should store the extension field data. On
input, this parameter can be NULL if the data output is not desired. On output, a pointer to a buffer where the function stores
the extension field data.

pdwDataLength
Supplied and returned parameter. On input, the length of the buffer for the data from the extension field. On output, the actual
length of the data. If the buffer is too short or NULL, the data is not read but pdwDataLength is reset to the required buffer
length.

Values for the Directive parameter

Directiv
e

Description

EP_CUR
RENT_FI
ELD

Retrieves the extension field pointed to by the phCursor parameter, which must be a valid non-NULL cursor handle.

EP_NEX
T_FIELD

Advances the cursor and reads the next field. If there are no more fields, returns MQ_ERROR_EXTENSION_FIELD_NOT_F
OUND and phCursor is set to NULL.

If phCursor is NULL or *phCursor is NULL, the cursor is positioned to the first field (sorted in ascending order of GUID) a
nd this field is read.

If phCursor is not NULL, *phCursor is set to the extension field.

If phCursor is not NULL and *phCursor is not NULL, the cursor (phCursor) is positioned to the first field (sorted in ascen
ding order of GUID) and this field's ID and data are read and returned.

EP_NEX
T_KEY_FI
ELD

Advances the cursor and reads the next field having a GUID matching pFieldID. If there are no more matching fields, retu
rns MQ_ERROR_EXTENSION_FIELD_NOT_FOUND and sets phCursor to the first field having the next higher GUID, or to
NULL if there are no more fields.
If phCursor is NULL or *phCursor is NULL, then the first field having a GUID matching pFieldID is read, and the cursor is
positioned to this field. If the field is found it's field ID and data are returned and if phCursor is not NULL, *phCursor is se
t to the field.

HRESULT EPGet(
 HANDLE hExtension,
 NAVTYPE Directive,
 PHANDLE phCursor
 GUID *pFieldID,
 void *pFieldData,
 PDWORD pdwDataLength,
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_ALLOC_FAIL
The function failed because memory could not be allocated for the internal data buffers used for the EP object.

MQ_ERROR_EXTENSION_FIELD_NOT_FOUND
The function failed because the extension field matching the specified GUID could not be found.

MQ_ERROR_INVALID_HANDLE
The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER
The function failed because one or more of the parameters passed to this function are invalid.

MQ_ERROR_USER_BUFFER_TOO_SMALL
The function failed because the length of the buffer passed was too small for the data.

Remarks

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension field.
The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

The following example illustrates how to use this function.

See Also

EPDelete, EPDeleteAll

HANDLE hExt;
HANDLE hCursor;
GUID guid;
void *pBuffer;
DWORD dwSize, dwCount;
DWORD dwTotalSize = 0;
...

/* Retrieve one field by GUID */
dwSize = 1024;
EPGet(hExt, EP_NEXT_KEY_FIELD, NULL, &guid, pBuffer, &dwSize);

/* Count the fields in a message extension */
for (hCursor = NULL, dwCount = 0;
 EPGet(hExt, EP_NEXT_FIELD, &hCursor, NULL, NULL, NULL)==MQ_OK;
 dwCount++);

/* Compute the total length of all extension fields
 having a given GUID */
for (hCursor = NULL, dwCount = 0;
 EPGet(hExt, EP_NEXT_KEY_FIELD, &hCursor, &guid, NULL,
 &dwSize) == MQ_OK;
 dwTotalSize += dwSize);

Microsoft Host Integration Server 2000

EPGetBuffer
The EPGetBuffer function converts an EP object to a message extension (PROPID_M_EXTENSION format) that can be sent in a
message and packs the message extension into the supplied buffer.

Parameters

hExtension
Supplied parameter. The EP object handle.

pBuf
Supplied parameter. A pointer to the buffer where this function will store the PROPID_M_EXTENSION message extension.

pdwBufLength
Supplied and returned parameter. On input, the length of the buffer for the message extension. On output, the actual length of
the stored data. If the buffer is too short or NULL, the data is not converted but pdwBufLength is reset to the required buffer
length.

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_INVALID_HANDLE
The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER
The function failed because one or more of the parameters passed to this function are invalid.

MQ_ERROR_USER_BUFFER_TOO_SMALL
The function failed because the length of the buffer passed was too small for the data.

Remarks

If this function executed successfully, the pdwBufLength parameter contains the actual length of the packed extension buffer. If
MQ_ERROR_USER_BUFFER_TOO_SMALL is returned, pdwBufLength contains the required buffer length.

The following example illustrates how to use this function.

See Also

EPAdd, EPOpen

HRESULT EPGetBuffer(
 HANDLE hExtension,
 void *pBuf,
 PDWORD pdwBufLength,
);

HANDLE hExt;
void *pBuffer;
DWORD dwSize;

/* Read the required buffer length */
dwSize = 0;
EPGetBuffer(hExt, NULL, &dwSize);

/* Allocate the buffer */
pBuffer = malloc(dwSize);

/* Write the message extension to the buffer */
EPGetBuffer(hExt, pBuffer, &dwSize);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPOpen
The EPOpen function creates an EP object and optionally unpacks the supplied message extension buffer into it.

Parameters

phExtension
Returned parameter. A pointer to an EP object handle of the EP object that is created.

pExtBuffer
Supplied parameter. The pointer to a buffer containing the message extension data in the sequence GUID (16 bytes), length of
data (4 bytes), data, GUID, length of data, data, etc.

dwExtBufLength
Supplied parameter. The length of the buffer containing the message extension data.

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_ALLOC_FAIL
The function failed because memory could not be allocated for the EP object handle and internal data buffers.

MQ_ERROR_CORRUPTED_EXTENSION_BUFFER
The function failed because the buffer containing the message extension data was corrupted.

MQ_ERROR_INVALID_PARAMETER
The function failed because one or more of the parameters passed to this function are invalid.

Remarks

If a NULL pointer is passed for pExtBuffer or dwExtBufLength is zero, an EP object with no extension fields is created.

The following example illustrates how to use this function.

See Also

EPClose

HRESULT EPOpen(
 PHANDLE phExtension,
 void *pExtBuffer,
 DWORD dwExtBufLength
);

HANDLE hExt1, hExt2;
void *pBuffer;
DWORD dwBufLength;
...
/* Create an empty EP object */
EPOpen(&hExt1, NULL, 0);
/* Create an EP object, copying data from a message extension */
EPOpen(&hExt2, pBuffer, dwBufLength);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPUpdate
The EPUpdate function updates (replaces) the data and length subfields of an existing extension field in an EP object.

Parameters

hExtension
Supplied parameter. The EP object handle to the EP object that is to have data updated.

hCursor
Supplied parameter. The cursor pointing to the extension field to be updated which must not be NULL.

pFieldData
Supplied parameter. A pointer to the buffer containing the new data for the extension field. This parameter may be NULL for an
empty data subfield.

dwDataLength
Supplied parameter. The length of the buffer containing the new data for the extension field.

Return Codes

MQ_OK
The function executed successfully.

MQ_ERROR_ALLOC_FAIL
The function failed because memory could not be allocated for the internal data buffers used to update the EP object.

MQ_ERROR_INVALID_HANDLE
The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER
The function failed because one or more of the parameters passed to this function are invalid.

Remarks

The following example illustrates how to use this function.

See Also

EPAdd, EPGet

HRESULT EPUpdate(
 HANDLE hExtension,
 HANDLE hCursor
 void *pFieldData,
 DWORD dwDataLength,
);

HANDLE hExt;
HANDLE hCursor;
GUID guid;
...
/* Find an extension field containing a specified GUID */
EPGet (hExt, EP_NEXT_KEY_FIELD, &hCursor, &guid, NULL, 0)
/* Change the length and data subfields of the extension field */
EPUpdate(hExt, hCursor, "newdata", 8);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SDK Components for MSMQ-MQSeries Bridge Extensions
The Microsoft® Host Integration Server 2000 SDK contains software components used for application integration using
messaging and the MSMQ-MQSeries Bridge. The components used for application integration using the MSMQ-MQSeries Bridge
are described in the following topics.

This section contains:

Program and DLL Files for MSMQ-MQSeries Bridge
Symbol Files for MSMQ-MQSeries Bridge
Header Files for MSMQ-MQSeries Bridge
Import Library Files for MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Program and DLL Files for MSMQ-MQSeries Bridge
The following executable system files, DLL library files, and other files are included with the Host Integration Server 2000 SDK for
use with the MSMQ-MQSeries Bridge:

File name Description
BCluster.ex
e

A program used to create or remove the MSMQ-MQSeries Bridge Service resource in a cluster.

explres.dll The resource file for Q2QEXPL.exe, the MSMQ-MQSeries Bridge explorer program.
MQBInst.dl
l

The COM component used to create, delete, or modify MSMQ-MQSeries Bridge objects in Active Directory.

mqfrgnky.
dll

A library to provide a function for the MSMQ-MQSeries Bridge to store a public key in a foreign computer object (i.e.
MQFrgn_StorePubKeysInDS).

MQSRRec
v.exe

A sample program that uses the MQSeries API to receive messages from a specified MQSeries queue. This program c
an be used to test the operation of the MSMQ-MQSeries Bridge.

MQSRSen
d.exe

A sample program that uses the MQSeries API to send 10 test messages to a specified MQSeries queue. This program
can be used to test the operation of the MSMQ-MQSeries Bridge.

MSMQRec
v.exe

A sample program that uses the MSMQ API to receive messages from a specified MSMQ queue. This program can be
used to test the operation of the MSMQ-MQSeries Bridge.

MSMQSen
d.exe

A sample program that uses the MSMQ API to sends 10 test messages to a specified MSMQ local or foreign queue. T
his program can be used to test the operation of the MSMQ-MQSeries Bridge.

Q2QCLDL
L.dll

A helper DLL (now obsolete) that contains functions to work with a cluster.

Q2QEXPL.
exe

The MSMQ-MQSeries Bridge explorer program.

Q2QGW.e
xe

The MSMQ-MQSeries Bridge service program.

q2qmsg.dl
l

The Event Log message file.

q2qperf.ini The performance counter definition file for the MSMQ-MQSeries Bridge.
q2qprfdl.dl
l

The performance counter implementation DLL for the MSMQ-MQSeries Bridge extension.

q2qprfsm.
def

Defines the performance counter object in q2qperf.ini.

Q2QSHDL
L.dll

A helper DLL (now obsolete) that contains functions for installing and uninstalling the MSMQ-MQSeries Bridge.

SHDLLRes.
dll

The resource DLL (now obsolete) for Q2QSHDLL.DLL for installing and uninstalling the MSMQ-MQSeries Bridge.

wmiMQBri
dge.dll

The MSMQ-MQSeries Bridge WMI Provider.

wmimqbri
dge.mof

The WMI Managed Object File (MOF) for the MSMQ-MQSeries Bridge.

The following executable system files, DLL library files, and other files are included with SNA Server 4.0 Service Pack 4 for use
with the MSMQ-MQSeries Bridge:

File na
me

Description

EPRECV.
EXE

A sample program that uses the MSMQ-MQSeries Bridge Extensions API to display the MQMD structure in the MSMQ e
xtension property.

EPSEND
.EXE

A sample program uses the MSMQ-MQSeries Bridge Extensions API to override the default MSMQ-MQseries Bridge me
ssage property mapping MsgType, ReplyToQMgr, and ReplyToQ in the MQSeries MQMD structure.

explres.
dll

The resource file for Q2QExpl.exe, the MSMQ-MQSeries Bridge explorer program.

Inetwh3
2.dll

A support DLL for online help.

MQBrid
ge.chm

The MSMQ-MQSeries Bridge online help file.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

MQSRR
ecv.exe

A sample program that uses the MQSeries API to receive messages from a specified MQSeries queue. This program can
be used to test the operation of the MSMQ-MQSeries Bridge.

MQSRS
end.exe

A sample program that uses the MQSeries API to send 10 test messages to a specified MQSeries queue. This program c
an be used to test the operation of the MSMQ-MQSeries Bridge.

MSMQR
ecv.exe

A sample program that uses the MSMQ API to receive messages from a specified MSMQ queue. This program can be us
ed to test the operation of the MSMQ-MQSeries Bridge.

MSMQS
end.exe

A sample program that uses the MSMQ API to sends 10 test messages to a specified MSMQ local or foreign queue. This
program can be used to test the operation of the MSMQ-MQSeries Bridge.

q2qcldll.
dll

A helper DLL that contains functions to work with a cluster.

Q2QClI
ns.exe

A helper program for the MSMQ-MQSeries Bridge cluster installation.

Q2QClU
ni.exe

A helper program for the MSMQ-MQSeries Bridge cluster uninstallation.

Q2QExp
l.exe

The MSMQ-MQSeries Bridge explorer program.

q2qgw.e
xe

The MSMQ-MQSeries Bridge service program.

Q2Qgw
y.CNT

The online help index file for the MSMQ-MQSeries Bridge service program.

Q2Qgw
y.hlp

The online help file for the MSMQ-MQSeries Bridge service program.

Q2QIns
St.exe

A program used to launch Q2QCllIns.exe, the MSMQ-MQSeries Bridge cluster installation program.

Q2QMS
G.dll

The Event Log message file.

Q2qperf
.ini

The performance counter definition file for the MSMQ-MQSeries Bridge.

q2qprfd
l.dll

The performance counter implementation DLL for the MSMQ-MQSeries Bridge extension.

Q2QSH
DLL.dll

A helper DLL (now obsolete) that contains functions for installing and uninstalling the MSMQ-MQSeries Bridge.

SHDLLR
es.dll

The resource DLL (now obsolete) for Q2QSHDLL.DLL for installing and uninstalling the MSMQ-MQSeries Bridge.

SNAVER
.exe

A utility program to retrieve the SNA Server program version.

Microsoft Host Integration Server 2000

Symbol Files for MSMQ-MQSeries Bridge
The following symbol files for use when debugging are included with Host Integration Server 2000 for use with the MSMQ-
MQSeries Bridge. These files are installed as part of the Host Integration Server package and a copy of these files are also located
on the Host Integration Server CD-ROM under the Support\Symbols folder:

File name Description
EXE\BCluster.dbg Symbols from BCluster.exe
DLL\explres.dbg Symbols from Explres.dll
DLL\MQBInst.dbg Symbols from MQBInst.dll
EXE\MQSRRecv.dbg Symbols from MQSRRecv.exe
EXE\MQSRSend.dbg Symbols from MQSRSend.exe
EXE\MSMQRecv.dbg Symbols from MSMQRecv.exe
EXE\MSMQSend.dbg Symbols from MSMQSend.exe
DLL\Q2QCLDLL.dbg Symbols from Q2QCLDLL.dll.
EXE\Q2QClIns.dbg Symbols from Q2QClIns.exe.
EXE\Q2QClUni.dbg Symbols from Q2QClUni.exe.
EXE\Q2QEXPL.dbg Symbols from Q2QEXPL.exe.
EXE\Q2QGW.dbg Symbols from Q2QGW.exe.
EXE\Q2QInst.dbg Symbols from Q2QInst.exe.
DLL\q2qmsg.dbg Symbols from q2qmsg.dll.
DLL\q2qprfdl.dbg Symbols from q2qprfdl.dll.
DLL\Q2QSHDLL.dbg Symbols from Q2QSHDLL.dll.
DLL\SHDLLRes.dbg Symbols from SHDLLRes.dll.
DLL\wmiMQBridge.dbg Symbols from wmiMQBridge.dll.

The following symbol files for use when debugging are included with SNA Server 4.0 Service Pack 4 for use with the MSMQ-
MQSeries Bridge. These files are located on the SNA Server CD-ROM under the mqbridge folder:

File name Description
EPRECV.DBG Symbols from EPRECV.EXE
EPSEND.DBG Symbols from EPSEND.EXE
eplres.dbg Symbols from explres.dll
MQSRRecv.dbg Symbols from MQSRRecv.exe
MQSRSend.dbg Symbols from MQSRSend.exe
MSMQRecv.dbg Symbols from MSMQRecv.exe
MSMQSend.dbg Symbols from MSMQSend.exe
Q2QCLDLL.dbg Symbols from q2qcldll.dll
Q2QClIns.dbg Symbols from Q2QClIns.exe
Q2QClUni.dbg Symbols from Q2QClUni.exe
Q2QEXPL.dbg Symbols from Q2QExpl.exe
Q2QGW.dbg Symbols from q2qgw.exe
Q2QInsSt.dbg Symbols from Q2QInsSt.exe
q2qmsg.dbg Symbols from Q2QMSG.dll
q2qprfdl.dbg Symbols from q2qprfdl.dll
Q2QSHDLL.dbg Symbols from Q2QSHDLL.dll
SHDLLRes.dbg Symbols from SHDLLRes.dll
SNAVER.dbg Symbols from SNAVER.EXE

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Header Files for MSMQ-MQSeries Bridge
Provider-specific header files needed to build the MSMQ-MQSeries Bridge sample applications are included with Host Integration
Server 2000. These files are installed as part of the Host Integration Server package and a copy of these files are also located on
the Host Integration Server CD-ROM under the SDK\Include folder:

The following provider-specific files are provided with Host Integration Server for developing applications using the MSMQ-
MQSeries Bridge:

File name Description
msmqep.h GUID definitions, enumeration constants, and error codes for use with the MSMQ-MQSeries Bridge.

Provider-specific header files needed to build the MSMQ-MQSeries Bridge sample applications are included with SNA Server 4.0
Service Pack 4. These files are installed as part of the MSMQ-MQSeries Bridge with SNA Server and a copy of these files are also
located on the SNA Server 4.0 CD-ROM under the mqbridge folder:

The following provider-specific files are provided with SNA Server 4.0 Service Pack 4 for developing applications using the
MSMQ-MQSeries Bridge:

File name Description
mqsrext.h GUID definitions, enumeration constants, and error codes for use with the MSMQ-MQSeries Bridge.
MSMQExt.h Function prototypes and enumeration constants for use with MSMQ-MQSeries Bridge extended functions.
Q2qprfsm.h Definitions for the Performance counter object in q2qperf.ini.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Import Library Files for MSMQ-MQSeries Bridge
Provider-specific import library files needed to build the MSMQ-MQSeries Bridge extension sample applications are included with
Host Integration Server 2000. These files are installed as part of the Host Integration Server package and a copy of these files are
also located on the Host Integration Server CD-ROM under the SDK\Lib folder:

The following provider-specific files are provided with Host Integration Server for developing applications using the MSMQ-
MQSeries Bridge:

File name Description
msmqep.lib Import library of functions for use with the MSMQ-MQSeries Bridge extension.

Provider-specific import library files needed to build the MSMQ-MQSeries Bridge extension sample applications are included with
SNA Server 4.0 Service Pack 4. These files are installed as part of the MSMQ-MQSeries Bridge with SNA Server and a copy of
these files are also located on the SNA Server CD-ROM under the mqbridge folder:

The following provider-specific files are provided with SNA Server 4.0 Service Pack 4 for developing applications using the
MSMQ-MQSeries Bridge:

File name Description
MSMQEP.lib Import library of functions for use with the MSMQ-MQSeries Bridge extensions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Application Integration Samples
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about the sample
applications that implement the MSMQ-MQSeries bridge and the COM Transaction Integrator (COMTI).

This section contains:

Sample Programs for MSMQ-MQSeries Bridge
Sample Programs for COMTI

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Programs for MSMQ-MQSeries Bridge
The source code for several sample programs that illustrate using MSMQ-MQSeries Bridge are included on the Microsoft® Host
Integration Server 2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. These sample programs
are located in the \SDK\Samples\Bridge subdirectory on the Host Integration Server 2000 CD-ROM. These files are copied to your
hard drive during Host Integration Server software or Host Integration Client software installation when the Host Integration
Server Software Development Kit option is selected. These samples are installed in the Samples\Bridge subdirectory below where
the Host Integration Server SDK software is installed (C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\Bridge subdirectory
below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files in the following subdirectories:

Subdirecto
ry

Description

EPRecv A sample program in C that uses the MSMQ-MQSeries Bridge Extensions API to display the MQMD structure in the
MSMQ extension property.

EPSend A sample program in C that uses the MSMQ-MQSeries Bridge Extensions API to override the default MSMQ-MQseri
es Bridge message property mapping MsgType, ReplyToQMgr, and ReplyToQ in the MQSeries MQMD structure.

MQSRRecv A sample program in C that uses the MQSeries API to receive messages from a specified MQSeries queue.
MQSRSend A sample program in C that uses the MQSeries API to send 10 test messages to a specified MQSeries queue.
MSMQRecv A sample program in C that uses the MSMQ API to receive messages from a specified MSMQ queue.
MSMQSend A sample program in C that uses the MSMQ API to sends 10 test messages to a specified MSMQ local or foreign que

ue.
WMI A collection of WMI sample scripts written in Microsoft® Active Server Pages (ASP) that show how to use WMI to co

nfigure the MSMQ-MQSeries Bridge.

Several sample programs with source code are provided with Host Integration Server 2000 that illustrate how to use the MSMQ-
MQSeries Bridge and Bridge Extensions.

The MSMQ-MQSeries Bridge samples are designed to be built using Microsoft® Visual C/C++ 6.0 or later using the command-
line compiler or using the Microsoft® Visual Studio .NET interactive development environment (IDE). Most of these samples also
require that the IBM MQSeries Client toolkit has been installed, providing access to several MQSeries include and lib files.

To build the MSMQ-MQSeries Bridge samples using the command-line compiler, set up your build environment as follows:

Run VCVARS32.bat (for VS6) or VSVARS32.bat (for VS.NET) from the Visual Studio bin directory(by default,
C:\Program Files\Microsoft Visual Studio\VC98\Bin for VS6 or C:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools for VS.NET))
Set the MQS_INC environment variable so it points to the INCLUDE directory where MQSeries was installed. The default
location for this variable is normally C:\Program Files\MQSeries Client\tools\c\include.
Set the MQS_LIB environment variable so it points to the LIB directory where MQSeries was installed. The default location
for this variable is normally C:\Program Files\MQSeries Client\tools\lib.

For example, set the following environment variables for building the MQS samples:

To build all the C/C++ samples (EPSend, EPRecv, MQSRRecv, MQSRSend, MSMQSend and MSMQRecv), open an MS-DOS
Command Prompt window, navigate to Bridge subdirectory, and invoke NMAKE. This will recursively invoke NMAKE and build all
of the Bridge samples.

To build a specific sample (EPSend, for example) using the command-line compiler, open an MS-DOS Command Prompt window,
navigate to the appropriate subdirectory (Bridge\EPSend, for example), and invoke NMAKE.

To build a specific sample (EPSend, for example) using the Visual Studio .NET IDE, start Microsoft Visual Studio .NET 7.0 and open
the appropriate Visual C++ 7.0 project file (epsend.vcproj, for example) from the File menu. Select a configuration and build the
sample from the Build menu. Each VC7 project file has two configurations, one for a DEBUG build and one for a RETAIL build.
Note that several of the MSMQ-MQSeries Bridge samples require access to the IBM MQSeries Client toolkit include and lib files.

set MQS_INC=C:\Program Files\MQSeries Client\tools\c\include
set MQS_LIB=C:\Program Files\MQSeries Client\tools\lib

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The VC7 project files for these samples assume that the IBM MQSeries Client toolkit is installed in the default location at
C:\Program Files\MQSeries Client\tools. If the IBM MQSeries Client toolkit is installed in a different location, the VC7 project files
will need to be modified. For each C source file, the Additional Include Directories property under C/C++/General will need to
be changed. For the target, the Additional Dependencies property under Linker/Input will need to be changed.

This section contains:

EPRecv sample program
EPSend sample program
MQSRRecv sample program
MQSRSend sample program
MSMQRecv sample program
MSMQSend sample program.
WMI MSMQ-MQSeries Bridge sample programs

Microsoft Host Integration Server 2000

EPRecv Sample
The MSMQ-MQSeries Bridge Extension API can be used to obtain the original MQSeries message properties for an MQSeries
message sent using the MSMQ-MQSeries Bridge to MSMQ. The Bridge\EPRecv folder contains a sample program written in C
that receives messages from an MSMQ queue using the MSMQ APIs and prints the original MQSeries message MQMD
properties in the PROPID_M_EXTENSION if they exist. The sample illustrates how to use MSMQ-MQSeries Bridge Extensions and
can be used for testing or troubleshooting the MSMQ-MQSeries Bridge and Bridge Extensions.

The usage for this command-line tool is as follows:

The only parameter. <computer name>\<queue name> is the path name of the specified MSMQ queue name where messages
are received. This MSMQ queue name can be specified in UNC or DNS format.

Sample program usage and sample output are listed below.

EPRecv <computer name>\<queue name>

eprecv MSBRIDGE\QUEUE

Queue opened.
Waiting for messages to arrive.
Use CTLR-C to stop.
-------> Message arrived:
Label = ''
Body (256) = 'Test Message 0 - 19:41:26'
Body Type (4113)
Extension property found. Dumping values:
 MQMD1 Extension Field found. Dumping values:
 MQMD1.Report = 00000000 MQMD1.MsgType = 00000008
 MQMD1.Feedback = 00000000 MQMD1.Priority = 0
 MQMD1.Version = 00000001 MQMD1.Expiry = -1
 MQMD1.ReplyToQMgr = 'BRIDGE2K_QM '
 MQMD1.ReplyToQ = ' '
 MQMD1.UserIdentifier = 'testuser '
 MQMD1.ApplIdentityData = ' '
 MQMD1.PutApplName = 'n Server\sys'
 MQMD1.PutDate = '20000628'
 MQMD1.PutTime = '02530720'
 MQMD1.MsgId = '414D512053544152 5741525F514D2020 9197523913300000'
 MQMD1.CorrelId = '0000000000000000 0000000000000000 0000000000000000'

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EPSend Sample
The MSMQ-MQSeries Bridge Extension API can be used to override the default MSMQ-MQSeries Bridge message property
mapping. The Bridge\EPSend folder contains a sample written in C that illustrates how to use the MSMQ-MQSeries Bridge
Extension API to override the default MSMQ-MQSeries Bridge message propery mapping for MsgType, ReplyToQMgr, and
ReplyToQ in the MQSeries MQMD structure. This sample sends messages to MSMQ queue, overiding the default values for these
MQMD extension fields. The sample illustrates how to use MSMQ-MQSeries Bridge Extensions and can be used for testing or
troubleshooting the MSMQ-MQSeries Bridge and Bridge Extensions.

The usage for this command-line tool is as follows:

The only parameter <computer name>\<queue name> is the path name of the specified MSMQ queue name where messages
are to be sent. This MSMQ queue name can be specified in UNC or DNS format.

Sample program usage and sample output are listed below.

EPSend <computer name>\<queue name>

epsend IBMNT_QM\QUEUE

Queue opened.
Reply Q Manager Name : MSBRIDGE1
Reply Q Name : QUEUE
------> Sending message (Use CTRL-C to stop).Label: ABC
Body: ABC

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MQSRRecv Sample
The Bridge\MQSRRecv folder contains a sample program written in C that uses the MQSeries API to receive messages from a
specified MQSeries queue. This sample can be used to receive messages sent from MQSeries or sent from MSMQ using the
MSMQ-MQSeries Bridge. The sample can be used for testing or troubleshooting the MSMQ-MQSeries Bridge.

The usage for this command-line tool is as follows:

The first parameter, QM name, is the name of the MQSeries Queue Manager. The second parameter, queue name, is the queue
name from which to receive the messages. Note that the program assumes that queue name is located on the QM name
computer.

You can run the MQSRRecv program on a computer where the MQSeries Client is installed and configured. The environment
variables used by the MQSeries client should point to the appropriate channel table file. The computer running the MSMQ-
MQSeries Bridge is a good choice because it should already be properly configured.

MQSRRecv <QM name> <queue name>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MQSRSend Sample
The Bridge\MQSRSend folder contains a sample written in C that uses the MQSeries API to send 10 test messages to a specified
MQSeries queue. This sample can be used to send messages to a specified MQSeries queue or to a specified MSMQ queue using
the MSMQ-MQSeries Bridge. The sample can be used for testing or troubleshooting the MSMQ-MQSeries Bridge.

The usage for this command-line tool is as follows:

The first parameter, local QM name, is the name of the immediate MQSeries Queue Manager to connect to (the server side of the
MQI channel). MQSRSend needs this information to establish the MQI channel connection.

The second parameter, the destination QM name, is the destination queue manager for the messages. To send messages to
MSMQ, specify the queue manager alias for the destination QM name representing the MSMQ queue.

The third parameter, queue name, is the name of the queue where the messages should be sent.

You can send MQSeries message to an MSMQ queue with one of the following methods.

1. Specify the MSMQ-MQSeries Bridge machine name in the destination QM name and the MSMQ format name in the queue
name.

2. Define QREMOTE for the MSMQ destination QM name in MQSeries.

You can run the MQSRSend program on a computer where the MQSeries Client is installed and configured. The environment
variables used by the MQSeries client should point to the appropriate channel table file. The computer running the MSMQ-
MQSeries Bridge is a good choice because it should already be properly configured.

MQSRSend <local QM name> <destination QM name>
 <queue name>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MSMQRecv Sample
The Bridge\MSMQRecv folder contains a sample written in C that uses the MSMQ API to receive messages from a specified
MSMQ queue. This sample can be used to receive messages sent from MSMQ or receive messages sent from MQSeries using the
MSMQ-MQSeries Bridge. The sample illustrates how to receive messages using MSMQ and can be used for testing or
troubleshooting the MSMQ-MQSeries Bridge.

The usage for this command-line tool is as follows:

The only parameter. <computer name>\<queue name> is the path name of the specified MSMQ queue name where messages
are received. This MSMQ queue name can be specified in UNC or DNS format.

You can run the MSMQRecv program on any computer where MSMQ is installed, not necessarily the computer running the
MSMQ-MQSeries Bridge.

MSMQRecv <computer name>\<queue name>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MSMQSend Sample
The SDK\Samples\Bridge\MSMQSend folder contains a sample written in C that sends 10 test messages using the MSMQ APIs.
This sample can be used to send messages to a specified MSMQ queue or a foreign MQSeries queue through the MSMQ-
MQSeries Bridge. The sample illustrates how to send messages using MSMQ and can be used for testing or troubleshooting the
MSMQ-MQSeries Bridge.

The usage for this command-line tool is as follows:

The only parameter. <computer name>\<queue name> is the path name of the specified MSMQ queue name where messages
are to be sent. This MSMQ queue name can be specified in UNC or DNS format.

You can run the MSMQSend program on any computer where MSMQ is installed, not necessarily the computer running the
MSMQ-MQSeries Bridge.

MSMQSend <computer name>\<queue name>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WMI MSMQ-MQSeries Bridge Sample
The Bridge\WMI folder contains a collection of Active Server Pages (ASP) for use with a Web server application that allow you to
view and make changes to the MSMQ-MQSeries Bridge configuration using WMI. These sample applications require Microsoft
Internet Information Server version 3.0 or higher with Active Server Pages be installed. Host Integration Server 2000 and Internet
Information Server must be installed and running on the same computer.

The WMI ASP samples must be installed into the Web server's public directories below WWWRoot. Copy the contents of the
entire WMI directory from the SDK\Samples\Bridge\WMI subdirectory to your WWWROOT directory on the Web server. After
these files have been copied you should have a WWWROOT\WMI folder containing a number of ASP and GIF files.

The samples may then be run by opening Internet Explorer or some other Web browser on the same computer or a different
computer and entering the following URL in the address line:

Substitute the network name of the computer hosting the Web server and the MSMQ-MQSeries Bridge for the computer name
(in angle brackets in the URL above). This will open the main page of the Bridge WMI ASP application and allow you to select any
of the other sample ASP pages. Information about each sample is provided on this web page.

These ASP pages illustrate using WMI to view and make changes to the MSMQ-MQSeries Bridge configuration. The management
functions supported by this application allow you to create a new instance, move to other instances (previous and next), delete an
instance, and save an instance.

The WMI subdirectory below WWWROOT needs to have IIS security enabled (no anonymous access). Otherwise the scripts in
these subdirectories will fail since the anonymous user account by default does not have access rights that would allow it to start
or stop services on Windows NT or Windows 2000 or make changes to the MSMQ-MQSeries Bridge on the Host Integration
Server system.

It is possible to host these ASP pages on a computer running the Web server that is different from the computer running the
MSMQ-MQSeries Bridge and Host Integration Server. However, this requires some changes to the ASP pages to handle
connections to a different computer, security, and authentication issues.

http://<computer name>/WMI/WMI_Test_Main.asp

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Programs for COMTI
The source code for several sample programs that illustrate using features of the COM Transaction Integrator (COMTI) for CICS
and IMS is included on the Microsoft® Host Integration Server 2000 CD-ROM as a part of the Host Integration Server Software
Development Kit (SDK). COMTI allows developers to integrate component-based Windows® applications using COM, distributed
COM, and COM+ with CICS and IMS transactions on IBM mainframes.

In addition to the COMTI samples included in the Host Integration Server SDK, there is a basic COMTI sample entitled CedarBank
that is installed with COMTI when the COMTI feature option is selected during setup. The CedarBank sample is installed under the
system\Tutorials\CedarBank subdirectory below where Host Integration Server is installed (the default location is
C:\Program Files\Host Integration Server\system\Tutorials\CedarBank).

Note that documentation on COMTI is not included with the Host Integration Server SDK. Documentation on COMTI is included
under Application Integration Services as part of the Host Integration Server 2000 user documentation. The documentation is also
available in printable format on the Host Integration Server CD-ROM under the Documentation\Printable Books folder in the
Application Integration Services.pdf file.

The COMTI sample programs are located in the \SDK\Samples\COMTI subdirectory on the Host Integration Server 2000 CD-
ROM. These files are copied to your hard drive during Host Integration Server software or Host Integration Client software
installation when the Host Integration Server Software Development Kit option is selected. These samples are installed in the
Samples\COMTI subdirectory below where the Host Integration Server SDK software is installed
(C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN® Platform SDK, these samples are located under the Samples\NetDS\HIS\COMTI
subdirectory below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files in the following subdirectories:

Subdirectory Description
BoundedRec
ordsets\COB
OL-CICS

A sample program in COBOL using COMTI that illustrates the use of bounded recordsets. This subdirectory also c
ontains a sample TLB file created using the COMTI Component Builder for this COBOL sample.

BoundedRec
ordsets\VB

A sample class defined in Microsoft Visual Basic® using COMTI that illustrates the use of bounded recordsets.

Programmin
gSpecifics

This folder contains a comprehensive sample that include Visual Basic client code as well as mainframe COBOL co
de and sample COMTI type libraries. This sample is intended to be a complete end-to-end sample demonstrating f
eatures of COMTI.

Programmin
gSpecifics\CI
CSNonlink

A sample program in COBOL using COMTI that demonstrates how to receive a COMTI fixed-sized data area great
er than 32767. This sample is not intended to be a complete end-to-end program, but it demonstrates the receivin
g-side logic of a CICS Non-Link server application program using COMTI.

Programmin
gSpecifics\TC
P

A set of several sample programs in COBOL using COMTI that demonstrate how to use a CICS TCP server applicat
ion.

SyncLev2 A sample program in COBOL using COMTI that demonstrates how to use Sync Level 2.

These samples primarily use a remote environment of CICS using LU 6.2. These COMTI samples are designed to assist developers
in creating code for specific COMTI features.

In order to first start working with COMTI, it is recommended that developers use the CedarBank tutorial that comes with the
COMTI installation. The CedarBank tutorial illustrates how to use of all of the COMTI Remote Environments and includes the
COMTI Type libraries and the COBOL code for the mainframe for all of the environments (IMS, CICS, APPC and TCP/IP). The
CedarBank sample also includes sample programs for the client-side code written in Microsoft Visual Basic and Microsoft Visual
C++®.

Once connectivity has been established by working with the CedarBank tutorial, then the COMTI samples included with the Host
Integration Server SDK can be used to gain an understanding of more advanced COMTI features not covered by the CedarBank
tutorial.

This section contains:

Bounded Recordsets Sample
Programming Specifics Sample
Programming Specifics CICSNonlink Sample
Programming Specifics TCP Sample

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Sync Level 2 Sample

Microsoft Host Integration Server 2000

Bounded Recordsets Sample
The COM Transaction Integrator (COMTI) for CICS and IMS can be used with Microsoft Visual Basic bounded recordsets. This
sample includes Visual Basic code and CICS COBOL code showing how to use bounded recordsets by calling into a CICS
transaction program via LU 6.2 (Remote Environment CICS using LU 6.2).

The Visual Basic code is in the COMTI\BoundedRecorsdsets\VB folder and defines a Visual Basic class file that illustrates the use of
bounded recordsets. Note that additional Visual Code would need to be written to use this Visual Basic class file in a project. The
Visual Basic code in the class file demonstrates how to create a recordset and populate it with data to send to the mainframe.
Note that there is no code that actually displays the data that comes back from the mainframe. A developer can put in a
breakpoint in the Visual Basic code using the debugger and use the immediate window to look at the data or insert further code
to examine the data that is returned.

In the COMTI\BoundedRecorsdsets\COBOL-CICS folder, there is a COMTI type library (TLB file) that can be used with this sample.
The type library is set up for accessing a transaction named GETI on the host. There is also sample COBOL code that can be
compiled and linked on the mainframe side. The compiled code should be set up to run on the host as a transaction named GETI
or the COMTI type library must be changed to reflect the name of the transaction if it is different.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Specifics Sample
The COM Transaction Integrator (COMTI) for CICS and IMS supports a number of powerful features that are illustrated by this
sample. In the COMTI\ProgrammingSpecifics folder, there is a complete Microsoft Visual Basic project that demonstrates the
following features of COMTI:

Returning a Recordset
Variable Length Tables
Handling REDEFINES Clauses
Variably Sized Strings
Handling FILLER
Unbounded Recordsets
In/Out Variable Length Table

The Visual Basic project contains comments with the Visual Basic source code that indicates which COBOL (*.cbl) file contains the
associated COBOL code for the mainframe side. The sample type library is included for CICS using LU 6.2. There are seven
methods defined in the type library. Check on the properties for each method and look at the Host Names tab to see what the
Mainframe TP name is. The value of the mainframe TP name property can be changed to the name used when compiling the
sample COBOL programs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Specifics CICSNonlink Sample
In the COMTI\ProgrammingSpecifics\CICSNonlink folder there is sample COBOL code showing how to receive more than 32K
bytes of data in a single method call. This sample includes only the mainframe code (COBOL), and does not include the
corresponding Visual Basic or Visual C++ code for the PC side. It is intended to demonstrate the receiving side logic of a COMTI
Non-link server application. This COBOL program contains comments explaining what is being done in the code.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Specifics TCP Sample
In the COMTI\ProgrammingSpecifics\TCP folder, there are sample COBOL Child Server programs that can be used for TCP/IP
connections. The Cicscs.cbl code is a sample program for TCP using CICS with Concurrent Server (analogous to CICS using LU
6.2). The Mscmtics.clb code is a sample program for CICS calling a Link-to program (using CICS DPL). The Imsexpl.cbl code is a
sample program for using IMS in the Explicit mode. The Imsimpl.cbl code is a sample program for using IMS in the Implicit mode.
There are similar sample programs included with the CedarBank tutorial which directly reflect the CedarBank data being passed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Level 2 Sample
The COM Transaction Integrator (COMTI) for CICS and IMS supports the use of Sync Level 2 transactions. This sample includes
COBOL source code illustrating transactional support (Sync Level 2) on the mainframe with CICS using LU 6.2. This sample only
includes COBOL source code which contains comments describing each of the code sections. The sample code demonstrates
executing a Commit and identifying that a Rollback has been requested from COMTI. Please note that there is also related
documentation in Knowledge Base article Q220967 available at http://go.microsoft.com/fwlink/?LinkId=14803. This article
explains COMTI Metadata elements so that developers can better understand how to use Metadata to allow the COBOL program
to initiate a Rollback of a transaction.

http://go.microsoft.com/fwlink/?LinkId=14803
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Integration
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information required to develop
applications to access data in an environment using Microsoft Host Integration Server 2000. This section provides documentation
for developers on data access, data replication, and data tools.

This section contains:

Introduction to Data Integration
OLE DB Providers
ODBC Drivers
ActiveX Controls
Data Integration Reference
Data Integration Samples

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Introduction to Data Integration
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop
applications to access data in an environment using Microsoft® Host Integration Server 2000. This section provides
documentation for developers on data access, data replication, and data tools.

Applications for data integration used in a Host Integration Server 2000 environment can be developed using several different
development tools and application programming interfaces including:

C or C++ applications that use OLE DB to access AS/400 and VSAM files.
C or C++ applications that use OLE DB to access IBM Data Base 2 (DB2).
C, C++, or Microsoft Visual Basic® applications that use Open Database Connectivity (ODBC) drivers to access IBM DB2.
Microsoft Visual Basic applications that use ActiveX® Data Objects (ADO) to access AS/400 and VSAM files.
Microsoft Visual Basic applications that use ActiveX Data Objects (ADO) to access IBM DB2 using OLE DB.
Microsoft Visual Basic applications that use ActiveX Data Objects (ADO) to access IBM DB2 using ODBC.
C, C++, or Microsoft Visual Basic applications that use the Host File Transfer ActiveX control to transfer files to and from
MVS, OS/390, AS/400, and AS/36.
C, C++, or Microsoft Visual Basic applications that use the Data Queue ActiveX control to access AS/400 data queues.

To use this guide effectively, you should be familiar with:

Microsoft Host Integration Server 2000
One of the following operating environments:

Microsoft Windows® 2000
Microsoft Windows NT®
Microsoft Windows 98
Microsoft Windows 95

SNA concepts

Depending on the application programming interface and development tools used, you should be familiar with:

Microsoft COM objects
Microsoft OLE DB
Microsoft ADO
Microsoft ODBC

This section contains:

Additional Resources

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Additional Resources
This guide does not describe the products, architectures, or standards developed by other companies or organizations. For
information about Microsoft Windows NT and other operating systems, consult your product documentation.

For information about SNA architecture, refer to your system network documentation.

The following documents provide additional information about the OLE DB application programming interfaces (APIs):

Microsoft Data Access Components (MDAC) Software Development Kit 2.5

The following documents provide additional information about ActiveX Data Objects:

Microsoft Data Access Components (MDAC) Software Development Kit 2.5

The following documents and publications provide additional information about the Open Database Connectivity (ODBC)
standard and ODBC programming:

Microsoft Data Access Components (MDAC) Software Development Kit 2.5
Microsoft ODBC 3.0 Software Development Kit and Programmer's Reference
Inside ODBC, written by Kyle Geiger and published by Microsoft Press

For more information about SNA and the Distributed Data Manager (DDM), see the following manuals:

IBM Distributed Data Management Architecture: General Information (Document Number GC219527-3)
IBM OS400 Distributed Data Manager User's Guide
IBM OS400 Distributed Data Manager Programmer's Guide
IBM Systems Network Architecture: Technical Overview
IBM Systems Network Architecture: Concepts and Products
IBM SNA Format and Protocol Reference Manual: Architectural Logic
IBM DFSMS/MVS Version 1 Release 2 DFM/MVS Guide and Reference (Document Number SC26-4915-00)
IBM DFSMS/MVS Version 1 Release 3 DFM/MVS Guide and Reference (Document Number SC26-4915-01)
IBM DFSMS/MVS Version 1 Release 4 DFM/MVS Guide and Reference (Document Number SC26-4915-02)

For more information about IBM Data Base 2 (DB2), see the following manuals:

IBM DB2 for OS/390 Version 5 Reference for Remote DRDA: Requesters and Servers (Document Number SC26-8964-00)
IBM DB2 for OS/390 Version 5 Application Programming and SQL Guide (Document Number SC26-8958-00)
IBM DATABASE 2 Administration Guide for Common Servers Reference (Document Number S20H-4580)
IBM DATABASE 2 Application Programming Guide for Common Servers Reference (Document Number S20H-4643)
IBM DB2 Universal Database API Reference (Document Number S10J-8167)
IBM DB2 Universal Database Building Applications for Windows and OS/2 Environments Reference (Document Number
S10J-8160)

For background information about logical unit (LU) 6.2, Advanced Program-to-Program Communications (APPC), or the Common
Programming Interface for Communications (CPI-C), see the following manuals:

IBM SNA: Technical Overview
IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2
IBM SNA: Formats
IBM Systems Network Architecture: Introduction to APPC
IBM Systems Network Architecture: Transaction Programmer's Reference Manual for LU Type 6.2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Providers
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information on using the OLE DB
providers for AS/400, VSAM, and DB2.

This section contains:

Using the OLE DB Providers for AS/400 and VSAM
Using the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using the OLE DB Provider for AS/400 and VSAM
The Microsoft® OLE DB Provider for AS/400 and VSAM enables you to directly access record-level data in mainframe VSAM,
Partitioned Data Sets (PDS), and midrange OS/400 files from within an OLE-aware application. The object linking and embedding
database (OLE DB) is a standard set of interfaces that provide heterogeneous access to disparate sources of information located
anywhere—file systems, e-mail folders, and databases. The OLE DB Provider for AS/400 and VSAM combines the universal data
access of OLE DB with the record-level input/output (RLIO) protocol of IBM’s Distributed Data Management (DDM) architecture.

DDM is a set of rules for distributing or extending the data management from one computer to another, such as from a
mainframe to an AS/400 computer, or from one of these host computers to a server computer. By combining the OLE DB and
DDM architectures, Microsoft enables organizations to preserve their investments in existing data management infrastructure,
while extending universal data access to all enterprise-wide data sources.

This section contains:

Goals of the OLE DB Provider for AS/400 and VSAM
The OLE DB Environment
DDM Record-Level Access
Platforms Supported by the OLE DB Provider for AS/400 and VSAM
Indexed File Access
File and Record Attributes
Configuring the OLE DB Provider for AS/400 and VSAM
Registry Settings Used by the OLE DB Provider for AS/400 and VSAM
Programming Considerations Using the OLE DB Provider for AS/400 and VSAM

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Goals of the OLE DB Provider for AS/400 and VSAM
For the majority of enterprises today, the bulk of mission-critical information resides on IBM mainframe and AS/400 computers.
This information is stored in records on the OS/400 and VSAM file systems. This information is created, owned, and often
accessible by only host-based applications. In the mainframe world, these applications include CICS and DB2; other commercial
applications; and a large number of custom applications written in COBOL, PL/I, and other languages. In the AS/400 world, these
applications include primarily DB2 and commercial applications, plus a large number of custom RPG applications. A key point to
make is that not all of these data sources are SQL-accessible. Many of the host data stores contain non-SQL-accessible data that is
owned by something other than a traditional relational database management system (RDBMS).

These same enterprises rely on vast networks of personal computers to enable their users to achieve business goals. End users
invariably rely on network e-mail, Microsoft® Windows® productivity applications such as Microsoft Office, and personal
database programs such as Microsoft Access, to accomplish their daily tasks. It is essential for these same users to incorporate
data stored on host systems into their regular correspondence, analysis, and reports.

Available methods of accessing host data do not provide the granular, "record-level" access required for cost-effective, secure,
and meaningful integration of host and personal computer systems. In many cases, end users employ outright antiquated means
of data integration. These methods include copying and pasting data from a terminal emulation screen, retyping information
taken off printouts from host application reports, and importing text files containing comma-delimited values that use host
EBCDIC-to-computer ASCII file transfer. These methods are not efficient although widely used and are not supported by products
from independent software vendors (ISVs).

The challenge faced by IS professionals is how to provide direct record-level access to this valuable data without going through
the host application. Much of the renewed interest in improved access to host data sources is a result of the burgeoning growth of
local intranets, the use of the Internet, and Web technology as a mechanism for delivering information. Fast and inexpensive
methods of record-level access are needed to deliver modern, three-tiered information systems during this era of cost-cutting
and IS budget belt-tightening. Additional uses of this direct data access are ad hoc queries and Web-based reporting.

It is common for corporate management to rethink host data storage and the appropriate software used to provide data access.
For many organizations, the answer to these issues is in rewriting the arguably outdated and certainly "misdated" host-based
business rules with server-based, or even client-based, business logic.

The goal of the OLE DB Provider for AS/400 and VSAM is to provide customers and solution providers with the means to
integrate desktop applications with this wealth of data residing on host computers.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The OLE DB Environment
Three main roles are performed by software applications in an OLE DB environment:

OLE DB Consumer—The end-user or server-based program that uses (consumes) the OLE DB interfaces. An example is a
Web-based component that makes OLE DB calls to integrate host records with a Web-based report.
OLE DB Data Provider—A driver or other program that exposes OLE DB interfaces for use by consumer applications. Data
providers translate OLE DB interfaces to a language or commands understood by the target data source. An example is the
Microsoft® OLE DB Provider for AS/400 and VSAM, which translates OLE DB interfaces to DDM commands.
OLE DB Service Provider—An application that both uses (consumes) and exposes OLE DB interfaces. Service providers
typically act as proxies for the consumer, retrieving the data through the data provider and offering services to the
consumer by manipulating the target data. An example is a query-processing engine.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DDM Record-Level Access
The Microsoft® OLE DB Provider for AS/400 and VSAM provides record-oriented access to host files. There is no need to perform
bandwidth-intensive file transfers of entire host files to access data on the host.

The OLE DB interface provided by the OLE DB Provider for AS/400 and VSAM supports the following features:

Set attributes and a record description of a host file (column information).
Lock files and records.
Position to the first record or the last record in a file.
Navigate to the previous or next record in a file.
Seek to a record, based on an index.
Change records in a file.
Insert new records and delete records in a file.
Preserve file and record attributes.

The OLE DB Provider for AS/400 and VSAM is a "source" Distributed Data Management (DDM) requester implementation that can
initiate DDM commands to be serviced by a remote host-based "target" DDM server. On the Microsoft Windows NT® operating
system, the Microsoft DDM requester can run as a Windows NT service. This enables the DDM service to integrate with other host
applications using the IBM DDM protocol and DDM servers resident on the host. Microsoft-based host software is not required
(see Platforms Supported by the OLE DB Provider for AS/400 and VSAM). IBM offers DDM servers for the most popular host
environments.

Providing users with direct record-level access reduces the development time to build and deploy new data integration solutions.
Accessing only the target records, as opposed to entire host files, helps ensure data integrity.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Platforms Supported by the OLE DB Provider for AS/400 and
VSAM
On the mainframe platform, IBM offers a target DDM server implementation in IBM Distributed File Manager (DFM), a component
of IBM Data Facility Storage Management Subsystem (DFSMS). The Microsoft® OLE DB Provider for AS/400 and VSAM requires
DFSMS version 1 release 2 or later for MVS/ESA and OS/390 to support an SNA LU6.2 connection.

On midrange AS/400 computers, IBM has implemented target DDM servers directly in OS/400. The Microsoft OLE DB Provider
for AS/400 and VSAM requires OS/400 Version 3 Release 2 or later to support an SNA LU6.2 connection. The Microsoft OLE DB
Provider for AS/400 and VSAM requires OS/400 Version 4 Release 2 or later to support a TCP/IP connection.

On the AS/400 platform, the OLE DB Provider for AS/400 and VSAM supports physical and logical files with an associated
external record description file. For specific limitations, please see the AS/400 DDM User’s Guide.

On the mainframe platform, the OLE DB Provider for AS/400 and VSAM supports the following data set types:

Sequential Access Method (SAM) data sets

Basic Sequential Access Method data sets (BSAM)
Queued Sequential Access Method data sets (QSAM)

Virtual Storage Access Method (VSAM) data sets

Entry-Sequenced Data Sets (ESDS)
Key-Sequenced Data Sets (KSDS)
Fixed-Length Relative Record Data Sets (RRDS)
Variable-Length Relative Record Data Sets (VRRDS)
Relative Record Data Set (RRDS)
VSAM Alternate Indexes for ESDS and KSDS data sets

Basic Partitioned Access Method (PDS) data sets

Partitioned Data Set Extended members (PDSE)
Partitioned Data Set members (PDS)
Read-only support for PDSE directories
Read-only support for PDS directories

The preceding data set types are supported by IBM DFM/MVS.

The following data set types are not supported by DFM/MVS and cannot be accessed using the OLE DB Provider for AS/400 and
VSAM.

VSAM Linear Data Sets (LDS)
Generation Data Groups (GDG)
Generation Data Sets (GDS)
Basic Direct Access Method data sets (BDAM)
Indexed Sequential Access Method data sets (ISAM)
Sequential Data Striping data sets
OpenEdition MVS Hierarchical File System (HFS) files
Tape Media

All mainframe data sets accessible through IBM Distributed File Manager must be cataloged in an Intersystem communications
function (ICF) catalog and reside on direct access storage devices (DASD).

The OLE DB Provider for AS/400 and VSAM supplied with Host Integration Server 2000 supports the following operating
systems:

Microsoft Windows® 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Windows NT® Server 4.0 with Service Pack 5 or later
Microsoft Windows NT Server 4.0, Enterprise Edition with Service Pack 5 or later
Microsoft Windows NT Server 4.0, Terminal Server Edition with Service Pack 5 or later
Microsoft Windows NT Workstation 4.0 with Service Pack 5 or later
Microsoft Windows 98, Second Edition

The OLE DB Provider for AS/400 and VSAM supplied with Host Integration Server 2000 Service Pack 1 adds support for the
following additional operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

The OLE DB Provider for AS/400 and VSAM supplied with Host Integration Server 2000 supports only the Intel Windows 2000
and Windows NT platforms. Older versions of the OLE DB Provider for AS/400 and VSAM that shipped with SNA Server 4.0
Service Pack 1 and later supported Windows NT on the Alpha architecture.

The OLE DB Provider for AS/400 and VSAM requires the following computer-to-host connectivity software:

Microsoft Host Integration Server 2000
Microsoft Host Integration Server End-User Client
Microsoft Host Integration Server Administrator Client

Microsoft Host Integration Server 2000 can be installed on Windows 2000 Server, Windows 2000 Advanced Server,
Windows 2000 Datacenter Server, Windows NT 4.0 Server, Windows NT 4.0 Server Enterprise Edition, or Windows NT 4.0 Server
Terminal Server Edition.

The Microsoft Host Integration Server Administrator Client can be installed on Windows 2000 Professional or Windows NT 4.0
Workstation. The Microsoft Host Integration Server Administrator Client with Service Pack 1 can also be installed on Windows XP
Professional. The Administrator Client cannot be installed on Windows 98 or Windows 95.

The Microsoft Host Integration Server End-User Client can be installed on Windows 2000 Professional, Windows NT 4.0
Workstation, or Windows 98. The Microsoft Host Integration Server End-User Client with Service Pack 1 can also be installed on
Windows XP Professional, Windows XP Home Edition, or Windows Millennium Edition.

The OLE DB Provider for AS/400 and VSAM supplied with Microsoft Host Integration Server 2000 supports the following OLE DB
and ADO versions:

OLE DB version 2.5. The Host Integration Server 2000 data access features require the runtime libraries for OLE DB version
2.5. These libraries must be installed prior to installing the OLE DB Provider for AS/400 and VSAM. On Windows 2000, these
OLE DB libraries are installed as part of the Windows 2000 operating system. On Windows NT 4.0, Windows 98, and
Windows 95, these library files must be installed by running the Microsoft Data Access Components (MDAC) version 2.5
runtime package available as downloadable software from the Microsoft Universal Data Access Web site at
http://go.microsoft.com/fwlink/?LinkId=12749.
A version of OLE DB version 2.5 SDK is included in the Microsoft Data Access SDK which is available as a part of the
Windows 2000 Platform SDK. These downloadable SDKs are available from the Microsoft Universal Data Access Web site at
http://go.microsoft.com/fwlink/?LinkId=12749.
ADO version 2.5. The Microsoft Host Integration Server 2000 data access features require the runtime libraries for ADO
version 2.5. These libraries must be installed prior to installing the OLE DB Provider for AS/400 and VSAM. On
Windows 2000, these ADO libraries are installed as part of the Windows 2000 operating system. On Windows NT 4.0,
Windows 98, and Windows 95, these library files must be installed by running the Microsoft Data Access Components
(MDAC) version 2.5 runtime package available as downloadable software from the Microsoft Universal Data Access Web
site at http://go.microsoft.com/fwlink/?LinkId=12749.
A version of the ADO 2.5 SDK is included in the Microsoft Data Access SDK which is available as a part of the Windows 2000
Platform SDK. These downloadable SDKs are available from the Microsoft Universal Data Access Web site at
http://go.microsoft.com/fwlink/?LinkId=12749.

OLE DB version 2.0 or later and ADO version 2.0 or later are required to support indexed record access from an ADO consumer
application using the OLE DB Provider for AS/400 and VSAM. Indexed support through OLE DB is supported with OLE DB
versions 2.0 and later.

http://go.microsoft.com/fwlink/?LinkId=12749
http://go.microsoft.com/fwlink/?LinkId=12749
http://go.microsoft.com/fwlink/?LinkId=12749
http://go.microsoft.com/fwlink/?LinkId=12749

Microsoft Host Integration Server 2000

Indexed File Access
The OLE DB Provider for AS/400 and VSAM provides both sequential and indexed file access. Sequential file access is provided for
all supported file types on the Platforms Supported by the OLE DB Provider for AS/400 and VSAM.

Indexed file access is provided for the following host file types only:

Mainframe Virtual Storage Access Method (VSAM) data sets.
Key-Sequenced Data Sets (KSDS) only when the keys are unique.
Fixed-length Relative Record Data Sets (RRDS) only when the keys are unique.
Variable-length Relative Record Data Sets (VRRDS) only when the keys are unique.

AS/400 files.
Logical files.
Keyed physical files (externally described to the system).

OLE DB and ADO offer several interfaces that enable indexed file access.

The OLE DB Provider for AS/400 and VSAM supports integrated indexes based on the underlying rowset. OLE DB support for
indexed file access using the OLE DB Provider for AS/400 and VSAM is available using the IRowsetIndex, IViewFilter, and
IViewRowset interfaces.

For more information on indexes, see Chapter 8, "Indexes" and Chapter 16, "Integrated Indexes" in the OLE DB Programmer's
Reference. To obtain a list of available indexes in a target AS/400 library, a program can call the OLE DB Session object's
IDBSchemaRowset::GetRowset function requesting a query type of DBSCHEMA_INDEXES.

ADO support for indexed file access using the OLE DB Provider for AS/400 and VSAM is available using the Find method, Filter
property, and Sort property on the ADO Recordset object. To obtain a list of available indexes in a target AS/400 library using
ADO, a program can call the OpenSchema method on the Connection object specifying a QueryType of adSchemaIndexes.

By default, the OLE DB Provider for AS/400 and VSAM uses a server-based cursor. This means that all indexed file access is based
on the cursor located over the host file, and not a local computer copy of the host file. If you want to use the many client-based
cursor service providers available with the Microsoft® Data Access Components, then you must configure the provider to use a
client-based cursor. For example, a client-based cursor is required when using Remote Data Service (RDS) and the Microsoft
Visual Studio® ADO data-bound controls. However, using these controls, an application can access the host files for read-only
purposes. If your application needs to access host files with an intent of both reading and writing and you require indexed file
access, then your application should use the OLE DB Provider for AS/400 and VSAM's own server-based cursor.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

File and Record Attributes
By definition, the record description is not part of the record I/O architecture in Distributed Data Management (DDM).
Traditionally, applications must embed the record format as part of the application program. This creates a tremendous burden
on the application and is very inconsistent with the existing computer-based data access standards, such as OLE DB and ODBC.

To solve this problem, the Microsoft® OLE DB Provider for AS/400 and VSAM uses an external Host Column Description (HCD)
file stored on the computer that allows administrators to describe the host record format. At run time, the OLE DB Provider for
AS/400 and VSAM transparently converts the host data to computer data using the local HCD information. Before a user program
can view or open a VSAM file using the OLE DB Provider for AS/400 and VSAM, the user program must create a valid record
description file or entry for the target VSAM file.

The OLE DB Provider for AS/400 and VSAM includes a Microsoft Management Console (MMC) application designed to enable
administrators and developers to easily create these local record description files and the necessary registry settings for data
sources. The OLE DB DDM Management application makes it relatively easy to create HCD files without ever knowing the HCD file
format. The Host Column Description file format is documented in the Data Integration Reference.

The conversion process occurs in two steps. The host data is converted from host EBCDIC to ASCII data by the DDM DLL. The HCD
file is used during this step to convert host data types to C data types, which are defined in ODBC and based on the SQL data
types defined in the ANSI/ISO SQL-92 standard. The second phase of this conversion occurs in the SNAOLEDB DLL where these
SQL C data types are converted to the defined OLE DB data types.

The use of an HCD file is not necessary to describe the record format for data stored in the AS/400 because the OLE DB Provider
for AS/400 and VSAM automatically detects that the target host system is an AS/400 and uses the appropriate DDM commands
to retrieve the record description. If the system administrator or the OLE DB application developer wants to use an HCD file
instead of retrieving the AS/400 record description, this behavior can be forced by setting the configuration of the Host Column
Description File property using Data Links. This parameter is described in the next section.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring the OLE DB Provider for AS/400 and VSAM
Microsoft® Data Access Components 2.0 and later includes Data Links, a generic method for managing and loading connections
to OLE DB data sources. Microsoft Data Links, a core element of the Microsoft Data Access Components (MDAC), provide a
uniform method of creating persistent OLE DB data source object definitions stored in the form of universal data link (.udl) files.
The OLE DB Provider for AS/400 and VSAM normally uses Data Links and UDL files for loading and configuring data sources.

Applications, such as the RowsetViewer sample from the Microsoft Data Access SDK, can open a UDL file that was previously
created and pass the stored initialization string to the OLE DB Provider for AS/400 and VSAM at run time. Data Links provide a
flexible method for finding and saving connection information to OLE DB data sources.

In order to use Microsoft OLE DB Provider for AS/400 and VSAM with an OLE DB consumer application, the user must either (1)
create a Microsoft data link (UDL) file and call this from the application; or (2) call the OLE DB provider from within the application
using a connection string that includes the provider name and other necessary parameters. If an application will be accessing
VSAM data sets, then after configuring a data link, a host data description must also be configured using the Data Descriptions
tool.

Microsoft Management Console (MMC) and MMC snap-ins are the current method of exposing administrative tasks and options
in server-based Microsoft products. An MMC snap-in for the OLE DB Provider for AS/400 and VSAM is installed with the Host
Integration Client 2000, which enables you to configure settings for accessing data files on AS/400 systems and mainframes. This
OLE DB Management Console snap-in enables you to configure data descriptions used by the OLE DB Provider for AS/400 and
VSAM.

The OLE DB Provider for AS/400 and VSAM console contains one high-level object:

Data Descriptions—Stored in Host Column Description (HCD) files that contain the information required to convert host
data types to computer data types.

The OLE DB Provider for AS/400 and VSAM console is designed to run on Microsoft Windows® 2000, Windows NT®,
Microsoft Windows 98, and Microsoft Windows 95. On Windows 2000 and Windows NT, the console respects the Windows 2000
and Windows NT security hierarchy, where only privileged users can read and write to some areas of the system registry. To
prevent general users from modifying the data sources and HCD files on Windows 2000 and Windows NT, the OLE DB Data
Descriptions tool can only be run by users that have administrative privileges on the local computer.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Data Sources for the OLE DB Provider for AS/400
and VSAM
Data source information must be configured for each AS/400 or mainframe system data source object that is to be accessed
using the OLE DB Provider. The default parameters for the OLE DB Provider are used as the default values for data sources and
when these parameters are not configured for each data source.

Microsoft Data Links, a core element of the Microsoft Data Access Components, provides a uniform method for creating file-
persistent OLE DB data source object definitions in the form of Universal Data Link (UDL) files. Applications, such as the
RowsetViewer sample included with the Microsoft Data Access SDK and the MSDN Platform SDK, can open created UDL files and
pass the stored initialization string to the OLE DB Provider for AS/400 and VSAM at run time.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Creating New Data Links for the OLE DB Provider for AS/400
and VSAM
UDL files are normally stored in a special folder located at:

C:\Programs Files\Common Files\System\Ole DB\data links

Microsoft Data Access Components 2.5 introduced a set of new OLE DB interfaces and functions to enumerate, create, and modify
data link UDL files for configuring data sources. The NewSnaDS.exe utility provided as part of the OLE DB Provider for AS/400
and VSAM enables users to create and modify data links. This tool makes calls to the OLE DB Service Component Manager that
provides these functions.

To create a new UDL file, run the NewSnaDS tool. This tool is installed in the System folder below the subdirectory where
Microsoft Host Integration Server 2000 was installed. The default location where this tool is installed is the following:

C:\Program FilesHost Integration Server\System\NewSnaDS.exe

A shortcut for this tool is added to the Programs menu under the Host Integration Server\Data Integration folder with a
name of OLE DB Data Sources. This shortcut is created when Host Integration Server 2000 or the Host Integration 2000 Client are
first installed and support for data access is selected.

A shortcut entitled the OLE DB Data Sources Browser is also added to the Programs menu under the
Host Integration Server\Data Integration folder. This shortcut opens Windows Explorer to the default directory where UDL
files are stored:

C:\Programs Files\Common Files\System\Ole DB\data links

Using SNA Server 4.0 and older versions of the Microsoft Data Access Components (MDAC 2.1), it was possible to create a new
UDL file by navigating to this folder using Windows Explorer. In the right pane of the Windows Explorer, a right-click would open
a shortcut menu and enable you to create a New Microsoft Data Link.

In the past, a data link file could also be created using SNA Server 4.0 with a shortcut in the SNA Server 4.0 program folder. And
the properties of a data link file could be edited by opening the file from Windows Explorer. The procedures used with SNA Server
4.0 to create a new UDL file have been deprecated and will not work with Microsoft Host Integration Server 2000, Windows 2000,
and MDAC 2.5 or later.

Once a UDL file is created using the NewSnaDS tool, the file can be changed to a more appropriate name and copied to other
client computers for use with the OLE DB Provider for AS/400 and VSAM.

A new data link file can be created with the NewSnaDS utility using the following procedure:

1. Click Start, point to Programs, and then point to Host Integration Server.
2. Point to Data Integration, and then click OLE DB Data Sources to run the NewSnaDS tool.

A UDL file is created, and the Data Link Properties dialog box is displayed.

3. Select Microsoft OLE DB Provider for AS/400 and VSAM from the list of providers, and then configure the data source
information as needed.

4. Click OK to save the data link.

By default, data links are created in the following folder:

C:\Program Files\Common Files\System\Ole DB\data links

However, a data link can be created in this location and moved to other client computers or folder, as needed.

Note that on Windows XP, Windows 2000, and Windows NT 4.0 using an NTFS partition, the file access permissions for this
default folder are inherited from the System\Ole DB folder. The default file permissions allow full control by all members of the
Users and Power Users groups in a Windows domain. Data link files may contain connection properties and configuration
information that should be accessible only to specific users. For security reasons it is recommended that data link files be
protected with an Access Control List (ACL) that restricts access to only appropriate users.

Windows 95, Windows 98, and Windows Millennium Edition do not include file systems that offer support for ACLs. Windows XP,
Windows 2000, and Windows NT 4.0 can also be installed on FAT or FAT32 file systems lacking support for access control. In
these cases, there is not protection available to protect any sensitive information stored in UDL files.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Browsing Data Sources for the OLE DB Provider for AS/400 and
VSAM
By default, data links are created in the Program Files\Common Files\System\OLE DB\Data Links folder. A shortcut is provided in
the Microsoft Host Integration Server 2000 program group.

1. Click the Start button, point to Programs, and then point to Host Integration Server.
2. Point to Data Integration, and then click OLE DB Data Source Browser.

Windows Explorer opens to the default location where UDL files are stored. The list of data links saved in the default location
appears.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Data Links for the OLE DB Provider for AS/400 and
VSAM
To edit the properties of a Data Link file, right-click the file using Windows Explorer and click Data Link Properties. The Data
Link Properties dialog box appears with several property tabs:

General
Security
Summary
Provider
Connection
Advanced
All

The General, Security, and Summary tabs provide access to general file information for the UDL file that is available for other
files and is not related to the Data Link properties. This information includes file location, file type, file size, file dates, file security
permissions for access, and descriptive summary information (description and origin properties and values such title, subject,
author, etc.) for the UDL file. The General tab has a text box with the name of the Data Link. This filename must end with the .UDL
extension if the file is to be recognized as a Data Link file. Note that the Security and Summary tabs are available on NTFS files
systems, not on the older FAT file systems.

The NewSnaDS tool can also be used to open and modify an existing UDL file. The Data Link Properties dialog box appears with
several property tabs:

Provider

Connection

Advanced

All

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Provider
The Provider tab enables you to select the OLE DB Provider (the provider name string) to be used in this UDL file from a list of
possible OLE DB providers. Select the Microsoft OLE DB Provider for AS/400 and VSAM. The parameters and fields displayed by
the remaining tabs (Connection, Advanced, and All) are determined by the OLE DB Provider that is selected.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Connection
The Connection tab enables you to configure the basic properties required to connect to a data source. For the Microsoft OLE DB
Provider for AS/400 and VSAM, the connection properties include the following values.

Property Description
Data Source The data source is an optional parameter that can be used to describe the data source.

When the NewSnaDS configuration program is loaded from the Host Integration Server 2000 program folder, th
e Data Source field is required. This field is used to name the UDL file, which is stored in the Program Files\Comm
on Files\System\OLE DB\Data Links folder.

Location The remote database name used for connecting to OS/400 systems. In DB2/400, this property is referred to as RD
BNAM.

This parameter is not used when connecting to mainframe systems.

Use Windows
 NT Integrate
d security

This radio button enables using the Host Integration Security features providing a single-sign on to access this OL
E DB data source.

When this radio button is selected, the User name and Password fields are grayed out and become inaccessible.
The user name and password fields are set based on the Windows 2000 logon values.

When this radio button is not selected, the User name and Password fields must normally contain appropriate v
alues to access data sources on hosts.

Use a specific
user name an
d password

This radio button disables using the Host Integration 2000 security features.

When this radio button is selected, the user name and password fields are accessible and must normally contain a
ppropriate values to access data sources on hosts.

User name A valid user name and password are normally required to access data sources on hosts. These values are case sen
sitive.
The user must click the radio button that requires a specific user name and password to be entered.

Password A valid user name and password are normally required to access data sources on hosts. These values are case sen
sitive.
The Blank password checkbox is only applicable for a Test Connection. In order to enter a password, the user will
need to clear the Blank password check box if it is checked. If Blank password is checked, then a Test Connectio
n with a blank password will not cause the OLE DB Provider to prompt for a password.

Optionally, the user can choose to save the password in the UDL file by clicking the Allow saving password chec
k box. Users and administrators should be warned that this option saves the authentication information (passwor
d) in plain text within the UDL file.

It is possible to connect using a specific User name and Password defined on the host system or use the single sign-on feature
(often referred to as Windows NT integrated security). If a specific User name and Password is to be used, this information may
need to be saved into the UDL file. The User name and Password are saved in clear text in the UDL file. For security reasons in
these cases, it is imperative that the UDL file be protected with an Access Control List (ACL) that restricts access to only authorized
users. Saving the User name and Password in the data link also forces this UDL file to be updated whenever the Password
associated with the User name is changed. So for a variety of reasons, specifying a User name and Password is not the preferred
authentication option. Using the Windows NT integrated security option is the preferred method for authentication.

The Connection tab also includes a Test Connection button that can be used to test the connection parameters. The connection
can only be tested after all of the required parameters are entered. When you click this button, an APPC session or a TCP/IP
session attempts to be established to the host using the OLE DB Provider for AS/400 and VSAM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Advanced
The Advanced tab enables you to set the network protection level and access permissions. You can set the protection level from
the list box of allowable values. Access permissions are set by clicking the appropriate check boxes. For the Microsoft OLE DB
Provider for AS/400 and VSAM, these properties include the following values:

Pro
pert
y

Description

Imp
erso
nati
on l
evel

The level of impersonation that the server is allowed to use when impersonating the client. This property applies only to net
work connections other than Remote Procedure Call (RPC) connections. These impersonation levels are similar to those pro
vided by RPC. The values of this property correspond directly to the levels of impersonation that can be specified for authen
ticated RPC connections, but can be applied to connections other than authenticated RPC. This parameter can be set to one
of the following values:

Anonymous—The client is anonymous to the server. The server process cannot obtain identification information about the
client and cannot impersonate the client.

Delegate—The process can impersonate the client's security context while acting on behalf of the client. The server process
can also make outgoing calls to other servers while acting on behalf of the client.

Identity—The server can obtain the client's identity. The server can impersonate the client for access control list (ACL) chec
king, but cannot access system objects as the client.

Impersonate—The server process can impersonate the client's security context while acting on behalf of the client. This inf
ormation is obtained when the connection is established, not for every call.

This parameter defaults to Impersonate.

The impersonation level parameter can also be set using the All tab.

Prot
ecti
on l
evel

The level of protection of data sent between client and server. The values of this property correspond directly to the levels of
protection that can be specified for authenticated RPC connections. This parameter can be set to one of the following values:

Call—Authenticates the source of the data at the beginning of each request from the client to the server.

Connect—Authenticates only when the client establishes the connection with the server.

None—Performs no authentication of data sent to the server.

Pkt—Authenticates that all data received is from the client.

Pkt Integrity—Authenticates that all data received is from the client and that it has not been changed in transit.

Pkt Privacy—Authenticates that all data received is from the client, that it has not been changed in transit, and protects the
privacy of the data by encrypting it.

This parameter is not supported by the OLE DB Provider for AS/400 and VSAM and defaults to connect-level protection.

The protection level parameter can also be set using the All tab.

Con
nect
ion
tim
eou
t

The amount of time (in seconds) to wait for initialization to complete. This parameter is not currently supported by the OLE
DB Provider for AS/400 and VSAM and defaults to 0.

This parameter is equivalent to the DBPROP_INIT_TIMEOUT OLE DB property ID.

Acc
ess
per
miss
ions

Once a connection is established, this parameter represents a bit mask of the access permissions that will be applied to the
data file. As implemented by the OLE DB Provider for AS/400 and VSAM, access permissions apply to host file locks and do
not apply to record locks.

The allowable values include the following: Read, ReadWrite, Share Deny None, Share Deny Read, Share Deny Write, Share
Exclusive, and Write.

The default value for the Access permissions parameter for the OLE DB Provider for AS/400 and VSAM is ReadWrite.

This parameter is equivalent to the DBPROP_INIT_MODE OLE DB property ID. These access permissions can also be set usin
g the All tab.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

All
The All tab allows users to configure essentially all of the properties for the data source except for the OLE DB Provider. The
properties available in the All tab include properties that can be configured using the Connection and Advanced tabs as well as
optional detailed properties used to connect to a data source. Some of the properties in the All tab are required.

These properties on the All tab may be edited by selecting a property from the list displayed and selecting Edit Value. This
button will invoke dialog box for the specific property containing a Property Description describing the property and a Property
Value box for making changes.

For the Microsoft OLE DB Provider for AS/400 and VSAM, these properties include the following values:

Proper
ty

Description

APPC
Local L
U Alia
s

The name of the local LU alias configured in the Host Integration Server 2000 computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_LOCALLU OLE DB property ID.

APPC
Mode
Name

When LU 6.2 (SNA) is selected for the Network Transport Library, this field is the APPC mode and must be set to a value t
hat matches the host configuration and Host Integration Server 2000 computer configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #I
NTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #I
BMRDB (DB2 remote database access), and custom modes.

The following modes that support bidirectional LZ89 compression are also legal: #INTERC (interactive with compression),
INTERCS (interactive with compression and minimal routing security), BATCHC (batch with compression), and BATCHCS (
batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

This parameter is equivalent to the DBPROP_SNAOLEDB_APPCMODE OLE DB property ID.

APPC
Remot
e LU A
lias

When LU 6.2 (SNA) is selected for the Network Transport Library, this field is the name of the remote LU alias configured
in the Host Integration Server 2000 computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_REMOTELU OLE DB property ID.

Cache
Authe
nticati
on

This parameter determines whether the OLE DB Provider caches authentication information such as a password in an inte
rnal cache.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is not currently supported by the OLE DB Provider and defaults to false.

This parameter is equivalent to the DBPROP_AUTH_CACHE_AUTHINFO OLE DB property ID.

Conne
ct Tim
eout

The amount of time (in seconds) to wait for initialization to complete. This parameter is not currently supported by the OL
E DB Provider and defaults to 0.

This parameter is equivalent to the DBPROP_INIT_TIMEOUT OLE DB property ID.

Data S
ource

The data source is an optional parameter that can be used to describe the data source.

This parameter is equivalent to the DBPROP_INIT_DATASOURCE OLE DB property ID.

Defaul
t Libra
ry

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when con
necting to AS/400 files.

This parameter is equivalent to the DBPROP_SNAOLEDB_LIBRARY OLE DB property ID.

Encryp
t Pass
word

This parameter determines whether special security mechanisms are used to ensure password privacy.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is not currently supported by the OLE DB Provider and defaults to false.

This parameter is equivalent to the DBPROP_AUTH_ENCRYPT_PASSWORD OLE DB property ID.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Exten
ded Pr
operti
es

This parameter is a string containing provider-specific, extended connection information. Properties passed through this
parameter should be delimited by semicolons and will be interpreted by the provider’s underlying network client.

The use of this property implies that the OLE DB consumer knows how this string will be interpreted and used by the OLE
DB provider. This parameter should be used only for provider-specific connection information that cannot be explicitly de
scribed through the other property parameters.

This parameter is equivalent to the DBPROP_INIT_PROVIDERSTRING OLE DB property ID.

Host C
CSID

The character code set identifier (CCSID) matching the data as represented on the host. The CCSID property is required w
hen processing binary data as character data. Unless the Process Binary as Character value is set, character data is conv
erted based on the host column CCSID and default ANSI code page.

This parameter defaults to U.S./Canada (37).

This parameter is equivalent to the DBPROP_SNAOLEDB_HOSTCCSID OLE DB property ID.

Host C
olumn
Descri
ption
File

The fully qualified filename of the DDM Host Column Description (HCD) file. This parameter can be a UNC string up to 25
6 characters in length. A path does not need to be included in the name if the HCD file is located in the system directory b
elow where the Host Integration Server or Client software was installed. This parameter is required when connecting to
mainframe systems and is optional when connecting to OS/400.

This parameter is equivalent to the DBPROP_SNAOLEDB_HCDPATH OLE DB property ID.

Impers
onatio
n Leve
l

The level of impersonation that the server is allowed to use when impersonating the client. This property applies only to
network connections other than Remote Procedure Call (RPC) connections; these impersonation levels are similar to thos
e provided by RPC. The values of this property correspond directly to the levels of impersonation that can be specified for
authenticated RPC connections, but can be applied to connections other than authenticated RPC.

This parameter can be set to one of the following values:

Anonymous—The client is anonymous to the server. The server process cannot obtain identification information about th
e client and cannot impersonate the client.

Delegate—The process can impersonate the client's security context while acting on behalf of the client. The server proce
ss can also make outgoing calls to other servers while acting on behalf of the client.

Identity—The server can obtain the client's identity. The server can impersonate the client for access control list (ACL) che
cking, but cannot access system objects as the client.

Impersonate—The server process can impersonate the client's security context while acting on behalf of the client. This in
formation is obtained when the connection is established, not on every call.

The value of this property is selected from the drop-down list box.

This parameter defaults to Impersonate.

This parameter is equivalent to the DBPROP_INIT_IMPERSONATION_LEVEL OLE DB property ID.

Integr
ated S
ecurit
y

This parameter is a string containing the name of the authentication service used by the server to identify the user using t
he identity provided by an authentication domain. For example, for Microsoft® Windows 2000 Integrated Security, this is
"SSPI" (for Security Support Provider Interface). If this parameter is a null pointer, the default authentication service shoul
d be used. When this property is used, no other DBPROP_AUTH* properties are needed and, if provided, their values are i
gnored.

This parameter is equivalent to the DBPROP_AUTH_INTEGRATED OLE DB property ID.

Locale
Identif
ier

This parameter specifies the locale to be used. This parameter is not supported by the OLE DB Provider for AS/400 and V
SAM and defaults to 437.

This parameter is equivalent to the DBPROP_INIT_LCID OLE DB property ID.

Locati
on

The remote database name used for connecting to OS/400 systems. In DB2/400, this property is referred to as RDBNAM.
This parameter is not used when connecting to mainframe systems.

This parameter is equivalent to the DBPROP_INIT_LOCATION OLE DB property ID.

Mask
Passw
ord

This parameter indicates whether the password should be sent to the data source or enumerator in a masked form.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is not supported by the OLE DB Provider and defaults to false.

This parameter is equivalent to the DBPROP_AUTH_MASK_PASSWORD OLE DB property ID.

Mode Once a connection is established, this parameter represents a bit mask of the access permissions that will be applied to th
e data file. As implemented by the OLE DB Provider for AS/400 and VSAM, access permissions apply to host file locks and
do not apply to record locks.

The allowable values include the following: Read, ReadWrite, Share Deny None, Share Deny Read, Share Deny Write, Shar
e Exclusive, and Write. This parameter can be a combination of zero or more of the following:

DB_MODE_READ—Read-only.

DB_MODE_WRITE—Write-only.

DB_MODE_READWRITE—Read/write (DB_MODE_READ | DB_MODE_WRITE).

DB_MODE_SHARE_DENY_READ—Prevents others from opening in read mode.

DB_MODE_SHARE_DENY_WRITE—Prevents others from opening in write mode.

DB_MODE_SHARE_EXCLUSIVE—Prevents others from opening in read/write mode (DB_MODE_SHARE_DENY_READ | DB
_MODE_SHARE_DENY_WRITE).

DB_MODE_SHARE_DENY_NONE—Neither read nor write access can be denied to others.

This parameter is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Netwo
rk Add
ress

When TCP/IP has been selected for the Network Transport Library, this parameter is used to locate the target host compu
ter. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. The ne
twork address is required when connecting through TCP/IP.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETADDRESS OLE DB property ID.

Netwo
rk Port

When TCP/IP has been selected for the Network Transport Library, this parameter is used to locate the target DDM servic
e access port when connecting through TCP/IP. This parameter represents the TCP/IP port used for communication with t
he DDM service on the host. The default value is TCP/IP port 446.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETPORT OLE DB property ID.

Netwo
rk Tra
nsport
Librar
y

This parameter, which represents the dynamic-link library used for transport, designates whether the provider connects t
hrough SNA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCPIP, or SNA.

If TCPIP is selected, then values for Network Address and Network Port are required. TCP/IP connectivity to the mainfram
e is not supported by the OLE DB Provider for AS/400 and VSAM.

If SNA is selected, then values for APPC Local LU Alias, APPC Mode Name, and APPC Remote LU Alias are required.

The value of this property (SNA or TCPIP) is selected from the drop-down list box.

This value defaults to SNA.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETTYPE OLE DB property ID.

Passw
ord

A valid user name and password are normally required to access data sources on hosts. The password is case sensitive an
d is shown as asterisks in this dialog box for security purposes.

Optionally, you can choose to save the password in the UDL file by clicking the Allow saving password checkbox. Users
and administrators should be warned that this option persists the authentication information in plain text within the UDL
file.

This parameter is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

PC Co
de Pag
e

Indicates the code page used for character code conversion. This property is required when processing binary data as cha
racter data. Unless the Process Binary as Character value is set, character data is converted based on the default ANSI c
ode page configured in the Windows operating system.

If this parameter is set to Binary or 65535, then no character code conversions will take place. This parameter defaults to
Latin 1 (1252).

This parameter is equivalent to the DBPROP_SNAOLEDB_PCCODEPAGE OLE DB property ID.

Persist
Securi
ty Info

This parameter indicates whether the data source object is allowed to persist sensitive authentication information such as
a password along with other authentication information.

Optionally, a user can choose to save the password in the UDL file by clicking the Allow saving password checkbox. Use
rs and administrators should be warned that this option persists the authentication information in plain text within the U
DL file.

The value of this property (true or false) is selected from the drop-down list box.

This parameter defaults to false.

This parameter is equivalent to the DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO OLE DB property ID.

Proces
s Binar
y as C
haract
er

This parameter indicates whether to process binary fields (CCSID of 65535) as character data type fields on a per data so
urce basis. The Host CCSID and PC Code Page values are required input parameters when this parameter is true.

The value of this property (true or false) is selected from the drop-down list box.

The default for this parameter is false, don't process binary fields as character fields.

This parameter is equivalent to the DBPROP_SNAOLEDB_BINASCHAR OLE DB property ID.

Protec
tion Le
vel

The level of protection of data sent between client and server. The values of this property correspond directly to the levels
of protection that can be specified for authenticated RPC connections. This parameter can be set to one of the following v
alues:

DB_PROT_LEVEL_NONE—Performs no authentication of data sent to the server.

DB_PROT_LEVEL_CONNECT—Authenticates only when the client establishes the connection with the server.

DB_PROT_LEVEL_CALL—Authenticates the source of the data at the beginning of each request from the client to the serv
er.

DB_PROT_LEVEL_PKT—Authenticates that all data received is from the client.

DB_PROT_LEVEL_PKT_INTEGRITY—Authenticates all data received is from the client and that it has not been changed in tr
ansit.

DB_PROT_LEVEL_PKT_PRIVACY—Authenticates all data received is from the client, that it has not been changed in transit,
and protects the privacy of the data by encrypting it.

The value of this property is selected from the drop-down list box.

This parameter is not supported by the OLE DB Provider for AS/400 and VSAM and defaults to the connect level of protec
tion.

This parameter is equivalent to the DBPROP_INIT_PROTECTION_LEVEL OLE DB property ID.

Repair
Host K
eys

This parameter provides for repair of invalid key offsets received from OS/400 when keys have been defined using the D
DS "RENAME" clause. This parameter indicates whether the OLE DB provider should repair any host key values set in the
registry.

This parameter defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

Strict
Valida
tion

This parameter indicates whether strict validation should be used and defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is equivalent to the DBPROP_SNAOLEDB_STRICTVAL OLE DB property ID.

User I
D

A valid user name is normally required to access data sources on hosts. This value is case sensitive.

This parameter is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

Microsoft Host Integration Server 2000

Configuring Data Descriptions
The OLE DB Data Descriptions tool is a Microsoft Management Console (MMC) console that is used to describe the host data file
format for mainframe access. Use of the OLE DB for AS/400 and VSAM console and the Host Column Description files is not
required for AS/400 files because by default, the data file format is retrieved automatically from the host.

The data descriptions are stored in a local Host Column Description (HCD) file for each data source.

The following table provides the general parameters or attributes that can be configured describing each column in a data
description on the General property page:

General paramete
rs

Description

Name The character string that represents the name of the column. This parameter may be null.
Alias An optional character string that represents an alias label for the column string name. This parameter may b

e null.
Comment An optional character string that represents a comment about the column. This attribute may be null.

The following table provides the data type parameters or attributes that can be configured describing each column in a data
description in the Data Type property page:

Host pa
rameter
s

Description

Type The data type on the host. The allowed data values for host data type are selected from a drop-down list box (see
Host Data Types for allowed values).

Length Length of the field in bytes. Depending on the selected Host Type, this parameter may not be editable.
Precisio
n

Total number of decimal digits in the column containing numeric data on the host. Depending on the selected host type,
this parameter may not be editable.

The only numeric data types that require this information are the PACKED and ZONED data types. And for these types, t
his field cannot be null; it must contain a valid numeric value. For all other host types, this parameter is not editable.

Scale Number of decimal digits to the right of any decimal point for numeric data on the host. Depending on the selected host
type, this parameter may not be editable.

The only numeric data types that require this information are the PACKED and ZONED host data types. And for these ty
pes, this field cannot be null; it must contain a valid numeric value. For all other host types, this parameter is not editable
.

CCSID The character code set identifier (CCSID) used on the host. The allowed data values for host CCSID are selected from a d
rop-down list box (see allowed values listed below).

This parameter defaults to the host CCSID configured for the OLE DB Provider and is typically U.S./Canada (37).

The following table provides the local parameter that can be configured:

Local para
meters

Description

Type Indicates the OLE DB data type on the local computer. The allowed data values for the local data type are selected fro
m a drop-down list box (see Local OLE DB Data Types for allowed values).

The OLE DB provider limits the maximum length character field that can be accessed on an AS/400 computer to 32,745. On
mainframes, a limitation of the IBM DFM is that SAM data sets and PDSE members are inaccessible if the fixed record length is
greater than 32,760 or variable record lengths are greater than 32,756. DFM also limits all VSAM data sets on a mainframe to
have a maximum record length no greater than 32,760. Attempting to access a character field greater than these lengths on an
AS/400 or a mainframe machine will fail and can have unpredictable results.

The CCSID setting used by the OLE DB Provider must be set to match the CCSID actually used on the host—otherwise, data loss
will occur. Some AS/400 systems default to a CCSID of 937 for enabling double-byte character sets (DBCS).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Data Types
The Host Type parameter represents the data type used for this column on the host. The allowed values for Host Type that can
be selected from the drop-down list box include the following:

Host Type Description
Binary Fixed-length binary data (no character conversion). The length must be specified for this data type.
Character Fixed-length character data. The length must be specified for this data type.
Date The date represented as character data in the format yyyy-mm-dd that fits into 10 bytes.
DBCS Fixed-length character data that can contain only DBCS data. The length must be specified for this data type.
DCBS – Mix
ed Either

Fixed-length character data that can contain either DBCS or alphanumeric data. The length must be specified for this
data type.

DCBS – Mix
ed Open

Fixed-length character data that can contain both DBCS and alphanumeric data. DBCS data is distinguished from alph
anumeric data with shift-control characters. The length must be specified for this data type.

DBCS – Var
iable

Variable-length character data with a prefix of 2 bytes for length that contains only DBCS data. The maximum possibl
e length for the column containing this data type must be specified.

DCBS – Var
iable Mixed
Either

Variable-length character data with a prefix of 2 bytes for length that can contain either DBCS or alphanumeric data.
The maximum possible length for the column containing this data type must be specified.

DCBS – Var
iable Mixed
Open

Variable-length character data with a prefix of 2 bytes for length that can contain both DBCS and alphanumeric data.
DBCS data is distinguished from alphanumeric data with shift-control characters. The maximum possible length for t
he column containing this data type must be specified.

Double Floating-point data that fits in 8 bytes (64 bits).
Long Integer data that fits in 4 bytes (32 bits).
Packed Packed decimal numeric data where the precision and scale are exactly as specified.
Short Integer data that fits in 2 bytes (16 bits).
Single Floating-point data that fits in 4 bytes (32 bits).
Time The time represented as character data in the format hh:mm:ss that fits into 8 bytes.
Time Stam
p

Time stamp represented as characters in the format yyyy-mm-dd hh:mm:ss.ffffff that fits into 19 bytes.

Variable Bi
nary

Variable-length binary data represented as an unsigned character array with a prefix of 2 bytes for length. The maxim
um possible length for the column containing this data type must be specified.

Variable Ch
aracter

Variable-length character data with a prefix of 2 bytes for length. The maximum possible length for the column contai
ning this data type must be specified.

Zoned Zoned decimal numeric data where the precision and scale are exactly as specified.

The floating-point data format assumed by the OLE DB Provider for AS/400 and VSAM depends on the host. For
AS/400, the host floating-point data format is assumed to be IEEE. On mainframe hosts, floating-point data types are
assumed to be in IBM floating-point formats. Because OLE DB supports the IEEE floating-point format, data conversion
errors can occur when converting the extreme values of VSAM floating-point data in IBM format to IEEE floating-point
data by the OLE DB Provider. These conversion errors occur because the default IBM floating-point formats and the
IEEE floating-point format use a different number of bits for the mantissa and exponent when representing a floating-
point number.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Local OLE DB Data Types
The Local Type represents the OLE DB data type used for this column on the computer. The OLE DB data types are defined in the
OLE DB specifications and #defines can be found in the Oledb.h file. The allowed values for Local Type that can be selected from
the drop-down list box include the following:

Host Type Description
DBTYPE_BYTES Fixed-length binary data represented as an unsigned char array.
DBTYPE_DBDATE The OLE DB DBDATE typedef struct as defined in the Oledb.h file.
DBTYPE_DBTIME The OLE DB DBTIME typedef as defined in the Oledb.h file.
DBTYPE_DBTIMESTAMP The OLE DB DBTIMESTAMP typedef struct as defined in the Oledb.h file.
DBTYPE_DECIMAL The OLE DB DECIMAL typedef struct as defined in the Oledb.h file.
DBTYPE_I2 Integer data stored in 2 bytes (16 bits).
DBTYPE_I4 Integer data stored in 4 bytes (32 bits).
DBTYPE_NUMERIC The OLE DB NUMERIC typedef struct as defined in the Oledb.h file.
DBTYPE_R4 Single precision IEEE floating-point data stored in 4 bytes (32 bits).
DBTYPE_R8 Double precision floating-point data stored in 8 bytes (64 bits).
DBTYPE_STR Fixed and variable length character data.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Converting Existing Data Sources
The OLE DB Management console that was previously used in SNA 4.0 and SNA 4.0 with Service Pack 1 for configuring OLE DB
Provider for AS/400 and VSAM data sources has been removed and replaced by Microsoft Data Links and the Data Description
Utility. Microsoft Data Links is a component of Microsoft Data Access Components (MDAC) 2.5. The MDAC 2.5 runtime must be
installed prior to installing Host Integration Server 2000 when the OLE DB Provider for AS/400 and VSAM is selected to be
installed. On Windows 2000, MDAC 2.5 is installed as part of the Windows 2000 operating system. On Windows NT 4.0 and
Windows 98, these files must be installed by running the Microsoft Data Access Components (MDAC) version 2.5 runtime
package available as downloadable software from the Microsoft Universal Data Access Web site at
http://go.microsoft.com/fwlink/?LinkId=12749.

Existing registry-based OLE DB Provider for AS/400 and VSAM data sources that were created in SNA Server 4.0 and SNA 4.0 SP1
can be converted to UDL files using the Reg2udl tool supplied with Host Integration Server. The Reg2Udl tool is not installed as
part of Host Integration Server, but is located on the Host Integration Server 2000 CD-ROM in the \Options\Maintenance folder.
Any UDL files that are converted should be moved to the following subdirectory:

C:\Program files\Common files\System\Ole db\data links folder.

When a duplicate UDL file is present in the destination folder, the Reg2udl tool will increment the file name by 1 (Data.udl will
become Datat1.udl, for example). This may cause existing applications to fail because the OLE DB Provider for AS/400 and VSAM
will be looking for the existing name (Data.udl).

Manual conversion of registry-based data sources to UDL files may be necessary in some cases when Setup for Host Integration
Server 2000 is used (Web Setup for Windows 98 or Windows 95 is used, for example). A version of the Reg2udl tool (for Intel)
can be found in the \Options\Maintenance folder on the Host Integration Server 2000 CD-ROM.

To convert data sources manually on SNA Server 4.0, use the appropriate Ireg2udl.exe (for Intel) or Areg2udl.exe (for Alpha) tool
on the SNA Server 4.0 Service Pack 2 CD-ROM. On the SNA Server 4.0 Service Pack 3 CD-ROM, an Intel version of this tool for
use on Windows NT 4.0, Windows, 98, and Windows 95 is located in the \Reg2Udl folder.

This Reg2Udl tool can also be used in a Microsoft Systems Management Server (SMS) package for rapid deployment of many
client conversions at once.

http://go.microsoft.com/fwlink/?LinkId=12749
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings Used by the OLE DB Provider for AS/400 and
VSAM
The Microsoft® OLE DB Provider for AS/400 and VSAM uses a number of registry settings for configuration and proper
operation. These registry settings are located under the HKEY_LOCAL_MACHINE\Software\Microsoft\SNA OLE DB key. These
registry settings include the following subkeys:

Subkey N
ame

Description

Client Stores the path to the directory where the Host Column Description (HCD) files are stored on the computer by the OL
E DB for AS/400 or VSAM console.

Locale Lists the conversions supported by the computer and the hosts.

The registry keys located under the client subkey include the following:

Valu
e Na
me

Description

Path Stores the path to the directory where Host Column Description (HCD) files are stored by the OLE DB for AS/400 or VSAM
. This value defaults to the System directory below where Host Integration Server 2000 or SNA Server 4.0 was installed. On
computers using Host Integration Server 2000 this value defaults to
C:\Program Files\Host Integration Server\System.

On computers using SNA Server 4.0, this value defaults to C:\SNA95\System on Microsoft Windows® 95 and Windows 98
and C:\SNA\System on Microsoft Windows NT®.

Registry subkeys located under the locale subkey indicate the character code conversions supported by the computer and the
hosts and include the following:

Subkey Descriptions
Host Listed under this subkey are the possible CCSIDs for hosts when using custom code page conversion.
HostNLS Listed under this subkey are the CCSIDs supported for hosts using SNA NLS.
PC Listed under this subkey are the possible code pages when using custom code page conversions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Considerations Using the OLE DB Provider for
AS/400 and VSAM
All the Microsoft® OLE DB objects exposed by the OLE DB Provider for AS/400 and VSAM support aggregation. Each OLE DB
object has two classes, one that delegates its IUnknown calls and one that controls the object as a whole.

The apartment-threading model is supported, allowing multiple threads to access the objects safely. This is the only threading
model supported.

When working with the Data Environment (DE) commands within Microsoft Visual Studio® 6.0, you must use a period (.) as a
delimiter when specifying the AS/400 Library/File path. For example, the following is valid syntax when opening the AUTHORS
physical file in the PUBS library on an AS/400:

In order to use the ADO Recordset Find method or the ADO Filter property, an AS/400 logical file, an AS/400 keyed physical file, a
mainframe KSDS file with a unique key, or a mainframe RRDS file with a unique key must be used. If this method is used on an
AS/400 non-keyed physical file or any other mainframe file type, then this method fails.

When using RRDS files, the Find method fails when a search is executed using a column name. For example, the following Visual
Basic code will fail on an RRDS file with a column called Area:

The error description will indicate that a Bookmark is invalid.

RRDS files don't not have an index based on a column name and the value of the column data, so the syntax to the above ADO
Find method call doesn't make sense for RRDS files. In a COBOL program designed to dynamically find a record in an RRDS file,
the record position would be passed. So for the 75th record in the file, a COBOL program would pass a value of 75. The COBOL
program would then use the returned record number and the record length to calculate the position of the first byte of the record
in the file.

The Data Environment's SQL command parser does not accept the forward slash (/) character. The OLE DB Provider for AS/400
and VSAM automatically substitutes a forward slash in place of the period and passes the correctly formatted path to your
AS/400.

When using the Data Environment with Microsoft Visual Basic® 6.0, it is possible to get the following error when accessing the
OLE DB Provider for AS/400 and VSAM:

This error can occur once a data source has been configured for the OLE DB Provider for AS/400 and VSAM using the Data Links
property page and a command is added using the Data Environment where the command added is the following:

Using the Data Environment and selecting Run for this command can result in the above error. The Data Environment is opening
the file and then trying to opening it a second time based on the command to execute without closing the first copy. Depending
upon the share options of the dataset and the DBPROP_INIT_MODE property set for this data source, this error can occur and the
user can be locked out of the AS/400 or VSAM file.

The OLE DB Provider for AS/400 and VSAM does not support the following SQL Server features:

Data Transformation Services (DTS),
Replication
Distributed queries as a linked server.

When operating on large VSAM files and only querying data on a subset of the records, using the Filter property is not desirable
because of the performance impact. The entire VSAM file is transferred to the client for filtering. A better solution is to use the
server cursor engine and the Find method.

EXEC OPEN PUBS.AUTHORS

RecordSet.Find "Area > '1111'", 0, adSearchForward, adBookmarkFirst

"File is in use by another process. Unspecified error"

"EXEC OPEN filename"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The syntax supported by the OLE DB Provider for AS/400 and VSAM for command text is as follows:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your platform
for a detailed list of possible commands.

The syntax supported by the OLE DB Provider for AS/400 and VSAM to open a rowset (table) using command text is as follows:

where FileName represents one of the following host file naming conventions:

Host file type File naming convention
VSAM Data Sets DATASETNAME.FILENAME
Partitioned Data Sets DATASETNAME.FILENAME(MEMBER)
OS/400 Files LIBRARY/FILE
OS/400 Files LIBRARY/FILENAME
OS/400 File Members LIBRARY/FILE(MEMBER)
OS/400 File Members LIBRARY.FILENAME(MEMBER)

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double quotes.
For example, if the member name is NAMES.DAT, the proper syntax used to open a rowset using command text is as follows:

The distributed queries feature of SQL Server is sometimes referred to as the Distributed Query Processor (DQP).

EXEC COMMAND DDMCmd

EXEC OPEN FileName

EXEC OPEN LIBRARY/FILE("NAMES.DAT")

Microsoft Host Integration Server 2000

Record Access and Data Conversion
The design of the OLE DB APIs is similar to the APIs provided by ODBC and other ISAM APIs. The APIs are handle-based. After
opening a file, the application can determine the buffer size required to store a row, use the cursor APIs to move, and optionally
retrieve one or more rows of data using the row-level binding.

Data is converted to default C data types as defined in ODBC, illustrated in the following table:

Host data type Default C data type
Binary unsigned char binary[]
Character char string[]
Date (in character format) date struct
Double double
Long int
Packed unsigned char number[]
Short short
Single float
Time (in character format) time struct
Time Stamp (in character format) timestamp struct
Variable Binary unsigned char binary[]
Variable Character char string[]
Zoned unsigned char number[]

Data conversions from a large numeric type to a small numeric type are supported (from DOUBLE to SINGLE and from INT to
SMALLINT, for example), however truncation and conversion errors can occur that will not be reported by the OLE DB Provider for
AS/400 and VSAM.

The OLE DB Provider for AS/400 and VSAM has a number of other limitations:

Positive signed floating-point values cannot be read from ZONED DECIMAL fields.
No floating point values can be inserted into ZONED DECIMAL fields.
No values can be inserted into single-precision FLOATING POINT fields.
Positive signed floating-point values cannot be inserted into PACKED DECIMAL fields.
The ADO Find method fails to locate the first record when the key is multiple columns and the first column is a VARCHAR or
TIME data type.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Record Locking
DDM supports record locks so that a requester can perform intended operations on a record without interference from
concurrent users. Record locks are used only when the requester opens a file with an intent to update the file and specifies that
the file is to be shared with another user. Two types of record locks are supported. Record locks are handled automatically by the
Microsoft OLE DB Provider for AS/400 and VSAM whenever users call IRowsetChange::SetData (in immediate mode) or
IRowsetUpdate (in the delayed mode). The OLE DB Provider for AS/400 and VSAM locks the record, updates the record, and
then releases the lock.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Client Cursor Engines Using the OLE DB Provider for AS/400
and VSAM
The Microsoft Data Access Components (MDAC) supports the option of a client cursor engine. This feature is implemented as part
of OLE DB, ADO, and Remote Data Services (RDS). When using ADO, a client cursor is enabled by setting the CursorLocation
property on the recordset to adUseClient.

The OLE DB Provider for AS/400 and VSAM does not support any updating capabilities when used with a client cursor engine. In
other words, if a client cursor engine is enabled using RDS or ADO, the OLE DB Provider cannot be used to update data on the
host. The ADO recordset is treated as if it were read-only.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Single Sign-On
An Integrated Security (single sign-on) feature is supported by Microsoft Host Integration Server 2000 to automate the overall
logon process. When configured for this feature, Host Integration Server 2000 automatically replaces special keywords in the data
stream with the actual host user name and password at appropriate points in the session. This feature must be enabled by the
administrator within a Host Integration Server 2000 subdomain and special strings must be entered for the user name
(MS$SAME) and password (MS$SAME) that will be replaced.

When using this single sign-on feature with the OLE DB Provider for AS/400 and VSAM, the account in which the SNA DDM
Service is running is used as the sign-on account. Thus, if the SNA DDM Service is running in the system account, single sign-on
will always fail because the user name and password of the system account will be used rather than the actual user's name and
password.

This feature can be exploited under certain circumstances when using the OLE DB Provider in combination with active server
pages or other Web access schemes. If you want to use a single user account (UID) and password without revealing it through the
Web page, the single sign-on provisions can be used so that the system service account UID and password are used.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error Codes Returned by the OLE DB Provider for AS/400 and
VSAM
The Microsoft OLE DB Provider for AS/400 and VSAM supports the following ranges of error codes:

Error code range Source Definition
1–100 Ddmapi.dll OLE DB error codes (see the OLE DB Provider for AS/400 and VSAM help file).
256–511 Ddm.dll IBM DDM documentation.
512–higher Ddmwappc.dll Errors specific to the OLE DB Provider for AS/400 and VSAM.

When using Host Integration Server 2000, passing an incorrect password at connect time yields "General Error" instead of
"Authentication Error" (User does not have authority to access the host resource) on DB2/400 V4R4. An invalid local LU alias at
connect time yields "Network Error" instead of "Invalid Local LU Alias" error. No error is reported when connecting using a non-
existent default library value.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using the OLE DB Provider for DB2
The Microsoft® OLE DB Provider for DB2 allows users to access IBM Data Base 2 (DB2) from within an OLE-aware application.
The object linking and embedding database (OLE DB) is a standard set of interfaces that provides heterogeneous access to
disparate sources of information located anywhere—file systems, e-mail folders, and databases. The OLE DB Provider for DB2
combines the universal data access of OLE DB with the IBM Distributed Relational Database Architecture (DRDA).

Organizations have invested in secure, robust, enterprise-wide data storage and management systems. DRDA is a set of rules for
distributing or extending relational data from one computer to another, such as from a PC server to an IBM DB2 database server
running on a mainframe or an AS/400 computer. By combining the OLE DB and DRDA architectures, Microsoft allows
organizations to preserve their investments in existing data management infrastructure, while extending universal data access to
all enterprise-wide data sources.

This section contains:

Goals of the OLE DB Provider_for DB2
Distributed Relational Database Architecture
Platforms Supported by the OLE DB Provider for DB2
Configuring the OLE DB Provider for DB2
Registry Settings used by the OLE DB Provider for DB2
Programming Considerations Using the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Goals of the OLE DB Provider for DB2
Relational database management systems (RDBMS) are one of the major sources of mission-critical information in today's
enterprise organizations. Relational database technology enables departments and individual users to save their information in
centrally-managed database stores that can be easily maintained by the organization's information systems group. Ad-hoc query
tools designed for accessing relational database systems have added greater flexibility and ease of access to this information.

These same enterprises rely on vast networks of personal computers to enable their users to achieve business goals. End users
invariably rely on network e-mail; Microsoft® Windows® productivity applications, such as Microsoft Office; and personal
database programs, such as Microsoft Access, to accomplish their daily tasks. It is essential for these same users to incorporate
data stored in relational database systems into their regular correspondence, analysis, and reports.

The challenge faced by IS professionals is how to provide access to this valuable data without the effort involved in developing
traditional database applications. Much of the renewed interest in improved access to data sources is a result of the burgeoning
growth in the use of Internet and Web technology as mechanisms for delivering information. Fast and inexpensive methods of
accessing data stored in RDBMS systems are needed to deliver modern, three-tiered information systems during this era of cost
cutting and IS budget belt-tightening. Additional uses of this relational database access include ad hoc queries and Web-based
reporting.

IBM DB2 is a popular RDBMS for a significant number of enterprise customers. Customers need a cost-effective and manageable
means to integrate DB2 with Microsoft SQL Server™, Microsoft Internet Information Services (IIS), and Microsoft Office
applications. The goal of the OLE DB Provider for DB2 is to provide customers and solution providers with the means to integrate
desktop applications with this wealth of data residing on DB2 database systems.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Distributed Relational Database Architecture
Database technology has allowed departments and even individual users to save their information locally—as opposed to
centrally-managed stores owned by the organization's information systems group. Along with local storage and database query
tools comes greater flexibility and ease of access to information. Yet, as more databases became distributed, a need emerged for
users to access data stored remotely. IBM devised the Distributed Relational Database Architecture (DRDA) to enable their
customers to access remote, distributed database systems across hardware platforms.

DRDA supports most dialects of the Structured Query Language (SQL) for access to relational database management systems
(RDBMS). SQL is an international standard that defines a standardized language for accessing database management systems
(DBMS). DRDA implementations generally support SQL in two ways: static (embedded) SQL, where the SQL commands are
embedded directly in the application program and prepared as an extra step in the process of compiling the application; and
dynamic or interactive (callable) SQL, where the user passes SQL commands as function calls at run time. One popular IBM
implementation of dynamic SQL is the Call Level Interface (CLI). With dynamic SQL or CLI, SQL preparation is not required.

Clients that comply with DRDA are referred to as Application Requesters (AR) because they request data from the DRDA server.
Servers that comply with DRDA are referred to as application servers (AS). Typically, application servers are implemented as the
backend driver link to the RDBMS. In some cases, products are implemented as both application requesters and application
servers.

DRDA supports access to stored procedures on DB2. SQL applications can invoke stored procedures or user-written programs on
DB2 using the SQL CALL statement.

The OLE DB Provider for DB2 is an Application Requester implementation that can initiate DRDA commands to be serviced by a
remote target DRDA application server represented by IBM DB2. On the Microsoft® Windows NT® operating system, the
Microsoft DRDA application requester can run as a Windows NT service. This enables the integration of the DRDA service with
other host applications using the IBM DRDA protocols and DRDA servers resident on the host. Microsoft host software is not
required (see Platforms Supported by the OLE DB Provider for DB2). IBM offers Data Base 2 servers for most popular
environments.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Platforms Supported by the OLE DB Provider for DB2
IBM and other software vendors have implemented DRDA support into database systems, such as IBM DB2, and database tools
on a wide range of operating systems. DRDA is an open, published, and widely-supported protocol, which requires no additional
license for development. This makes DRDA appealing to independent software vendors (ISVs), solution providers, large corporate
development groups, as well as their customers.

The Microsoft® OLE DB Provider for DB2 is implemented as an IBM Distributed Relational Database Architecture (DRDA)
application requester, which means it connects to popular DRDA-compliant DB2 systems.

The Microsoft OLE DB Provider for DB2 can access the following DB2 systems through SNA LU6.2 using Microsoft Host
Integration Server 2000:

DB2 for MVS Version 4 Release 1 (V4R1) or later
DB2 for OS/390 Version 5 Release 1 (V5R1) or later
DB2 for OS/400 (DB2/400) Version 3 Release 2 (V3R2) or later

The Microsoft OLE DB Provider for DB2 can access the following DB2 systems directly using TCP/IP:

DB2 for OS/390 Version 5 Release 1 (V5R1) or later
DB2 for OS/400 (DB2/400) Version 4 Release 2 (V4R2) or later
DB2 Universal Database for Windows NT Version 5 Release 2 (V5R2) or later
DB2 Universal Database for AIX Version 5 Release 2 (V5R2) or later

Note that DB2 for OS/400 (DB2/400) Version 4 Release 3 (V4R3) requires that PTF SF99103 be applied. DB2 for OS/400
(DB2/400) Version 4 Release 4 (V4R4) requires that PTF SF99104 be applied.

IBM DB2 with DRDA support is available on a variety of other platforms. The OLE DB Provider for DB2 has not been tested with
these other implementations.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IBM DB2 for MVS Support
DB2 for MVS/ESA implements DRDA support in a component called Distributed Database Facility (DDF), which is an integral part
of DB2 for MVS/ESA. IBM suggests that DDF provides optimal online transaction processing (OLTP) performance because of the
close integration of DDF with the DB2 database engine. DB2 for MVS V4R1 and later includes a version of DDF that implements
advanced DRDA features, such as stored procedures and distributed unit of work, including two-phase commit.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IBM DB2 for OS/400 Support
DB2 for OS/400 is built into OS/400 with no additional installation required. DB2 for OS/400 is a DRDA Application Requester
supporting stored procedures and full distributed unit of work (two phase commit).

The Microsoft OLE DB Provider for DB2 can access the following DB2/400 systems through SNA LU6.2 using Microsoft Host
Integration Server 2000:

DB2 for OS/400 (DB2/400) Version 3 Release 2 (V3R2) or later

The Microsoft OLE DB Provider for DB2 can access the following DB2/400 systems directly using TCP/IP:

DB2 for OS/400 (DB2/400) Version 4 Release 2 (V4R2) or later

Note that DB2 for OS/400 (DB2/400) Version 4 Release 3 (V4R3) requires that PTF SF99103 be applied. DB2 for OS/400
(DB2/400) Version 4 Release 4 (V4R4) requires that PTF SF99104 be applied.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IBM DB2 Universal Database Support
IBM DB2 Universal Database (UDB) is available on a variety of platforms. These implementations are also referred to as DB2
Common Server. The OLE DB Provider for DB2 supports accessing DB2 Universal Database V5R2 or later on Windows 2000,
Windows NT, and IBM AIX directly using TCP/IP.

DB2 Common Server is also available for OS/2 and other versions of UNIX (HP HP-UX, Sun Solaris, Siemens-Nixdorf, and Bull). All
of these DB2 Common Server implementations support DRDA Application Server capabilities, such as stored procedures and
distributed unit of work.

Host Integration Server 2000 includes support for some ISO code pages for purposes of ISO-to-UNICODE-to-ANSI, ANSI-to-
UNICODE-to-ISO, and ISO-to-UNICODE-to-ISO conversions when using the OLE DB Provider for DB2. These ISO code pages can
be used when accessing DB2 Universal Database on AIX. For more information, see
Code Page Support Using the OLE DB Provider for DB2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 Requirements
The OLE DB Provider for DB2 supplied with Host Integration Server 2000 supports the following operating systems:

Microsoft® Windows® 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional
Microsoft Windows NT® Server 4.0 with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Enterprise Edition with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Terminal Server Edition with Service Pack 6a or later
Microsoft Windows NT Workstation 4.0 with Service Pack 6a or later
Microsoft Windows 98, Second Edition

The OLE DB Provider for DB2 supplied with Host Integration Server 2000 Service Pack 1 adds support for the following additional
operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

The OLE DB Provider for DB2 supplied with Host Integration Server 2000 supports only the Intel Windows 2000 and Windows NT
platforms. Versions of the OLE DB Provider for DB2 that shipped with SNA Server 4.0 Service Pack 1 and later supported
Windows NT on the Alpha architecture.

The OLE DB Provider for DB2 requires the following computer-to-host connectivity software when connecting over SNA using LU
6.2:

Microsoft Host Integration Server 2000
Microsoft Host Integration Server End User Client
Microsoft Host Integration Server Administrator Client

Microsoft Host Integration Server 2000 can be installed on Windows 2000 Server, Windows 2000 Advanced Server,
Windows 2000 Datacenter Server, Windows NT 4.0 Server, Windows NT 4.0 Server Enterprise Edition, or Windows NT 4.0 Server
Terminal Server Edition.

The Microsoft Host Integration Server Administrator Client can be installed on Windows 2000 Professional or Windows NT 4.0
Workstation. The Microsoft Host Integration Server Administrator Client with Service Pack 1 can also be installed on Windows XP
Professional. The Administrator Client cannot be installed on Windows 98 or Windows 95.

The Microsoft Host Integration Server End-User Client can be installed on Windows 2000 Professional, Windows NT 4.0
Workstation, or Windows 98. The Microsoft Host Integration Server End-User Client with Service Pack 1 can also be installed on
Windows XP Professional, Windows XP Home Edition, or Windows Millennium Edition.

Note that the OLE Provider for DB2 does not require any special host connectivity software when connecting directly to a host
system using TCP/IP.

The OLE DB Provider for DB2 supplied with Microsoft Host Integration Server 2000 supports the following OLE DB and ADO
versions:

OLE DB version 2.5. The Host Integration Server 2000 data access features require the runtime libraries for OLE DB version
2.5. These libraries must be installed prior to installing the OLE DB Provider for DB2. On Windows 2000, these OLE DB
libraries are installed as part of the Windows 2000 operating system. On Windows NT 4.0, Windows 98, and Windows 95,
these library files must be installed by running the Microsoft Data Access Components (MDAC) version 2.5 runtime package
available as downloadable software from the Microsoft Universal Data Access Web site at
http://go.microsoft.com/fwlink/?LinkId=12749.
A version of OLE DB version 2.5 SDK is included in the Microsoft Data Access SDK which is available as a part of the
Windows 2000 Platform SDK. These downloadable SDKs are available from the Microsoft Universal Data Access Web site at
http://go.microsoft.com/fwlink/?LinkId=12749, ADO version 2.5. The Microsoft Host Integration Server 2000 data access
features require the runtime libraries for ADO version 2.5. These libraries must be installed prior to installing the OLE DB
Provider for DB2. On Windows 2000, these ADO libraries are installed as part of the Windows 2000 operating system. On
Windows NT 4.0, Windows 98, and Windows 95, these library files must be installed by running the Microsoft Data Access

http://go.microsoft.com/fwlink/?LinkId=12749
http://go.microsoft.com/fwlink/?LinkId=12749
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Components (MDAC) version 2.5 runtime package available as downloadable software from the Microsoft Universal Data
Access Web site at http://go.microsoft.com/fwlink/?LinkId=12749. A version of the ADO 2.5 SDK is included in the Microsoft
Data Access SDK which is available as a part of the Windows 2000 Platform SDK. These downloadable SDKs are available
from the Microsoft Universal Data Access Web site at http://go.microsoft.com/fwlink/?LinkId=12749. The OLE DB Provider
for DB2 has been tested with MDAC 2.6 runtime as it is shipped with Microsoft SQL Server 2000.

http://go.microsoft.com/fwlink/?LinkId=12749
http://go.microsoft.com/fwlink/?LinkId=12749

Microsoft Host Integration Server 2000

Configuring the OLE DB Provider for DB2
Microsoft® Data Access Components 2.0 and later includes Data Links, a generic method for managing and loading connections
to OLE DB data sources. Microsoft Data Links, a core element of the Microsoft Data Access Components (MDAC), provide a
uniform method of creating persistent OLE DB data source object definitions stored in the form of universal data link (UDL) files.
The OLE DB Provider for DB2 normally uses Data Links and UDL files for loading and configuring data sources.

Applications, such as the RowsetViewer sample from the Microsoft Data Access SDK, can open created UDL files and pass the
stored initialization string to the OLE DB Provider for DB2 at run time. Data Links provide a flexible method for finding and saving
connection information to OLE DB data sources.

In order to use Microsoft OLE DB Provider for DB2 with an OLE DB consumer application, the user must either (1) create a
Microsoft data link (UDL) file and call this from the application, or (2) call the OLE DB provider from within the application using a
connection string that includes the provider name and any other needed parameters.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Data Sources for the OLE DB Provider for DB2
Data source information must be configured for each DB2 system data source object that is to be accessed using the OLE DB
Provider for DB2. The default parameters for the OLE DB Provider for DB2 are used as the default values for data sources and
when these parameters are not configured for each data source.

The Microsoft Data Links, a core element of the Microsoft Data Access Components, provides a uniform method for creating file-
persistent OLE DB data source object definitions in the form of Universal Data Link (UDL) files. Applications, such as the
RowsetViewer sample included with the Microsoft Data Access and the MSDN Platform SDK, can open created UDL files and pass
the stored initialization string to the OLE DB Provider for DB2 at run time.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Creating New Data Links for the OLE DB Provider for DB2
UDL files are normally stored in a special folder located at:

C:\Programs Files\Common Files\System\Ole DB\data links

Microsoft Data Access Components 2.5 introduced a set of new OLE DB interfaces and functions to enumerate, create, and modify
data link UDL files for configuring data sources. The NewSnaDS.exe utility provided as part of the OLE DB Provider for DB2
enables users to create and modify data links. This tool makes calls to the OLE DB Service Component Manager that provides
these functions.

To create a new UDL file, run the NewSnaDS tool. This tool is installed in the system folder below the subdirectory where
Microsoft Host Integration Server 2000 is installed. The default location where this tool is installed is the following:

C:\Program Files\Host Integration Server\system\NewSnaDS.exe

A shortcut for this tool is added to the Programs menu under the Host Integration Server\Data Integration folder with a
name of OLE DB Data Sources. This shortcut is created when the Microsoft Host Integration Server 2000 or the Host Integration
Client 2000 are first installed and support for data access is selected.

A shortcut entitled the OLE DB Data Source Browser is also added to the Programs menu in the
Host Integration Server\Data Integration folder. This shortcut opens Windows Explorer to the default directory where UDL
files are stored:

C:\Programs Files\Common Files\System\Ole DB\data links

Using SNA Server 4.0 and older versions of the Microsoft Data Access Components (MDAC 2.1), it was possible to create a new
UDL file by navigating to this folder using Windows Explorer. In the right pane of the Windows Explorer, a right-click would open
a shortcut menu and enable you to create a New Microsoft Data Link.

In the past, a data link file could also be created using SNA Server 4.0 with a shortcut in the SNA Server 4.0 program folder. And
the properties of a data link file could be edited by opening the file from Windows Explorer. The procedures used with SNA Server
4.0 to create a new UDL file have been deprecated and will not work with Microsoft Host Integration Server 2000, Windows 2000,
and MDAC 2.5 or later.

Once a UDL file has been created using the NewSnaDS tool, the file can be changed to a more appropriate name and copied to
other client computers for use with the OLE DB Provider for DB2.

A new data link file can be created with the NewSnaDS utility using the following procedure:

1. Click the Start button, point to Programs, and then point to Host Integration Server.
2. Point to Data Integration, and then click OLE DB Data Sources to run the NewSnaDS tool.

A UDL file is created, and the Data Link Properties dialog box is displayed.

3. Select Microsoft OLE DB Provider for DB2 from the list of providers, and then configure the data source information as
needed.

4. Click OK to save the data link.

By default, data links are created in the following folder:

C:\Program Files\Common Files\System\Ole DB\data links

However, a data link can be created in this location and moved to other client computers or folder, as needed.

Note that on Windows XP, Windows 2000, and Windows NT 4.0 using an NTFS partition, the file access permissions for this
default folder are inherited from the System\Ole DB folder. The default file permissions allow full control by all members of the
Users and Power Users groups in a Windows domain. Data link files may contain connection properties and configuration
information that should be accessible only to specific users. For security reasons it is recommended that data link files be
protected with an Access Control List (ACL) that restricts access to only appropriate users.

Windows 95, Windows 98, and Windows Millennium Edition do not include file systems that offer support for ACLs. Windows XP,
Windows 2000, and Windows NT 4.0 can also be installed on FAT or FAT32 file systems lacking support for access control. In
these cases, there is not protection available to protect any sensitive information stored in UDL files.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Browsing Data Sources for the OLE DB Provider for DB2
By default, data links are created in following folder:

C:\Program Files\Common Files\System\Ole DB\data links

A shortcut is provided in the Microsoft Host Integration Server 2000 program group.

1. Click the Start button, point to Programs, and then point to Host Integration Server.
2. Point to the Data Integration, and then click OLE DB Data Source Browser.

Windows Explorer opens in the default location where UDL files are stored. The list of data links saved in the default
location appears.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Data Links for the OLE DB Provider for DB2
To edit the properties of a Data Link file, right-click the file using Windows Explorer and click Properties. The Properties dialog
box appears with several property tabs:

General
Security
Summary
Provider
Connection
Advanced
All

The General, Security, and Summary tabs provide access to general file information for the UDL file that is available for other
files and is not related to the Data Link properties. This information includes file location, file type, file size, file dates, file security
permissions for access, and descriptive summary information (description and origin properties and values such title, subject,
author, etc.) for the UDL file. The General tab has a text box with the name of the Data Link. This filename must end with the .UDL
extension if the file is to be recognized as a Data Link file. Note that the Security and Summary tabs are available on NTFS files
systems, not on the older FAT file systems.

The Provider, Connection, Advanced, and All tabs provide access to the Data Link properties that need to be configured to
connect to the DB2 system.

The NewSnaDS tool can also be used to open and modify an existing UDL file. In this tool, the Data Link Properties dialog box
appears with the following property tabs:

Provider
Connection
Advanced
All

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Provider
The Provider tab enables you to select the OLE DB provider (the provider name string) to use in the UDL file from a list of
possible OLE DB providers. Select the Microsoft OLE DB Provider for DB2. The parameters and fields displayed in the remaining
tabs (Connection, Advanced, and All) are determined by the OLE DB Provider that is selected.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Connection
The Connection tab enables you to configure the basic properties required to connect to a data source. The Connection tab
dialog contains several sections:

Data source and Network connectivity
Authentication
Database Properties

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for Data source and Network
connectivity values:

Pr
o
p
er
ty

Description

D
at
a
so
ur
ce

The data source is an optional property that can be used to describe the data source.

When the NewSnaDS configuration program is loaded from the Host Integration Server 2000 program folder, the Data source
field is required. This field is used to name the UDL file, which is stored in the following default folder:

C:\Program Files\Common Files\System\Ole DB\data links.

N
et
w
or
k

This drop-down list box allows selecting the type of network connection to be used. The allowable options are TCP/IP Connec
tion or APPC Connection.

If TCP/IP Connection is selected, click the More Options (…) button, to open a dialog box for configuring TCP/IP network set
tings. The properties you can configure include the IP address of the DB2 host (or a hostname alias for this computer) and the
Network Port (TCP/IP port) used for communication with the host. The default value for the Network Port is 446. The IP addres
s of the host has no default value.

If APPC Connection is selected (using SNA LU 6.2), click the More Options (…) button to open a dialog box for configuring A
PPC network settings. The properties you can configure include: the APPC local LU alias, the APPC remote LU alias, and the AP
PC mode name used for communication with the host. The default value for the APPC mode normally defaults to QPCSUPP. T
he local and remote LU alias fields do not have default values. The default value for the APPC mode name normally defaults to
QPCSUPP. The APPC mode name can be selected from the drop-down list box.

The Data source in OLE DB is similar to a Data Source Name (DSN) in ODBC. The data source information is stored in a Microsoft
Data Links file and contains the connection information required for the OLE DB Provider for DB2 to access IBM Data Base 2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for authentication information:

Prop
erty

Description

Singl
e sig
n-on

Click this checkbox to enable using the Host Integration Security features providing a single-sign on to access this OLE DB
data source. Note that single sign-on is only supported using the APPC Connection option (SNA LU 6.2).

When this checkbox is selected, the User name and Password fields are grayed out and become inaccessible. The user nam
e and password fields are set based on the login name used for the Windows 2000 or Windows NT 4.0 domain login.

When this checkbox is not selected, the User name and Password fields must normally contain appropriate values in order
to access data sources on hosts.

User
nam
e

A valid user name and password are normally required to access data sources on a host. These values are case-sensitive.
Users must not check the Single sign-on option button if a specific user name and password are to be entered.

Pass
word

A valid user name and password are normally required to access data sources on hosts. These values are case-sensitive.

The Blank password checkbox is only applicable for a Test Connection. In order to enter a password, the user will need to
clear the Blank password check box if it is checked. If Blank password is checked, then a Test Connection with a blank pa
ssword will not cause the OLE DB Provider to prompt for a password.

Optionally, users can choose to save the password in the UDL file by clicking the Allow saving password check box. Users
and administrators should be warned that this option saves the authentication information (password) in plain text within t
he UDL file.

The AS/400 requires that the User name and Password properties be in uppercase. When connecting to DB2/400, these
parameters must be passed as uppercase strings. When connecting to DB2 on IBM mainframes, the User name and Password
parameters can be in mixed case.

It is possible to connect using a specific User name and Password defined in DB2 on the host system or use the Single sign-on
feature (often referred to as integrated Windows security). If a specific DB2 user name and Password is to be used, this
information may need to be saved into the UDL file. The User name and Password are saved in clear text in the UDL file. For
security reasons in these cases, it is imperative that the UDL file be protected with an Access Control List (ACL) that restricts access
to only authorized users. Saving the User name and Password in the data link also forces this UDL file to be updated whenever
the Password associated with the User name is changed. So for a variety of reasons, specifying a User name and Password is not
the preferred authentication option. Using the Single sign-on option is the preferred method for authentication.

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for database property values:

Pr
op
ert
y

Description

Ini
tia
l c
at
al
og

This field is the first entry in the Database section of the Connection properties.

This OLE DB property is used as the first part of a 3-part fully qualified table name.

In DB2 (MVS, OS/390), this property is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible location
s. To find the location of the DB2 to which you need to connect, ask the administrator to look in the TSO Clist DSNTINST unde
r the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation manual.

In DB2/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE co
mmand from the console to the OS/400 system. If there is no RDBNAM value, then one can be created using the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

If the provider supports changing the catalog for an initialized data source, the consumer can specify a different catalog name
through the DBPROP_CURRENTCATALOG property in the DBPROPSET_DATASOURCE property set after initialization.

This is a required property.

This property is equivalent to the DBPROP_INIT_CATALOG OLE DB property ID.

Pa
ck
ag
e c
oll
ec
tio
n

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue
dynamic and static SQL statements. Package names are not restricted and can be upper case, lower case, or mixed case.

The OLE DB Provider will create packages dynamically in the location to which the user points using the Package Collection pr
operty. By default, the OLE DB Provider will automatically create one package in the target collection, if one does not exist, at t
he time the user issues their first SQL statement. The package is created with GRANT EXECUTE authority to a single <AUTH_ID
> only, where AUTH_ID is based on the User ID value configured in the data source. The package is created for use by SQL sta
tements issued under the same isolation level specified when calling the OLE DB ITransactionLocal::StartTransaction or ITr
ansactionJoin::JoinTransaction methods, as well as when setting the ADO IsolationLevel property on the Connection obj
ect.

A problem can arise in multi-user environments. For example, if a user specifies a Package Collection value that represents a
DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages to other
users (the PUBLIC group on the DB2 system, for example), then the package is created for use only by this user. This means th
at other users may be unable to access the required package. The solution is for an administrative user with package administ
rative rights to create a set of packages for use by all users (see Creating Packages for Use with the OLE DB Provider for DB2).

The OLE DB Provider for DB2 ships with a tool program for use by administrators to create packages. The crtpkg.exe tool is a
Windows GUI application for use by the administrator to create packages. This tool can be run using a privileged User ID to cr
eate packages in collections accessed by multiple users. This utility will create a set of packages and grant EXECUTE privilege o
n these packages to the PUBLIC group representing all users on the DB2 system . The packages (see descriptions under the is
oLevel parameter of the OLE DB ITransactionLocal::StartTransaction or ITransactionJoin::JoinTransaction methods, as
well as the ADO IsolationLevel property) created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400)
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package, (MSCS001)
REPEATABLE READ package, (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB2 for OS/400 QSYS2.SYSPACKAG
E, and the DB2 Universal Database (UDB) SYSIBM.SYSPACKAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integration
Server CrtPkg utility to make them compatible with Host Integration Server 2000. The package names changed from SNA Ser
ver 4.0.

This property is equivalent to the DBPROP_DB2OLEDB_PACKAGECOL OLE DB property ID.

De
fa
ult
sc
he
m
a

The name of the Collection where the OLE DB Provider for DB2 looks for catalog information. The Default Schema is the “SCH
EMA” name for the target collection of tables and views. The OLE DB Provider uses Default Schema to restrict results sets for
popular operations, such as enumerating a list of tables in a target collection.

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the OLE DB Provider uses the USER_ID provided at login. For DB
2/400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappro
priate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

This property is equivalent to the DBPROP_DB2OLEDB_CATALOGCOL OLE DB property ID.

The Connection tab also includes a Test Connection button that can be used to test the connection properties. The connection
can only be tested after all of the required parameters are entered. When this button is pressed, an APPC session or a TCP/IP
session will attempt to be established with the host using the OLE DB Provider for DB2.

Microsoft Host Integration Server 2000

Advanced
The Advanced tab allows users to select the character code set identifier used by the host, the PC code page used on the client,
and select some specific options when using the OLE DB Provider for DB2.

For the Microsoft OLE DB Provider for DB2, these properties include the following values:

Prope
rty

Description

Host
CCSID

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The CCSID
property is required when processing binary data as character data. Unless the Process Binary as Character value is set to
true, character data is converted based on the DB2 column CCSID and default ANSI code page.

Note that Host CCSID 37 is not supported by the OLE DB Provider for DB2 when connecting to DB2 UDB for Windows NT
or DB2 UDB for AIX.

This property defaults to U.S./Canada (37).

This property is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

PC co
de pa
ge

The PC code page property indicates the code page to be used on the PC for character code conversion. This property is re
quired when processing binary data as character data. Unless the Process binary as character checkbox is selected (value i
s set to true), character data is converted based on the default ANSI code page configured in Windows.

This property defaults to Latin 1 (1252).

This property is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property ID.

Read
only

When this option is checked, the OLE DB Provider for DB2 creates a read-only data source by setting the Mode property t
o Read (DB_MODE_READ). A user has read access to objects such as tables, and cannot do update operations (INSERT, UP
DATE, or DELETE, for example).

This property defaults to a Mode property of Read/Write (DB_MODE_READ/WRITE).

This property is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Proce
ss bin
ary as
chara
cter

When this option is checked (property is set to true), the OLE DB Provider for DB2 treats binary data type fields (with a CC
SID of 65535) as character data type fields on a per-data source basis. The Host CCSID and PC Code Page values are requi
red input and output parameters.

This property defaults to false.

This property is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Distri
buted
transa
ctions

When this option is checked, two-phase commit (distributed unit of work) is enabled. Distributed transactions are handled
using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Service. Th
is option works only with DB2 for OS/390 V5R1 or later. This option also requires that an APPC Connection (the SNA LU
6.2 service) is selected as the network transport in the Connection tab and Microsoft Transaction Server (MTS) is installe
d.

This property is equivalent to the DBPROP_DB2OLEDB_UNITSOFWORK OLE DB property ID.

Microsoft Host Integration Server 2000

All
The All tab allows users to configure essentially all of the properties for the data source except for the OLE DB Provider. The
properties available in the All tab include properties that can be configured using the Connection and Advanced tabs as well as
optional detailed properties used to connect to a data source.

For the Microsoft OLE DB Provider for DB2, these properties include the following values:

Pro
pert
y

Description

Alte
rnat
e T
P N
am
e

The Alternate Transaction Program (TP) Name property represents the default transaction program name for the DB2 DRDA
application server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternat
e TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case,
the Alternative TP Name is set to 0X07F9F9F9.

This property is equivalent to the DBPROP_DB2OLEDB_TPNAME OLE DB property ID.

APP
C L
oca
l LU
Alia
s

When an APPC Connection using SNA LU 6.2 is selected for the Network Transport Library, this field is the name of the local
LU alias configured in the SNA server.

This property is equivalent to the DBPROP_DB2OLEDB_LOCALLU OLE DB property ID.

APP
C M
ode
Na
me

When an APPC Connection using SNA LU 6.2 is selected for the Network Transport Library, this field is the APPC mode and
must be set to a value that matches the host configuration and SNA server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INT
ERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRD
B (DB2 remote database access), and custom modes. The following modes that support bi-directional LZ89 compression are
also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BA
TCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This property normally defaults to QPCSUPP.

This property is equivalent to the DBPROP_DB2OLEDB_APPCMODE OLE DB property ID.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

APP
C R
em
ote
LU
Alia
s

When an APPC Connection using SNA LU 6.2 is selected for the Network Transport Library, this field is the name of the rem
ote LU alias configured in the SNA server.

This property is equivalent to the DBPROP_DB2OLEDB_REMOTELU OLE DB property ID.

Cac
he
Aut
hen
tica
tion

This property determines whether the OLE DB Provider caches authentication information. This property defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This property is equivalent to the DBPROP_AUTH_CACHE_AUTHINFO OLE DB property ID.

Dat
a S
our
ce

The data source is an optional property that can be used to describe the data source.

This property does not have a default value.

Def
ault
Sch
em
a

The name of the Collection where the OLE DB Provider for DB2 looks for catalog information. The Default Schema is the “SC
HEMA” name for the target collection of tables and views. The OLE DB Provider uses Default Schema to restrict results sets f
or popular operations, such as enumerating a list of tables in a target collection.

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the OLE DB Provider uses the USER_ID provided at login. For D
B2/400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inapp
ropriate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

This property is equivalent to the DBPROP_DB2OLEDB_CATALOGCOL OLE DB property ID.

Ext
end
ed
Pro
pert
ies

This property is a string containing provider-specific, extended connection information. The use of this property implies that
the OLE DB consumer knows how this string will be interpreted and used by the OLE DB provider. This parameter should be
used only for provider-specific connection information that cannot be explicitly described through the other property values.

This property is equivalent to the DBPROP_INIT_PROVIDERSTRING OLE DB property ID.

Hos
t CC
SID

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The CCSID pr
operty is required when processing binary data as character data. Unless the Process Binary as Character value is set to true,
character data is converted based on the DB2 column CCSID and default ANSI code page.

Note that Host CCSID 37 is not supported by the OLE DB Provider for DB2 when connecting to DB2 UDB for Windows NT or
DB2 UDB for AIX.

This property defaults to U.S./Canada (37).

This property is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

Initi
al C
atal
og

This OLE DB property is used as the first part of a 3-part fully qualified table name.

In DB2 (MVS, OS/390), this property is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locatio
ns. To find the location of the DB2 to which you need to connect, ask the administrator to look in the TSO Clist DSNTINST un
der the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation manual.

In DB2/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE c
ommand from the console to the OS/400 system. If there is no RDBNAM value, then one can be created using the Add optio
n.

In DB2 Universal Database, this property is referred to as DATABASE.

If the provider supports changing the catalog for an initialized data source, the consumer can specify a different catalog nam
e through the DBPROP_CURRENTCATALOG property in the DBPROPSET_DATASOURCE property set after initialization.

This is a required property.

This property is equivalent to the DBPROP_INIT_CATALOG OLE DB property ID.

Inte
grat
ed
Sec
urit
y

This property determines whether the OLE DB Provider uses Host Security Integration (single sign-on).

When this property is set to SSPI, single sign-on is enabled and separate user id and password parameters are not required.
The user name and password fields are set based on the login name used for the Windows 2000 or Windows NT 4.0 domai
n login.

When this property is null, this single sign-on feature is disabled.

This property defaults to null (host security integration is disabled) and a user id and password are required.

This property is equivalent to the DBPROP_AUTH_INTEGRATED OLE DB property ID.

Mo
de

A Mode property is a bit mask specifying access permissions. This bit mask can be a combination of zero or more of the foll
owing:

DB_MODE_READ—Read-only.

DB_MODE_READWRITE—Read/write (DB_MODE_READ | DB_MODE_WRITE).

DB_MODE_SHARE_DENY_NONE—Neither read nor write access can be denied to others.

DB_MODE_SHARE_DENY_READ—Prevents others from opening in read mode.

DB_MODE_SHARE_DENY_WRITE—Prevents others from opening in write mode.

DB_MODE_SHARE_EXCLUSIVE—Prevents others from opening in read/write mode (DB_MODE_SHARE_DENY_READ | DB_M
ODE_SHARE_DENY_WRITE).

DB_MODE_WRITE—Write-only.

The following values for mode are supported by the OLE DB Provider for DB2: Read (DB_MODE_READ) and Read/Write (DB_
MODE_READ/WRITE). This property defaults to Read/Write.

When the Read Only property is checked in the Advanced tab, the OLE DB Provider for DB2 creates a read-only data source
by setting the Mode property to Read (DB_MODE_READ). A user has read access to objects such as tables, and cannot do up
date operations (INSERT, UPDATE, or DELETE, for example).

This property is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Net
wor
k A
ddr
ess

When TCP/IP has been selected for the Network Transport Library, this property indicates the IP address of the DB2 host or
a hostname alias for this computer.

This property is equivalent to the DBPROP_DB2OLEDB_NETADDRESS OLE DB property ID.

Net
wor
k P
ort

When TCP/IP has been selected for the Network Transport Library, this property is the TCP/IP port used for communication
with the DB2 host. The default value is TCP/IP port 446.

This property is equivalent to the DBPROP_DB2OLEDB_NETPORT OLE DB property ID.

Net
wor
k Tr
ans
por
t Li
brar
y

The network transport dynamic link library property designates whether the OLE DB Provider for DB2 connects via an APPC
Connection using SNA LU6.2 or a TCP/IP Connection. The possible values for this property are TCPIP, or SNA.

The default value for this property is SNA.

If the default SNA is selected, then values for APPC Local LU Alias, APPC Mode Name, and APPC Remote LU Alias are require
d.

If TCPIP is selected, then values for Network Address and Network Port are required.

This property is equivalent to the DBPROP_DB2OLEDB_NETTYPE OLE DB property ID.

Pac
kag
e C
olle
ctio
n

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bin
d DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issu
e dynamic and static SQL statements. Package names are not restricted and can be upper case, lower case, or mixed case.

The OLE DB Provider will create packages dynamically in the location to which the user points using the Package Collection
property. By default, the OLE DB Provider will automatically create one package in the target collection, if one does not exist,
at the time the user issues their first SQL statement. The package is created with GRANT EXECUTE authority to a single <AUT
H_ID> only, where AUTH_ID is based on the User ID value configured in the data source. The package is created for use by S
QL statements issued under the same isolation level specified when calling the OLE DB ITransactionLocal::StartTransactio
n or ITransactionJoin::JoinTransaction methods, as well as when setting the ADO IsolationLevel property on the Conne
ction object.

A problem can arise in multi-user environments. For example, if a user specifies a Package Collection value that represents a
DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages to othe
r users (the PUBLIC group on the DB2 system, for example), then the package is created for use only by this user. This means
that other users may be unable to access the required package. The solution is for an administrative user with package admi
nistrative rights to create a set of packages for use by all users (see
Creating Packages for Use with the OLE DB Provider for DB2).

The OLE DB Provider for DB2 ships with a tool program for use by administrators to create packages. The crtpkg.exe tool is a
Windows GUI application for use by the administrator to create packages. This tool can be run using a privileged User ID to c
reate packages in collections accessed by multiple users. This utility will create a set of packages and grant EXECUTE privileg
e on these packages to the PUBLIC group representing all users on the DB2 system . The packages (see descriptions under th
e isoLevel parameter of the OLE DB ITransactionLocal::StartTransaction or ITransactionJoin::JoinTransaction methods
, as well as the ADO IsolationLevel property) created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400)
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package, (MSCS001)
REPEATABLE READ package, (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB2 for OS/400 QSYS2.SYSPACKA
GE, and the DB2 Universal Database (UDB) SYSIBM.SYSPACKAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integratio
n Server CrtPkg utility to make them compatible with Host Integration Server 2000. The package names changed from SNA
Server 4.0.

This property is equivalent to the DBPROP_DB2OLEDB_PACKAGECOL OLE DB property ID.

Pas
swo
rd

A valid user name and password are normally required to access data sources on hosts. The password is case-sensitive and i
s displayed as asterisks in this dialog box for security purposes.

This property is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

PC
Cod
e P
age

The PC Code Page property indicates the code page to be used on the PC for character code conversion. This property is req
uired when processing binary data as character data. Unless the Process Binary as Character value is set to true, character da
ta is converted based on the default ANSI code page configured in Windows.

This property defaults to Latin 1 (1252).

This property is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property ID.

Per
sist
Sec
urit
y In
fo

This property indicates whether the data source object is allowed to persist sensitive authentication information, such as a p
assword along with other authentication information. This property defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This property is equivalent to the DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO OLE DB property ID.

Pro
cess
Bin
ary
as C
har
act
er

When this property is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output pa
rameters.

This property defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This property is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

Uni
ts o
f W
ork

This property indicates whether two-phase commit (distributed unit of work) used for transactions is supported for this data
source. Distributed transactions are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordina
tor, and the SNA LU 6.2 Resync Service.

The following values for this property are supported by the OLE DB Provider for DB2:

RUW (remote unit of work)

DUW (distributed unit of work)

This property defaults to RUW.

Distributed unit of work (two-phase commit) works only with DB2 for OS/390 V5R1 or later. This option also requires that a
n APPC Connection using SNA LU 6.2 is selected as the network transport and Microsoft Transaction Server (MTS) is installe
d.

This property is equivalent to the DBPROP_DB2OLEDB_UNITSOFWORK OLE DB property ID.

Use
r ID

A valid User name is normally required to access data sources on hosts. This value is case-sensitive.

This property is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

These properties on the All tab may be edited by selecting a property from the list displayed and selecting Edit Value. This
button will invoke dialog box for the specific property containing a Property Description describing the property and a Property
Value box for making changes.

Microsoft Host Integration Server 2000

Creating Packages for Use With the OLE DB Provider for DB2
The Microsoft® OLE DB Provider for DB2, which is implemented as an IBM Distributed Relational Database Architecture (DRDA)
Application Requester, uses packages to issue SQL statements and call DB2 stored procedures. There is a provider-specific
property that the OLE DB Provider for DB2 uses to identify a location in which to create and store DB2 packages. The OLE DB
Provider for DB2 will create packages dynamically in the location to which the user points using the Package Collection property
corresponding to the DBPROP_DB2OLEDB_PACKAGECOL property ID of OLE DB. This location may be configured using the
Connection and Advanced tabs using Microsoft Data Links or can be passed as part of the connection string as an attribute
keyword and argument. This attribute keyword can be either pkgcol or the long form of this attribute, Package Collection.

There are two package creation options:

1. The ODBC Provider for DB2 will auto-create one package for the currently-used isolation level at run-time if no package
already exists. This auto-create process may fail if the user account does not have authority to create packages.

2. An administrator or user can manually creates all four packages (five packages on DB2/400) for use with all isolation levels
and for use by all users (the PUBLIC group on DB2 representing all users) or a specific set of users. The OLE DB Provider for
DB2 includes a utility program for use by users with appropriate administrative privilege that will create these packages and
grant access to the PUBLIC group for this purpose.

However, some users may not have the security level when manually creating packages to GRANT authority to the packages to
other users (grant authority to the DB2 PUBLIC group representing all users, for example). This can be a problem if two or more
users with different user IDs try to access a single collection of packages. The first user that created the packages will have access
to the packages, but the second user likely will not. The Microsoft® Host Integration Server 2000 CD-ROM includes a program for
use by an administrator to create packages. This tool can be run using a privileged User ID to create packages in collections
accessed by multiple users. The Create Packages for DB2 utility, CrtPkg.exe, is a GUI-based tool included with Host Integration
Server 2000 for creating packages for use with DB2. This tool is installed in the System folder below the subdirectory where the
Microsoft Host Integration Server 2000 has been installed. The default location where this tool is installed is the following:

C:\Program Files\Host Integration Server\system\CrtPkg.exe

A shortcut for this tool is added to the Programs menu off the Start button on the Windows Taskbar under the
Host Integration Server\Data Integration folder with a name of Packages for DB2. This shortcut is created when the
Microsoft Host Integration Server or the Host Integration Client are first installed and support for Data Access is checked.

This tool will create a set of packages and grant EXECUTE privileges on these packages to the PUBLIC group. The PUBLIC group on
DB2 systems is a default group that represents all DB2 users. The following packages are created:

AUTOCOMMITTED package (MSNC001) is only applicable on DB2/400)
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package (MSCS001)
REPEATABLE READ package (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNNC001) is only created on DB2 for OS/400.

The descriptive process name used by the CrtPkg utility of each package corresponds with the isolation levels defined in the ANSI
SQL standard. The table below indicates how these packages correspond with the terms used by IBM for isolation levels in DB2
documentation.

Package Description Packa
ge Na
me

IBM Documentation

AUTOCOMMITTED (Note that this applies only to DB2
/400 and does not correspond with an ANSI SQL isola
tion level

MSNC
001

COMMIT(*NONE) (NC).

This isolation level is used in DB2/400 auto-commit mode only an
d has no corresponding isolation level on other DB2 platforms or i
n ANSI SQL.

READ UNCOMMITTED MSUR
001

UNCOMMITTED READ (UR).

This isolation level corresponds with ANSI SQL READ UNCOMMIT
TED.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

READ COMMITTED MSCS0
01

CURSOR STABILITY (CS).

This isolation level corresponds with ANSI SQL READ COMMITTED.

REPEATABLE READ MSRS0
01

READ STABILITY (RS).

This isolation level corresponds with ANSI SQL REPEATABLE READ.

SERIALIZABLE MSRR
001

REPEATABLE READ (RR).

This isolation level corresponds with ANSI SQL SERIALIZABLE.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integration
Server CrtPkg utility to make them compatible with Host Integration Server 2000. The package names used by the OLE DB
Provider for DB2 on SNA Server 4.0 are not compatible with the OLE DB Provider for DB2 included with Host Integration Server.
On SNA Server 4.0, these packages used different names as follows:

These Isolation Levels are described in detail under Support for Isolations Level using the OLE DB Provider for DB2. These
Isolation Levels are also described under the OLE DB isoLevel parameter and ADO IsolationLevel property. Note that the
AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Note that the CrtPkg tool creates this set of packages and grants EXECUTE privileges to the PUBLIC group. There may be cases for
security reasons where EXECUTE privileges to this set of packages on the DB2 system should be restricted to a different group of
users or specific users. In these cases, execution privileges on these created packages will need to be modified on the host system.

The CrtPkg utility will create all of these packages inside the Collection that is specified in the Package Collection property in the
datalink file, or in the connection string. If the user does not have the appropriate authority to create packages in the specified
Collection, or if the specified Collection does not exist, the OLE DB Provider for DB2 will return an error.

In the case of DB2 on MVS or OS/390, the normal error text returned if the user does not the appropriate authority would be as
follows:

In the case of DB2/400, the normal error text returned if the user does not the appropriate authority would be as follows:

In the case of DB2/400, the normal error returned if the collection does not exist would be as follows:

There are two authorities required to execute the create package process on MVS using the CrtPkg utility:

The "authorization ID" is the user who needs the permission to create the packages. The "collection ID" is the name of the
Collection, which the user specifies in the datalink file for the Package Collection property. This Collection should be a valid
Collection within the DB2.
If an administrator executes the above statements on behalf a non-privileged user, then this non-privileged user can then run the
CrtPkg utility. Once run, the CrtPkg process will create four sets of packages (one for each of the four isolation levels supported

AUTOCOMMITTED package (SNANC001) only applicable on DB2/400
READ UNCOMMITTED package (SNACH001)
READ COMMITTED package, (SNACS001)
REPEATABLE READ package, (SNARR001)
SERIALIZABLE package (SNAAL001)

A SQL error has occurred. Please consult the documentation for your specific DB2 version for
a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -567.

A SQL error has occurred. Please consult the documentation for your specific DB2 version for
a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -805.

Failed to create AUTOCOMMITTED (NC) package. RETCODE=-99.
SQL Error: Code=-204, State=42704, Error Text= A SQL error has occurred. Please consult the
documentation for your specific DB2 version for a description of the associated Native Error
and SQL State. SQLSTATE: 42704, SQLCODE: -204

GRANT BINDADD TO <authorization ID>
GRANT CREATE IN COLLECTION <collection ID> TO <authorization ID>

on DB2 for MVS or OS/390) for use by "all" (PUBLIC) users of the Microsoft data access features.

The example below illustrates this process on DB2 for MVS or DB2 for OS/390.

Grant rights to run the CrtPkg utility to authorization ID WNW999

Run the CrtPkg utility using authorization ID WNW999 (see output from CrtPkg below)

In order to execute the CrtPkg utility on DB2/400, a user ID must have one of the following authorities:

*CHANGE authority on the DB2 collection
*ALL authority on the DB2 collection

If the user merely has *USE authority or if the user has *EXCLUDE authority, the Create Package process will fail.

There are several steps required to change user authority on a DB2/400 collection (AS/400 library): From interactive SQL
(STRSQL command) while logged in as user with administrative privileges, create a new collection. This command can also be
issued using ADO, OLE DB, and ODBC. However, most administrators typically create collections from the AS/400 console since
the administrator must be logged in at the console to issue the Command Language (CL) command with which to change the
user authority on the collection.

From the AS/400 command console, issue the CL WRKOBJ command with the <collection ID> as a parameter.

The "collection ID" is the name of the Collection, which the user specifies in the datalink file for the Package Collection property.
This Collection should be a valid Collection within DB2. The Work with objects screen appears. Place the cursor on the *PUBLIC
Object Authority line and change the authority from *USE to *ALL.

If an administrator executes the above statements on behalf a non-privileged user, then this non-privileged user can then run the
CrtPkg utility. Once run, the CrtPkg process will create five sets of packages (one for each of the five isolation levels supported on
DB2/400) for use by "all" (PUBLIC) users of the Microsoft data access features. On DB2/400, five packages are created including

GRANT BINDADD TO WNW999
GRANT CREATE IN COLLECTION MSPKG TO WNW999

Beginning creation process
Initializing environment...
Connecting to the host...
Connection established.
Start package creation process...
Creating READ UNCOMMITTED package...
READ UNCOMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSUR001 granted to PUBLIC
Creating READ COMMITTED package...
READ COMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSCS001 granted to PUBLIC
Creating REPEATABLE READ package...
REPEATABLE READ package created.
Package creation succeeded.
EXECUTE privilege on MSRS001 granted to PUBLIC
Creating SERIALIZABLE package...
SERIALIZABLE package created.
Package creation succeeded.
EXECUTE privilege on MSRR001 granted to PUBLIC
Free statement handles...
Disconnecting...
Disconnected
End of package creation.
Creation process has completed

CREATE COLLECTION <collection ID>

WRKOBJ <collection ID>

the AUTOCOMMITTED packages.

The example below illustrates this process on DB2/400.

Grant rights to run the CrtPkg utility to authorization ID WNW999

Run the CrtPkg utility (see the output from CrtPkg for DB2/400 below)

CrtPkg allows a user to create a new UDL file or load a data source and modify an existing UDL file for connection configuration
information. The File menu of CrtPkg has a New option used for creating a new OLE DB UDL File and a Load Data Source option
to load an existing UDL file. The File menu Edit Data Source option allows a user to access and modify the properties for a data
source similar to using the NewSnaDS.exe tool. The Run menu option is used to create packages.

When using the create package tool, if the package collection specified does not exist, then DB2 returns SQLCODE -805.

When using auto-create packages, if a package collection is not specified or the package collection does not exist, then during the
"auto-create" package process, the consumer application will receive SQLSTATE HY000 and SQLCODE -385. The SQLSTATE
HY000 is defined as a provider-specific error. The -385 Error Return Code is not a SQLCODE but rather a DDM DRDA AR (DB2
client) return code. This error code is defined as DDM_VALNSPRM with the following associated text string:

The OLE DB Provider for DB2 client error codes are defined in the db2oledb.h file located on the Host Integration Server 2000 CD-
ROM.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integration
Server CrtPkg utility to make them compatible with Host Integration Server 2000.

SNA Server 4.0 with Service Pack 3 came with two similar utilities for creating packages: CRTPKG.EXE (a command-line tool) and
CRTPKGW.EXE (a GUI-based tool).

CREATE COLLECTION MSPKG
WRKOBJ MSPKG

Beginning creation process
Initializing environment...
Connecting to the host...
Connection established.
Start package creation process...
Creating AUTOCOMMITTED (NC) package...
AUTOCOMMITTED (NC) package created.
Package creation succeeded.
EXECUTE privilege on MSNC001 granted to PUBLIC
Creating READ UNCOMMITTED package...
READ UNCOMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSUR001 granted to PUBLIC
Creating READ COMMITTED package...
READ COMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSCS001 granted to PUBLIC
Creating REPEATABLE READ package...
REPEATABLE READ package created.
Package creation succeeded.
EXECUTE privilege on MSRS001 granted to PUBLIC
Creating SERIALIZABLE package...
SERIALIZABLE package created.
Package creation succeeded.
EXECUTE privilege on MSRR001 granted to PUBLIC
Free statement handles...
Disconnecting...
Disconnected
End of package creation.
Creation process has completed

"The parameter value is not supported by the target system."

Microsoft Host Integration Server 2000

Registry Settings Used By the OLE DB Provider for DB2
The Microsoft® OLE DB Provider for DB2 uses a number of registry settings for configuration and proper operation. The
configuration registry settings are located under the HKEY_LOCAL_MACHINE\Software\Microsoft\SNA
Server\CurrentVersion\Setup key. These registry settings include the following subkeys:

Sub
key

Comment

Roo
tDir

Stores the path to the root directory where the Host Integration Server was installed. The system directory below this root di
rectory is the location where the OLE DB Provider for DB2 DLLs and other support DLLs are installed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Considerations Using the OLE DB Provider for
DB2
The Microsoft® OLE DB Provider for DB2 provides passthrough support for SQL statements. No SQL parsing is provided. The
user must know what SQL syntax is supported for the target DB2 implementation. For information on what SQL syntax is
supported, see the specific DB2 SQL Reference and DB2 Application Programming and SQL Guide for the DB2-specific platform.

The OLE DB Provider for DB2 does not parse the SQL statements to qualify table names. Consequently, users of the OLE DB
Provider for DB2 must use either two-part or three-part (fully-qualified) object names when naming tables, views, and stored
procedures in DB2. A two-part table name would consist of the user ID and table, <UserID>.<Table>. One-part names (just the
table name) will not succeed unless the combination of the DB2 collection and schema name correspond directly to the OLE DB
User ID (the OLE DB DBPROPSET_DBINIT property is equal to the OLE DB DBPROP_AUTH_USERID property).

All the OLE DB objects exposed by the OLE DB Provider for DB2 support aggregation. Each OLE DB object has two classes, one
that delegates its IUnknown calls and one that controls the object as a whole.

The free-threading model is supported, allowing multiple threads to access the objects safely.

The current implementation of the OLE DB Provider for DB2 services all OLE DB Session, Command, and Rowset objects present
in a given instance of the DataSource object through a single APPC conversation or TCP/IP connection. One implication of this
design is that if two Rowset objects, each created from a different OLE DB Session object, use explicit commitment control
through the ITransaction interface, they will interfere with each other. When a Commit or Abort for one instance is invoked, all
work for the DataSource object will be either committed or aborted. This may yield undesirable results. The work around to this
problem is to instantiate two instances of the DataSource object.

The OLE DB Provider for DB2 does not work with OLE DB Session Pooling.

The OLE DB Provider for DB2 in Microsoft Host Integration Server 2000 supports distributed transactions, DRDA Distributed Unit
of Work, and can participate in a distributed transaction coordinated by Microsoft Distributed Transaction Coordinator. This
feature is only available when connecting to one of the following across an LU 6.2 network connection:

DB2 for OS/390 V5R1 or later
DB2/400 V4R3 or later

This option also requires that the SNA LU 6.2 service is selected as the network transport and Microsoft Transaction Server (MTS)
is installed. The Microsoft OLE DB Provider for DB2 does not support OLE DB automatic transaction enlistment under Microsoft
Transaction Server. Note that the OLE DB Provider for DB2 supplied with SNA Server 4.0 does not support distributed
transactions.

The Microsoft Data Access Components (MDAC) support the option of using a client cursor engine. This service component is
implemented as part of OLE DB, ADO, and Remote Data Services (RDS). When using ADO, a client cursor is enabled by setting the
CursorLocation property on the recordset to adUseClient. When using the ADO Client Cursor Engine with DB2 for OS/390, the
developer must set the OLE DB Provider for DB2 Auto Commit Mode property in the data link or connection string to FALSE. This
is not required when connecting to DB2 for OS/400.

The OLE DB Provider for DB2 included with Host Integration Server 2000 supports updating capabilities when used with a client
cursor engine when the following requirements are met:

To support updates (UPDATE, INSERT, and DELETE) using a client cursor engine, the values in at least one column in the
target table must be unique.

When used with the version of the OLE DB Provider for DB2 provided with SNA Server 4.0 Service Pack 3 or later, the OLE DB
Provider supports updating capabilities when used with a client cursor engine when the following requirements are met:

To support updates (UPDATE, INSERT, and DELETE) using a client cursor engine, the values in at least one column in the
target table must be unique.
The Commit parameter must be set to FALSE (auto commit is off) when configuring the data source or when this parameter
is passed as part of a connection string.

Previous versions of the OLE DB Provider for DB2 prior to SNA Server 4.0 Service Pack 3 do not support any updating capabilities
when used with a client cursor engine. In other words, if a client cursor engine is enabled using RDS or ADO, the OLE DB Provider
for DB2 cannot be used to update data on the host. The ADO recordset is treated as if it were read-only.

When the intent is to update records, DB2 requires that the SQL SELECT statement also include the FOR UPDATE option. For

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

example, to select all records from the AUTHORS table in the DB2 collection called PUBS with an intent to update requires the
following SQL syntax:

When using DB2 for MVS V4R1 and DB2 for OS/400 V3R2, there are further requirements to indicate the columns that you
intend to update. For example, to update the AU_LNAME and AU_FNAME columns in the PUBS.AUTHORS table, the following SQL
syntax must be used:

Microsoft Visual Studio® 6.0 offers a number of ADO data-bound controls, including a datagrid and the ADO Data Control. When
using these ADO data controls, the developer must set the CursorLocation property on the recordset to adUseClient. Additionally,
when using these ADO data controls with DB2 for OS/390, the developer must set the OLE DB Provider for DB2 Auto Commit
Mode property in the data link or connection string to FALSE.

SELECT * FROM PUBS.AUTHORS FOR UPDATE

SELECT * FROM PUBS.AUTHORS FOR UPDATE OF AU_LNAME, AU_FNAME

Microsoft Host Integration Server 2000

Support for Isolation Levels Using the OLE DB Provider for DB2
The Microsoft OLE DB Provider for DB2 provides flexibility in dealing with issues of isolation levels and transaction state. The
isolation level for a session can be set using the DBPROP_SESS_AUTOCOMMITISOLEVELS property on a session.

The OLE DB Provider for DB2 supports the following values for the DBPROP_SESS_AUTOCOMMITISOLEVELS and
DBPROP_SUPPORTEDTXNISOLEVELS property.

OLE DB Property
Value

Description

DBPROPVAL_TI_B
ROWSE

This isolation level is the same as DBPROPVAL_TI_READUNCOMMITTED.

Note that the OLE DB specification and the OLEDB.H include file defines two macros with the same value.

DBPROPVAL_TI_C
HAOS

An undefined value for isolation level.

This value is not supported using the OLE DB Provider for DB2.

DBPROPVAL_TI_C
URSORSTABILITY

This isolation level is the same as DBPROPVAL_TI_READCOMMITTED.

Note that the OLE DB specification and the OLEDB.H include file defines two macros with the same value.

DBPROPVAL_TI_I
SOLATED

This isolation level is the same as DBPROPVAL_TI_SERIALIZABLE.

Note that the OLE DB specification and the OLEDB.H include file defines two macros with the same value.

DBPROPVAL_TI_R
EADCOMMITTED

When this property is set, it isolates any data read from changes by others and changes made by others by oth
ers cannot be seen. The re-execution of the read statement is affected by others. This does not support a repeat
able read.

This is the default value for isolation level.

This isolation level is also called Cursor Stability (CS) in IBM DB2 documentation.

This isolation level corresponds with the ADO property set to adXactReadCommitted.

DBPROPVAL_TI_R
EADUNCOMMITT
ED

When this property is set, it does not isolate data read from changes by others and changes made by others by
others can be seen. The re-execution of the read statement is affected by others. This does not support a repeat
able read.

This isolation level is called Uncommitted Read (UR) in IBM DB2 documentation.

This isolation level corresponds with the ADO property set to adXactReadUncommitted.

DBPROPVAL_TI_R
EPEATABLEREAD

When this property is set, it isolates any data read from changes by others and changes made by others canno
t be seen. The re-execution of the read statement is affected by others. This supports a repeatable read.

This isolation level is called Read Stability (RS) in IBM DB2 documentation.

This isolation level corresponds with the ADO property set to adXactRepeatableRead.

DBPROPVAL_TI_S
ERIALIZABLE

When this property is set, it isolates any data read from changes by others and changes made by others by oth
ers cannot be seen. The re-execution of the read statement is not affected by others. This supports a repeatable
read.

This isolation level is called Repeatable Read (RR) in IBM DB2 documentation.

This isolation level corresponds with the ADO property set to adXactSerializable.

The isolation level can also be set by calling ITransactionLocal::StartTransaction with the appropriate value for the IsoLevel
parameter to start a new transaction. Note that the same integer values used for the DBPROP_SESS_AUTOCOMMITISOLEVELS
and DBPROP_SUPPORTEDTXNISOLEVELS property values are also used for the IsoLevel parameter passed to the
ITransactionLocal::StartTransaction method. The legal values for the IsoLevel parameter are defined in TRANSACT.H while the
OLE DB property values for isolation level are defined in OLEDB.h. While the #define macro strings used for the OLE DB property
values and the IsoLevel parameter values differ, the integer values of these macros are the same.

The following table shows the OLE DB property values for isolation level and the equivalent IsoLevel parameter passed to
ITransactionLocal::StartTransaction.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

OLE DB Isolation Level Property OLE DB IsoLevel Parameter
DBPROPVAL_TI_BROWSE ISOLATIONLEVEL_BROWSE
DBPROPVAL_TI_CURSORSTABILITY ISOLATIONLEVEL_CURSORSTABILITY
DBPROPVAL_TI_ISOLATED ISOLATIONLEVEL_ISOLATED
DBPROPVAL_TI_READCOMMITTED ISOLATIONLEVEL_READCOMMITTED
DBPROPVAL_TI_READUNCOMMITTED ISOLATIONLEVEL_READUNCOMMITTED
DBPROPVAL_TI_REPEATABLEREAD ISOLATIONLEVEL_REPEATABLEREAD
DBPROPVAL_TI_SERIALIZABLE ISOLATIONLEVEL_SERIALIZABLE

Nested transactions are not supported by the OLE DB Provider for DB2. If there is already an active transaction on the session
(that is, StartTransaction has been called with no matching ITransaction::Commit or ITransaction::Abort), it is not possible to
start a new transaction below the current transaction. Calling ITransactionLocal::StartTransaction when there is already an
active transaction on the session returns XACT_E_XTIONEXISTS.

IBM documents isolation level in DB2 documentation using somewhat different terms. The following table shows how the OLE DB
values for isolation level are mapped to the terms used by IBM DB2 for isolation level.

OLE DB Isolation Level IBM DB2 Isolation Level
DBPROPVAL_TI_BROWSE Uncommitted Read (UR)
DBPROPVAL_TI_CURSORSTABILITY Cursor Stability (CS)
DBPROPVAL_TI_ISOLATED Repeatable Read (RR)
DBPROPVAL_TI_READCOMMITTED Cursor Stability (CS)
DBPROPVAL_TI_READUNCOMMITTED Uncommitted Read (UR)
DBPROPVAL_TI_REPEATABLEREAD Read Stability (RS)
DBPROPVAL_TI_SERIALIZABLE Repeatable Read (RR)

Microsoft Host Integration Server 2000

Transaction Support Using the OLE DB Provider for DB2
In earlier versions of the OLE DB provider for DB2 supplied with Microsoft SNA Server 4.0, the Auto commit property, an OLE DB
provider-specific property, controlled whether work done through the provider (i.e. ICommand->Execute) was committed to the
database as the work was done. This property defeated the intention of the OLE DB specification. Work done through the provider
should be auto committed unless a request by the consumer is made to explicitly control when commits or aborts occur through
the ITransactionLocal-object and the StartTransaction interface.

The OLE DB Provider for DB2 included with Microsoft Host Integration Server 2000 supports distributed transactions. This
support is enabled by setting the provider specific property "UNITS OF WORK" to "DUW" (or checking the Distributed
transactions option when configuring a UDL or DSN). The current DUW implementation does not have a notion of auto
committing transactions so it is recommended to join the transaction through ITransactionJoin->JoinTransaction prior to
performing work through ICommandExecute (or other interfaces). ADO applications do not generally join before starting their
work, rather, they rely upon automatic transaction enlistment to enlist in the distributed transaction.

Using the earlier OLE DB Provider for DB2 supplied with SNA Server 4.0 Service Pack 3, RUW transaction state could cross OLE
DB sessions on a single data source object. Because of this limitation, it was recommended that programmers utilize separate data
source objects for each session object. To reduce the number of concurrent active sessions, then
DBPROP_MULTIPLECONNECTIONS is set to VARIANT_FALSE.

The OLE DB Provider for DB2 included with Host Integration Server 2000 supports DBPROP_MULTIPLECONNECTIONS (the
default value is VARIANT_TRUE) for remote unit of work (RUW) connections. This ensures that no transaction state conflicts
across OLE DB session objects (ADO commands or recordsets on a single connection). This feature is a property of
DBPROPSET_DATASOURCE. Therefore, you can only set this property after the OLE DB data source or ADO connection objects are
created.

If the transaction has been auto enlisted, the default Transaction Isolation level is used (NC for the AS/400, CS for all other host
platforms). If a join is requested (not applicable to ADO applications) after auto enlistment and work, then the Isolation Level
specified on the join may differ from the default. This appears to be acceptable except in the case that a statement was prepared
using one Isolation Level, the Isolation Level is then changed via ITransactionJoin, and then the prepared statement is executed
again.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Stored Procedure Support Using the OLE DB Provider for DB2
The Microsoft OLE DB Provider for DB2 supports calling DB2 stored procedures. An application must use the CALL keyword
before the SQL statement in order to execute a stored procedure. When using ADO, a CommandType property of
adCmdStoredProc cannot be used for executing a stored procedure since ADO inserts an EXEC not CALL keyword before the
command text. In order to execute a stored procedure using ADO, the CommandType property should be set to adCmdText and
the CALL keyword should be used before the SQL statement containing the stored procedure to be executed.

When calling DB2 stored procedures, the following limitations apply when using the Microsoft OLE DB Provider for DB2:

Binding output parameters of type REAL or DOUBLE is not supported.
Calling stored procedures when the parameter values contain CHAR Mixed or GRAPHIC (DBCS) data types are not
supported.
Calling a non-existent procedure causes error.
The OLE DB Provider for DB2 does not return single or multiple result sets.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Distributed Query Support Using the OLE DB Provider for DB2
The Microsoft OLE DB Provider for DB2 supports remote database access when configured as a linked server to Microsoft SQL
Server™ using distributed queries. The distributed queries feature of SQL Server is sometimes referred to as the Distributed
Query Processor (DQP). Microsoft SQL Server 2000 supports distributed queries to the OLE DB Provider for DB2 supplied with
Microsoft Host Integration Server 2000 or Microsoft SNA Server 4.0 Service Pack 3 or later.

When using Microsoft SQL Server 2000 distributed queries and the OLE DB Provider for DB2 supplied with Host Integration
Server or SNA Server 4.0, the following OLE DB provider options (displayed in the same order as in the SQL Server Enterprise
Manager) are supported:

Provider Opti
ons in SQL Se
rver 2000

Comments

Dynamic para
meter

SQL Server will generate parameterized queries as an optimization for providers that support the '?' parameter m
arker syntax for parameterized queries in dynamic SQL.

This option should not be enabled for the OLE DB Provider for DB2. .

Nested querie
s

SQL Server will generate nested queries for providers that support nested SELECT queries in the FROM clause. So
me versions of DB2 have support for nested queries.

This option should not be enabled for OLE DB Provider for DB2.

Level zero onl
y

A level zero OLE DB provider is a very basic provider that does not support commands, and only level zero OLE D
B interfaces are invoked against the provider. The Microsoft OLE DB Provider for DB2 is not a basic provider and u
ses commands.

This option should not be enabled for the OLE DB Provider for DB2.

Allow InProces
s

SQL Server allows the OLE DB provider to be instantiated as an in-process server. The default behavior is to instan
tiate the OLE DB provider outside the SQL Server process. Instantiating the provider outside the SQL Server proce
ss protects the SQL Server process from errors in the OLE DB provider.

SQL Server requires an in-process server for handling specific types of data including long columns, text, and ima
ge data. The OLE DB Provider for DB2 does not currently support the DB2 Large Object (LOB) types.

This option may be enabled or disabled for the OLE DB Provider for DB2, but this option is normally unnecessary
when using SQL Server 2000.

Non transacte
d updates

SQL Server will disable support for transacted updates if this option is enabled. The Microsoft OLE DB Provider su
pports transactions, so this option is not appropriate.

This option should not be enabled for the OLE DB Provider for DB2.

Index as acces
s path

SQL Server will use the OLE DB Index object with OLE DB providers that support this feature. The OLE DB Provider
for DB2 does not currently support the Index object, so this option is not appropriate.

This option should not be enabled for the OLE DB Provider for DB2. .

Disallow adho
c accesses

SQL Server will use this option when only an ODBC driver is available.

This option should not be enabled for the OLE DB Provider for DB2. .

The OLE DB provider options for managing distributed queries can be set using SQL Server Enterprise Manager. In the left pane
of SQL Server Enterprise Manager, right-click a SQL Server instance and then select the Security tree to define a new linked
server or change the properties of an existing linked server. Right click an existing linked server or create a new linked server. On
the General tab, select the Other data source radio button and select the OLE DB Provider for DB2 for the Provider name from
the dropdown listbox. Click the Provider Options button below the selected OLE DB provider to set the options for distributed
queries. Check the appropriate checkboxes to enable an option for this linked server. Note that these options operate at the
provider level. When the appropriate options are set for the OLE DB Provider for DB2, these settings apply to all linked server
definitions using the same OLE DB Provider for DB2.

When using Microsoft SQL Server 7.0 and distributed queries with the OLE DB Provider for DB2 supplied with Host Integration
Server 2000 or SNA Server 4.0, the Allow InProcess option must be enabled. This option is needed because SQL Server 7.0 will
pass the proper authentication across the remote procedure call only when the OLE DB Provider for DB2 is configured for
Allow InProcess. When creating a linked server for use with the OLE DB Provider for DB2 using SQL Server 7.0, you can use the

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft SQL Server Enterprise Manager to configure the OLE DB options for linked servers. Configure the OLE DB Provider for
DB2 to be loaded in-process (click the options button and check Allow InProcess). This will enable SQL Server 7.0 to initialize an
instance of the OLE DB Provider for DB2 for distributed queries. Without the Allow InProcess option enabled, the user will
receive the following error:

The OLE DB Provider for DB2 performs data type and code page conversions on behalf of the OLE DB consumer application, in
this case SQL Server's Distributed Query Processor. First, the provider will convert DB2 numeric and datetime data types to OLE
DB numeric and datetime data types. The provider will do this on a best-match basis using information provided by DB2 in the
DRDA SQL reply data structure for the result set. Second, the provider will convert the character data from the DB2 Coded
Character Set Identifier (CCSID) to the Windows ANSI code page. For example in the case of an SQL SELECT fetch of data from
DB2 for OS/400, the provider converts character data from EBCDIC to UNICODE and UNICODE to ANSI. The source EBCDIC
CCSID value comes from the table column descriptor or from the DB2 database if the column CCSID is undefined. The target ANSI
code page value comes from the value of the PC Code Page data source property. For example, to convert character data from
CCSID 1026, IBM EBCDIC Turkish (Latin-5), to ANSI code page 1254, Turkish, then the PC CodePage would need to be set to 1254.
OLE DB consumers may convert the data once again from OLE DB to some native data type. In this case, the OLE DB consumer
application is distributed query processor. When using distributed queries, SQL Server does perform numeric and datetime
conversions from OLE DB to SQL Server data types.

UNIONs in SELECT statements are not supported by the current version of the OLE DB Provider for DB2 when used with
distributed queries. For example, the following SELECT statement will fail:

The SQL parser built into the OLE DB Provider for DB2 does not properly parse these UNION statements in a way compatible with
DB2. The above statement will generate a type 199 error "Keyword FROM not expected. Valid Tokens: LEFT CROSS INNER
EXCEPTION." When performing the same query with correlation names added, the error becomes a type 104 error "Token was
not valid. Valid tokens: LEFT CROSS INNER EXCEPTION."

Linked server definitions can also be created or deleted using stored procedures as well as through the SQL Server Enterprise
Manager.

When creating linked server definitions, the @catalog parameter of the sp_addlinkedserver procedure corresponds to the OLE DB
provider-specific Initial Catalog property. Additionally, when creating linked server definitions, one can use the contents of a UDL
for the @provstr parameter value or enter the short provider string keyword arguments (see the ADO ConnectionString property
for details), which are consumed via the OLE DB DBPROP_INIT_PROVIDERSTRING (Extended Properties) property.

The sample below illustrates how to create a linked server for DB2/MVS using an SNA Connection.

The sample below illustrates how to create a linked server for DB2/MVS using a TCP/IP Connection.

Server: Msg 7302, Level 16, State 1, Line 12; Could not create an instance of OLE DB provider
'DB2OLEDB'

SELECT * FROM (SELECT TITLE_ID FROM SNA.TITLE)

USE master
GO
EXEC sp_dropserver 'DB2MVS_SNA', 'droplogins'
GO
EXEC sp_addlinkedserver
 @server = 'DB2MVS_SNA',
 @srvproduct = 'Microsoft OLE DB Provider for DB2',
 @provider = 'DB2OLEDB',
 @catalog = 'P390D37',
 @provstr='InitCat=P390D37;NetLib=SNA;LOCALLU=MVSRUS;
 REMOTELU=P390L37;MODENAME=IBMRDB;PkgCol=MSPKG;DefSch=DB2DEMO'
GO
EXEC sp_addlinkedsrvlogin
 @rmtsrvname='DB2MVS_SNA',
 @useself=false,
 @locallogin=NULL,
 @rmtuser='wnw999',
 @rmtpassword='wnw999'
GO

The sample below illustrates several DB2 linked server queries using a TCP/IP Connection.

The sample below illustrates several SQL Server Views to access a DB2 linked server using a TCP/IP Connection.

The sample below illustrates the SQL SELECT, UPDATE, and DELETE commands using four-part linked server queries to DB2 over
a TCP/IP Connection.

USE master
GO
EXEC sp_dropserver 'DB2MVS_IP', 'droplogins'
GO
EXEC sp_addlinkedserver
 @server = 'DB2MVS_IP',
 @srvproduct = 'Microsoft OLE DB Provider for DB2',
 @provider = 'DB2OLEDB',
 @catalog = 'P390D37',
 @provstr='InitCat=P390D37;NetLib=TCPIP;NetAddr=MVSrUS;
 NetPort=446;PkgCol=MSPKG;DefSch=DB2DEMO'
GO
EXEC sp_addlinkedsrvlogin
 @rmtsrvname='DB2MVS_IP',
 @useself=false,
 @locallogin=NULL,
 @rmtuser='wnw999',
 @rmtpassword='wnw999'
GO

/* SELECT using four-part linked server query: */
/* <Linked Server>.<Catalog>.<Schema>.<Table> */
SELECT * FROM DB2MVS_IP.P390D37.DB2DEMO.DEPARTMENT
SELECT DEPTNAME FROM DB2MVS_IP.P390D37.DB2DEMO.DEPARTMENT WHERE DEPTNO = 'A00'

/* SELECT using pass-through OPENQUERY with */
/* three-part naming convention */
SELECT * FROM OPENQUERY(DB2MVS_IP,"SELECT * FROM P390D37.DB2DEMO.EMP_ACT")

/* SELECT using pass-through OPENROWSET with */
/* two-part naming convention */
SELECT * FROM OPENROWSET
 (
 'DB2OLEDB',
 'InitCat=P390D37;NetLib=TCPIP;NetAddr=MVSrUS;NetPort=446;
 PkgCol=MSPKG;DefSch=DB2DEMO;User ID=WNW999;Password=WNW999',
 'SELECT * FROM DB2DEMO.EMPLOYEE'
)

/* Create SQL Server View using DB2 linked server query */
USE DB2Demo
GO
DROP VIEW DB2VIEW
GO
CREATE VIEW DB2View
AS
SELECT ORD_ID, ORDERDATE, ORDERSTATUS
 FROM DB2MVS_IP.P390D37.DB2DEMO.ORDERS
GO

/* Access Db2 data using SQL Server View */
SELECT * FROM DB2Demo.dbo.DB2View

SELECT * FROM DB2MVS_IP.P390D37.DB2DEMO.CUSTOMERS
INSERT INTO DB2MVS_IP.P390D37.DB2DEMO.CUSTOMERS VALUES (1002,
 'password', 'User', 'DB2Demo', 'One Microsoft Way', 'Redmond',
 '425-882-8080', 'WA', '98052', 'mssna@microsoft.com')

The sample below illustrates invoking DB2 linked server queries from SQL Server stored procedure.

Note: for more information on the above stored procedures, see the Microsoft SQL Server books online.

INSERT, UPDATE and DELETE statements when using four-part linked server queries will invoke the client cursor engine (CCE).
This means that some statements may fail or update incorrect columns. For example, if there is not a unique key column on the
target tables or there are not enough unique values for the CCE to accurately guess which columns to update. For INSERT,
UPDATE and DELETE linked server queries, there must be either a unique index or unique values.

Using distributed queries, SQL Server will return all rows for the target table locally, then sort through results using the client
cursor engine to find a unique value (composed of all columns if need be). If the CCE can't find a unique value, then the
distributed query will fail to perform the INSERT, UPDATE, or DELETE statement.

Using the OLE DB Provider for DB2, SQL Server distributed queries return the incorrect precision for DECIMAL data types when
run OPENQUERY. The correct precision is returned for DECIMAL data types with using a linked server query.

UPDATE DB2MVS_IP.P390D37.DB2DEMO.CUSTOMERS SET PHONE = '206-882-8080'
 WHERE CUST_ID = 1002
DELETE FROM DB2MVS_IP.P390D37.DB2DEMO.CUSTOMERS WHERE CUST_ID = '1002'

USE DB2Demo
DROP PROCEDURE spGetOrderDetails_DB2MVS_IP

CREATE PROCEDURE spGetOrderDetails_DB2MVS_IP
 @ORDER_ID INT
AS
BEGIN
 SELECT a.*, b.Title, b.SubTitle, b.Author, b.ISBN, b.Weight
 FROM DB2MVS_IP.P390D37.DB2DEMO.ORDERDETAILS AS a
 INNER JOIN Titles AS b
 ON a.Prod_Id = b.TitleId
 WHERE a.Ord_Id >= @ORDER_ID
END

EXEC spGetOrderDetails_DB2MVS_IP 1001

Microsoft Host Integration Server 2000

Query Designer Support Using the OLE DB Provider for DB2
The Microsoft OLE DB Provider for DB2 supports using the Query Designer that is included with Microsoft SQL Server. When
Query Designer is launched from products such as SQL Server Data Transformation Services (DTS), the OLE DB Provider for DB2
is initialized with no provider-specific properties and an invalid property error may be generated.

To work around this problem, create a data link with the provider-specific properties required to connect to the host. These
properties are specified in the Extended Properties field on the All tab when configuring a data source. Typically, the remote LU
Alias, the local LU Alias, and the Default Schema should be specified using either the full property name (APPC Remote LU
Alias=REMLU;APPC Local LU Alias;Default Schema=MYLIB) or the short names (RLU=REMLU;LLU;DEFSCH=MYLIB).

Other properties, such as APPC Mode Name, may need to be specified if the default values for that property are not acceptable.
You should also specify a Default Schema. If a Default Schema is not specified, Query Designer will display all schemas on the
remote system (including libraries, collections, etc.), which can result in slow performance.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Transformation Services Support Using the OLE DB
Provider for DB2
The Microsoft OLE DB Provider for DB2 supports using the Data Transformation Services (DTS) facility provided with Microsoft
SQL Server. DTS can be used for file transfer between DB2 and Microsoft SQL Server. There are some special considerations
necessary when using DTS and the OLE DB Provider for DB2.

A DB2/400 database member can only be accessed in a SQL statement by using an ALIAS or SYNONYM. For example, if you have
several members of a SALES.REVENUE database file, each member storing monthly sales information, then you would access one
month's data member by using an ALIAS. First, you must create the ALIAS.

Second, you must use this alias when issuing a SQL statement. You can access individual members using an ALIAS in the
following SQL statements: SELECT, SELECT INTO, INSERT, UPDATE, and DELETE.

Once the alias is created, you should be able to see the table listed in the systables by issuing the following SQL statement:

The REVENUE_JANUARY table type is "ALIAS". Many OLE DB providers and ODBC drivers do not list ALIASes as TABLEs when
returning catalog schema. Note that DTS will not list the table when using the Microsoft OLE DB Provider for DB2 or the Microsoft
ODBC Driver for DB2. If the ALIAS is not listed, then simply utilize the Query option in DTS to specify a SELECT * FROM
SALES.REVENUE_JANUARY statement.

Note that it is possible to use the OVRDBF CL command. However, using an override database file has significant overhead,
whereas ALIASes are less demanding on DB2 server resources. Additionally, the OVRDBF command must be issued each time
(likely as part of a stored procedure), whereas an ALIAS is persistent.

For more information, see the DB2/400 IBM SQL Reference Version 4, Document Number SC41-5612-02.

Microsoft SQL Server's Data Transformation Services will not automatically create target DB2 tables that can store DBCS or mixed
DBCS-SBCS data. When using DTS to move DBCS or mixed data to DB2 as a source, then one of the following techniques are
recommended:

Create the target DB2 table ahead of time.
Edit the CREATE TABLE script within the DTS package to include the required CCSID and FOR MIXED clauses as appropriate
for the target DB2 platform and version.

Exporting DBCS VARCHAR data from SQL Server using DTS is not currently supported by the Microsoft OLE DB Provider for DB2.

When importing TIME data fields into Microsoft SQL Server using DTS and the OLE DB Provider for DB2, the second field is
incorrectly set to a value of '00'. This behavior occurs when the field data type in SQL Server is Smalldatetime.

CREATE ALIAS SALES.REVENUE_JANUARY FOR SALES.REVENUE(JANUARY)

SELECT * FROM SALES.REVENUE_JANUARY

SELECT * FROM QSYS2.SYSTABLES WHERE TABLE_SCHEMA = 'SALES'

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SQL Server Replication Using the OLE DB Provider for DB2
Host Integration Server 2000 supports using the Microsoft OLE DB Provider for DB2 and Microsoft SQL Server 7.0 Replication.

In order to use the Microsoft OLE DB Provider for DB2 with Microsoft SQL Server 7.0 Replication, the following software must the
installed:

Microsoft Host Integration Server 2000
Microsoft SQL Server 7.0 with Service Pack 2 or later
Microsoft SQL Server 7.0 with Service Pack 1 with the appropriate hotfix

When using transactional replication, object names, such as tables and constraints, can be longer in Microsoft SQL Server than in
DB2. Therefore, when moving data from Microsoft SQL Server to DB2, one of the following strategies should be used for
compatibility:

Create the Microsoft SQL Server tables and constraints so that the names do not exceed the limits of DB2 (see the DB2 SQL
Reference for the target platform and version of DB2).
Create the Microsoft SQL Server tables and constraints with names up to the maximum supported by Microsoft SQL Server,
then run ALTER TABLE SQL scripts against the Microsoft SQL Server distribution database after replication has created the
publication, but before creating the subscriptions.

In order for replication to work properly, SQL Server-to-DB2 data type mapping entries must be provided for several data types.
These data type mappings must be stored in the Microsoft SQL Server MSdatatype_mappings table in the msdb database. Data
type mapping entries must be provided to properly support the CHAR and VARCHAR data types when used to store SBCS
character strings or binary data (BINARY and VARBINARY) with replication. The mappings for CHAR and VARCHAR are needed
due to the limits for the boundary values using the OLE DB Provider for DB2. The mappings for binary data types are required
since binary data is stored as character data using the OLE DB Provider for DB2.

This SQL Server msdb.MSdatatype_mappings table can be updated using a stored procedure that comes with SQL Server. The
exec sp_add_datatype_mapping command is a stored procedure that comes with the SQL Server. Users should run these data
mappings in the SQL Query Analyzer (isqlw.exe). Each line of the exec sp_add_datatype_mapping procedure will add one data
mapping to msdb.Msdatatype_mappings.

The Microsoft OLE DB Provider for DB2 when accessing DB2 on all platforms and versions does not support the following
Microsoft SQL Server data types with direct mappings. The following is a summary of the limitations.

Microsoft OLE DB Provider for DB2 does not support DB2 GRAPHIC, VARGRAPHIC and LONG VARGRAPHIC data types. Mappings
to these DB2 types should be avoided.

Microsoft OLE DB Provider for DB2 does not support DB2 Large Object data types, such as CLOB, DBCLOB, and BLOB, which are
used in DB2 Universal Database. Microsoft OLE DB Provider for DB2 does not support the DB2 BIGINT data types, which is used in
DB2 Universal Database for Windows NT.

Microsoft SQL Server NCHAR, NVARCHAR, NTEXT, and SYSNAME data types do not map well to supported DB2 data types. The
Microsoft SQL Server TIMESTAMP data type should be mapped to a DB2 CHAR FOR BIT DATA data type. The TIMESTAMP data
type in SQL Server is used only for the purposes of table logging and not for end user data. Therefore, you should not map the
SQL Server TIMESTAMP data type to the DB2 TIMESTAMP.

The sample mapping table entries map Microsoft SQL Server TEXT and IMAGE to DB2 VARCHAR and DB2 VARCHAR FOR BIT
DATA respectively. These Microsoft SQL Server data types can represent up to 2GB of data. In contrast, the DB2 VARCHAR data
types can hold at most approximately 32k of data. As such, data truncation may occur.

For Microsoft SQL Server data types, MONEY, SMALLMONEY, DECIMAL, NUMERIC, data values can be replicated to DB2 correctly,
but these floating-point data types are mapped to STRING instead of FLOAT. Once these data values are replicated to DB2, the
string values should be converted back to float before performing calculations. An alternative is to do the calculations and update
using SQL Server before replicating these data values over to DB2.

The following commands will create the appropriate data type mapping entries.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SQL Replication with DB2 for OS/400
When used with DB2 for OS/400, run the following commands in a stored procedure:

When using Microsoft SQL Server 7.0 (including SQL Server 7.0 with Service Pack 1 or Service Pack 2), replication does not
support the following data conversions:

Microsoft SQL Server 7.0 with Service Pack 3 is required to support replication with these data conversions.

exec dbo.sp_add_datatype_mapping 'DB2/400', 'bit',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'char', 'CHAR', 8000, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'datetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'decimal',
 'DECIMAL', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'double precision',
 'DOUBLE', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'float', 'FLOAT', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'int', 'INT', 10, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'money',
 'DECIMAL', 19, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'numeric',
 'NUMERIC', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'real', 'REAL', 24, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'smalldatetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'smallint',
 'SMALLINT', 5, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'smallmoney',
 'DECIMAL', 10, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'text',
 'VARCHAR', 32739, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'tinyint',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'uniqueidentifier',
 'CHAR', 38, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'varchar',
 'VARCHAR', 8000, 4, 1

exec dbo.sp_add_datatype_mapping 'DB2/400', 'binary',
 'CHAR () FOR BIT DATA', 8000, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'image',
 'VARCHAR () FOR BIT DATA', 32739, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'timestamp',
 'CHAR () FOR BIT DATA', 8, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/400', 'varbinary',
 'VARCHAR () FOR BIT DATA', 8000, 4, 1

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SQL Replication with DB2 for MVS
When used with DB2 for MVS , run the following commands:

When using Microsoft SQL Server 7.0 (including SQL Server 7.0 with Service Pack 1 or Service Pack 2), replication does not
support the following data conversions:

Microsoft SQL Server 7.0 with Service Pack 3 is required to support replication with these data conversions.

exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'bit',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'char', 'CHAR', 254, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'datetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'decimal',
 'DECIMAL', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'double precision',
 'DOUBLE', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'float', 'FLOAT', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'int',
 'INT', 10, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'money',
 'DECIMAL', 19, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'numeric',
 'NUMERIC', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'real', 'REAL', 24, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'smalldatetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'smallint',
 'SMALLINT', 5, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'smallmoney',
 'DECIMAL', 10, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'text',
 'VARCHAR', 4045, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'tinyint',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'uniqueidentifier',
 'CHAR', 38, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'varchar',
 'VARCHAR', 4045, 4, 1

exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'binary',
 'CHAR () FOR BIT DATA', 254, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'image',
 'VARCHAR () FOR BIT DATA', 4045, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'timestamp',
 'CHAR () FOR BIT DATA', 8, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/MVS', 'varbinary',
 'VARCHAR () FOR BIT DATA', 4045, 4, 1

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SQL Replication with DB2 UDB for AIX
When used with DB2 Universal Database for AIX, run the following commands:

When using Microsoft SQL Server 7.0 (including SQL Server 7.0 with Service Pack 1 or Service Pack 2), replication does not
support the following data conversions:

Microsoft SQL Server 7.0 with Service Pack 3 is required to support replication with these data conversions.

exec dbo.sp_add_datatype_mapping 'DB2/6000', 'bit',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'char',
 'CHAR', 8000, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'datetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'decimal',
 'DECIMAL', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'double precision',
 'DOUBLE', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'float',
 'FLOAT', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'int', 'INT', 10, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'money',
 'DECIMAL', 19, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'numeric',
 'NUMERIC', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'real', 'REAL', 24, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'smalldatetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'smallint',
 'SMALLINT', 5, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'smallmoney',
 'DECIMAL', 10, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'text',
 'VARCHAR', 32739, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'tinyint',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'uniqueidentifier',
 'CHAR', 38, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'varchar',
 'VARCHAR', 8000, 4, 1

exec dbo.sp_add_datatype_mapping 'DB2/6000', 'binary',
 'CHAR () FOR BIT DATA', 8000, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'image',
 'VARCHAR () FOR BIT DATA', 32739, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'timestamp',
 'CHAR () FOR BIT DATA', 8, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/6000', 'varbinary',
 'VARCHAR () FOR BIT DATA', 8000, 4, 1

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SQL Replication with DB2 UDB for NT
When used with DB2 Universal Database for NT, run the following commands:

When using Microsoft SQL Server 7.0 (including SQL Server 7.0 with Service Pack 1 or Service Pack 2), replication does not
support the following data conversions:

Microsoft SQL Server 7.0 with Service Pack 3 is required to support replication with these data conversions.

exec dbo.sp_add_datatype_mapping 'DB2/NT', 'bit',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'char', 'CHAR', 8000, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'datetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'decimal',
 'DECIMAL', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'double precision',
 'DOUBLE', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'float', 'FLOAT', 53, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'int', 'INT', 10, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'money',
 'DECIMAL', 19, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'numeric',
 'NUMERIC', 31, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'real', 'REAL', 24, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'smalldatetime',
 'TIMESTAMP', 26, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'smallint',
 'SMALLINT', 5, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'smallmoney',
 'DECIMAL', 10, 3, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'text',
 'VARCHAR', 32739, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'tinyint',
 'SMALLINT', 1, 0, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'uniqueidentifier',
 'CHAR', 38, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'varchar',
 'VARCHAR', 8000, 4, 1

exec dbo.sp_add_datatype_mapping 'DB2/NT', 'binary',
 'CHAR () FOR BIT DATA', 8000, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'image',
 'VARCHAR () FOR BIT DATA', 32739, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'timestamp',
 'CHAR () FOR BIT DATA', 8, 4, 1
exec dbo.sp_add_datatype_mapping 'DB2/NT', 'varbinary',
 'VARCHAR () FOR BIT DATA', 8000, 4, 1

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Code Page Support Using the OLE DB Provider for DB2
When creating data links for use with the OLE DB Provider for DB2, the Host CCSID (character code set identifier) should be
configured in the data source to match the DB2 data as represented on the remote host computer. The Host CCSID parameter
defaults to EBCDIC U.S./Canada (37) when using the OLE DB Provider for DB2.

Depending on the version of Windows being used, to support specific code page conversions, you may need to install the
appropriate National Language Support (NLS) file for your locale.

On Windows 2000, the appropriate ANSI NLS file for your locale is installed automatically when you install a localized version of
Windows 2000.

On Windows NT 4.0, the appropriate ANSI NLS file for your locale is installed automatically when you install a localized version of
Windows NT or when you install the Windows NT Language Pack on a non-localized version of Windows NT. The Windows NT
Language Pack is available on the Windows NT 4.0 CD-ROM in the LANGPACK directory. You install the locale components of the
language pack as needed by either making a change in the Control Panel Locales applet or by installing one of the locale-specific
INF files.

On Windows 98 and Windows 95, the appropriate ANSI NLS file for your locale is installed automatically when you install a
localized version of Windows 98 or Windows 95.

The following sections discuss the character code set identifiers (CCSIDs) supported by OLE DB Provider for DB2 in Host
Integration Server 2000.The The tables in these sections list the INF files by name that are required under Windows NT 4.0 for a
specific codepage (european.inf, for example). Typically you would install locales one at a time as needed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ANSI Code Page Support Using the OLE DB Provider for DB2
IBM DB2 Universal Database for Windows NT and IBM DB2 Universal Database for AIX are frequently configured to use ANSI
code pages, for example ANSI 1253 (Greek). Host Integration Server 2000 includes support for some ANSI code pages for
purposes of ANSI-to-UNICODE-to-ANSI conversions when using the OLE DB Provider for DB2 or the ODBC Driver for DB2. These
ANSI code pages can be used when accessing IBM DB2 Universal Database on Windows NT and IBM DB2 ON AIX (not all of these
ANSI code pages are supported on IBM DB2 Universal Database for AIX).

The following table shows the ANSI character code set identifiers (CCSIDs) supported by OLE DB Provider for DB2 in Host
Integration Server 2000.

Microsoft Display
Name

Microsoft NLS
Code Page

IBM C
CSID

Comments

ANSI - Arabic 1256 1256 On Windows NT 4.0, support for this NLS Code Page is installed using the arabic.inf
file from the Language Pack.

ANSI - Baltic 1257 1257 On Windows NT 4.0, support for this NLS Code Page is installed using the european
.inf file from the Language Pack.

ANSI - Cyrillic 1251 1251 On Windows NT 4.0, support for this NLS Code Page is installed using the cyrillic.inf
file from the Language Pack.

ANSI - Central Europ
e

1250 1250 On Windows NT 4.0, support for this NLS Code Page is installed using the european
.inf file from the Language Pack.

ANSI - Greek 1253 1253 On Windows NT 4.0, support for this NLS Code Page is installed using the greek.inf
file from the Language Pack.

ANSI - Hebrew 1255 1255 On Windows NT 4.0, support for this NLS Code Page is installed using the hebrew.i
nf file from the Language Pack.

ANSI - Latin I 1252 1252 Support for this codepage is normally installed as part of the operating system on
Windows 2000, Windows NT, Windows 98, and Windows 95.
On Windows NT 4.0, support for this NLS Code Page is installed using the us_eng.in
f file from the Language Pack.

ANSI - Turkish 1254 1254 On Windows NT 4.0, support for this NLS Code Page is installed using the turkish.in
f file from the Language Pack.

ANSI/OEM - Japanes
e Shift JIS

932 932 On Windows NT 4.0, support for this NLS Code Page is installed using the japanese.
inf file from the Language Pack.

ANSI/OEM - Korean 949 949 On Windows NT 4.0, support for this NLS Code Page is installed using the korean.in
f file from the Language Pack.

ANSI/OEM - Simplifi
ed Chinese GBK

936 936 On Windows NT 4.0, support for this NLS Code Page is installed using the exchsrvr.i
nf file from the Language Pack.

ANSI/OEM - Thai 874 874 On Windows NT 4.0, support for this NLS Code Page is installed using the thai.inf fil
e from the Language Pack.

ANSI/OEM - Traditio
nal Chinese Big5

950 950 On Windows NT 4.0, support for this NLS Code Page is installed using the tchinese.i
nf file from the Language Pack.

ANSI/OEM - Viet Na
m

1258 1258 On Windows NT 4.0, support for this NLS Code Page is installed using the vietnam.i
nf file from the Language Pack.

The Microsoft Display Name is the name found in the Windows 2000 or Windows NT definitions for these NLS files. The
Microsoft NLS Code Page column represents the code page number that is registered and associated with an ANSI-to-UNICODE
NLS resource file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when using the OLE
DB Provider for DB2. When setting the Host CCSID or PC Code Page attribute/property using a connection string, the Microsoft
NLS number should be used for this parameter.

The IBM CCSID column represents the CCSID given to the ANSI code page in IBM publications, which for these supported ANSI
CCSIDs are the same as the Microsoft CCSID values. IBM lists their ANSI support in publications by referencing the display name
which for these ANSI code pages is the same as the Microsoft display name. The OLE DB Provider for DB2 does not recognize or
display the IBM CCSID values when configuring data sources using data links. The OLE DB Provider for DB2 maps the Microsoft
NLS numbers to ANSI NLS files which correspond with the appropriate IBM CCSID numbers. The OLE DB Provider for DB2, as
well as Microsoft ODBC Driver for DB2, pass the corresponding IBM CCSID to the DB2 system at run time even though you
configure the provider or driver to use the Microsoft NLS number.

These are the only ANSI pages currently supported by the OLE DB Provider for DB2 in Host Integration Server 2000 and in SNA
Server 4.0 with Service Pack 3 or later. IBM supports additional ANSI pages, however, the ANSI code pages listed in the table
above are the only cases where the Microsoft NLS pages and IBM ANSI code pages (CCSIDs) match.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EBCDIC Code Page Support Using the OLE DB Provider for DB2
IBM DB2 for MVS, IBM DB2 for OS/390, and IBM DB2 for OS/400 are frequently configured to use EBCDIC code pages, for
example EBCDIC 875 (Greek Modern). Host Integration Server 2000 includes support for most EBCDIC code pages for purposes
of EBCDIC-to-UNICODE-to-ANSI, ANSI-to-UNICODE-to-EBCDIC, and EBCDIC-to-UNICODE-to-EBCDIC conversions when using
the OLE DB Provider for DB2 or the ODBC Driver for DB2. These EBCDIC code pages can be used when accessing IBM DB2 on a
variety of platforms (not all of these EBCDIC code pages are supported on all versions of IBM DB2).

The following table shows the EBCDIC character code set identifiers (CCSIDs) supported by OLE DB Provider for DB2 in Host
Integration Server 2000.

Microsoft Display Name Microsoft NLS C
ode Page

IBM C
CSID

Comments

IBM EBCDIC - Arabic 20420 420 On Windows NT 4.0, support for this NLS Code Page is installed using the
arabic.inf file from the Language Pack.

IBM EBCDIC - Cyrillic (Russia
n)

20880 880 On Windows NT 4.0, support for this NLS Code Page is installed using the
cyrillic.inf file from the Language Pack.

IBM EBCDIC - Cyrillic (Serbia
n, Bulgarian)

21025 1025 On Windows NT 4.0, support for this NLS Code Page is installed using the
cyrillic.inf file from the Language Pack.

IBM EBCDIC - Denmark/Nor
way

20277 277 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Denmark/Nor
way (Euro)

1142 1142 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Finland/Swede
n

20278 278 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Finland/Swede
n (Euro)

1143 1143 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - France 20297 297 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - France (Euro) 1147 1147 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Germany 20273 273 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Germany (Euro
)

1141 1141 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Greek 20423 423 On Windows NT 4.0, support for this NLS Code Page is installed using the
greek.inf file from the Language Pack.

IBM EBCDIC - Greek (Modern
)

875 875 On Windows NT 4.0, support for this NLS Code Page is installed using the
greek.inf file from the Language Pack.

IBM EBCDIC - Hebrew 20424 424 On Windows NT 4.0, support for this NLS Code Page is installed using the
hebrew.inf file from the Language Pack.

IBM EBCDIC - Icelandic 20871 871 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Icelandic (Euro) 1149 1149 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - International 500 500 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - International (E
uro)

1148 1148 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Italy 20280 280 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Italy (Euro) 1144 1144 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Japan English/
Kanji (Extended)

939 939 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Japan English/
Kanji (Extended)

5035 5035 Support for this double-byte character set is supplied using TRNSDT.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

IBM EBCDIC - Japan Katakan
a/Kanji (Extended)

930 930 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Japan Katakan
a/Kanji (Extended)

5026 5026 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Japanese 931 931 Support for this double-byte character set is supplied using TRNSDT.
IBM EBCDIC - Korea (Extende
d)

933 933 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Latin America/
Spain

20284 284 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Latin America/
Spain (Euro)

1145 1145 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Multilingual/R
OECE (Latin-2)

870 870 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Simplified Chin
ese (Extended)

935 935 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Thai 20838 838 On Windows NT 4.0, support for this NLS Code Page is installed using the
thai.inf file from the Language Pack.

IBM EBCDIC - Traditional Chi
nese (Extended)

937 937 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Turkish (Latin-
3)

20905 905 On Windows NT 4.0, support for this NLS Code Page is installed using the
turkish.inf file from the Language Pack.

IBM EBCDIC - Turkish (Latin-
5)

1026 1026 On Windows NT 4.0, support for this NLS Code Page is installed using the
turkish.inf file from the Language Pack.

IBM EBCDIC - U.S./Canada 037 37 On Windows NT 4.0, support for this NLS Code Page is installed using the
us_eng.inf file from the Language Pack.

IBM EBCDIC - U.S./Canada (E
uro)

1140 1140 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - United Kingdo
m

20285 285 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - United Kingdo
m (Euro)

1146 1146 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

The Microsoft Display Name is the name found in the Windows 2000 or Windows NT definitions for these NLS files. The
Microsoft NLS Code Page column represents the code page number that is registered and associated with an EBCDIC-to-
UNICODE NLS resource file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when
using the OLE DB Provider for DB2. When setting the Host CCSID or PC Code Page attribute/property using a connection string,
the Microsoft NLS number should be used for this parameter.

The IBM CCSID column represents the CCSID given to the EBCDIC code page in IBM publications. IBM lists their EBCDIC support in
publications by referencing the display name which for these EBCDIC code pages is the same as the Microsoft display name. The
OLE DB Provider for DB2 does not recognize or display the IBM CCSID values when configuring data sources using data links. The
OLE DB Provider for DB2 maps the Microsoft NLS numbers to EBCDIC NLS files which correspond with the appropriate IBM
CCSID numbers. The OLE DB Provider for DB2, as well as Microsoft ODBC Driver for DB2, pass the corresponding IBM CCSID to
the DB2 system at run time even though you configure the provider or driver to use the Microsoft NLS number.

These are the only EBCDIC pages currently supported by the OLE DB Provider for DB2 in Host Integration Server 2000 and in SNA
Server 4.0 with Service Pack 3 or later. IBM supports additional EBCDIC pages, however, the EBCDIC code pages listed in the table
above are the only cases where the Microsoft NLS pages and IBM EBCDIC code pages (CCSIDs) match.

Microsoft Host Integration Server 2000

ISO Code Page Support Using the OLE DB Provider for DB2
IBM DB2 Universal Database for Windows NT and IBM DB2 Universal Database for AIX are frequently configured for an ISO code
page, for example ISO 819 (Latin I). Host Integration Server 2000 includes support for some ISO code pages for purposes of ISO-
to-UNICODE-to-ANSI, ANSI-to-UNICODE-to-ISO, and ISO-to-UNICODE-to-ISO conversions when using the OLE DB Provider for
DB2 or the ODBC Driver for DB2. These ISO code pages can be used when accessing IBM DB2 Universal

The following table shows the ISO character code set identifiers (CCSIDs) supported by OLE DB Provider for DB2 in Host
Integration Server 2000.

Microsoft Dis
play Name

Microsoft NL
S Code Page

IBM
CCSI
D

Comments

ISO 8859-1 Lat
in 1

28591 819 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 8859-2 Ce
ntral Europe

28592 912 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 8859-5 Cy
rillic

28595 915 On Windows NT 4.0, support for this NLS Code Page is installed using the cyrillic.inf file fro
m the Language Pack.

ISO 8859-6 Ar
abic

28596 1089 On Windows NT 4.0, support for this NLS Code Page is installed using the arabic.inf file fro
m the Language Pack.

ISO 8859-7 Gr
eek

28597 813 On Windows NT 4.0, support for this NLS Code Page is installed using the greek.inf file from
the Language Pack.

ISO 8859-8 He
brew

28598 916 On Windows NT 4.0, support for this NLS Code Page is installed using the hebrew.inf file fro
m the Language Pack.

ISO 8859-9 Tur
kish

28599 920 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 6937 Non-
Spacing Accent

20269 819 Note that ISO 6937 (CCSID 20269) is not supported by the OLE DB Provider for DB2, but is
displayed in the list of configuration options when creating or modifying data sources.

ISO 8859-15 L
atin 9 (Euro)

20865 923 NLS Code Page 819 with support for the Euro.
On Windows NT 4.0, support for this NLS Code Page is installed using the ibm_euro.inf file f
rom the Language Pack.

The Microsoft Display Name is the name found in the Windows NT Language Pack definitions for these NLS files.

The Microsoft NLS Code Page column represents the code page number that is registered and associated with an ISO-to-
UNICODE NLS resource file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when
using the OLE DB Provider for DB2. When setting the Host CCSID or PC Code Page attribute/property using a connection string,
the Microsoft NLS number should be used for this parameter.

The IBM CCSID column represents the CCSID given to the ISO code page in IBM publications. IBM lists their ISO support in
publications by referencing the locale name (Bulgaria for ISO8859-5 and 915, for example) rather than simply using ISO 8859-5
Cyrillic as used by Microsoft. The OLE DB Provider for DB2 does not recognize or display the IBM CCSID values when configuring
data sources using data links. The OLE DB Provider for DB2 maps the Microsoft NLS numbers to ISO NLS files which correspond
with the appropriate IBM CCSID numbers. The OLE DB Provider for DB2, as well as Microsoft ODBC Driver for DB2, pass the
corresponding IBM CCSID to the DB2 system at run time even though you configure the provider or driver to use the Microsoft
NLS number.

Note that IBM CCSID 819 is associated with both ISO 8859-1 Latin 1 and ISO 6937 Non-Spacing Accent. It is up to the user to
choose the standard ISO 8859-1 Latin 1 code page by selecting NLS code page 28591 or the modified code page ISO 6937 Non-
Spacing Accent by selecting NLS code page 20269. Note that ISO 6937 Non-Spacing Accent (CCSID 20269) is not currently
supported by the OLE DB Provider for DB2, but is displayed in the configuration options when creating or modifying data sources.

IBM CCSID 916 (ISO 8859-8) supports Hebrew "visual sort order". IBM CCSID 920 (ISO 8859-8 derivation) supports Hebrew
"logical sort order". Although Microsoft supports the logical sort order with NLS 38598, this NLS file is only distributed with
Internet Explorer 5 or Windows 2000. The OLE DB Provider for DB2 has not been tested using the ISO 8859-8 derivation
matching IBM CCSID 920 and does not support this configuration.

These are the only ISO pages currently supported in Host Integration Server 2000 and in SNA Server 4.0 with Service Pack 3 or
later. Microsoft supports a number of additional ISO pages. IBM also supports additional ISO pages. However, the code pages
listed in the table above are the only cases where the Microsoft NLS pages and IBM CCSIDs match.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DBCS Code Page Support Using the OLE DB Provider for DB2
Support for Double-Byte Character String (DBCS) data is limited using the OLE DB Provider for DB2. Conversions between DBCS
and ANSI code pages are not supported. Conversions between DBCS and ISO code pages are not supported. Positioned updates
against DBCS EBCDIC implementations of DB2 are not supported.

The DB2 GRAPHIC data types (GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC) are not supported. These DB2 data types
support DBCS (not mixed) data. Mixed data types are supported using CHAR FOR MIXED DATA, VARCHAR FOR MIXED DATA, and
LONGVARCHAR FOR MIXED DATA.

Parameterized SQL statements or calling stored procedures when the parameter values contain Mixed or DBCS characters are not
supported.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Conversion Using the OLE DB Provider for DB2
The design of the OLE DB APIs is similar to the APIs provided by ODBC and other ISAM APIs. The APIs are handle-based. After
opening a file, the application can determine the buffer size required to store a row, use the cursor APIs to move, and optionally
retrieve one or more rows of data using the row-level binding.

Data is converted to default C data types as defined in ODBC and OLE DB illustrated in the following table:

DB2 data ty
pe

Default C
data type

Comments

BIGINT An eight-byte integer.

This data type is converted to DBTYPE_I8 for use by OLE DB.

This data type is not supported by the OLE DB Provider for DB2.

BLOB A Binary Large Object (BLOB) is a varying-length string that can be up to 2 gigabytes in length. A BLOB
is primarily intended to hold binary data.

This data type is converted to a DBTYPE_STR for use by OLE DB.

This data type is not supported by the OLE DB Provider for DB2.

CHAR (Bit) char string[
]

A fixed length string.

This data type is converted to a DBTYPE_BSTR for use by OLE DB.

CHAR (SBCS) char string[
]

A fixed-length SBCS character string.

This data type is converted to a DBTYPE_BSTR for use by OLE DB.

CHAR (Mixed
Data)

char string[
]

A fixed-length mixed character string.

This data type is converted to a DBTYPE_BSTR for use by OLE DB.

CLOB A Character Large Object (CLOB) is a varying-length string that can be up to 2 gigabytes in length. A C
LOB is used to store large single-byte character set data. A CLOB is considered to be a character string.

This data type is converted to a DBTYPE_STR for use by OLE DB.

This data type is not supported by the OLE DB Provider for DB2.

DATE date struct A ten byte date string.

This data type is converted to a DBTYPE_DATE for use by OLE DB.

DEC unsigned c
har number
[]

A packed decimal number.

This data type is converted to a DBTYPE_DECIMAL for use by OLE DB.

DOUBLE double An 8-byte double-precision floating point number.

This data type is converted to a DBTYPE_R8 for use by OLE DB.

FLOAT double An 8-byte double-precision floating point number. This data type is the same as a DOUBLE.

This data type is converted to a DBTYPE_R8 for use by OLE DB.

GRAPHIC (DB
CS)

unsigned c
har binary[]

A fixed-length graphic string consisting of a sequence of double byte character string (DBCS) data.

This data type is converted to a DBTYPE_WSTR for use by OLE DB.

This data type is not supported by the OLE DB Provider for DB2.

INTEGER int A four-byte integer ranging in value from
-2,147,463,648 to +2,147,483,647.

This data type is converted to a DBTYPE_I4 for use by OLE DB.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LONG VARC
HAR (Bit)

char string[
]

A varying-length character string up to 32,740 characters in length.

This data type is converted to a DBTYPE_STR for use by OLE DB.

LONG VARC
HAR (SBCS)

char string[
]

A varying-length SBCS character string up to 32,740 characters in length.

This data type is converted to a DBTYPE_STR for use by OLE DB.

LONG VARC
HAR (Mixed)

char string[
]

A varying-length mixed-character string.

This data type is converted to a DBTYPE_STR for use by OLE DB.

LONG VARG
RAPHIC (DBC
S)

unsigned c
har binary[]

A varying-length graphic string consisting of a sequence of double byte character string (DBCS) data r
anging up to 16,383 DBCS characters in length.

This data type is converted to a DBTYPE_WSTR for use by OLE DB.

This data type is not supported by the OLE DB Provider for DB2.

SMALLINT short A SMALLINT (small integer) is a two-byte integer with a precision of 5 digits ranging from -32,768 to
+32,767.

This data type is converted to a DBTYPE_I2 for use by OLE DB.

REAL float A 4-byte single-precision floating point number.

This data type is converted to a DBTYPE_R4 for use by OLE DB.

TIME time struct An 8-byte time string.

This data type is converted to a DBTYPE_TIME for use by OLE DB.

When using ActiveX Data Objects to return data from a DB2 TIME data type, ADO returns a DATETIME
value.

TIMESTAMP timestamp
struct

A 26-byte string representing the date, time, and microseconds.

This data type is converted to a DBTYPE_DBTIMESTAMP for use by OLE DB.

VARCHAR (Bi
t)

char string[
]

A varying-length character string. The maximum length of the string is dependent on the version and t
he platform that DB2 is running on.

This data type is converted to a DBTYPE_STR for use by OLE DB.

VARCHAR (S
BCS)

char string[
]

A varying-length character string. The maximum length of the string is dependent on the version and t
he platform that DB2 is running on.

This data type is converted to a DBTYPE_STR for use by OLE DB.

VARCHAR (M
ixed)

char string[
]

A varying-length character string. The maximum length of the string is dependent on the version and t
he platform that DB2 is running on.

This data type is converted to a DBTYPE_STR for use by OLE DB.

VARGRAPHIC
(DBCS)

unsigned c
har binary[]

A varying-length graphic string consisting of a sequence of double byte character string (DBCS) data. T
he maximum length of the string is dependent on the version and the platform that DB2 is running on.

This data type is converted to a DBTYPE_WSTR for use by OLE DB.

This data type is not supported by the OLE DB Provider for DB2.

Note that the maximum length of fixed-length CHAR, fixed-length GRAPHIC, VARCHAR, and VARGRAPHIC data types is
dependent on the version of DB2 that is being accessed. For example, the maximum length of the CHAR data type on DB2 for
OS/390 is 254 characters, while the maximum length of this same host data type is 32,765 on DB2/400.

Data conversions from a large numeric type to a small numeric type are supported (from DOUBLE to SINGLE and from INT to
SMALLINT, for example), however truncation and conversion errors can occur that will not be reported by the OLE DB Provider for
DB2.

Note that the OLE DB Provider for DB2 does not support mapping DB2 bit strings and graphic data types to binary data types. The
OLE DB Provider for DB2 does not support a binary-to-binary conversion. Consequently, CHAR FOR BIT DATA, VARCHAR FOR BIT
DATA, and LONGVARCHAR FOR BIT DATA can only be supported when the Process Binary As Character property is set to true

when configuring the OLE DB data source or passed as part of the connection string. In this way, the OLE DB client would actually
bind the column as an OLE DB character type, not as a binary type.

Using the OLE DB Provider for DB2, certain conversions of strings from EBCDIC to ASCII and then back to EBCDIC are asymmetric,
and can result in strings that are different from the original. The EBCDIC specification contains ordinals for which there is no
defined character. The OLE DB Provider for DB2 translates all such undefined characters to the question mark character (“?”). So
when ASCII strings containing these characters are converted back to EBCDIC, these undefined characters will be replaced with
question marks. To protect EBCDIC strings containing undefined characters, these fields should be tagged as binary strings and
mapped by the application.

The ANSI to EBCDIC character conversions affected include the following:

Character Value (Decim
al)

Character Value (Hexadecim
al)

ANSI Code Page 12
52

EBCDIC Character After Conversion to CCSI
D 37

128 0x80 Not used ?
130 0x82 Single low quote ?
131 0x83 Latin F with hook ?
132 0x84 Double low quote ?
133 0x85 Ellipsis ?
134 0x86 Dagger ?
135 0x87 Double dagger ?
136 0x88 Per mile ?
137 0x89 S with caron ?
138 0x8A Left angle ?
139 0x8B Ligature OE ?
140 0x8C Not used ?
142 0x8E Not used ?
145-156 0x91-0x9C ?
158-159 0x9E-0x9F ?

Microsoft Host Integration Server 2000

Floating Point Considerations Using the OLE DB Provider for
DB2
When real or double (synonymous with float) data is inserted into a DB2 table as a floating point data type, it is stored in scientific
notation. For example, FLOAT(1.1) would be stored as +1.10000E+000.

Care must be taken when executing SQL statements to make sure that the proper data type specified in the SQL statement
matches the values stored in DB2. For example, the following select statement would match values in DB2 stored as decimal 1.1.

If the data in DB2 was stored as real numbers, there would not be a match since decimal 1.1 is stored as 1.1, not the
representation of +1.10000E+000. When DB2 parses and executes the SQL select statement, it interprets 1.1 as a decimal type.
When doing the select query, DB2 does not implicitly do the conversion to floating point. In this case, the SQL statement should
explicitly typecast the 1.1 so that DB2 looks for the correct format (the scientific notation format). The select query would look like
the following:

This will give the results expected. The SQL REAL function will convert the decimal 1.1 to the proper format before DB2 executes
the actual select.

SELECT * FROM TEST WHERE C1 = 1.1

SELECT * FROM TEST WHERE C1 = REAL(1.1)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Usernames and Passwords Using the OLE DB Provider for DB2
When connecting to remote DB2 systems, most users must be authenticated by the remote system by passing a valid User ID and
Password.

The AS/400 computer is case-sensitive with regard to User ID and Password. The AS/400 only accepts a User ID and Password in
uppercase. The Microsoft OLE DB Provider for DB2 will force the User ID and Password into uppercase when it knows that it is
connecting to a DB2/400 system.

The mainframe is not case-sensitive. This means that on mainframe computers, one can enter the User ID and Password in any
case.

DB2 Universal Database (UDB) for Windows NT is case-sensitive. UDB supports mixed case Passwords. The user must enter the
Password in the correct mixed case. When entering a User ID, use only the Windows NT user name and do not include the
Windows NT Domain Name.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Troubleshooting the OLE DB Provider for DB2
The Windows 2000 and Windows NT Event Viewer can be a useful tool for troubleshooting data access in some cases. The OLE
DB Provider for DB2 does not issue events. However, when SNA (APPC/LU 6.2) is used for the network transport for the OLE DB
Provider for DB2, the low-level SNA APPC transport issues events on the SNA connection.

The Microsoft OLE DB Provider for DB2 supplied with Host Integration Server 2000 has the ability to trace DRDA data flows when
used over TCP/IP.

This DB2 tracing capability is accessible from the SNADB2 Service tracing inside the Trace utility. This facility will show the same
data as an APPC trace but without the control indicators (For example, What_Received). Socket errors are traced and the error
codes can be looked up in Winsock2.h supplied with the Platform SDK.

The OLE DB Provider for DB2 can return the following types of errors:

DB2 SQL errors from the remote database
Microsoft OLE DB Provider-specific errors
Errors from the underlying DRDA Application Requester network client

When the OLE DB Provider for DB2 passes an error code, the best source in which to look-up the meaning of the return code is
often the SQL Reference or SQL Messages and Codes Reference for the target SQL database. In this case, the target database
would be one of the DB2 platforms supported by the Microsoft OLE DB Provider for DB2.

The OLE DB Provider for DB2 maintains an internal integer variable named SQLCODE and an internal 5-byte character string
variable named SQLSTATE used to check the execution of SQL statements on DB2. SQLCODE is set by DB2 after each SQL
statement is executed. DB2 returns the following values for SQLCODE:

If SQLCODE = 0, execution was successful.
If SQLCODE > 0, execution was successful with a warning.
If SQLCODE < 0, execution was not successful.
SQLCODE = 100, "no data" was found. For example, a FETCH statement returned no data because the cursor was positioned
after the last row of the result table.

SQLSTATE is also set by DB2 after the execution of each SQL statement. Application programs can check the execution of SQL
statements by testing SQLSTATE instead of SQLCODE. SQLSTATE provides application programs with common codes for
common error conditions (the values of SQLSTATE are product-specific only if the error or warning is product-specific).
Furthermore, SQLSTATE is designed so that application programs can test for specific errors or classes of errors.

SQLSTATE values consist of a two-character class code value, followed by a three-character subclass code value. The first
character of an SQLSTATE value indicates whether the SQL statement was executed successfully or unsuccessfully (equal to or not
equal to zero, respectively). Class code values represent classes of successful and unsuccessful execution conditions. The following
SQLSTATE class codes are used by DB2:

Class Co
de

Description of Error Class

00 Successful completion. Execution of the SQL statement was successful and did not result in any type of warning or exc
eption condition.

01 Warning
02 No data
07 Dynamic SQL error
08 Connection exception
0A Feature not supported
0F Invalid token
21 Cardinality violation
22 Data exception
23 Constraint violation
24 Invalid cursor state
25 Invalid Transaction State
26 Invalid SQL statement identifier
2D Invalid transaction termination
34 Invalid cursor name

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

39 External function call exception
40 Transaction rollback
42 Syntax error or access rule violation
44 WITH CHECK OPTION violation
51 Invalid application state
53 Invalid operand or inconsistent specification
54 SQL or product limit exceeded
55 Object not in prerequisite state
56 Miscellaneous SQL or product error
57 Resource not available or operator intervention
58 System error

The SQLSTATE value of HY000 is defined as a provider-specific error. An SQLSTATE of 08S01 (connection exception with a
subclass code of S01) also indicates a provider-specific error. This means the SQLCODE should be looked up in the driver-specific
documentation included with the OLE DB Provider for DB2.

If the SQLSTATE does not indicate a driver-specific error when the OLE DB Provider for DB2 passes back an SQLSTATE of 08S01, it
indicates a network error. For example, an SQLCODE of -603 is a provider-specific error that is mapped to
DB2OLEDB_COMM_HOST_CONNECT_FAILED in the db2oledb.h include file supplied with the OLE DB Provider for DB2. Errors
with an SQLSTATE of 08S01 are documented in the db2oledb.h include file (the SQLCODE value) which is located on the Host
Integration Server 2000 CD-ROM in the SDK\Include subdirectory.

The following steps are useful in researching an error. Start by reading the provided error text returned by the OLE DB Provider
for DB2. In some cases, the error text provides very limited useful information. For example, error text from an SQLCODE of -603
states the following:

The next step is to lookup the SQLSTATE to determine the source of the error. Is the error a DB2 error, a network client error, or an
OLE DB Provider error? An SQLSTATE of 08S01 is defined as follows:

This definition is intended to inform the user, administrator, or developer that the error is one related to the OLE DB Provider's
underlying network client.

Unfortunately, many of the SQLSTATE codes returned by the OLE DB Provider for DB2 are DB2 errors and are not documented in
the OLE DB Provider for DB2 on-line help.

The SQLSTATE of HY000 is defined as a provider-specific error. An SQLSTATE of 08S01 also indicates a provider-specific error.
This means the SQLCODE should be looked up in the provider-specific documentation included with the OLE DB Provider for
DB2.

If the SQLSTATE does not indicate a driver-specific error, then the SQLCODE should be looked up in the appropriate DB2 manual
for the target platform. For example, an SQLCODE of -603 is documented in Appendix B, SQLCODEs and SQLSTATEs, in the
AS/400 Advanced Series DB2 for AS/400 SQL Programming, Version 4, Document Number SC41-5611-00 published by IBM. An
SQLCODE of -603 corresponds to SQLSTATE 23515 in the DB2 for OS/400 error code list. For example, the explanation for this
SQLCODE is as follows:

When the SQLSTATE and the SQLCODE definitions documented in these appendices create a mismatch with the actual errors
returned, this usually indicates a provider-specific error condition.

A final step to understand an error is to check the db2oledb.h file. This file is not installed by the Host Integration Server or Host
Integration Client setup program, but can be found on the Host Integration Server 2000 product CD ROM in the SDK\Include
subdirectory. An SQLCODE (for example, -603) can be looked up by searching the right-most column of the db2oledb.h file for a
value near to 603. In this case, one will see a comment "/* -600 */" and can then count down three additional lines to line number
603. The internal error code -603 is defined as follows:

Test connection failed because of an error in initializing provider.
Could not connect to specified host.

Communication link failure.

Unique index cannot be created because of duplicate keys.

Unfortunately, this error text is not further defined anywhere in the software or documentation provided to the customer. This
particular error usually indicates a problem with the configuration parameters or the connection string passed.

DB2OLEDB_COMM_HOST_CONNECT_FAILED

Microsoft Host Integration Server 2000

ODBC Drivers
The Microsoft® ODBC Driver for DB2 enables users to access IBM Data Base 2 (DB2) from within an ODBC-aware application.
ODBC defines a standard set of interfaces that provide access to disparate databases. The ODBC Driver for DB2 combines the data
access of ODBC with the underlying Microsoft Distributed Relational Database Architecture (DRDA) Application Requester also
used by the Microsoft OLE DB Provider for DB2. Using this combination of technologies, the ODBC Driver for DB2 can provide
database access to IBM's Distributed Relational Database Architecture and IBM DB2.

Organizations have invested in secure, robust, enterprise-wide data storage and management systems. DRDA is a set of rules for
distributing or extending relational data from one computer to another, such as a server computer to an IBM DB2 database server
running on a mainframe or an AS/400 computer. By combining the ODBC and DRDA architectures, Microsoft allows
organizations to preserve their investments in an existing data management infrastructure, while extending data access to all
enterprise-wide DB2 data sources.

The ODBC Driver for DB2 can be used interactively or from an application program to issue SQL statements and execute DB2
stored procedures. From Microsoft Excel, users can import DB2 tables into worksheets and use Excel graphing tools to analyze the
data. From Microsoft Access, users can import from and export to DB2. With Microsoft Internet Information Server (IIS),
developers can publish DB2-stored information to users through a Web browser.

This section contains:

Goals of the ODBC Driver for DB2
ODBC Driver for DB2 Architecture
Platforms Supported by the ODBC Driver for DB2
ODBC Driver for DB2 Requirements
Configuring ODBC Data Sources
Creating Packages for Use with the ODBC Driver for DB2
ODBC Conformance
Programming Considerations Using the ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Goals of the ODBC Driver for DB2
Relational database management systems (RDBMS) are one of the major sources of mission-critical information in today's
enterprise organizations. Relational database technology enables departments and individual users to save their information in
centrally-managed database stores that can be easily maintained by the organization's information systems group.

IBM DB2 is a popular RDBMS for a significant number of enterprise customers. Customers need a cost-effective and manageable
means to integrate DB2 with Microsoft SQL Server, Microsoft Internet Information Server (IIS), and Microsoft Office applications.
The goal of Microsoft ODBC Driver for DB2 is to provide customers and solution providers with the means to integrate desktop
database applications with this wealth of data residing on IBM DB2 database systems.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ODBC Driver for DB2 Architecture
The Microsoft® ODBC Driver for DB2 is an ODBC-compliant database driver for Windows 95, Windows 98, and Windows NT that
lets your existing ODBC applications access data residing in IBM DB2 database servers without changing any code. The ODBC
Driver for DB2 can connect ODBC-compliant applications with DB2 data sources using the underlying Microsoft Distributed
Relational Database Architecture (DRDA) Application Requester. The ODBC application connects to the ODBC Driver for DB2.
These ODBC requests are processed by the underlying Microsoft DRDA Application Requester. The data is then passed by an SQL
interface to the DB2 data store.

The ODBC Driver for DB2 shares the same DRDA Application Requester that is used by the Microsoft OLE DB Provider for DB2.
The DRDA Application Requester is the network client that provides remote database access to DB2 across an SNA LU6.2 and
TCP/IP network.

The ODBC Driver for DB2 is compliant with the Microsoft Open Database Connectivity (ODBC) specification. ODBC is a
specification for an application program interface (API) that enables applications to access multiple database systems using SQL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Platforms Supported by the ODBC Driver for DB2
The Microsoft® ODBC Driver for DB2 supports popular DB2 platforms supported by the Microsoft OLE DB Provider for DB2
because both use the same underlying DRDA Application Requester (see Platforms Supported by the OLE DB Provider for DB2).

The ODBC Driver for DB2 offers network connectivity using SNA APPC LU6.2 connectivity, as well as native TCP/IP (not reliant on
any special IBM or third-party routers).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ODBC Driver for DB2 Requirements
The ODBC Driver for DB2 supplied with Host Integration Server 2000 supports the following operating systems:

Microsoft Windows® 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional
Microsoft Windows NT® Server 4.0 with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Enterprise Edition with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Terminal Server Edition with Service Pack 6a or later
Microsoft Windows NT Workstation 4.0 with Service Pack 6a or later
Microsoft Windows 98, Second Edition

The ODBC Driver for DB2 supplied with Host Integration Server 2000 Service Pack 1 adds support for the following additional
operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

The ODBC Driver for DB2 supplied with Host Integration Server 2000 supports only the Windows 2000 and Windows NT (Intel
version) platforms. Older versions of the ODBC Driver for DB2 that shipped with SNA Server 4.0 Service Pack 1 and later
supported Windows NT on the Alpha architecture.

The ODBC Driver for DB2 requires the following PC-to-host connectivity software when connecting over SNA using LU 6.2:

Microsoft Host Integration Server 2000
Microsoft Host Integration Server End-User Client
Microsoft Host Integration Server Administrator Client

Microsoft Host Integration Server 2000 can be installed on Windows 2000 Server, Windows 2000 Advanced Server,
Windows 2000 Datacenter Server, Windows NT 4.0 Server, Windows NT 4.0 Server Enterprise Edition, or Windows NT 4.0 Server
Terminal Server Edition.

The Microsoft Host Integration Server Administrator Client can be installed on Windows 2000 Professional or Windows NT 4.0
Workstation. The Microsoft Host Integration Server Administrator Client with Service Pack 1 can also be installed on Windows XP
Professional. The Administrator Client cannot be installed on Windows 98 or Windows 95.

The Microsoft Host Integration Server End-User Client can be installed on Windows 2000 Professional, Windows NT 4.0
Workstation, or Windows 98. The Microsoft Host Integration Server End-User Client with Service Pack 1 can also be installed on
Windows XP Professional, Windows XP Home Edition, or Windows Millennium Edition.

Note that the ODBC Driver for DB2 does not require any special host connectivity software when connecting directly to a host
system using TCP/IP.

The ODBC Driver for DB2 supplied with Microsoft Host Integration Server 2000 supports the following ADO versions:

ADO version 2.5. The Microsoft Host Integration Server 2000 data access features require the runtime libraries for ADO
version 2.5. These libraries must be installed prior to installing the ODBC Driver for DB2. On Windows 2000, these ADO
libraries are installed as part of the Windows 2000 operating system. On Windows NT 4.0 and Windows 98, these library
files must be installed by running the Microsoft Data Access Components (MDAC) version 2.5 runtime package available as
downloadable software from the Microsoft Universal Data Access Web site at
http://go.microsoft.com/fwlink/?LinkId=12749.
A version of the ADO 2.5 SDK is included in the Microsoft Data Access SDK which is available as a part of the Windows 2000
Platform SDK. These downloadable SDKs are available from the Microsoft Windows 2000 Web site at
http://go.microsoft.com/fwlink/?LinkId=12752.

http://go.microsoft.com/fwlink/?LinkId=12749
http://go.microsoft.com/fwlink/?LinkId=12752
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring ODBC Data Sources
A data source associates a particular ODBC driver with the data to be accessed through that driver. Data source information must
be configured for each DB2 system that is to be accessed using the ODBC Driver for DB2. The default parameters for the ODBC
Driver for DB2 are used for the data source only when these parameters are not configured for each data source.

An ODBC data source name (DSN) can be one of the following types:

User - A data source local to a computer and accessible only by the current user that created the data source.
System - A data source local to a computer but not dedicated to a specific user, so any user with appropriate privileges can
access a system DSN. A System data source is visible to all users on a computer, including Windows NT services.
File - A data source stored in a file that can be shared among all users who have the same ODBC drivers installed. These
data sources need not be dedicated to a specific user or local to a computer.

User and System data sources are stored in the registry. File data sources are stored as files with a file extension of dsn. File DSNs
can be stored in any location on the file system including remotely-mounted shares. By default, File DSNs are stored in the
following location:

C:\Program Files\Common Files\ODBC\Data Sources

ODBC data sources can be configured using the ODBC Data Source Administrator. On Windows 2000, a shortcut to the ODBC
Data Source Administrator is located in the Control Panel under Administrative Tools as Data Sources (ODBC). On
Windows NT 4.0, a shortcut to the ODBC Data Source Administrator is located in the Control Panel as Data Sources (ODBC).
On Windows 98, a shortcut to the ODBC Data Source Administrator is located in the Control Panel as ODBC Data Sources
(32bit).

The NewSnaDS.exe utility provided as part of the ODBC Driver for DB2 enables users to create and modify ODBC data sources.
This tool makes calls to the ODBC Data Source Administrator application to provide these functions.

The NewSnaDS tool is installed in the system folder below the subdirectory where Microsoft Host Integration Server 2000 is
installed. The default location where this tool is installed is the following:

C:\Program Files\Host Integration Server\system\NewSnaDS.exe

A shortcut for using this tool to create or modify ODBC data sources is added to the Programs menu under
Host Integration Server\Data Integration with a name of ODBC Data Sources. This shortcut is created when the Microsoft
Host Integration Server 2000 or the Host Integration Client 2000 are first installed and support for data access is selected.

Several options are available for creating new data sources or modifying existing data sources for use with the ODBC Driver for
DB2:

Select the ODBC Data Sources shortcut under the Programs\Host Integration Server\Data Integration menu to start
the NewSnaDS tool.
Run the ODBC Data Source Administrator directly from the Control Panel.

The following steps describe how to configure a data source for use with the ODBC Driver for DB2 using the NewSnaDS tool:

1. Click the Start button, point to Programs, and then point to Host Integration Server.
2. Point to Data Integration, and then click ODBC Data Sources to run the NewSnaDS tool.
3. Select the tab for the ODBC data source type to be created or modified: User DSN, System DSN, or File DSN.
4. If you are modifying an existing data source for the ODBC Driver for DB2, select the data source from the list box and click

the Configure button.
If you are creating a new data source, click the Add button, select the Microsoft ODBC Driver for DB2 from the list of drivers,
and click the Finish button.

5. Data source information specific to the ODBC Driver for DB2 is configured using the Microsoft ODBC Driver for DB2
Configuration dialogs. Type the appropriate information into the various fields in the tabbed dialog box and clicking the OK
button to return to the main ODBC Data Source Administrator application.

6. Configure other ODBC parameters not specific to the ODBC Driver for DB2 in the ODBC Data Source Administrator and click
the OK button to save the data source.

The Microsoft ODBC Driver for DB2 Configuration dialog box contains five tabs, which are described in the following topics.

This section contains:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

General
Connection
Security
Target Database
Locale
Configuration Property Mappings Between the ODBC Driver for DB2 and the OLE DB Provider for DB2

Microsoft Host Integration Server 2000

General
The General tab allows the user to configure the data source name required to connect to DB2. For the Microsoft ODBC Driver for
DB2 supplied with Host Integration Server 2000, the General tab contains the following fields:

Para
meter

Comments

Data
Sourc
e Na
me

A blank field for specifying the name of the data source. Enter a string that identifies this ODBC data source.

The data source is a required parameter that is used to define the data source. The ODBC driver manager uses this attribut
e value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file, which is stored in C:\Program Files\Common Files\ODBC\Data Sources.

Descri
ption

A blank field to provide a comment describing this ODBC data source. The description is an optional parameter and may b
e left blank.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Connection
The Connection tab allows the user to configure the basic attributes required to connect to a data source. For the Microsoft
ODBC Driver for DB2, the Connection tab has the following fields:

Par
am
eter

Comments

Net
wor
k tr
ans
por
t

An option button (radio button) is used to select the network transport. Valid options are APPC Connection (SNA LU 6.2) or
TCP/IP Connection.

For the default, APPC Connection, the values for APPC local LU alias, APPC remote LU alias, and APPC Mode Name are requi
red.

For TCP/IP Connection, the values for IP address and Network port are required.

APP
C lo
cal
LU
alia
s

When APPC Connection is selected, this field is the name of the local LU alias configured in Host Integration Server.

APP
C re
mot
e L
U al
ias

When APPC Connection is selected, this field is the name of the remote LU alias configured in Host Integration Server.

APP
C m
ode
na
me

When APPC Connection is selected, this field is the APPC mode and must be set to a value that matches the host configurati
on and SNA server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INT
ERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRD
B (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are
also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BA
TCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

The default is typically QPCSUPP.

IP a
ddr
ess

When TCP/IP Connection is selected as the network transport, this field indicates the IP address of the host DB2 server.

Net
wor
k p
ort

When TCP/IP Connection is selected as the network transport, this field indicates the TCP/IP port used for communication wi
th the target DB2 DRDA service.

The default is IP port 446.

The Connection tab also includes a Test connection button that may be used to test the connection parameters. A connection
can only be tested after all of the required parameters for the Connection tab and other ODBC data source parameters are
configured properly. When this button is clicked, a session is established with the remote DB2 system using ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Security
The Security tab allows the user to configure optional attributes used to restrict connections to a data source.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2000, the Security tab has the following fields:

Param
eter

Comments

Authe
nticati
on

An option button (radio button) is used to select the type of authentication. Valid options are Use this username or Use
single signon.

For the default Use this username option, the value for the username is required.

Use th
is user
name

When this option is selected, authentication is based on the username entered in the textbox. A valid user name is normall
y required to access data on DB2.

A user name can remain optionally in the DSN. The ODBC Driver for DB2 will prompt the user at run time to enter a valid
password. Additionally, the prompt dialog will enable the user to override the user name that is stored in the DSN.

Use si
ngle si
gnon

An option button to select whether single sign-on or a specific user name should be used. Single sign-on is an optional H
ost Security feature.

Single sign on enables the administrator to create data source definitions that isolate the logon process from the end user
. The user context for single sign on is the user context associated with the SNA DB2 Service. When running on Windows
95 or Windows 98, the user context is associated with the currently logged-on user.

For the ODBC Driver for DB2 in SNA Server 4.0, the Security tab has the following fields:

Parame
ter

Comments

Use sin
gle sign
on

An option button to select whether single sign-on or a specific user name should be used. Single sign-on is an optional
SNA Server Host Security feature.

Single sign on enables the administrator to create data source definitions that isolate the logon process from the end us
er. The user context for single sign on is the user context associated with the SNA DB2 Service. When running on Windo
ws 95 or Windows 98, the user context is associated with the currently logged-on user.

User Na
me

The user name to use if the Use single sign-on option button is not selected. A valid user name is normally required to
access data on DB2.

A user name can remain optionally in the DSN. The ODBC Driver for DB2 will prompt the user at run time to enter a vali
d password. Additionally, the prompt dialog will enable the user to override the user name that is stored in the DSN.

Databa
se is Re
ad-only

This option creates a read-only data source. A user has read access to objects such as tables, and cannot do update oper
ations (INSERT, UPDATE, or DELETE, for example).

The AS/400 computer is case sensitive with regard to user IDs and passwords. When connecting to DB2 for OS/400, user names
and passwords must be in uppercase. The AS/400 only accepts a DB2 for OS/400 user ID and password in uppercase. If a DB2 for
OS/400 connection fails due to incorrect authentication, the ODBC driver resends the authentication, forcing the user ID and
password into uppercase.

When connecting to DB2 on IBM mainframes, user names and passwords can be of mixed case; the mainframe is not case
sensitive. The ODBC driver sends these values in uppercase.

DB2 Universal Database (UDB) for Windows NT is case sensitive. The user ID is stored in uppercase. The password is stored in
mixed case and users must enter the password in the correct case. The ODBC driver sends the password exactly in the case
entered by the user. The user ID should contain only the user name, not a combination of the Windows NT domain name and user
name.

It is possible to connect using a specific User name and Password defined in DB2 on the host system or use the single sign-on
feature (often referred to as integrated Windows security). If a specific DB2 User name and Password is to be used, this
information may need to be saved to a data source name (DSN) file. The User name and Password are saved in clear text in the
DSN file or to registry keys if a System or User DSN is selected. For security reasons when using file DSNs, it is imperative that the
DSN file be protected with an Access Control List (ACL) that restricts access to only authorized users. System and User DSNs are
preferred for security reasons as long as the locations where these ODBC DSNs are stored in the registry have appropriate

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

security protections. Saving the User name and Password in the DSN also forces this DSN to be updated whenever the Password
associated with the User name is changed. So for a variety of reasons, specifying a User name and Password is not the preferred
authentication option. Using the Single sign-on option is the preferred method for authentication.

Microsoft Host Integration Server 2000

Target Database
The Target Database tab allows the user to configure required, as well as optional, attributes used to define the target DB2
system.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2000, the Target Database tab has the following fields:

Para
met
er

Comments

Initi
al ca
talo
g

This parameter is used as the first part of a three-part fully qualified DB2 table name. It is referred to by different names de
pending on the DB2 platform.

In DB2 for OS/390 and DB2 for MVS, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the
accessible locations. To find the location of the DB2 that you need to connect to on these platforms, ask the administrator to
look in the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 i
nstallation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the W
RKRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created us
ing the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

Pack
age
colle
ctio
n

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind D
B2 packages. This can be the same as the default schema.

The ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dynamic a
nd static SQL statements. The ODBC driver creates packages dynamically in the location that the user points to using the Pa
ckage Collection parameter.

By default, the ODBC Driver for DB2 automatically creates one package in the target collection, if one does not exist, at the ti
me the user issues their first SQL statement. The package is created with GRANT EXECUTE authority to a single <AUTH_ID>
only, where AUTH_ID is based on the user ID value configured in the data source. The package is created for use by SQL sta
tements issued under the same isolation level based on the Isolation Level value specified in the connection.

Problems can arise in multi-user environments. For example, if a user specifies a Package Collection value that represents a
DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages to oth
er users (the PUBLIC group on the DB2 system, for example), then the package is created only for use by this user. This mea
ns that other users may be unable to access the required package. The solution is for an administrative user with package a
dministrative rights to create a set of packages for use by all users (see
Creating Packages for Use with the ODBC Driver for DB2).

The ODBC Driver for DB2 supplied with Host Integration Server 2000 includes a tool program for use by administrators to
create packages. The crtpkg.exe tool is a Windows GUI application for use by the administrator to create packages. This tool
can be run using a privileged User ID to create packages in collections accessed by multiple users. This utility will create a s
et of packages and grant EXECUTE privilege on these packages to the PUBLIC group representing all users on the DB2 syste
m. The packages (see descriptions under the SQL_ATTR_TXN_ISOLATION connection attribute) created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400)
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package, (MSCS001)
REPEATABLE READ package, (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB2 for OS/400 QSYS2.SYSPACKA
GE, and the DB2 Universal Database (UDB) SYSIBM.SYSPACKAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integratio
n Server CrtPkg utility to make them compatible with Host Integration Server 2000. The package names changed from SNA
Server 4.0.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Defa
ult s
che
ma

The name of the Collection where the ODBC Driver for DB2 looks for catalog information. The Default schema is the “SCHE
MA” name for the target collection of tables and views. The ODBC driver uses the Default Schema to restrict results sets for
popular operations, such as enumerating a list of tables in a target collection (for example, ODBC Catalog SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or “owner”).

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at log on. For DB
2/400, the driver uses QSYS2 if no collection is found matching the USER_ID value. This default is inappropriate in many ca
ses so it is essential that the Default Schema value in the data source be defined.

Alter
nate
TP N
ame

The Alternate Transaction Program (TP) Name property represents the default transaction program name for the DB2 DRD
A application server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alter
nate TP name.

Host Integration Server 2000 uses the Alternate TP Name in the off-line demo configuration (DRDADEMO.UDL). In that cas
e, the Alternative TP Name is set to 0X07F9F9F9.

Distr
ibut
ed tr
ansa
ctio
ns

When this option is checked, two-phase commit (distributed unit of work) is enabled. Distributed transactions are handled
using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Service. This
option works only with DB2 for OS/390 V5R1 or later. This option also requires that the SNA LU 6.2 service is selected as th
e network transport and Microsoft Transaction Server (MTS) is installed.

Proc
ess b
inar
y as
char
acter

When this option is checked, it indicates that binary data fields should be processed as characters. This option treats binary
data type fields (with a CCSID of 65535) as character data type fields on a per-data source basis. The Host CCSID and PC Co
de Page values are required input and output parameters. See the Locale tab.

For the ODBC Driver for DB2 in SNA Server 4.0, the Target Database tab has the following fields:

Paramet
er

Comments

Remote
Databas
e Name

This parameter is used as the first part of a three-part fully qualified DB2 table name. It is referred to by different name
s depending on the DB2 platform.

In DB2 for OS/390 and DB2 for MVS, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all
the accessible locations. To find the location of the DB2 that you need to connect to on these platforms, ask the adminis
trator to look in the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR pan
el in the DB2 installation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking th
e WRKRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be cr
eated using the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

Package
Collectio
n

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bi
nd DB2 packages. This can be the same as the default schema.

The ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyna
mic and static SQL statements. The ODBC driver creates packages dynamically in the location that the user points to us
ing the Package Collection parameter.

By default, the ODBC Driver for DB2 automatically creates one package in the target collection, if one does not exist, at
the time the user issues their first SQL statement. The package is created with GRANT EXECUTE authority to a single <
AUTH_ID> only, where AUTH_ID is based on the user ID value configured in the data source. The package is created for
use by SQL statements issued under the same isolation level based on the Isolation Level value configured in the data
source.

A problem can arise in multi-user environments. For example, if a user specifies a Package Collection value that repres
ents a DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the pack
ages to other users (the PUBLIC group on the DB2 system, for example), then the package is created for use only by thi
s user. This means that other users may be unable to access the required package. The solution is for an administrative
user, with package administrative rights (for example., PACKADM authority in DB2 for OS/390), to create a set of packa
ges for use by all users.

The ODBC Driver for DB2 supplied with SNA Server 4.0 includes two utility programs for use by administrators to crea
te packages. The crtpkg.exe tool is a command line utility for the administrator to create packages. The crtpkgw.exe tool
is a Windows GUI utility used for the same purpose. Either of these utilities can be run using a privileged user ID to cre
ate packages in collections accessed by multiple users. These utilities will create a sets of packages (see descriptions un
der the Default Isolation parameter) and grant EXECUTE privilege on these packages to the PUBLIC group representing
all users on the DB2 system. The packages created are as follows:

AUTOCOMMIT package (SNANC001)
READ_UNCOMMITTED package (SNACH001)
REPEATABLE_READ package, (SNARR001)
READ_COMMITTED package, (SNACS001)
SERIALIZABLE or REPEATABLE_READ package (SNAAL001)

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE and DB2 for OS/400 QSYS.SYSPA
CKAGE.

Default
Schema

The name of the Collection where the ODBC Driver for DB2 looks for catalog information. The Default Schema is the “S
CHEMA” name for the target collection of tables and views. The ODBC driver uses Default Schema to restrict results set
s for popular operations, such as enumerating a list of tables in a target collection (for example, ODBC Catalog SQLTabl
es).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or “owner”).

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at log on. Fo
r DB2/400, the driver uses QSYS2 if no collection is found matching the USER_ID value. This default is inappropriate in
many cases so it is essential that the Default Schema value in the data source be defined.

Default I
solation

This parameter determines the isolation level provided for the data source in cases of simultaneous access to DB2 obje
cts by multiple applications. Valid settings for the default isolation level are:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresp
onds to Read Committed (RC).

NC—No Commit. In DB2 for OS/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level
corresponds to No Commit (NC).

UR—Uncommitted Read. In DB2 for OS/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation
level corresponds to Read Uncommitted.

RS—Read Stability. In DB2 for OS/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, this isolation level c
orresponds to Repeatable Read.

RR—Repeatable Read. In DB2 for OS/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level
corresponds to Serializable (Isolated).

This parameter defaults to NC.

Note that the ALL isolation level is not allowed. Users should set the isolation level to RS because it has the equivalent
meaning and is defined in DB2 (ALL is not defined in any DB2 system).

Bind Typ
e

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type a
re:

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The NORM package binding option is designed to provide reasonable performance and maximum compatibility with d
ifferent versions of DB2: DB2 for MVS, DB2 for OS/390, DB2 UDB, and DB2 for OS/400. Optionally, administrators can
use the FAST method when running the Create Package utility and creating packages in many target collections. The F
AST option should not be used with DB2 for MVS and DB2 UDB for Windows NT as a result of known incompatibilities.

The default value for this parameter is NORM.

This parameter is currently supported only by the Japanese version of the ODBC Driver for DB2 client included with SN
A Server 4.0 with Service Pack 2 or later and by the ODBC Driver for DB2 client included with all versions of SNA Serve
r 4.0 with Service Pack 3 or later.

Alternat
e TP Na
me

The Alternate Transaction Program (TP) Name property represents the default transaction program name for the DB2
DRDA application server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use
an alternate TP name.

Auto co
mmit

A check box indicating whether auto commit mode is enabled. This parameter indicates whether changes to data will b
e automatically committed or require a separate manual commit request.

This parameter allows for implicit COMMIT on all SQL statements. In auto-commit mode, every database operation is a
transaction that is committed when performed. This mode is suitable for common transactions that consist of a single
SQL statement. It is unnecessary to delimit or specify completion of these transactions. No ROLLBACK is allowed when
using Auto Commit mode.

The default value for this parameter is true.

Convert
all binar
y data ty
pes as ch
aracter d
ata types

This option treats binary data type fields (with a CCSID of 65535) as character data type fields on a per-data source bas
is. The Host CCSID and PC Code Page values are required input and output parameters. See the Locale tab.

Note that two-phase commit (distributed unit of work) and distributed transactions are not supported by the ODBC Driver for
DB2 supplied with SNA Server 4.0.

Microsoft Host Integration Server 2000

Locale
The Locale tab allows the user to configure the parameters used for character conversion between the client and the DB2 server.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2000, the Locale tab has the following fields:

Para
met
er

Comments

Host
CCSI
D

The coded character set identifier (CCSID) matching the DB2 data as represented on the remote computer. This property is r
equired when processing binary data as character data. Unless the Process Binary as Character value is set, character data is
converted based on the DB2 column CCSID and configured ANSI code page.

This parameter defaults to U.S./Canada (37).

PC c
ode
pag
e

This parameter indicates the personal computer code page to use. It is required when processing binary data as character d
ata. Unless the Process Binary as Character value is set, character data is converted based on the default ANSI code page co
nfigured in Windows.

The default value for this property is Latin 1 (1252).

Two versions of the Locale tab are possible for the ODBC Driver for DB2 supplied with SNA Server 4.0 depending the Service Pack
installed.

For the ODBC Driver for DB2 in SNA Server 4.0 Service Pack 2, the Locale tab has the following fields:

Parameter Comments
Host Local
e

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID
property is required when processing binary data as character data. Unless the Process Binary as Character value is c
onfigured, character data is converted based on the DB2 column CCSID and default ANSI code page.

This parameter defaults to U.S./Canada (37).

Use defaul
t code pag
e for local
e

A checkbox indicating whether the default ANSI code page for Windows should be used for the personal computer l
ocale. If this default setting is not selected, then the user may choose any supported personal computer Code Page

PC Locale When the previous check box is not selected, this parameter indicates which personal computer Code Page to use.

This parameter is required when processing binary data as character data. Unless the Process Binary as Character val
ue is configured, character data is converted based on the default ANSI code page configured in Windows. The defau
lt value for this property is Latin 1 (1252).

For the ODBC Driver for DB2 included with the Japanese version of SNA Server 4.0 Service Pack 2 and for the ODBC Driver for
DB2 included with all versions of the SNA Server 4.0 Service Pack 3 or later, the Locale tab has the following fields:

Par
am
ete
r

Comments

Ho
st C
CSI
D

The character code set identifier (CCSID) group box allows you to select the appropriate CCSID values matching the DB2 data
as represented on the remote computer.

Sin
gle
CC
SID

The coded character set identifier (CCSID) matching the DB2 data as represented on the remote computer. This property is re
quired when processing binary data as character data. Unless the Process Binary as Character value is set, character data is c
onverted based on the DB2 column CCSID and configured ANSI code page.

This parameter defaults to U.S./Canada (37).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Mi
xed
CC
SID

The mixed coded character set identifier (MCCSID) matching the DB2 data as represented on the remote computer. This prop
erty is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte character se
t (DBCS) data. When accessing DB2 for OS/390 or DB2 for MVS, a value must be specified for MCCSID if the "MIXED DATA" f
ield (7) of the DB2 installation panel for Application Programming Defaults (DSNTIPF) is set to "YES."

The following values for MCCSID are supported by the ODBC Driver for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is currently supported only by the Japanese version of the ODBC Driver for DB2 client included with SNA Ser
ver 4.0 with Service Pack 2 or later and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with S
ervice Pack 3 or later.

Gra
phi
cs
CC
SID

The graphics coded character set identifier (GCCSID) matching the DB2 data represented on the remote computer. This prop
erty is required when accessing DB2 databases configured to support mixed single-byte and double-byte character set data.
When accessing DB2 for OS/390 or DB2 for MVS, a value must be specified for MCCSID if the "MIXED DATA" field (7) of the
DB2 installation panel for Application Programming Defaults (DSNTIPF) is set to "YES."

The following values for GCCSID are supported by the ODBC Driver for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is currently supported only by the Japanese version of the ODBC Driver for DB2 client included with SNA Ser
ver 4.0 with Service Pack 2 or later and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with S
ervice Pack 3 or later.

PC
Loc
ale

This parameter indicates the personal computer Code Page to use. It is required when processing binary data as character da
ta. Unless the Process Binary as Character value is set, character data is converted based on the default ANSI code page confi
gured in Windows.

The default value for this property is Latin 1 (1252).

Click the OK or Cancel button when data entry is finished. If you click the OK button, the values specified become the defaults
when an application connects to this data source. These default values can be changed at any time using this procedure to
reconfigure the data source. An ODBC application can override these defaults by connecting to the data source using a connection
string with alternate values.

Microsoft Host Integration Server 2000

Configuration Property Mappings Between the ODBC Driver
for DB2 and the OLE DB Provider for DB2
The following tables compare the configuration parameters used by the ODBC Driver for DB2 and the OLE DB Provider for DB2.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2000, the configuration parameters compare as follows:

Microsoft ODBC Driver for DB2 Microsoft OLE DB Provider for DB2
General
Data Source Name Data Source
Data Source Description
Connection
Connection Network Transport Library
APPC Connection SNA
TCP/IP Connection TCPIP
APPC local LU Alias APPC Local LU Alias
APPC remote LU Alias APPC Remote LU Alias
APPC mode name APPC Mode Name
IP address Network Address
Network port Network Port
Security
Use this username
User Name User ID
Use Single Sign-on Integrated Security.
Target Database
Initial catalog Initial Catalog
Package collection Package Collection
Default schema Default Schema
Alternate TP name Alternate TP Name
Distributed transactions Distributed transactions
Process binary as character Process binary as character
Locale Tab
Host CCSID Host CCSID
PC code page PC Code Page

For the Microsoft ODBC Driver for DB2 in SNA Server 4.0, the configuration parameters compare as follows:

Microsoft ODBC Driver for DB2 Microsoft OLE DB Provider for
DB2

General
Data Source Name Data Source
Data Source Description
Connection
Connection Network Transport Library
LU 6.2 Connection SNA
TCP/IP Connection TCPIP
Local APPC LU Alias APPC Local LU Alias
Remote APPC LU Alias APPC Remote LU Alias
APPC Mode Name APPC Mode Name
IP Address Network Address
Network Port Network Port
Security
Use this username Persist Security Info
User Name User ID
Password Password

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Use Single Sign-on
Database is read-only
Target Database
Remote Database Name Initial Catalog
Package Collection Package Collection
Default Schema Default Schema
Default Isolation Default Isolation Level
Alternate TP Name Alternate TP Name
BindType BindType
Auto Commit Auto Commit Mode
Convert Binary Data Types as Character Data Types Process Binary as Character
Locale
Host Locale Host CCSID
Use default code page for locale
PC Locale PC Code Page
Locale (SNA Server 4.0 Service Pack 2 Japanese version and SNA Server 4.0 Service Pac
k 3 or later)

System CCSID Host CCSID
Mixed CCSID Mixed CCSID
Graphics CCSID Graphics CCSID
PC Locale PC Code Page

Microsoft Host Integration Server 2000

ODBC Connection String Attributes
The ODBC SQLBrowseConnect and SQLDriverConnect functions allow passing in a connection string containing a series of
attribute/value pairs to the ODBC Driver Manager to establish a connection with a data source. An example of a connection string
:

Some ODBC attributes are required as part of the connection string when used with the ODBC Driver for DB2.

The following tables compare the configuration parameters used by the ODBC Driver for DB2 and the ODBC attribute keywords
that are supported by the OLE DB Driver for DB2 as part of the passed-in connection string.

For the ODBC Driver for DB2 in Host Integration Server 2000, these attribute keywords compare as follows:

Microsoft
ODBC Driv
er for DB2

ODBC At
tribute K
eyword

Comments

General Ta
b

Data Source
Name

DSN Required parameter.

Data Source
Description

DESC

Connectio
n Tab

Connection NTL Required parameter.
APPC conne
ction

NTL=SNA

TCP/IP conn
ection

NTL=TCPI
P

APPC local L
U alias

LLU Applicable only if SNA (an APPC connection) is used for the network transport library (NTL=SNA).

APPC remot
e LU alias

RLU Applicable only if SNA (an APPC connection) is used for the network transport library (NTL=SNA).

APPC mode
name

MN Applicable only if SNA (an APPC connection) is used for the network transport library (NTL=SNA).

IP address NA Applicable only if TCPIP (a TCP/IP connection) is used for the network transport library (NTL=TCPIP).
Network po
rt

NP Applicable only if TCPIP (a TCP/IP connection) is used for the network transport library (NTL=TCPIP).

Security Ta
b

Use this use
rname

User Name UID
 PWD The Password parameter is not on the Security Tab and is not configurable from the ODBC Administrator

tool used to configure ODBC data sources. This parameter can only be preset using the ODBC connection
string. Most applications will prompt the user for this parameter.

Use single si
gn-on

 Not applicable

Target Dat
abase Tab

Initial Catalo
g

RDB Required parameter.

Package Col
lection

PC Required parameter.

"DSN=MYDATA;NTL=SNA;LLU=Local;RMU=Remote;RDB=BigData;PC=QSYS2;
DS=QSYS2;RO=false;UID=myname;PWD=Secret"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Default Sche
ma

DS Required parameter.

Alternate TP
Name

TPN

Distributed t
ransactions

RUW

Process bina
ry as charact
er

BAC

Locale Tab
Host CCSID CCSID Required parameter.
PC code pag
e

CP Required parameter.

For the ODBC Driver for DB2 supplied with Host Integration Server 2000, these attribute keywords compare as follows:

Microsoft ODBC Driver for DB2 ODBC Attr
ibute Key
word

Comments

General Tab
Data Source Name DSN Required parameter.
Data Source Description DESC
Connection Tab
Connection NTL Required parameter.
LU 6.2 Connection NTL=SNA
TCP/IP Connection NTL=TCPIP
Local APPC LU Alias LLU Applicable only if SNA is used for the network transport library.
Remote APPC LU Alias RLU Applicable only if SNA is used for the network transport library.
APPC Mode Name MN Applicable only if SNA is used for the network transport library.
IP Address NA Applicable only if TCPIP is used for the network transport library.
Network Port NP Applicable only if TCPIP is used for the network transport library.
Security Tab
Use this username
User Name UID
Password PWD
Use Single Sign-on Not applicable
Database is read only RO
Target Database Tab
Remote Database Name RDB Required parameter.
Package Collection PC Required parameter.
Default Schema DS Required parameter.
Default Isolation DIL
Alternate TP Name TPN
BindType BT This parameter is only supported by the ODBC Driver included with S

NA Server 4.0 Service Pack 2 Japanese version and SNA Server 4.0 S
ervice Pack 3 or later.

Auto Commit ACM
Convert Binary Data Types as Character Data T
ypes

BAC

Locale Tab
Host Locale CCSID Required parameter.
Use default code page for locale
PC Locale CP Required parameter.
Locale (SNA Server 4.0 Service Pack 2 Japa
nese version and SNA Server 4.0 Service Pa
ck 3 and later)

System CCSID CCSID Required parameter.

Mixed CCSID MCCSID Required parameter.
Graphics CCSID GCCSID Required parameter.
PC Locale CP Required parameter.

Microsoft Host Integration Server 2000

Creating Packages for Use with the ODBC Driver for DB2
The ODBC Driver for DB2, which is implemented as an IBM Distributed Relational Database Architecture (DRDA) Application
Requester, uses packages to issue SQL statements and call DB2 stored procedures. There is a configuration parameter that the
ODBC Driver for DB2 uses to identify a location in which to create and store DB2 packages. The ODBC Driver for DB2 will create
packages dynamically in the location to which the user points using the Package Collection parameter. This location may be
configured using the Target Database tab from the Microsoft ODBC Data Source Administrator tool or can be passed as part of
the ODBC connection string as an attribute keyword and argument. The attribute keyword for Package Collection is PC.

There are two package creation options:

1. The ODBC Driver for DB2 will auto-create one package for the currently-used isolation level at run-time if no package
already exists. This auto-create process may fail if the user account does not have authority to create packages.

2. An administrator or user can manually creates all four packages (five packages on DB2/400) for use with all isolation levels
and for use by all users (the PUBLIC group on DB2 representing all users) or a specific set of users. The ODBC Driver for DB2
includes a utility program for use by users with appropriate administrative privilege that will create these packages and
grant access to the PUBLIC group for this purpose.

However, some users may not have the security level when manually creating packages to GRANT authority to the packages to
other users (grant authority to the DB2 PUBLIC group representing all users, for example). This can be a problem if two or more
users with different user IDs try to access a single collection of packages. The first user that created the packages will have access
to the packages, but the second user likely will not. The Host Integration Server 2000 CD-ROM includes a program for use by an
administrator or a user with appropriate privileges to create packages. This tool can be run using a privileged User ID to create
packages in collections accessed by multiple users. The Create Packages for DB2 utility, CrtPkg, is a GUI-based tool included with
Host Integration Server 2000 for creating packages for use with DB2. This tool (CrtPkg.exe) is installed in the System folder below
the subdirectory where the Microsoft Host Integration Server 2000 has been installed. The default location where this tool is
installed is the following:

Program Files\Host Integration Server\system\CrtPkg.exe

A shortcut for this tool is added to the Programs Menu off the Start button on the Windows Taskbar under the
Host Integration Server\Data Integration folder with a name of Packages for DB2. This shortcut is created when the
Microsoft Host Integration Server or the Host Integration Client are first installed and support for Data Access is checked.

This tool will create a set of packages and grant EXECUTE privileges on these packages to the PUBLIC group. The PUBLIC group on
DB2 systems is a default group that represents all DB2 users. The following packages are created:

AUTOCOMMITTED package (MSNC001) is only applicable on DB2/400)
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package (MSCS001)
REPEATABLE READ package (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

The descriptive process name used by the CrtPkg utility of each package corresponds with the isolation levels defined in the ANSI
SQL standard. The table below indicates how these packages correspond with the terms used by IBM for isolation levels in DB2
documentation.

Package Description Packa
ge Na
me

IBM Documentation

AUTOCOMMITTED (Note that this applies only to DB2
/400 and does not correspond with an ANSI SQL isola
tion level

MSNC
001

COMMIT(*NONE) (NC).

This isolation level is used in DB2/400 auto-commit mode only an
d has no corresponding isolation level on other DB2 platforms or i
n ANSI SQL.

READ UNCOMMITTED MSUR
001

UNCOMMITTED READ (UR).

This isolation level corresponds with ANSI SQL READ UNCOMMIT
TED.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

READ COMMITTED MSCS0
01

CURSOR STABILITY (CS).

This isolation level corresponds with ANSI SQL READ COMMITTED.

REPEATABLE READ MSRS0
01

READ STABILITY (RS).

This isolation level corresponds with ANSI SQL REPEATABLE READ.

SERIALIZABLE MSRR
001

REPEATABLE READ (RR).

This isolation level corresponds with ANSI SQL SERIALIZABLE.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integration
Server CrtPkg utility to make them compatible with Host Integration Server 2000. The package names used by the ODBC Driver
for DB2 on SNA Server 4.0 are not compatible with the ODBC Driver for DB2 included with Host Integration Server. On SNA
Server 4.0, these packages used different names as follows:

These Isolation Levels are described in detail under Support for Isolation Levels Using the ODBC Driver for DB2. These Isolation
Levels are also described under the ADO IsolationLevel property. Note that the AUTOCOMMITTED package (MSNC001) is only
created on DB2 for OS/400.

Note that the CrtPkg tool creates this set of packages and grants EXECUTE privileges to PUBLIC. There may be cases for security
reasons where EXECUTE privileges to this set of packages should be restricted to a certain group of users or specific users. In
these cases, execution privileges on these created packages will need to be modified on the host system.

The CrtPkg utility will create all of these packages inside the Collection that is specified in the Package Collection property in the
datalink file, or in the connection string. If the user does not have the appropriate authority to create packages in the specified
Collection, or if the specified Collection does not exist, the ODBC Driver for DB2 will return an error.

In the case of DB2 on MVS or OS/390, the normal error text returned if the user does not the appropriate authority would be as
follows:

In the case of DB2/400, the normal error text returned if the user does not the appropriate authority would be as follows:

In the case of DB2/400, the normal error returned if the collection does not exist would be as follows:

There are two authorities required to execute the create package process on OS/390 or MVS using the CrtPkg utility:

AUTOCOMMITTED package (SNANC001) only applicable on DB2/400
READ UNCOMMITTED package (SNACH001)
READ COMMITTED package, (SNACS001)
REPEATABLE READ package, (SNARR001)
SERIALIZABLE package (SNAAL001)

A SQL error has occurred. Please consult the documentation for your specific DB2 version for
a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -567.

A SQL error has occurred. Please consult the documentation for your specific DB2 version for
a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -805.

Failed to create AUTOCOMMITTED (NC) package. RETCODE=-99.
SQL Error: Code=-204, State=42704, Error Text= A SQL error has occurred. Please consult the
documentation for your specific DB2 version for a description of the associated Native Error
and SQL State. SQLSTATE: 42704, SQLCODE: -204

GRANT BINDADD TO <authorization ID>
GRANT CREATE IN COLLECTION <collection ID> TO <authorization ID>

The "authorization ID" is the user who needs the permission to create the packages. The "collection ID" is the name of the
Collection, which the user specifies in the datalink file for the Package Collection property. This Collection should be a valid
Collection within the DB2.
If an administrator executes the above statements on behalf a non-privileged user, then this non-privileged user can then run the
CrtPkg utility. Once run, the CrtPkg process will create four sets of packages (one for each of the four isolation levels supported
on DB2 for MVS or OS/390) for use by "all" (PUBLIC) users of the Microsoft data access features.

The example below illustrates this process on DB2 for MVS or DB2 for OS/390.

Grant rights to run the CrtPkg utility to authorization ID WNW999

Run the CrtPkg utility using authorization ID WNW999 (see the output from CrtPkg below)

In order to execute the CrtPkg utility on DB2/400, a user ID must have one of the following authorities:

*CHANGE authority on the DB2 collection
*ALL authority on the DB2 collection

If the user merely has *USE authority or if the user has *EXCLUDE authority, the Create Package process will fail.

There are several steps required to change user authority on a DB2/400 collection (AS/400 library): From interactive SQL
(STRSQL command) while logged in as user with administrative privileges, create a new collection. This command can also be
issued using ADO, OLE DB, and ODBC. However, most administrators typically create collections from the AS/400 console since
the administrator must be logged in at the console to issue the Command Language (CL) command with which to change the
user authority on the collection.

From the AS/400 command console, issue the CL WRKOBJ command with the <collection ID> as a parameter.

GRANT BINDADD TO WNW999
GRANT CREATE IN COLLECTION MSPKG TO WNW999

Beginning creation process
Initializing environment...
Connecting to the host...
Connection established.
Start package creation process...
Creating READ UNCOMMITTED package...
READ UNCOMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSUR001 granted to PUBLIC
Creating READ COMMITTED package...
READ COMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSCS001 granted to PUBLIC
Creating REPEATABLE READ package...
REPEATABLE READ package created.
Package creation succeeded.
EXECUTE privilege on MSRS001 granted to PUBLIC
Creating SERIALIZABLE package...
SERIALIZABLE package created.
Package creation succeeded.
EXECUTE privilege on MSRR001 granted to PUBLIC
Free statement handles...
Disconnecting...
Disconnected
End of package creation.
Creation process has completed

CREATE COLLECTION <collection ID>

WRKOBJ <collection ID>

The "collection ID" is the name of the Collection, which the user specifies in the datalink file for the Package Collection property.
This Collection should be a valid Collection within DB2. The Work with objects screen appears. Place the cursor on the *PUBLIC
Object Authority line and change the authority from *USE to *ALL.

If an administrator executes the above statements on behalf a non-privileged user, then this non-privileged user can then run the
CrtPkg utility. Once run, the CrtPkg process will create five sets of packages (one for each of the five isolation levels supported on
DB2/400) for use by "all" (PUBLIC) users of the Microsoft data access features. On DB2/400, five packages are created including
the AUTOCOMMITTED packages.

The example below illustrates this process on DB2/400.

Grant rights to run the CrtPkg utility to authorization ID WNW999

Run the CrtPkg utility (see the output from CrtPkg for DB2/400 below)

CrtPkg allows a user to create a new DSN file or load a data source and modify an existing DSN file for connection configuration
information. The File menu of CrtPkg has a New option used for creating a new ODBC DSN file or UDL File and a Load Data
Source option to load an existing DSN or UDL file. The File menu Edit Data Source option allows a user to access and modify the
parameters for a data source similar to using the NewSnaDS.exe tool. The Run menu option is used to create packages.

When using the create package tool, if the package collection specified does not exist, then DB2 returns SQLCODE -805.

When using auto-create packages, if a package collection is not specified or the package collection does not exist, then during the
"auto-create" package process, the consumer application will receive SQLSTATE HY000 and SQLCODE -385. The SQLSTATE
HY000 is defined as a driver-specific error. The -385 Error Return Code is not a SQLCODE but rather a DDM DRDA AR (DB2 client)
return code. This error code is defined as DDM_VALNSPRM with the following associated text string:

CREATE COLLECTION MSPKG
WRKOBJ MSPKG

Beginning creation process
Initializing environment...
Connecting to the host...
Connection established.
Start package creation process...
Creating AUTOCOMMITTED (NC) package...
AUTOCOMMITTED (NC) package created.
Package creation succeeded.
EXECUTE privilege on MSNC001 granted to PUBLIC
Creating READ UNCOMMITTED package...
READ UNCOMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSUR001 granted to PUBLIC
Creating READ COMMITTED package...
READ COMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSCS001 granted to PUBLIC
Creating REPEATABLE READ package...
REPEATABLE READ package created.
Package creation succeeded.
EXECUTE privilege on MSRS001 granted to PUBLIC
Creating SERIALIZABLE package...
SERIALIZABLE package created.
Package creation succeeded.
EXECUTE privilege on MSRR001 granted to PUBLIC
Free statement handles...
Disconnecting...
Disconnected
End of package creation.
Creation process has completed

The ODBC Driver for DB2 client error codes are defined in the db2oledb.h file located on the Host Integration Server 2000 CD-
ROM.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integration
Server CrtPkg utility to make them compatible with Host Integration Server 2000.

SNA Server 4.0 with Service Pack 3 came with two similar utilities for creating packages: CRTPKGW.EXE (a command-line tool)
and CRTPKGW.EXE (a GUI-based tool).

"The parameter value is not supported by the target system."

Microsoft Host Integration Server 2000

ODBC Conformance
The Microsoft® ODBC Driver for DB2 supports ODBC 2.x and ODBC 3.x functions. SQL grammar conformance varies, depending
on the version of the DB2 database that is accessed. The following sections list the ODBC functions and attributes supported by
the Microsoft ODBC Driver for DB2.

This section contains:

Support for ODBC 2 Core Functions
Support for ODBC 2 Level 1 Functions
Support for ODBC 2 Level 2 Functions
Support for ODBC 3 Functions
Support for ODBC Connection Attributes
Support for ODBC Statement Attributes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for ODBC 2 Core Functions
The following table lists the ODBC 2.x Core functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 2.x Core Functions Functions Supported by the Microsoft ODBC Driver for DB2
SQLAllocConnect Yes
SQLAllocEnv Yes
SQLAllocStmt Yes
SQLBindCol Yes
SQLCancel Yes
SQLColAttributes Yes
SQLConnect Yes
SQLDescribeCol Yes
SQLDisconnect Yes
SQLError Yes
SQLExecDirect Yes
SQLExecute Yes
SQLFetch Yes
SQLFreeConnect Yes
SQLFreeEnv Yes
SQLFreeStmt Yes
SQLGetCursorName Yes
SQLNumResultCols Yes
SQLPrepare Yes
SQLRowCount Yes
SQLSetCursorName Yes
SQLSetParam In ODBC 2.0, the ODBC 1.0 SQLSetparam function was replaced by SQLBindParameter.
SQLTransact Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for ODBC 2 Level 1 Functions
The following table lists the ODBC 2.x level 1 functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 2.x Level 1 Functions Functions Supported by the Microsoft ODBC Driver for DB2
SQLBindParameter Yes
SQLColumns Yes
SQLDriverConnect Yes
SQLGetConnectOption Yes
SQLGetData Yes
SQLGetFunctions Yes
SQLGetInfo Yes
SQLGetStmtOption Yes
SQLGetTypeInfo Yes
SQLParamData Yes
SQLPutData Yes
SQLSetConnectOption Yes
SQLSetStmtOption Yes
SQLSpecialColumns Yes
SQLStatistics Yes
SQLTables Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for ODBC 2 Level 2 Functions
The following table lists the ODBC 2.x level 2 functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 2.x Level 2 Functions Supp
orted

Functions Supported by the Microsoft ODBC Driver for DB2

SQLBrowseConnect No
SQLColumnPrivileges No
SQLDataSources Yes. This function is actually supported by the ODBC Driver Manager.
SQLDescribeParam No
SQLDrivers Yes. This function is actually supported by the ODBC Driver Manager.

SQLExtendedFetch Yes, but supports forward scrolling only.
SQLForeignKeys No
SQLMoreResults Yes
SQLNativeSQL Yes
SQLNumParams Yes
SQLParamOptions Yes
SQLPrimaryKeys Yes, but SQL grammar conformance varies depending on the version of the DB2 database b

eing accessed.
SQLProcedureColumns No
SQLProcedures Yes.
SetPos Yes
SQLSetScrollOptions Yes
SQLTablePrivileges No

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for ODBC 3 Functions
The following table lists the ODBC 3.0 functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 3.0 Functions Functions Supported by the Microsoft ODBC Driver for DB2
SQLAllocHandle Yes
SQLBulkOperations No
SQLCloseCursor Yes
SQLColAttribute Yes
SQLCopyDesc Yes
SQLEndTran Yes
SQLFetchScroll Yes, but supports forward scrolling only.
SQLFreeHandle Yes
SQLGetConnectAttr Yes
SQLGetDescField Yes
SQLDescRec Yes
SQLGetDiagField Yes
SQLGetDiagRec Yes
SQLGetEnvAttr Yes
SQLGetStmtAttr Yes
SQLRowCount Yes.
SQLSetConnectAttr Yes
SQLSetDescField Yes
SQLSetDescRec Yes
SQLSetEnvAttr Yes
SQLSetStmtAttr Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for ODBC Connection Attributes
The following table lists the ODBC connection attribute support using the Microsoft ODBC Driver for DB2. Note that the
connection attributes in this list use the ODBC Version 3.0 attribute names, rather than the older ODBC 1.0 names.

ODBC Connection Attribute ODBC Version Attribute Supported by the Microsoft ODBC Driver for DB2
SQL_ATTR_ACCESS_MODE 1.0 Yes
SQL_ATTR_ASYNC_ENABLE 3.0 No
SQL_ATTR_AUTO_IPD 3.0 No
SQL_ATTR_AUTOCOMMIT 1.0 Yes
SQL_ATTR_CONNECTION_DEAD 3.5 No
SQL_ATTR_CONNECTION_TIMEOUT 3.0 No
SQL_ATTR_CURRENT_CATALOG 2.0 Yes
SQL_ATTR_ENLIST_IN_DTC 3.0 Yes
SQL_ATTR_ENLIST_IN_XA 3.0 No
SQL_ATTR_LOGIN_TIMEOUT 1.0 No
SQL_ATTR_METADATA_ID 3.0 No
SQL_ATTR_ODBC_CURSORS 2.0 Yes, handled by ODBC Driver Manager.
SQL_ATTR_PACKET_SIZE 2.0 No
SQL_ATTR_QUIET_MODE 2.0 Yes
SQL_ATTR_TRACE 1.0 Yes, handled by ODBC Driver Manager.
SQL_ATTR_TRACEFILE 1.0 Yes, handled by ODBC Driver Manager.
SQL_ATTR_TRANSLATE_LIB 1.0 No
SQL_ATTR_TRANSLATE_DLL 1.0 No
SQL_ATTR_TRANSLATE_OPTION 1.0 No
SQL_ATTR_TXN_ISOLATION 1.0 Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for ODBC Statement Attributes
The following table lists the ODBC statement attribute support using the Microsoft ODBC Driver for DB2. Note that the statement
attributes in this list use the ODBC Version 3.0 attribute names, rather than the older ODBC 1.0 names.

ODBC Statement Attribute ODBC Version Attribute Supported by the Microsoft ODBC Driver for DB2
SQL_ATTR_APP_PARAM_DESC 3.0 Yes
SQL_ATTR_APP_ROW_DESC 3.0 Yes
SQL_ATTR_ASYNC_ENABLE 1.0 No
SQL_ATTR_CONCURRENCY No
SQL_ATTR_CURSOR_SCROLLABLE 3.0 No
SQL_ATTR_CURSOR_SENSITIVITY 3.0 No
SQL_ATTR_CURSOR_TYPE 1.0 Yes, but the ODBC Driver for DB2 supports a forward only cursor type.
SQL_ATTR_ENABLE_AUTO_IPD 3.0 No
SQL_ATTR_FETCH_BOOKMARK_PTR 3.0 No
SQL_ATTR_IMP_PARAM_DESC Yes, handled by ODBC Driver Manager.
SQL_ATTR_IMP_ROW_DESC Yes, handled by ODBC Driver Manager.
SQL_ATTR_KEYSET_SIZE 1.0 No
SQL_ATTR_MAX_LENGTH 1.0 No
SQL_ATTR_MAX_ROWS 1.0 No
SQL_ATTR_METADATA_ID 3.0 Yes
SQL_ATTR_NOSCAN 1.0 Yes
SQL_ATTR_PARAM_BIND_OFFSET_PTR 3.0 Yes
SQL_ATTR_PARAM_BIND_TYPE 3.0 Yes
SQL_ATTR_PARAM_OPERATION_PTR 3.0 Yes
SQL_ATTR_PARAM_STATUS_PTR 3.0 Yes
SQL_ATTR_PARAMS_PROCESSED_PTR 3.0 Yes
SQL_ATTR_PARAMSET_SIZE 3.0 Yes
SQL_ATTR_QUERY_TIMEOUT 1.0 No
SQL_ATTR_RETRIEVE_DATA 1.0 No
SQL_ATTR_ROW_ARRAY_SIZE 3.0 Yes
SQL_ATTR_ROW_BIND_OFFSET_PTR 3.0 Yes
SQL_ATTR_ROW_BIND_TYPE 1.0 Yes
SQL_ATTR_ROW_NUMBER 1.0 No
SQL_ATTR_ROW_OPERATION_PTR 3.0 No
SQL_ATTR_ROW_STATUS_PTR 3.0 Yes
SQL_ATTR_ROWS_FETCHED_PTR 3.0 Yes
SQL_ATTR_SIMULATE_CURSOR 1.0 No
SQL_ATTR_USE_BOOKMARKS 1.0 No

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Considerations Using the ODBC Driver for DB2
The Microsoft ODBC Driver for DB2 provides pass through support for SQL statements. No SQL parsing is provided. The user
must know what SQL syntax is supported for the target DB2 implementation. For information on what SQL syntax is supported,
see the specific DB2 SQL Reference and DB2 Application Programming and SQL Guide for the DB2-specific platform.

The ODBC Driver for DB2 does not parse the SQL statements to qualify table names. Consequently, users of the ODBC Driver for
DB2 must use either two-part or three-part (fully-qualified) object names when naming tables, views, and stored procedures in
DB2. A two-part table name would consist of the user ID and table, <UserID>.<Table>. One-part names (just the table name) will
not succeed unless the combination of the DB2 collection and schema name correspond directly to the ODBC User ID

The Microsoft ODBC Driver for DB2 does not insert the correct value for the fraction when using a parameterized insert with the
TIMESTAMP data type.

The Microsoft Data Access Components (MDAC) support the option of using a client cursor engine. This service component is
implemented as part of OLE DB, ADO, and Remote Data Services (RDS). When using ADO, a client cursor is enabled by setting the
CursorLocation property on the recordset to adUseClient. When using the ADO Client Cursor Engine with DB2 for OS/390, the
developer must configure the ODBC Driver for DB2 Auto Commit Mode property in the DSN or connection string to FALSE. This is
not required when connecting to DB2 for OS/400.

The ODBC Driver for DB2 included with Host Integration Server 2000 supports updating capabilities when used with a client
cursor engine and the following requirements are met:

To support updates (UPDATE, INSERT, and DELETE) , the values in at least one column in the target table must be unique.
The Auto Commit parameter must be set to FALSE when configuring the data source or when this parameter is passed as
part of a connection string.

Previous versions of the ODBC Driver for DB2 do not support any updating capabilities when used with a client cursor engine. In
other words, if a client cursor engine is enabled using RDS or ADO, the ODBC Driver for DB2 cannot be used to update data on
the host. The ADO recordset is treated as if it were read-only. When using the ADO Client Cursor Engine with DB2 for OS/390, the
developer must configure the ODBC Driver for DB2 Auto Commit parameter in the data source or connection string to FALSE.
This is not required when connecting to DB2 for OS/400.

When the intent is to update records with a server-side cursor, DB2 requires that the SQL SELECT statement also include the FOR
UPDATE option. For example, to select all records from the AUTHORS table in the DB2 collection called PUBS with an intent to
update requires the following SQL syntax:

When using DB2 for MVS V4R1 and DB2 for OS/400 V3R2, there are further requirements to indicate the columns that you
intend to update. For example, to update the AU_LNAME and AU_FNAME columns in the PUBS.AUTHORS table, the following SQL
syntax must be used:

The Microsoft ODBC Driver for DB2 provides support for distributed transactions and DRDA Distributed Unit of Work, and can
participate in a distributed transaction coordinated by Microsoft Distributed Transaction Coordinator. This feature is only available
when connecting to one of the following across an LU 6.2 network connection:

DB2 for OS/390 V5R1 or later.
DB2 for DB2/400 V4R3 or later.

This option also requires that the SNA LU 6.2 service is selected as the network transport and Microsoft Transaction Server (MTS)
is installed. The Microsoft ODBC Driver for DB2 does not support automatic transaction enlistment under Microsoft Transaction
Server.

Applications should not commit or roll back transactions by executing COMMIT or ROLLBACK statements using the SQLExecute
or SQLExecDirect ODBC functions. The effects of doing this are undefined and the ODBC Driver for DB2 no longer knows when a
transaction is active. Applications should call the SQLEndTran ODBC function instead.

Microsoft Visual Studio 6.0 offers a number of ADO data-bound controls, including a datagrid and the ADO Data Control. When

SELECT * FROM PUBS.AUTHORS FOR UPDATE

SELECT * FROM PUBS.AUTHORS FOR UPDATE OF AU_LNAME, AU_FNAME

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

using these ADO data controls, the developer must set the CursorLocation property on the recordset to adUseClient. Additionally,
when using these ADO data controls with DB2 for OS/390, the developer must set the ODBC Driver for DB2 Auto Commit
parameter in the data source or connection string to FALSE.

The Microsoft ODBC Driver for DB2 is not supported when used in conjunction with the Microsoft SQL Server 7.0 Replication
feature. In place of the ODBC driver, use the Microsoft OLE DB Provider for DB2.

Microsoft Query (MSQUERY) supplied with Excel and Office can be used to access ODBC data sources using the ODBC Driver for
DB2. When a data of a column defined with TIMESTAMP data type is updated using Microsoft Query, the microseconds portion of
the TIMESTAMP is not updated properly. The net result is that updating any TIMESTAMP value using Microsoft Query will cause
the loss of fractional seconds.

The Microsoft ODBC Driver for DB2 is not supported for use with the Microsoft ODBC .NET Data Provider. When accessing DB2
from ADO.NET, use the Microsoft OLE DB Provider for DB2 in conjunction with the Microsoft OLE DB .NET Data Provider.

This section contains:

Stored Procedure Support Using the ODBC Driver for DB2
Support for Isolation Levels Using the ODBC Driver for DB2
Code Page Support Using the ODBC Driver for DB2
Data Conversion Using the ODBC Driver for DB2
Floating Point Considerations Using the ODBC Driver for DB2
Usernames and Passwords Using the ODBC Driver for DB2
Errors Returned by the ODBC Driver for DB2
Troubleshooting the ODBC Driver for DB2

Microsoft Host Integration Server 2000

Stored Procedure Support Using the ODBC Driver for DB2
The Microsoft ODBC Driver for DB2 supports calling DB2 stored procedures. An application must use the CALL keyword before
the SQL statement in order to execute a stored procedure. When using ADO, a CommandType property of adCmdStoredProc
cannot be used for executing a stored procedure since ADO inserts an EXEC not CALL keyword before the command text. In order
to execute a stored procedure using ADO, the CommandType property should be set to adCmdText and the CALL keyword
should be used before the SQL statement containing the stored procedure to be executed.

When calling DB2 stored procedures using the ODBC Driver for DB2, the following limitations apply:

Binding output parameters of types REAL or DOUBLE are not supported.
Calling stored procedures when the parameter values contain CHAR Mixed or GRAPHIC (DBCS) data types are not
supported.
Calling a non-existent procedure causes error.
The ODBC Driver for DB2 does not return single or multiple result sets.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for Isolation Levels Using the ODBC Driver for DB2
The Microsoft ODBC Driver for DB2 provides flexibility in dealing with issues of isolation levels and transaction state. The ODBC
SQLSetConnectAttr function is used to set the isolation level that is to be used for a connection. This function would be called
with the attribute parameter set to SQL_ATTR_TXN_ISOLATION and the ValuePtr parameter pointing to an integer value
indicating the isolation level requested. This integer value is a 32-bit bitmask that sets the transaction isolation level for the
current connection.

The allowable values for isolation level (the ValuePtr parameter when calling SQLSetConnectAttr) can be determined by calling
SQLGetInfo with InfoType equal to SQL_TXN_ISOLATION_OPTION. The following table list the allowable values for isolation level
using the ODBC Driver for DB2 supplied with Host Integration Server.

ODBC Isolatio
n Level Attrib
ute

Description

SQL_TXN_REA
D_COMMITTED

When this attribute value is set, it isolates any data read from changes by others and changes made by others by
others cannot be seen. The re-execution of the read statement is affected by others. This does not support a repe
atable read.

This is the default value for isolation level

This isolation level is also called Cursor Stability (CS) in IBM DB2 documentation.

SQL_TXN_REA
D_UNCOMMIT
TED

When this attribute value is set, it does not isolate data read from changes by others and changes made by other
s by others can be seen. The re-execution of the read statement is affected by others. This does not support a rep
eatable read.

This isolation level is called Uncommitted Read (UR) in IBM DB2 documentation.

SQL_TXN_REPE
ATABLE_READ

When this attribute value is set, it isolates any data read from changes by others and changes made by others ca
nnot be seen. The re-execution of the read statement is affected by others. This supports a repeatable read.

This isolation level is called Read Stability (RS) in IBM DB2 documentation.

SQL_TXN_SERI
ALIZABLE

When this attribute value is set, it isolates any data read from changes by others and changes made by others by
others cannot be seen. The re-execution of the read statement is not affected by others. This supports a repeatabl
e read.

This isolation level is called Repeatable Read (RR) in IBM DB2 documentation.

The SQL_ATTR_TXN_ISOLATION attribute can be set only if there are no open transactions on the connection. An application must
call SQLEndTran to commit or roll back all open transactions on a connection, before calling SQLSetConnectAttr with this
option.

Some connection attributes support substitution of a similar value if the data source does not support the value specified in
ValuePtr. In such cases, the driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). To
determine the substituted value, an application calls SQLGetConnectAttr.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Code Page Support Using the ODBC Driver for DB2
When creating data sources or file DSNs for use with the ODBC Driver for DB2, the Host character code set identifier (CCSID)
should be configured in the data source to match the DB2 data as represented on the remote host computer. The Host CCSID
parameter defaults to EBCDIC U.S./Canada (37).

Depending on the version of Windows being used, to support specific code page conversions, you may need to install the
appropriate National Language Support (NLS) file for your locale.

On Windows 2000, the appropriate ANSI NLS file for your locale is installed automatically when you install a localized version of
Windows 2000.

On Windows NT 4.0, the appropriate ANSI NLS file for your locale is installed automatically when you install a localized version of
Windows NT or when you install the Windows NT Language Pack on a non-localized version of Windows NT. The Windows NT
Language Pack is available on the Windows NT 4.0 CD-ROM in the LANGPACK directory. You install the locale components of the
language pack as needed by either making a change in the Control Panel Locales applet or by installing one of the locale-specific
INF files.

On Windows 98 and Windows 95, the appropriate ANSI NLS file for your locale is installed automatically when you install a
localized version of Windows 98 or Windows 95.

The following sections discuss the character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host Integration
Server 2000.The The tables in these sections list the INF files by name that are required under Windows NT 4.0 for a specific
codepage (european.inf, for example). Typically you would install locales one at a time as needed.

This section contains:

ANSI Code Page Support Using the ODBC Driver for DB2
EBCDIC Code Page Support Using the ODBC Driver for DB2
ISO Code Page Support Using the ODBC Driver for DB2
DBCS Code Page Support Using the ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ANSI Code Page Support Using the ODBC Driver for DB2
IBM DB2 Universal Database for Windows NT and IBM DB2 Universal Database for AIX are frequently configured to use ANSI
code pages, for example ANSI 1253 (Greek). Host Integration Server 2000 includes support for some ANSI code pages for
purposes of ANSI-to-UNICODE-to-ANSI conversions when using the OLE DB Provider for DB2 or the ODBC Driver for DB2. These
ANSI code pages can be used when accessing IBM DB2 Universal Database on Windows NT and IBM DB2 ON AIX (not all of these
ANSI code pages are supported on IBM DB2 Universal Database for AIX).

The following table shows the ANSI character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host Integration
Server 2000.

Microsoft Display
Name

Microsoft NLS
Code Page

IBM C
CSID

Comments

ANSI - Arabic 1256 1256 On Windows NT 4.0, support for this NLS Code Page is installed using the arabic.inf
file from the Language Pack.

ANSI - Baltic 1257 1257 On Windows NT 4.0, support for this NLS Code Page is installed using the european
.inf file from the Language Pack.

ANSI - Cyrillic 1251 1251 On Windows NT 4.0, support for this NLS Code Page is installed using the cyrillic.inf
file from the Language Pack.

ANSI - Central Europ
e

1250 1250 On Windows NT 4.0, support for this NLS Code Page is installed using the european
.inf file from the Language Pack.

ANSI - Greek 1253 1253 On Windows NT 4.0, support for this NLS Code Page is installed using the greek.inf
file from the Language Pack.

ANSI - Hebrew 1255 1255 On Windows NT 4.0, support for this NLS Code Page is installed using the hebrew.i
nf file from the Language Pack.

ANSI - Latin I 1252 1252 Support for this codepage is normally installed as part of the operating system on
Windows 2000, Windows NT, Windows 98, and Windows 95.
On Windows NT 4.0, support for this NLS Code Page is installed using the us_eng.in
f file from the Language Pack.

ANSI - Turkish 1254 1254 On Windows NT 4.0, support for this NLS Code Page is installed using the turkish.in
f file from the Language Pack.

ANSI/OEM - Japanes
e Shift JIS

932 932 On Windows NT 4.0, support for this NLS Code Page is installed using the japanese.
inf file from the Language Pack.

ANSI/OEM - Korean 949 949 On Windows NT 4.0, support for this NLS Code Page is installed using the korean.in
f file from the Language Pack.

ANSI/OEM - Simplifi
ed Chinese GBK

936 936 On Windows NT 4.0, support for this NLS Code Page is installed using the exchsrvr.i
nf file from the Language Pack.

ANSI/OEM - Thai 874 874 On Windows NT 4.0, support for this NLS Code Page is installed using the thai.inf fil
e from the Language Pack.

ANSI/OEM - Traditio
nal Chinese Big5

950 950 On Windows NT 4.0, support for this NLS Code Page is installed using the tchinese.i
nf file from the Language Pack.

ANSI/OEM - Viet Na
m

1258 1258 On Windows NT 4.0, support for this NLS Code Page is installed using the vietnam.i
nf file from the Language Pack.

The Microsoft Display Name is the name found in the Windows 2000 or Windows NT definitions for these NLS files. The
Microsoft NLS Code Page column represents the code page number that is registered and associated with an ANSI-to-UNICODE
NLS resource file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when using the
ODBC Driver for DB2. When setting the Host CCSID or PC Code Page parameter using a connection string, the Microsoft NLS
number should be used for this parameter.

The IBM CCSID column represents the CCSID given to the ANSI code page in IBM publications, which for these supported ANSI
CCSIDs are the same as the Microsoft CCSID values. IBM lists their ANSI support in publications by referencing the display name
which for these ANSI code pages is the same as the Microsoft display name. The ODBC Driver for DB2 does not recognize or
display the IBM CCSID values when configuring data sources. The ODBC Driver for DB2 maps the Microsoft NLS numbers to ANSI
NLS files which correspond with the appropriate IBM CCSID numbers. The Microsoft ODBC Driver for DB2 passes the
corresponding IBM CCSID to the DB2 system at run time even though you configure the driver to use the Microsoft NLS number.

These are the only ANSI pages currently supported by the ODBC Driver for DB2 in Host Integration Server 2000 and in SNA
Server 4.0 with Service Pack 3 or later. IBM supports additional ANSI pages, however, the ANSI code pages listed in the table
above are the only cases where the Microsoft NLS pages and IBM ANSI code pages (CCSIDs) match.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EBCDIC Code Page Support Using the ODBC Driver for DB2
IBM DB2 for MVS, IBM DB2 for OS/390, and IBM DB2 for OS/400 are frequently configured to use EBCDIC code pages, for
example EBCDIC 875 (Greek Modern). Host Integration Server 2000 includes support for most EBCDIC code pages for purposes
of EBCDIC-to-UNICODE-to-ANSI, ANSI-to-UNICODE-to-EBCDIC, and EBCDIC-to-UNICODE-to-EBCDIC conversions when using
the OLE DB Provider for DB2 or the ODBC Driver for DB2. These EBCDIC code pages can be used when accessing IBM DB2 on a
variety of platforms (not all of these EBCDIC code pages are supported on all versions of IBM DB2).

The following table shows the EBCDIC character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host
Integration Server 2000.

Microsoft Display Name Microsoft NLS C
ode Page

IBM C
CSID

Comments

IBM EBCDIC - Arabic 20420 420 On Windows NT 4.0, support for this NLS Code Page is installed using the
arabic.inf file from the Language Pack.

IBM EBCDIC - Cyrillic (Russia
n)

20880 880 On Windows NT 4.0, support for this NLS Code Page is installed using the
cyrillic.inf file from the Language Pack.

IBM EBCDIC - Cyrillic (Serbia
n, Bulgarian)

21025 1025 On Windows NT 4.0, support for this NLS Code Page is installed using the
cyrillic.inf file from the Language Pack.

IBM EBCDIC - Denmark/Nor
way

20277 277 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Denmark/Nor
way (Euro)

1142 1142 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Finland/Swede
n

20278 278 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Finland/Swede
n (Euro)

1143 1143 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - France 20297 297 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - France (Euro) 1147 1147 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Germany 20273 273 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Germany (Euro
)

1141 1141 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Greek 20423 423 On Windows NT 4.0, support for this NLS Code Page is installed using the
greek.inf file from the Language Pack.

IBM EBCDIC - Greek (Modern
)

875 875 On Windows NT 4.0, support for this NLS Code Page is installed using the
greek.inf file from the Language Pack.

IBM EBCDIC - Hebrew 20424 424 On Windows NT 4.0, support for this NLS Code Page is installed using the
hebrew.inf file from the Language Pack.

IBM EBCDIC - Icelandic 20871 871 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Icelandic (Euro) 1149 1149 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - International 500 500 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - International (E
uro)

1148 1148 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Italy 20280 280 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Italy (Euro) 1144 1144 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Japan English/
Kanji (Extended)

939 939 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Japan English/
Kanji (Extended)

5035 5035 Support for this double-byte character set is supplied using TRNSDT.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

IBM EBCDIC - Japan Katakan
a/Kanji (Extended)

930 930 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Japan Katakan
a/Kanji (Extended)

5026 5026 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Japanese 931 931 Support for this double-byte character set is supplied using TRNSDT.
IBM EBCDIC - Korea (Extende
d)

933 933 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Latin America/
Spain

20284 284 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Latin America/
Spain (Euro)

1145 1145 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - Multilingual/R
OECE (Latin-2)

870 870 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - Simplified Chin
ese (Extended)

935 935 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Thai 20838 838 On Windows NT 4.0, support for this NLS Code Page is installed using the
thai.inf file from the Language Pack.

IBM EBCDIC - Traditional Chi
nese (Extended)

937 937 Support for this double-byte character set is supplied using TRNSDT.

IBM EBCDIC - Turkish (Latin-
3)

20905 905 On Windows NT 4.0, support for this NLS Code Page is installed using the
turkish.inf file from the Language Pack.

IBM EBCDIC - Turkish (Latin-
5)

1026 1026 On Windows NT 4.0, support for this NLS Code Page is installed using the
turkish.inf file from the Language Pack.

IBM EBCDIC - U.S./Canada 037 37 On Windows NT 4.0, support for this NLS Code Page is installed using the
us_eng.inf file from the Language Pack.

IBM EBCDIC - U.S./Canada (E
uro)

1140 1140 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

IBM EBCDIC - United Kingdo
m

20285 285 On Windows NT 4.0, support for this NLS Code Page is installed using the
european.inf file from the Language Pack.

IBM EBCDIC - United Kingdo
m (Euro)

1146 1146 On Windows NT 4.0, support for this NLS Code Page is installed using the
ibm_euro.inf file from the Language Pack.

The Microsoft Display Name is the name found in the Windows 2000 or Windows NT definitions for these NLS files. The
Microsoft NLS Code Page column represents the code page number that is registered and associated with an EBCDIC-to-
UNICODE NLS resource file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when
using the ODBC Driver for DB2. When setting the Host CCSID or PC Code Page parameter using a connection string, the Microsoft
NLS number should be used for this parameter.

The IBM CCSID column represents the CCSID given to the EBCDIC code page in IBM publications. IBM lists their EBCDIC support in
publications by referencing the display name which for these EBCDIC code pages is the same as the Microsoft display name. The
ODBC Driver for DB2 does not recognize or display the IBM CCSID values when configuring data sources using data links. The
ODBC Driver for DB2 maps the Microsoft NLS numbers to EBCDIC NLS files which correspond with the appropriate IBM CCSID
numbers. The Microsoft ODBC Driver for DB2 passes the corresponding IBM CCSID to the DB2 system at run time even though
you configure the driver to use the Microsoft NLS number.

These are the only EBCDIC pages currently supported by the ODBC Driver for DB2 in Host Integration Server 2000 and in SNA
Server 4.0 with Service Pack 3 or later. IBM supports additional EBCDIC pages, however, the EBCDIC code pages listed in the table
above are the only cases where the Microsoft NLS pages and IBM EBCDIC code pages (CCSIDs) match.

Microsoft Host Integration Server 2000

ISO Code Page Support Using the ODBC Driver for DB2
IBM DB2 Universal Database for Windows NT and IBM DB2 Universal Database for AIX are frequently configured for an ISO code
page, for example ISO 819 (Latin I). Host Integration Server 2000 includes support for some ISO code pages for purposes of ISO-
to-UNICODE-to-ANSI, ANSI-to-UNICODE-to-ISO, and ISO-to-UNICODE-to-ISO conversions when using the OLE DB Provider for
DB2 or the ODBC Driver for DB2. These ISO code pages can be used when accessing IBM DB2 Universal

The following table shows the ISO character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host Integration
Server 2000.

Microsoft Dis
play Name

Microsoft NL
S Code Page

IBM
CCSI
D

Comments

ISO 8859-1 Lati
n 1

28591 819 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 8859-2 Ce
ntral Europe

28592 912 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 8859-5 Cyr
illic

28595 915 On Windows NT 4.0, support for this NLS Code Page is installed using the cyrillic.inf file fro
m the Language Pack.

ISO 8859-6 Ara
bic

28596 1089 On Windows NT 4.0, support for this NLS Code Page is installed using the arabic.inf file fro
m the Language Pack.

ISO 8859-7 Gre
ek

28597 813 On Windows NT 4.0, support for this NLS Code Page is installed using the greek.inf file fro
m the Language Pack.

ISO 8859-8 He
brew

28598 916 On Windows NT 4.0, support for this NLS Code Page is installed using the hebrew.inf file fr
om the Language Pack.

ISO 8859-9 Tur
kish

28599 920 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 6937 Non-
Spacing Accent

20269 819 Note that ISO 6937 (CCSID 20269) is not supported by the ODBC Driver for DB2, but is disp
layed in the list of configuration options when creating or modifying data sources.

ISO 8859-15 La
tin 9 (Euro)

20865 923 NLS Code Page 819 with support for the Euro.
On Windows NT 4.0, support for this NLS Code Page is installed using the ibm_euro.inf file f
rom the Language Pack.

The Microsoft Display Name is the name found in the Windows NT Language Pack definitions for these NLS files.

The Microsoft NLS Code Page column represents the code page number that is registered and associated with an ISO-to-
UNICODE NLS resource file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when
using the ODBC Driver for DB2. When setting the Host CCSID or PC Code Page attribute/property using a connection string, the
Microsoft NLS number should be used for this parameter.

The IBM CCSID column represents the CCSID given to the ISO code page in IBM publications. IBM lists their ISO support in
publications by referencing the locale name (Bulgaria for ISO8859-5 and 915, for example) rather than simply using ISO 8859-5
Cyrillic as used by Microsoft. The ODBC Driver for DB2 does not recognize or display the IBM CCSID values when configuring data
sources. The ODBC Driver for DB2 maps the Microsoft NLS numbers to ISO NLS files which correspond with the appropriate IBM
CCSID numbers. The Microsoft ODBC Driver for DB2 passes the corresponding IBM CCSID to the DB2 system at run time even
though you configure the driver to use the Microsoft NLS number.

Note that IBM CCSID 819 is associated with both ISO 8859-1 Latin 1 and ISO 6937 Non-Spacing Accent. It is up to the user to
choose the standard ISO 8859-1 Latin 1 code page by selecting NLS code page 28591 or the modified code page ISO 6937 Non-
Spacing Accent by selecting NLS code page 20269. Note that ISO 6937 Non-Spacing Accent (CCSID 20269) is not currently
supported by the ODBC Driver for DB2, but is displayed in the configuration options when creating or modifying data sources.

IBM CCSID 916 (ISO 8859-8) supports Hebrew "visual sort order". IBM CCSID 920 (ISO 8859-8 derivation) supports Hebrew
"logical sort order". Although Microsoft supports the logical sort order with NLS 38598, this NLS file is only distributed with
Internet Explorer 5 or Windows 2000. The ODBC Driver for DB2 has not been tested using the ISO 8859-8 derivation matching
IBM CCSID 920 and does not support this configuration.

These are the only ISO pages currently supported in Host Integration Server 2000 and in SNA Server 4.0 with Service Pack 3 or
later. Microsoft supports a number of additional ISO pages. IBM also supports additional ISO pages. However, the code pages
listed in the table above are the only cases where the Microsoft NLS pages and IBM CCSIDs match.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DBCS Code Page Support Using the ODBC Driver for DB2
Support for Double-Byte Character String (DBCS) data is limited using the ODBC Driver for DB2. Conversions between DBCS and
ANSI code pages are not supported and conversions between DBCS and ISO code pages are not supported. Positioned updates
against DBCS EBCDIC implementations of DB2 are not supported.

The DB2 GRAPHIC data types (GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC) are not supported. These DB2 data types
support DBCS (not mixed) data. Mixed data types are supported using CHAR FOR MIXED DATA, VARCHAR FOR MIXED DATA, and
LONGVARCHAR FOR MIXED DATA.

Parameterized SQL statements or calling stored procedures when the parameter values contain Mixed or DBCS characters are not
supported.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Conversion Using the ODBC Driver for DB2
The design of ODBC APIs are similar to other ISAM APIs. The APIs are handle-based. After opening a file, the application can
determine the buffer size required to store a row, use the cursor APIs to move, and optionally retrieve one or more rows of data
using the row-level binding.

Data is converted to default SQL data types, as defined in ODBC, and listed in the following table:

DB2 dat
a type

Defaul
t SQL
Data T
ype

Exposed as N
ative Type in
SQLGetTypeI
nfo

Comments

BIGINT An eight-byte integer.

This data type is not supported by the ODBC Driver for DB2.

BLOB A Binary Large Object (BLOB) is a varying-length string that can be up to 2 gigabytes in length.
A BLOB is primarily intended to hold binary data.

This data type is not supported by the ODBC Driver for DB2.

CHAR (B
IT)

SQL_BI
NARY

No A fixed length (double-byte only) character string.

CHAR (S
BCS)

SQL_C
HAR

Yes A fixed-length SBCS character string.

CHAR (
MIXED)

SQL_C
HAR

No A fixed-length mixed (single and double-byte) character string.

CLOB A Character Large Object (CLOB) is a varying-length string that can be up to 2 gigabytes in leng
th. A CLOB is used to store large single-byte character set data. A CLOB is considered to be a ch
aracter string.

It is not supported by the ODBC Driver for DB2.

DATE SQL_TY
PE_DAT
E

Yes A ten byte date string.

This data type is converted to an SQL_DATE for use by ODBC.

DBCLOB A Double-Byte Character Large Object (DBCLOB) is a varying-length string of double-byte char
acters that can be up to 2 gigabytes in length (1,073,741,823 double-byte characters). A DBCLO
B is used to store large double-byte character set data. A DBCLOB is considered to be a graphic
string.

It is not supported by the ODBC Driver for DB2.

DECIMA
L

SQL_D
ECIMAL

Yes A packed decimal number.

DOUBLE SQL_D
OUBLE

Yes An 8-byte double-precision floating point number.

FLOAT SQL_FL
OAT

Yes An 8-byte double-precision floating point number. This data type is the same as a DOUBLE.

GRAPHI
C (DBCS)

SQL_C
HAR

No A fixed-length graphic string consisting of a sequence of double byte (DBCS only) character stri
ng data.

INTEGE
R

SQL_IN
TEGER

Yes A four-byte integer with a precision of 10 digits ranging in value from
-2,147,463,648 to +2,147,483,647.

LONG V
ARCHAR
(BIT)

SQL_BI
NARY

No A varying-length (double-byte only) character string.

LONG V
ARCHAR
(SBCS)

SQL_C
HAR

No A varying-length SBCS character string.

LONG V
ARCHAR
(MIXED)

SQL_C
HAR

No A varying-length mixed-character (single and double-byte) string.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LONG V
ARGRAP
HIC (DB
CS)

SQL_L
ONGV
ARCHA
R

No A varying-length graphic string consisting of a sequence of double byte (DBCS only) character s
tring data.

SMALLI
NT

SQL_S
MALLI
NT

Yes A SMALLINT (small integer) is a two-byte integer with a precision of 5 digits ranging from -32,7
68 to +32,767.

REAL SQL_RE
AL

Yes A 4-byte single-precision floating point number.

TIME SQL_TY
PE_TIM
E

Yes An 8-byte time string.

When using ActiveX Data Objects to return data from a DB2 TIME data type, ADO returns a DAT
ETIME value.

TIMEST
AMP

SQL_TY
PE_TIM
ESTAM
P

Yes A 26-byte string representing the date, time, and microseconds.

VARCH
AR (BIT)

SQL_BI
NARY

No A varying-length (double-byte only) character string.

VARCH
AR (SBC
S)

SQL_C
HAR

Yes A varying-length character string.

VARCH
AR (MIX
ED)

SQL_C
HAR

No A varying-length mixed (single and double-bye) character string.

VARGRA
PHIC (D
BCS)

SQL_V
ARCHA
R

No A varying-length graphic string consisting of a sequence of double byte (DBCS only) character s
tring data.

Not all platforms and versions of DB2 support all of the above-referenced data types. Consult your IBM SQL Reference for the
specific target and platform and version of DB2.

The ODBC Driver for DB2 exposes only selected DB2 data types as native types in the ODBC catalog function GetTypeInfo. For
example, the driver does not expose LONG CHARACTER or VARYING LONG CHARACTER types. Rather these types are exposed as
CHARACTER and VARYING CHARACTER respectively. Also, the driver exposes CHARACTER FOR SBCS DATA, CHARACTER FOR
MIXED DATA, and CHARACTER FOR BIT DATA as CHARACTER. The driver exposes VARYING CHARACTER FOR SBCS DATA,
VARYING CHARACTER FOR MIXED DATA, and VARYING CHARACTER FOR BIT DATA as VARYING CHARACTER. However, the
ODBC Driver for DB2 we will return these LONG and VARYING LONG data types if one reads a table with these data types. For
example, when reading a table with a variable character string of length greater than 254 bytes, the ODBC Driver for DB2 will
return a LONG VARCHAR.

The ODBC Driver for DB2 can read but not write to columns containing DB2 GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC
data types. These types are not exposed as native data types in the ODBC Catalog function GetTypeInfo.

The maximum length of the DB2 character and graphic string data types is dependent on the DB2 platform and version. For
example, a CHAR type on DB2 for OS/390 V5R1 has a maximum length of 254 bytes, whereas a CHAR type on DB2/400 V4R4
has a maximum length of 32,766 bytes.

Data conversions from a large numeric type to a small numeric type are supported (from DOUBLE to SINGLE and from INT to
SMALLINT, for example), however truncation and conversion errors can occur that will not be reported by the ODBC Driver for
DB2.

See the section on Code Page Support Using the ODBC Driver for DB2 for limitations on the support for the DB2 character data
types of subtype MIXED using the ODBC Driver for DB2.

Note that the ODBC Driver for DB2 does not support mapping DB2 bit strings and graphic data types to SQL_BINARY. The ODBC
Driver for DB2 does not support a binary-to-binary conversion. Consequently, CHAR FOR BIT DATA, VARCHAR FOR BIT DATA,
and LONGVARCHAR FOR BIT DATA can only be supported when the Process Binary As Character property is set to true when
configuring the ODBC data source or passed as part of the connection string. In this way, the ODBC client actually binds the
column as an ODBC character type, not as a binary type.

Using the ODBC Driver for DB2, certain conversions of strings from EBCDIC to ASCII and then back to EBCDIC are asymmetric,
and can result in strings that are different from the original. The EBCDIC specification contains ordinals for which there is no
defined character. The ODBC Driver for DB2 translates all such undefined characters to the question mark character (“?”). So when

ASCII strings containing these characters are converted back to EBCDIC, these undefined characters will be replaced with question
marks. To protect EBCDIC strings containing undefined characters, these fields should be tagged as binary strings and mapped by
the application.

The ANSI to EBCDIC character conversions affected include the following:

Character Value (Decim
al)

Character Value (Hexadecim
al)

ANSI Code Page 12
52

EBCDIC Character After Conversion to CCSI
D 37

128 0x80 Not used ?
130 0x82 Single low quote ?
131 0x83 Latin F with hook ?
132 0x84 Double low quote ?
133 0x85 Ellipsis ?
134 0x86 Dagger ?
135 0x87 Double dagger ?
136 0x88 Per mile ?
137 0x89 S with caron ?
138 0x8A Left angle ?
139 0x8B Ligature OE ?
140 0x8C Not used ?
142 0x8E Not used ?
145-156 0x91-0x9C ?
158-159 0x9E-0x9F ?

Microsoft Host Integration Server 2000

Floating Point Considerations Using the ODBC Driver for DB2
When real or double (synonymous with float) data is inserted into a DB2 table as a floating point data type, it is stored in scientific
notation. For example, FLOAT(1.1) would be stored as +1.10000E+000.

Care must be taken when executing SQL statements to make sure that the proper data type specified in the SQL statement
matches the values stored in DB2. For example, the following select statement would match values in DB2 stored as decimal 1.1

If the data in DB2 was stored as real numbers, there would not be a match since decimal 1.1 is stored as 1.1, not the
representation of +1.10000E+000. When DB2 parses and executes the SQL select statement, it interprets 1.1 as a decimal type.
When doing the select query, DB2 does not implicitly do the conversion to floating point. In this case, the SQL statement should
explicitly typecast the 1.1 so that DB2 looks for the correct format (the scientific notation format). The select query would look like
the following:

This will give the results expected. The SQL REAL function will convert the decimal 1.1 to the proper format before DB2 executes
the actual select.

SELECT * FROM TEST WHERE C1 = 1.1

SELECT * FROM TEST WHERE C1 = REAL(1.1)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Usernames and Passwords Using the ODBC Driver for DB2
When connecting to remote DB2 systems, most users must be authenticated by the remote system by passing a valid user ID and
password.

The AS/400 computer is case sensitive with regard to user ID and password; it accepts them only in uppercase. The ODBC Driver
for DB2 automatically converts the user ID and password into uppercase when connecting to a DB2 for OS/400 system.

The mainframe is not case sensitive; the user ID and password is acceptable in lowercase or uppercase.

DB2 Universal Database (UDB) for Windows NT is case sensitive; it supports mixed case passwords. Users must enter a password
in the correct mixed case. When entering a user ID, use only the Windows NT user name and not the Windows NT domain name.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Errors Returned by the ODBC Driver for DB2
The ODBC Driver for DB2 generates errors in these areas:

ODBC Driver Manager
Microsoft ODBC Driver for DB2
DRDA Application Requester network client

The ODBC Driver Manager is a shared library that establishes connections with ODBC drivers, submits requests to ODBC drivers,
and returns results to applications. An ODBC Driver Manager error has the following format:

For example:

If you encounter this type of error, check the last ODBC call the application made for possible problems. For further information
on ODBC Driver Manager errors, contact your ODBC application vendor, or refer to the ODBC documentation available from
Microsoft Press.

An error reported by the Microsoft ODBC Driver for DB2 has the following format:

For example:

If you encounter this type of error is, check the last ODBC call the application made for possible problems. For further information
on ODBC Driver errors, contact your ODBC application vendor, or refer to the ODBC documentation available from Microsoft
Press.

When using the Microsoft ODBC Driver for DB2, data source refers to the target database. An error that occurs in the data source
is returned with the data source name and in the following format:

For example, an ODBC application may receive the following message from a DB2 data source running on an IBM mainframe:

If you encounter this type of error, the application attempted to perform an operation not supported by the DB2 database system.
Check the DB2 database system documentation for more information, or consult your database administrator.

[vendor] [ODBC DLL] message

[Microsoft] [ODBC DLL] Driver does not support this function.

[Microsoft] [ODBC Driver for DB2] message

[Microsoft] [ODBC Driver for DB2] Invalid precision specified.

[Microsoft] [ODBC Driver for DB2] [data_source] message

[Microsoft] [ODBC Driver for DB2] [DB2] DB2-0919: specified length too long for CHAR column

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Troubleshooting the ODBC Driver for DB2
The Windows 2000 and Windows NT Event Viewer can be a useful tool for troubleshooting data access in some cases. The ODBC
Driver for DB2 does not issue events. However, when SNA (APPC/LU 6.2) is used for the network transport for the ODBC Driver
for DB2, the low-level SNA APPC transport issues events on the SNA connection.

The ODBC Driver for DB2 supplied with Host Integration Server 2000 has the ability to trace DRDA data flows when used over
TCP/IP. This capability is accessible from the SNADB2 Service tracing inside the Trace utility shipped with Host Integration
Server 2000.

This facility shows the same data as an APPC trace but without the control indicators (for example, What_Received). Socket errors
are traced and the error codes can be looked up in Winsock2.h supplied with the Win32 SDK.

When the ODBC Driver for DB2 passes an error code, the best source in which to look-up the meaning of the return code is often
the SQL Reference or SQL Messages and Codes Reference for the target SQL database. In this case, the target database is one of
the DB2 platforms supported by the ODBC Driver for DB2.

The ODBC Driver for DB2 maintains an internal integer variable named SQLCODE and an internal 5-byte character string variable
named SQLSTATE used to check the execution of SQL statements on DB2. SQLCODE is set by DB2 after each SQL statement is
executed. DB2 returns the following values for SQLCODE:

If SQLCODE = 0, execution was successful.
If SQLCODE > 0, execution was successful with a warning.
If SQLCODE < 0, execution was not successful.
SQLCODE = 100, "no data" was found. For example, a FETCH statement returned no data because the cursor was positioned
after the last row of the result table.

SQLSTATE is also set by DB2 after the execution of each SQL statement. Application programs can check the execution of SQL
statements by testing SQLSTATE instead of SQLCODE. SQLSTATE provides application programs with common codes for
common error conditions (the values of SQLSTATE are product-specific only if the error or warning is product-specific).
Furthermore, SQLSTATE is designed so that application programs can test for specific errors or classes of errors.

SQLSTATE values consist of a two-character class code value, followed by a three-character subclass code value. The first
character of an SQLSTATE value indicates whether the SQL statement was executed successfully or unsuccessfully (equal to or not
equal to zero, respectively). Class code values represent classes of successful and unsuccessful execution conditions. The following
SQLSTATE class codes are used by DB2:

Class Co
de

Description of Error Class

00 Successful completion. Execution of the SQL statement was successful and did not result in any type of warning or exc
eption condition.

01 Warning
02 No data
07 Dynamic SQL error
08 Connection exception
0A Feature not supported
0F Invalid token
21 Cardinality violation
22 Data exception
23 Constraint violation
24 Invalid cursor state
25 Invalid Transaction State
26 Invalid SQL statement identifier
2D Invalid transaction termination
34 Invalid cursor name
39 External function call exception
40 Transaction rollback
42 Syntax error or access rule violation
44 WITH CHECK OPTION violation
51 Invalid application state

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

53 Invalid operand or inconsistent specification
54 SQL or product limit exceeded
55 Object not in prerequisite state
56 Miscellaneous SQL or product error
57 Resource not available or operator intervention
58 System error

The SQLSTATE value of HY000 is defined as a driver-specific error. An SQLSTATE of 08S01 (connection exception with a subclass
code of S01) also indicates a driver-specific error. This means the SQLCODE should be looked up in the driver-specific
documentation included with the ODBC Driver for DB2.

If the SQLSTATE does not indicate a driver-specific error when the ODBC Driver for DB2 passes back an SQLSTATE of 08S01, it
indicates a network error. For example, an SQLCODE of -603 is a driver-specific error that is mapped to
DB2OLEDB_COMM_HOST_CONNECT_FAILED in the db2oledb.h include file supplied with the ODBC Driver for DB2. Errors with
an SQLSTATE of 08S01 are documented in the db2oledb.h include file (the SQLCODE value) which is located on the Host
Integration Server 2000 CD-ROM in the SDK\Include subdirectory.

The following steps are useful in researching an error. Start by reading the provided error text returned by the ODBC Driver for
DB2. In some cases, the error text may provide limited information. For example, error text from an SQLCODE of -603 reads:

The next step is to lookup the SQLSTATE to determine the source of the error. Is the error a DB2 error, a network client error, or an
ODBC Driver error? An SQLSTATE of 08S01 is defined as follows:

This definition is intended to inform the user, administrator, or developer that the error is one related to the ODBC driver’s
underlying network client.

Unfortunately, many of the SQLSTATE codes returned by the ODBC Driver for DB2 are DB2 errors and are not documented in the
ODBC Driver for DB2 online Help.

The SQLSTATE of HY000 is defined as a driver-specific error. An SQLSTATE of 08S01 also indicates a driver-specific error. In this
case, you should look up the SQLCODE in the driver-specific documentation included with the ODBC Driver for DB2.

If the SQLSTATE does not indicate a driver-specific error, you should look up the SQLCODE in the appropriate DB2 manual for the
target platform. For example, an SQLCODE of -603 is documented in Appendix B, “SQLCODEs and SQLSTATEs,” in the AS/400
Advanced Series DB2 for AS/400 SQL Programming, Version 4, document number SC41-5611-00 published by IBM. An
SQLCODE of -603 corresponds to SQLSTATE 23515 in the DB2 for OS/400 error code list. For example, the explanation for this
SQLCODE is:

When the SQLSTATE and the SQLCODE definitions documented in these appendixes create a mismatch with the actual errors
returned, it usually indicates a driver-specific error condition.

A final step in understanding an error is to check the db2oledb.h file. This file is not installed by Setup for the Host Integration
Client 2000, but is located on the CD-ROM for in the SDK\Include folder. An SQLCODE (for example, -603) can be found by
searching the rightmost column of the db2oledb.h file for a value near to 603. For instance, locate the comment "/* -600 */" and
then count down three additional lines to line number 603. The internal error code -603 is defined as follows:

Unfortunately, this error text is not further defined anywhere in the software or documentation provided to the customer. This
particular error usually indicates a problem with the configuration parameters or the connection string passed.

Test connection failed because of an error in initializing driver.
Could not connect to specified host.

Communication link failure.

Unique index cannot be created because of duplicate keys.

DB2OLEDB_COMM_HOST_CONNECT_FAILED.

Microsoft Host Integration Server 2000

ActiveX Controls
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about how to integrate your
applications using the Data Queue and Host File Transfer ActiveX® controls.

This section contains:

Using the Data Queue ActiveX Controls
Using the Host File Transfer ActiveX Control

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using the Data Queue ActiveX Control
A data queue is an AS/400 system object that is used for inter-process communications between multiple programs or jobs. Data
queues allow multiple programs to send and receive shared messages via a central repository without first writing the message
data to a physical database file. Typically, when a data record is read from the queue, the record is erased from the queue. The
advantage of using data queues to share data in comparison with using database files is that data queues require much less file
I/O and therefore improve overall system performance.

The Microsoft® Data Queue ActiveX® Control provides the ability to access AS/400 data queues. Host Integration Server 2000
provides this service via a single ActiveX Control that depends on other core Host Integration Server DLLs. Developers can move
part or all of their AS/400 applications from an AS/400 computer to a PC platform, while retaining access in the program running
on the PC to a remote data queue on the AS/400.

The Microsoft Data Queue ActiveX Control is implemented as a Distributed Data Management (DDM) Application Requester. The
Data Queue ActiveX Control uses the Data Queue interfaces in the DDM Level 4 architecture, which are extensions to the record-
level input/output (RLIO) protocol of IBM’s Distributed Data Management architecture.

DDM is a set of rules for distributing or extending data management from one computer to another, such as from a mainframe to
an AS/400 computer, or from one of these host computers to a server computer. By combining the Microsoft Data Queue ActiveX
Control and DDM architectures, Microsoft enables organizations to preserve their investments in existing data management
infrastructure, while extending universal file and data transfer to all enterprise-wide data sources.

The information in this section is required to develop applications with Host Integration Server 2000 that use ActiveX or COM
objects to transfer data from local machines to AS/400 Data Queues in a Systems Network Architecture (SNA) environment or
over TCP/IP using RLIO and DDM.

This section contains:

Advantages of Data Queues
Platforms Supported by the Data Queue ActiveX Control
Registry Settings Used by Data Queues
Object Support Using Data Queues
Programming Considerations Using the Data Queue ActiveX Control
Data Queue ActiveX Control Reference
Sample Programs for Data Queues

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Advantages of Data Queues
Data queues provide a fast means of inter-process communication, requiring low system overhead and minimal setup. AS/400
Data Queues are designed to provide a flexible, highly efficient, yet temporary means of inter-process communication. Data
queues are familiar to most AS/400 programmers as a simply method of passing information to another program.

Data queues provide considerable flexibility to the application programmer. The data queues interfaces require no
communications programming and can be used either for connected or disconnected communication. AS/400 and PC
applications can be developed using any supported language, yet still communicate with each other. PC programs can
communicate with AS/400 programs via a common AS/400 data queue. The use of data queues requires little knowledge of
communication and no knowledge of APPC if the programmer utilizes the Microsoft® Data Queue ActiveX® control. The data
queue messages are merely described at the record-level, allowing the application programmer to define the field-level structure
as required.

By default, when one program reads an entry in the queue, the entry is then deleted. Pointers to the queue entries are then
updated to reflect the change in the record stack. A data queue can exist with no entries, a single entry, or multiple entries.
Multiple concurrent jobs and programs can access data queues.

When receiving data, the requesting application can set a timeout value to wait for data to arrive in the queue. Waits can be
applied based on entry of the data record or for a time period (zero seconds to many days in length). A program that reads from a
queue need not be running when the queue is created or when records are inserted. A single data queue can support many
separate interactive jobs. At regular intervals or at the end of the day, records in the data queue can be persisted to a file by a
single automated batch process.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Platforms Supported by the Data Queue ActiveX Control
AS/400 Data Queue support in Host Integration Server 2000 is implemented by extending the features of the existing Distributed
Data Management (DDM) Application Requester and by the creation of an ActiveX control. To support data queues via DDM, a
large number of DDM commands are implemented. DDM Data Queue support requires a DDM Architecture Level 4
implementation for both source and target.

The Data Queue ActiveX® Control requires the following system software on the AS/400:

OS/400 V3R7 or higher.
OS/400 V3R2 or higher.
OS/400 V3R0M5 with the following program technical fixes applied: SF21521, SF21498, SF21500, and SF21254.
OS/400 V3R1M0 with the following program technical fixes applied: SF21555, SF21499, SF21501, and SF21266.
OS/400 V2R3 with the following program technical fixes applied: SF21522, SF19749, SF19748, and SF19122.

The Data Queue ActiveX Control supplied with Host Integration Server 2000 supports the following operating systems:

Microsoft® Windows® 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Data Center
Microsoft Windows 2000 Professional
Microsoft Windows NT® Server 4.0 with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Enterprise Edition with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Terminal Server Edition with Service Pack 6a or later
Microsoft Windows NT Workstation 4.0 with Service Pack 6a or later
Microsoft Windows 98, Second Edition

The Data Queue ActiveX Control supplied with Host Integration Server 2000 Service Pack 1 adds support for the following
additional operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

The Data Queue ActiveX Control requires the following computer-to-host connectivity software:

Microsoft Host Integration Server 2000
Microsoft Host Integration Server 2000 Administrator Client
Microsoft Host Integration Server 2000 End-User Client

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings Used by Data Queues
The Microsoft® Data Queue ActiveX® Control uses a number of registry settings for configuration and proper operation. The
configuration registry settings are located under the HKEY_LOCAL_MACHINE\Software\Microsoft\SNA
Server\CurrentVersion\Setup key. These registry settings include the following subkeys:

Sub
key

Comment

Roo
tDir

Stores the path to root directory where the Host Integration Server was installed. The system directory below this root direct
ory is the location where the Data Queue ActiveX Control DLL and other support DLLs are installed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Object Support Using Data Queues
The Microsoft® Data Queue ActiveX® Control supports a number of standard COM interfaces as well some custom objects and
interfaces.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

COM Interface Support Using Data Queues
The Microsoft Data Queue ActiveX Control supports a number of standard COM interfaces as well as several custom interface,
IEIGDataQueueCtl, IEIGDataQueue, and IEIGDataQueueItem. The ActiveX Control object has the ability to register and de-
register itself via standard control mechanisms. Support for a number of standard COM interfaces makes it easy to develop
applications using the Data Queue ActiveX Control with Microsoft Visual Basic® and Microsoft Visual C++® as well as from
Microsoft Internet Explorer and Microsoft Access. Supporting a variety of standard COM interfaces also provides different ways
for a client to save information.

The following table summarizes the standard COM interfaces supported by the Data Queue ActiveX Control.

COM Int
erface

Comments

ICatego
rizePro
perties

This interface divides up the properties into an intelligent presentation to the client.

IConnec
tionPoi
ntConta
iner

IDispatc
h

A dual interface deriving from IDispatch is exposed to provide support and flexibility to clients. Clients that provide sup
port for automation interfaces will utilize the IDispatch interface, while more robust clients may use the custom interfa
ce. Using the custom interface provides for the greatest execution speed.

IPerPro
pertyBr
owsing

This interface provides support for client browsing of properties in an intelligent manner. This interface exposes to the cl
ient property lists used in the population of a dropdown list. This interface is required for the control to be hosted by Mi
crosoft Access.

IPropert
yNotify
Sink

The interface is implemented by a sink object to receive notifications about property changes from an object that suppo
rts IPropertyNotifySink as an outgoing interface. The client that needs to receive the notifications in this interface (fro
m a supporting connectable object) creates a sink with this interface and connects it to the connectable object through t
he connection point mechanism.

IPersist
IPersist
Propert
yBag

This interface is the preferred method of property persisting for Internet Explorer and Visual Basic. Using this interface p
ersisted properties are stored as a set of name/VARIANT value pairs.

IPersist
Storage

This interface stores persistent properties into a structured storage object.

IPersist
StreamI
nit

This interface is responsible for saving the persisted properties in binary form using a stream interface. This is the meth
od used by the Microsoft Visual C/C++ compiler to persist properties.

ISuppor
tErrorIn
fo

This interface is the preferred method to return error indications to scripting clients. Using this interface, error codes an
d explanation text are returned to the client. This information may be used in order to provide diagnostic information to
the user and in cases of failure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The IEIGDataQueueCtl Object
The IEIGDataQueueCtl object supports a number of properties and methods that provide the ability to connect with a host and
communicate with OS/400 Data Queues. The IEIGDataQueueCtl also supports a set of events notifying a client application of
connection status and error reporting. These events are handled by the client supporting several callback functions and setting
these callbacks using the IConnectionPointContainer.

The following IEIGDataQueueCtl object methods are supported by the Microsoft Data Queue ActiveX Control.

Method Name Comment
Connect method Establishes a connection to the configured host and reports to the user an indication of the success or fail

ure of the action.
CreateQueueContainer
method

Create an instance of a IEIGDataQueue container object and optionally initialize the QueueName property.
The created queue object is assumed to be associated with the connection object that created it for the life
of the connection or the life of the queue object.

Disconnect method Terminates an existing connection to a host machine.

The following IEIGDataQueueCtl object properties are supported by the Microsoft Data Queue ActiveX Control.

Property Nam
e

Comment

CCSID property Sets or returns the character code set identifier (CCSID) that must match the data in the AS/400 data queue as re
presented on the remote host computer.

This property defaults to U.S./Canada (37).

ConnectionState
property

Returns the current state of the connection. The state of a connection can be unspecified, idle, connecting, conne
cted, or disconnecting.

ConnectionType
property

Sets or returns the network transport used for this connection. The ConnectionType property designates whet
her the Data Queue ActiveX Control connects via APPC (SNA LU6.2) or TCP/IP. The possible values for this para
meter are TCPIP or APPC.

The default value for this parameter is SNA.

If APPC is selected, then values for the LocalLU, ModeName, and RemoteLU properties are required.

If TCPIP is selected, then values for NetAddr and NetPort properties are required.

Note that a TCP/IP connection is not currently supported when connecting to an AS/400 using the Data Queue A
ctiveX Control, since TCP/IP is not supported by the AS/400 DDM implementation.

LocalLU propert
y

Sets or returns the Local LU Alias. When APPC (SNA LU 6.2) is selected for the ConnectionType property, this pr
operty must match the name of the local LU alias configured using SNA Manager.

This property defaults to the string value of "LOCAL" represented as a BSTR.

ModeName pro
perty

Sets or returns the APPC mode. When APPC (LU 6.2 SNA) is selected for the ConnectionType property, this fiel
d must be set to the APPC mode that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (intera
ctive), #INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal ro
uting security), #IBMRDB (DB2 remote database access), and custom modes. The following modes that support
bi-directional LZ89 compression are also legal: #INTERC (interactive with compression), INTERCS (interactive wit
h compression and minimal routing security), BATCHC (batch with compression), and BATCHCS (batch with com
pression and minimal routing security).

This property defaults to the string value of "QPCSUPP" represented as a BSTR.

NetAddr proper
ty

Sets or returns the IP address of the host computer. When TCPIP (a TCP/IP connection) has been selected for the
ConnectionType property, this property indicates the IP address of the host. This property can be an IP address
or the name representing the host IP address using the Domain Name System (sna.microsoft.com, for example).

This property is a string (BSTR) and has no default value.

Note that a TCP/IP connection is not currently supported when connecting to an AS/400 using the Data Queue A
ctiveX Control, since TCP/IP is not supported by the AS/400 DDM implementation.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

NetPort propert
y

Sets or returns the TCP/IP port used for communication with the host. When TCPIP (a TCP/IP connection) has be
en selected for the ConnectionType property, this parameter is the TCP/IP port used for communication with t
he host.

The default value for this property is the string (BSTR) "446" representing TCP/IP port 446.

Note that a TCP/IP connection is not currently supported when connecting to an AS/400 using the Data Queue A
ctiveX Control, since TCP/IP is not supported by the AS/400 DDM implementation.

Password prope
rty

Sets or returns the password used for authentication. A valid user name and password are normally required to
access data on a host computer. The password is case sensitive and is normally displayed as asterisks in a dialog
box for security purposes.

This property is a string (BSTR) and has no default value.

PCCodePage pr
operty

Sets or returns the PC code page The PC Code Page property indicates the code page to be used on the PC for c
haracter code conversion.

This property defaults to Latin 1 (1252).

RemoteLU prop
erty

Sets or returns the Remote LU Alias. When APPC (LU 6.2 SNA) is selected for the ConnectionType property, thi
s property is the name of the remote LU alias configured using SNA Manager.

This property is a string (BSTR) and has no default value.

UserID property Sets or returns the username used for authentication. A valid user name and password are normally required to
access data on a host computer. This value is case sensitive.

This property is a string (BSTR) and has no default value.

Microsoft Host Integration Server 2000

The IEIGDataQueue Object
The IEIGDataQueue object represents a logical queue and supports a number of properties and methods that provide the ability
to communicate with a specific data queue. The QueueName property is the name of the physical queue. All methods and events
are related to the queue that is represented by the individual instance of the object. The Data Queue ActiveX Control also supports
a set of events notifying a client application of connection status, data transfer status, and error reporting. These events are
handled by the client supporting several callback functions and setting these callbacks using the IConnectionPointContainer.

The following IEIGDataQueue object methods are supported by the Microsoft Data Queue ActiveX Control.

Method Nam
e

Comment

AddQueueItem
method

Adds a record to the current queue.

Cancel method Terminates a request to receive information from the queue that is already in progress.
CancelQueue
method

Indicates that an application no longer wants to be notified of an incoming queue data item. This can be used to s
top pending notifications that were queued as a result of calling GetQueueItem.

ClearAll metho
d

Removes all items from the queue.

CreateQueue
method

Creates a data queue.

DeleteQueue m
ethod

Clears all messages from the queue and then deletes the queue.

Get_QueueNa
me method

Retrieves the queue name from a data queue.

GetQueueItem
method

Retrieves an item from the queue.

QueryAttribute
method

Requests information on one of the queue's attributes

SetAttribute m
ethod

Changes the attributes associated with a data queue.

StopQueue me
thod

Stops the queue from responding to client requests.

The following IEIGDataQueue object property is supported by the Microsoft Data Queue ActiveX Control.

Property Name Comment
QueueName property This is the name of the data queue this object is associated with.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The IEIGDataQueueItem Object
The IEIGDataQueueItem object represents a specific queue item and supports a number of properties and methods.

The following IEIGDataQueueItem object method is supported by the Microsoft Data Queue ActiveX Control.

Method Name Comment
Reset method Resets the queue item properties to default values.

The following IEIGDataQueueItem object properties are supported by the Microsoft Data Queue ActiveX Control.

Property Name Comment
ExtUser property The external job user name.
ExtJobName property The external job name.
ExtJobNumber property The external job number.
InactiveRec property Indicates an Inactive record.
Keyval property The key value.
Message property The queue message.
QItemType property The type of queue item this represents.
Record property The entire queue data.
RecordAttribute property The list of record attributes.
RecCount property The record count.
RecNumber property The record number.
ReplyRequest property Indicates if the reply message should be returned.
UsrProf property The user profile.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IEIGDataQueueCtlEvents Notifications
The IEIGDataQueueCtl object of the Microsoft Data Queue ActiveX Control also supports a set of events notifying a client
application of connection status and error reporting. These events are handled by the client supporting several callback interfaces
and setting these callbacks derived from the standard IConnectionPointContainer COM object.

The following IEIGDataQueueCtlEvents notification interface methods are supported by the Data Queue ActiveX Control:

Event
Notific
ations

Comment

Connec
tionSta
teChan
ge

This event is fired when the state of a connection has changed. A ConnectionState parameter is passed to the client callb
ack function that receives this event method call. This parameter is an eigConnectionStateEnum value representing the n
ew state of the ConnectionState property.

Report
Error

This event is fired when an error condition needs to be reported during non-blocking (asynchronous) functions. This eve
nt passes two parameters to the client callback function that receives this event method call. The first parameter is a long
value representing an error code. The second parameter is a BSTR string containing a brief text description of the error.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IEIGDataQueueEvents Notifications
The IEIGDataQueue object of the Microsoft Data Queue ActiveX Control also supports a set of events notifying a client
application of when transfers are completed, requests are received, and error reporting. These events are handled by the client
supporting several callback interfaces and setting these callbacks derived from the standard IConnectionPointContainer COM
object.

The following IEIGDataQueueEvents notification interface methods are supported by the Data Queue ActiveX Control:

Event
Notifi
catio
ns

Comment

Repor
tError
2

This event is fired when an error condition needs to be reported during non-blocking (asynchronous) functions. This event
passes two parameters to the client callback function that receives this event method call. The first parameter is a long val
ue representing an error code. The second parameter is a BSTR string containing a brief text description of the error.

Requ
estRe
ceive
d

This event is fired when a request is received.

Send
Comp
lete

This event is fired as an indication to the client that the requested transfer operation has completed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Considerations Using the Data Queue ActiveX
Control
The Microsoft® Data Queue ActiveX® Control exposes a dual interface deriving from IDispatch. This provides support and
flexibility to clients wishing to use the object. Clients that provide support for automation interfaces can use the IDispatch
interface while more robust clients may use the custom interface. Using the custom interface offers the greatest execution speed.

The single-threading model is supported, allowing only single threads to access the objects safely.

Asynchronous read operations are not currently supported. The BlockComplete parameter of the GetQueueItem method must
be set to a value of 0 (eigAnswerYes), indicating that the GetQueueItem operation should block until the completion status is
known.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Code Page Support Using Data Queues
When using the Data Queue ActiveX Control, the Host CCSID (character code set identifier) property should be configured to
match the data as represented on the remote host computer. The Host CCSID parameter defaults to EBCDIC U.S./Canada (37)
when using the Data Queue ActiveX Control.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DBCS Code Page Support Using Data Queues
Support for Double-Byte Character String (DBCS) data is limited using the Data Queue ActiveX Control. Conversions between
DBCS and ANSI code pages are not supported. Conversions between DBCS and ISO code pages are not supported.

The DB2 GRAPHIC data types (GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC) are not supported. These DB2 data types
support DBCS (not mixed) data. Mixed data types are supported using CHAR FOR MIXED DATA, VARCHAR FOR MIXED DATA, and
LONGVARCHAR FOR MIXED DATA.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Usernames and Passwords Using Data Queues
When connecting to host systems, most users must be authenticated by the remote system by passing a valid User ID and
Password.

The AS/400 computer is case sensitive with regard to User ID and Password. The AS/400 only accepts a User ID and Password in
uppercase. The Microsoft Data Queue ActiveX Control will force the User ID and Password into uppercase when it knows that it is
connecting to an AS/400 system.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Troubleshooting the Data Queue ActiveX Control
The Microsoft Data Queue ActiveX Control supplied with Host Integration Server 2000 has the ability to trace DRDA data flows
when used over TCP/IP.

This tracing capability is accessible from the SNADB2 Service tracing inside the Trace tool. This facility will show the same data as
an APPC trace but without the control indicators (For example, What_Received). Socket errors are traced and the error codes can
be looked up in Winsock2.h supplied with the Platform SDK.

The Data Queue ActiveX Control can return the following types of errors:

Errors from the remote hosts
Microsoft Data Queue-specific errors
Errors from the underlying DDM Application Requester network client

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using the Host File Transfer ActiveX Control
The Microsoft® Host File Transfer ActiveX Control provides the ability to transfer files between a local machine and an MVS,
OS/390, AS/400, or AS/36 host system. Host Integration Server 2000 provides this service via a single ActiveX Control that
depends on other core Host Integration Server DLLs. This extends the ability for a client application to perform file transfer
operations from a large number of client development environments.

The Microsoft Host File Transfer ActiveX Control uses the record-level input/output (RLIO) protocol of IBM’s Distributed Data
Management (DDM) architecture to transfer files. The Host File Transfer ActiveX Control is implemented as a Distributed Data
Management (DDM) source requester, which communicates via APPC LU6.2 or TCP/IP to a DDM target server.

DDM is a set of rules for distributing or extending data management from one computer to another, such as from a mainframe to
an AS/400 computer, or from one of these host computers to a server computer. By combining the Microsoft File Transfer ActiveX
Control and DDM architectures, Microsoft enables organizations to preserve their investments in existing data management
infrastructure, while extending universal file transfer to all enterprise-wide data sources.

The information in this section is required to develop applications with Host Integration Server that use ActiveX or COM objects to
transfer files from local machines to hosts in a Systems Network Architecture (SNA) environment or over TCP/IP using RLIO and
DDM.

This section covers the following topics about the Microsoft Host File Transfer ActiveX Control:

This section contains:

Platforms Supported by the Host File Transfer ActiveX Control
Configuring Data Descriptions for Host File Transfer
Registry Settings used by Host File Transfer
Object Support Using Host File Transfer
Programming Considerations Using Host File Transfer

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Platforms Supported by the Host File Transfer ActiveX Control
On the mainframe platform, IBM offers a target DDM server implementation in IBM Distributed File Manager (DFM), a component
of IBM Data Facility Storage Management Subsystem (DFSMS). The Microsoft® Host File Transfer ActiveX Control requires
DFSMS version 1 release 2 or later for MVS/ESA and OS/390 to support an SNA LU6.2 connection.

On midrange AS/400 computers, IBM has implemented target DDM servers directly in OS/400. The Microsoft Host File Transfer
ActiveX Control requires OS/400 Version 3 Release 2 or later to support an SNA LU6.2 connection. The Microsoft Host File
Transfer ActiveX Control requires OS/400 Version 4 Release 2 or later to support a TCP/IP connection.

On the AS/400 platform, the Host File Transfer ActiveX Control supports physical and logical files with an associated external
record description file. For specific limitations, please see the AS/400 DDM User’s Guide.

On the mainframe platform, the Host File Transfer ActiveX Control supports the following data set types:

Sequential Access Method (SAM) data sets

Basic Sequential Access Method data sets (BSAM)
Queued Sequential Access Method data sets (QSAM)

Basic Partitioned Access Method (PDS) data sets

Partitioned Data Set Extended members (PDSE)
Partitioned Data Set members (PDS)

Virtual Storage Access Method (VSAM) data sets

Entry-Sequenced Data Sets (ESDS)
Key-Sequenced Data Sets (KSDS)
Fixed-Length Relative Record Data Sets (RRDS)
Variable-Length Relative Record Data Sets (VRRDS)
Relative Record Data Set (RRDS)
VSAM Alternate Indexes for ESDS and KSDS data sets

The preceding data set types are supported by IBM DFM/MVS. The following data set types are not supported by DFM/MVS and
cannot be accessed using the Host File Transfer ActiveX Control.

VSAM Linear Data Sets (LDS)
Generation Data Groups (GDG)
Generation Data Sets (GDS)
Basic Direct Access Method data sets (BDAM)
Indexed Sequential Access Method data sets (ISAM)
Sequential Data Striping data sets
OpenEdition MVS Hierarchical File System (HFS) files
Tape Media

All mainframe data sets accessible through IBM Distributed File Manager must be cataloged in an Intersystem communications
function (ICF) catalog and reside on direct access storage devices (DASD).

The Host File Transfer ActiveX Control supplied with Host Integration Server 2000 supports the following operating systems:

Microsoft® Windows® 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional
Microsoft Windows NT® Server 4.0 with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Enterprise Edition with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Terminal Server Edition with Service Pack 6a or later
Microsoft Windows NT Workstation 4.0 with Service Pack 6a or later
Microsoft Windows 98, Second Edition

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The Host File Transfer ActiveX Control supplied with Host Integration Server 2000 Service Pack 1 adds support for the following
additional operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft® Windows® Millennium Edition

The Host File Transfer ActiveX Control requires the following computer-to-host connectivity software:

Microsoft Host Integration Server 2000
Microsoft Host Integration Server 2000 Administrator Client
Microsoft Host Integration Server 2000 End-User Client

Microsoft Host Integration Server 2000

Configuring Data Descriptions for Host File Transfer
In order to use the Microsoft Host File Transfer ActiveX Control to transfer files, a user or client application must describe the data
format of the host file to transfer. A host data description is normally configured using the Data Descriptions tool.

Microsoft® Management Console (MMC) and MMC snap-ins are the current method of exposing administrative tasks and
options in server-based Microsoft products. An MMC snap-in for Data Integration is installed with the Host Integration
Client 2000, which enables you to configure data descriptions for transferring files on OS/390, OS/400, MVS/ESA, and
AS/36systems. The Data Integration Management Console snap-in enables you to configure data descriptions used by the Host
File Transfer ActiveX Control.

The Data Integration console contains one high-level object:

Data Descriptions—Stored in Host Column Description (HCD) files that contain the information required to convert host
data types to PC computer data types.

When creating a Data Description for use with the Host File Transfer ActiveX Control, the Use Table for File Transfer checkbox
must be checked and values must be entered for the following additional parameters:

Para
met
er

Comment

Fiel
dDe
limi
ter

This value represents the delimiter used to mark the end of one field and the beginning of another within a single record. Th
e position of the field elements within a record is assumed to be absolute as configured and variable length fields are not su
pported. This element is used in order to inform the conversion routine to remove this character if it is found at the position
within the record as indicated by the Data Description.

This parameter is required and has no default value.

The comma character "," or tab character "\t" is commonly used with desktop applications as a field separator.

Rec
ord
Deli
mit
er

This value represents the character or characters that appear at the ending of a record. This element is used in order to infor
m the conversion routine to remove this character if it is found in the last position of the record as indicated by the Data Des
cription.

This parameter is required and has no default value.

The end-of-line character sequence is commonly used as a record delimiter. The carriage return and linefeed character sequ
ence "\n\r" is commonly used with desktop applications. The newline character "\n" is standard for use on UNIX systems an
d with some desktop applications.

Text
Qua
lifie
r

This value is used in order to allow elements that may contain the FieldDelimiter character to be properly parsed by the pa
rsing engine. If this element is enabled on a particular field, then the inclusion of this character at the beginning of the field i
s an indication to the parsing engine that all characters up to the next instance of the TextQualifier should be treated as pa
rt of the current field being processed.

This parameter has no default value.

The single quote or double quote character is sometimes used as a text qualifier to protect a comma character included in a
field from being misinterpreted as a field delimiter.

The Data Integration console and the Data Descriptions tool is designed to run on Microsoft® Windows 2000, Windows NT®,
Microsoft® Windows® 98, and Microsoft® Windows® 95. On Windows 2000 and Windows NT, the console respects the
Windows 2000 and Windows NT security hierarchy, where only privileged users can read and write to some areas of the system
registry and the file system. To prevent general users from modifying the HCD files on Windows 2000 and Windows NT, the Data
Descriptions tool can only be run by users that have administrative privileges on the local computer.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings Used By Host File Transfer
The Microsoft® Host File Transfer ActiveX Control uses a number of registry settings for configuration and proper operation. The
configuration registry settings are located under the HKEY_LOCAL_MACHINE\Software\Microsoft\SNA
Server\CurrentVersion\Setup key. These registry settings include the following subkey:

Sub
key

Comment

Roo
tDir

Stores the path to root directory where the Host Integration Server was installed. The system directory below this root direct
ory is the location where the Host File Transfer ActiveX Control DLL and other support DLLs are installed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Object Support Using Host File Transfer
The Microsoft® Host File Transfer ActiveX Control supports a number of standard COM interfaces as well some custom objects
and interfaces.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

COM Interface Support Using Host File Transfer
The Microsoft® Host File Transfer ActiveX Control supports a number of standard COM interfaces as well as a single custom
interface, IEIGFileTransferCtl. The ActiveX Control object has the ability to register and de-register itself via standard control
mechanisms. Support for a number of standard COM interfaces makes it easy to develop applications using the Host File Transfer
ActiveX Control with Visual Basic and Visual C++ as well as from Microsoft Internet Explorer and Microsoft Access. Supporting a
variety of standard COM interfaces also provides different ways for a client to save information.

The following table summarizes the standard COM interfaces supported by the Host File Transfer ActiveX Control.

COM Int
erface

Comments

ICategor
izePrope
rties

This interface divides up the properties into an intelligent presentation to the client.

IConnect
ionPoint
Contain
er

IDispatc
h

A dual interface deriving from IDispatch is exposed to provide support and flexibility to clients. Clients that provide su
pport for automation interfaces will utilize the IDispatch interface, while more robust clients may use the custom inter
face. Using the custom interface provides for the greatest execution speed.

IOleCont
rol

IOleInPl
aceActiv
eObject

IOleInPl
aceObje
ct

IOleInPl
aceObje
ctWindo
wless

IOleObje
ct

IOleWin
dow

IPerProp
ertyBro
wsing

This interface provides support for client browsing of properties in an intelligent manner. This interface exposes to the
client property lists used in the population of a dropdown list. This interface is required for the control to be hosted by
Microsoft Access.

IPropert
yNotifyS
ink

The interface is implemented by a sink object to receive notifications about property changes from an object that supp
orts IPropertyNotifySink as an outgoing interface. The client that needs to receive the notifications in this interface (fr
om a supporting connectable object) creates a sink with this interface and connects it to the connectable object throug
h the connection point mechanism.

IPersist
IPersistP
ropertyB
ag

This interface is the preferred method of property persisting for Internet Explorer and Visual Basic. Using this interface,
persisted properties are stored as a set of name/VARIANT value pairs.

IPersistS
torage

This interface stores persistent properties into a structured storage object.

IPersistS
treamIni
t

This interface is responsible for saving the persisted properties in binary form using a stream interface. This is the meth
od used by the Microsoft Visual C/C++ compiler to persist properties.

IProvide
ClassInf
o

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

IProvide
ClassInf
o2

IQuickAc
tivate

ISupport
ErrorInfo

This interface is the preferred method to return error indications to scripting clients. Using this interface, error codes an
d explanation text are returned to the client. This information may be used in order to provide diagnostic information t
o the user and in cases of failure.

IViewOb
ject

IViewOb
ject2

IViewOb
jectEx

Microsoft Host Integration Server 2000

The IEIGFileTransferCtl Object
The Microsoft® Host File Transfer ActiveX Control supports a number of standard COM interfaces as well as a single custom
interface. The IEIGFileTransferCtl object supports a number or properties and methods that provide the ability to transfer files to
and from MVS, OS/390, AS/400, or AS/36 hosts. The Host File Transfer ActiveX Control also supports a set of events notifying a
client application of connection status, file transfer status, and error reporting. These events are handled by the client supporting
several callback functions and setting these callbacks using the IConnectionPointContainer.

The following IEIGFileTransferCtl object methods are supported by the Microsoft Host File Transfer ActiveX Control:

Method Name Comment
Cancel method Terminate a file transfer operation that is already in progress.
Connect method Establishes a connection to the configured host and reports to the user an indication of the success or failure of

the action.
Disconnect meth
od

Terminates an existing connection to a host machine.

GetFile method Copy a file from host storage to local storage. This method requires the two file names as parameters.
PutFile method Copy a file from local storage to host storage. This method requires the two file names as parameters.

The following IEIGFileTransferCtl object properties are supported by the Microsoft Host File Transfer ActiveX Control:

Property Name Comment
AppendToEnd prop
erty

Sets or returns whether a file transfer should append to the end of a file (eigAnswerYes) if the file exists, or s
hould it overwrite the existing contents replacing the data with the new information (eigAnswerNo).

This property defaults to eigAnswerYes (0).

CCSID property Sets or returns the character code set identifier (CCSID) that must match the data in the file as represented o
n the remote host computer.

This property defaults to U.S./Canada (37).

ConnectionState pr
operty

Returns the current state of the connection. The state of a connection can be unspecified, idle, connecting, co
nnected, or disconnecting.

ConnectionType pr
operty

Sets or returns the network transport used for this connection. The ConnectionType property designates w
hether the Host File Transfer ActiveX Control connects via APPC (SNA LU6.2) or TCP/IP. The possible values f
or this parameter are a TCP/IP or an APPC connection using an enumerated value.

The default value for this parameter is an APPC (SNA) connection type.

If APPC is selected, then values for the LocalLU, ModeName, and RemoteLU properties are required.

If TCP/IP is selected, then values for NetAddr and NetPort properties are required.

CreateIfNonExisting
property

Sets or returns whether a file operation should create a new destination file if one does not already exist (eig
AnswerYes).

This property defaults to eigAnswerNo (1)

LocalLU property Sets or returns the Local LU Alias. When LU 6.2 (SNA) is selected for the ConnectionType property, this prope
rty must match the name of the local LU alias configured using SNA Manager.

This property defaults to the string value of "LOCAL" represented as a BSTR.

ModeName proper
ty

Sets or returns the APPC mode. When APPC (LU 6.2 SNA) is selected for the ConnectionType property, this fi
eld must bet set to the APPC mode that matches the host configuration and Host Integration Server configur
ation.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (int
eractive), #INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with mini
mal routing security), #IBMRDB (DB2 remote database access), and custom modes. The following modes that
support bi-directional LZ89 compression are also legal: #INTERC (interactive with compression), INTERCS (in
teractive with compression and minimal routing security), BATCHC (batch with compression), and BATCHCS (
batch with compression and minimal routing security).

This property defaults to the string value of "QPCSUPP" represented as a BSTR.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

NetAddr property Sets or returns the IP address of the host computer. When TCP/IP has been selected for the ConnectionTyp
e property, this property indicates the IP address of the host. This property can be an IP address or the name
representing the host IP address using the Domain Name System (sna.microsoft.com, for example).

This property is a string (BSTR) and has no default value.

NetPort property Sets or returns the TCP/IP port used for communication with the host. When TCP/IP has been selected for the
ConnectionType property, this parameter is the TCP/IP port used for communication with the host.

The default value for this property is the string (BSTR) "446" representing TCP/IP port 446.

OverwriteHostFile
property

Sets or returns whether a file operation request to copy a file that will write over an existing file will fail. Whe
n this property is set to eigAnswerNo, a request to write a file over an existing file will fail.

This property defaults to eigAnswerNo (1)

Password property Sets or returns the password used for authentication. A valid user name and password are normally required
to access files on a host computer. The password is case sensitive and is normally displayed as asterisks in a
dialog box for security purposes.

This property is a string (BSTR) and has no default value.

PCCodePage prope
rty

Sets or returns the PC codepage The PC Code Page property indicates the code page to be used on the PC fo
r character code conversion.

This property defaults to Latin 1 (1252).

RDBName property Sets or returns the name of the remote database name and the Host Column Description (HCD) file that desc
ribes the data types and data conversions used to transfer this file. The HCD file describing the data should b
e located in the system subdirectory below the root directory where Host Integration Server was installed. Se
tup defaults to the following location: C:\Program Files\Host Integration Server

When TCP/IP is selected for the ConnectionType property, the RDBName must also match the name of the
remote database system.

RemoteLU property Sets or returns the Remote LU Alias. When APPC (LU 6.2 SNA) is selected for the ConnectionType property,
this property is the name of the local LU alias configured using SNA Manager.

This property is a string (BSTR) has no default value.

UserID property Sets or returns the username used for authentication. A valid user name and password are normally required
to access files on a host computer. This value is case sensitive.

This property is a string (BSTR) and has no default value.

Microsoft Host Integration Server 2000

IEIGFileTransferCtlEvents Notification
The Microsoft® Host File Transfer ActiveX Control also supports a set of events notifying a client application of connection status,
file transfer status, and error reporting. These events are handled by the client supporting several callback interfaces and setting
these callbacks derived from the standard IConnectionPointContainer COM object.

The following IEIGFileTransferCtlEvents notification interface methods are supported by the Microsoft Host File Transfer
ActiveX Control:

Event
Notific
ations

Comment

Connec
tionSta
teChan
ge

This event is fired when the state of a connection has changed. A ConnectionState parameter is passed to the client callb
ack function that receives this event method call. This parameter is an eigConnectionStateEnum value representing the n
ew state of the ConnectionState property.

Report
Error

This event is used in order to return error conditions that occur during the synchronous processing of methods. This eve
nt passes two parameters to the client callback function that receives this event method call. The first parameter is a long
value representing an error code. The second parameter is a BSTR string containing a brief text description of the error.

Transfe
rCompl
ete

This event is an indication to the client that the requested transfer operation has completed.

Transfe
rProgre
ss

This event will be fired periodically in order to inform the client of the progress of an unattended file transfer. A Percenta
geDone parameter is passed to the client callback function that receives this event method call. This parameter is a short
value representing the percentage complete of the requested operation ranging from 0 to 100.

A client application has the option to terminate a file transfer when this event is fired.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Considerations Using Host File Transfer
The Host File Transfer ActiveX Control exposes a dual interface deriving from IDispatch. This provides support and flexibility to
clients wishing to use the object. Clients that provide support automation interfaces can use the IDispatch interface while more
robust clients may use the custom interface. Using the custom interface offers the greatest execution speed.

The single-threading model is supported, allowing only single threads to access the objects safely.

The Host File Transfer ActiveX Control does not support uploading Direct Relative Record Data Set (RRDS) files on System/36. An
error (381) will occur and the following error message will be received.

The Host File Transfer ActiveX Control also does not support uploading RRDS files with the CreateIfNonExisting property option
set to yes on System/36. An error will occur (381) and the following message will be received.

If there is existing data in a file on OS/390, setting the OverwriteHostFile and AppendToEnd properties to "no" should cause an
error (58) to occur and the following error message should be received.

On OS/390, this error is not triggered for sequential or KSDS files. Instead the data is appended to the existing data in the file for
sequential files and duplicate records are not appended to KSDS files.

The AppendToEnd property and the OverwriteHostFile property are mutually exclusive, so it is not possible to enable (set to
yes) one of these properties before the opposing property is disabled (set to no). The AppendToEnd property takes precedence
over the OverwriteHostFile property, since AppendToEnddefaults to yes and OverwriteHostFile defaults to no. Consequently,
the order that these properties are set will affect the outcome. For example, the following order will result in the properties being
set correctly:

In contrast, setting the properties in the improper order will cause the properties to be set incorrectly as follows:

In this second case, the OverwriteHostFile property cannot be set to yes (enabled) until AppendToEnd property is set to no
(disabled).

Using the Data Descriptions tool, setting the Ascending/Descending option on an OS/390 or MVS/ESA key sequenced file has no
effect. Using the Host File Transfer ActiveX Control, data is always uploaded and downloaded in the ascending key order.

If the Cancel method is executed while uploading a file with the AppendToEnd property set to yes, this will result in no change
to the host file. However, if the Cancel method is executed while uploading a file with the OverwriteHostFile property set to yes,
this will result in an empty host file. The Cancel method implies the transfer has been stopped and all the files are at their original
values but this is not really the case when the OverwriteHostFile property is set to yes.

"Target Not Supported"

"Target Not Supported"

"File contains existing data. Upload not configured to append data - upload aborted"

FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no
FileTransfer.OverwriteHostFile = eigAnswerYes // correctly set to yes

FileTransfer.OverwriteHostFile = eigAnswerYes // remains at no
// AppendToEnd defaults to eigAnswerYes, so this change is illegal
FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Code Page Support Using Host File Transfer
When using the Host File Transfer ActiveX Control, the Host CCSID (character code set identifier) property should be configured to
match the data as represented on the remote host computer. The Host CCSID parameter defaults to EBCDIC U.S./Canada (37)
when using the Host File Transfer ActiveX Control.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ISO Code Page Support Using Host File Transfer
Host Integration Server 2000 includes support for some ISO code pages for purposes of ISO-to-UNICODE-to-ANSI, ANSI-to-
UNICODE-to-ISO, and ISO-to-UNICODE-to-ISO conversions when using the Host File Transfer ActiveX Control. These ISO code
pages can be used when accessing host files containing ISO code pages.

Depending on the version of Windows being used, to support ISO-to-UNICODE-to-ANSI (Windows), ANSI-to-UNCODE-to-ISO,
and ISO-to-UNICODE-to-ISO code page conversions, you may need to install the appropriate ISO National Language Support
(NLS) file for your locale.

On Windows 2000, the appropriate ISO NLS file for your locale is installed automatically when you install a localized version of
Windows 2000.

On Windows NT 4.0, the appropriate ISO NLS file for your locale is installed automatically when you install a localized version of
Windows NT or when you install the Windows NT Language Pack on a non-localized version of Windows NT.

On Windows 98 and Windows 95, the appropriate ISO NLS file for your locale is installed automatically when you install a
localized version of Windows 98 or Windows 95.

The following table shows the ISO character code set identifiers (CCSIDs) supported by Host File Transfer ActiveX Control in Host
Integration Server 2000.

Microsoft Dis
play Name

Microsoft NL
S Code Page

IBM
CCSI
D

Comments

ISO 8859-1 Lat
in 1

28591 819 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 8859-2 Ce
ntral Europe

28592 912 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 8859-5 Cy
rillic

28595 915 On Windows NT 4.0, support for this NLS Code Page is installed using the cyrillic.inf file fro
m the Language Pack.

ISO 8859-6 Ar
abic

28596 1089 On Windows NT 4.0, support for this NLS Code Page is installed using the arabic.inf file fro
m the Language Pack.

ISO 8859-7 Gr
eek

28597 813 On Windows NT 4.0, support for this NLS Code Page is installed using the greek.inf file from
the Language Pack.

ISO 8859-8 He
brew

28598 916 On Windows NT 4.0, support for this NLS Code Page is installed using the hebrew.inf file fro
m the Language Pack.

ISO 8859-9 Tur
kish

28599 920 On Windows NT 4.0, support for this NLS Code Page is installed using the european.inf file f
rom the Language Pack.

ISO 6937 Non-
Spacing Accent

20269 819 Note that ISO 6937 (CCSID 20269) is not supported by the OLE DB Provider for DB2, but is
displayed in the list of configuration options when creating or modifying data sources.

ISO 8859-15 L
atin 9 (Euro)

20865 923 NLS Code Page 819 with support for the Euro.
On Windows NT 4.0, support for this NLS Code Page is installed using the ibm_euro.inf file f
rom the Language Pack.

The Microsoft Display Name is the name found in the Windows NT Language Pack definitions for these NLS files.

The Microsoft NLS Code Page column represents the code page number that is registered and associated with an ISO-to-
UNICODE NLS resource file. The Microsoft NLS number should be set as the Host CCSID when using the Host File Transfer
ActiveX Control. When setting the Host CCSID or PC Code Page property, the Microsoft NLS number should be used for this
parameter.

The IBM CCSID column represents the CCSID given to the ISO code page in IBM publications. IBM lists their ISO support in
publications by referencing the locale name (Bulgaria for ISO8859-5 and 915, for example) rather than simply using ISO 8859-5
Cyrillic as used by Microsoft. The Host File Transfer ActiveX Control does not recognize or display the IBM CCSID values. The Host
File Transfer ActiveX Control maps the Microsoft NLS numbers to ISO NLS files which correspond with the appropriate IBM
CCSID numbers. The Host File Transfer ActiveX Control passes the corresponding IBM CCSID to the host system at run time even
though you configure this property using the Microsoft NLS number.

Note that IBM CCSID 819 is associated with both ISO 8859-1 Latin 1 and ISO 6937 Non-Spacing Accent. It is up to the user to
choose the standard ISO 8859-1 Latin 1 code page by selecting NLS code page 28591 or the modified code page ISO 6937 Non-
Spacing Accent by selecting NLS code page 20269. Note that ISO 6937 Non-Spacing Accent (CCSID 20269) is not currently
supported by the Host File Transfer ActiveX Control.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

IBM CCSID 916 (ISO 8859-8) supports Hebrew "visual sort order". IBM CCSID 920 (ISO 8859-8 derivation) supports Hebrew
"logical sort order". Although Microsoft supports the logical sort order with NLS 38598, this NLS file is only distributed with
Internet Explorer 5 or Windows 2000. The Host File Transfer ActiveX Control has not been tested using the ISO 8859-8 derivation
matching IBM CCSID 920 and does not support this configuration.

These are the only ISO pages currently supported in Host Integration Server 2000 and in SNA Server 4.0 with Service Pack 3 or
later. Microsoft supports a number of additional ISO pages. IBM also supports additional ISO pages. However, the code pages
listed in the table above are the only cases where the Microsoft NLS pages and IBM CCSIDs match.

Microsoft Host Integration Server 2000

DBCS Code Page Support Using Host File Transfer
Support for Double-Byte Character String (DBCS) data is limited using the Host File Transfer ActiveX Control. Conversions
between DBCS and ANSI code pages are not supported. Conversions between DBCS and ISO code pages are not supported.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Conversion Using Host File Transfer
Using the Host File Transfer ActiveX Control, host data is converted to default C data types as defined in ODBC and OLE DB and
illustrated in the following table:

Host Data Type

(description in HC
D file)

Default C data t
ype

Comments

BINARY A free form binary data type of specified length.

This data type is transferred without being converted.

CHAR char string[] A fixed length string.

This data type is converted to a DBTYPE_BSTR for use by Host File Transfer ActiveX Contro
l.

DATE date struct A 10-byte date string.

This data type is converted to a DBTYPE_DATE for use by OLE DB.

DOUBLE double An 8-byte double-precision floating point number.

This data type is converted to a DBTYPE_R8 for use by OLE DB.

FLOAT double An 8-byte double-precision floating point number. This data type is the same as a DOUBL
E.

This data type is converted to a DBTYPE_R8 for use by OLE DB.

LONG int A 4-byte integer ranging in value from
-2,147,463,648 to +2,147,483,647.

This data type is converted to a DBTYPE_I4 for use by OLE DB.

LONG VARBINARY char string[] A varying-length binary string up to 32,740 bytes in length.

This data type is converted to a DBTYPE_STR for use by OLE DB.

LONG VARCHAR char string[] A varying-length character string up to 32,740 characters in length.

This data type is converted to a DBTYPE_STR for use by OLE DB.

PACKED unsigned char nu
mber[]

A packed decimal number.

This data type is converted to a DBTYPE_DECIMAL for use by OLE DB

REAL float A 4-byte single-precision floating point number.

This data type is converted to a DBTYPE_R4 for use by OLE DB.

SHORT short A SMALLINT (small integer) is a two-byte integer with a precision of 5 digits ranging from
-32,768 to +32,767.

This data type is converted to a DBTYPE_I2 for use by OLE DB.

SINGLE float A 4-byte single-precision floating point number.

This data type is converted to a DBTYPE_R4 for use by OLE DB.

TIME time struct An 8-byte time string.

This data type is converted to a DBTYPE_TIME for use by OLE DB.

When using ActiveX Data Objects to return data from a DB2 TIME data type, ADO returns
a DATETIME value.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

TIMESTAMP timestamp struct A 26-byte string representing the date, time, and microseconds.

This data type is converted to a DBTYPE_DBTIMESTAMP for use by OLE DB.

VARBINARY char string[] A varying-length binary field. The maximum length of the binary is dependent on the versi
on and the host platform.

This data type is transferred without being converted.

This data type is converted to a DBTYPE_STR for use by OLE DB.

VARCHAR char string[] A varying-length character string. The maximum length of the string is dependent on the v
ersion and the host platform.

This data type is converted to a DBTYPE_STR for use by OLE DB.

ZONED unsigned char nu
mber[]

A zoned numeric number.

This data type is converted to a DBTYPE_NUMERIC for use by OLE DB

Note that the maximum length of fixed-length BINARY, fixed-length CHAR, VARBINARY, and VARCHAR data types is dependent
on the version of the host software that is being accessed. For example, the maximum length of the CHAR data type on OS/390 is
254 characters, while the maximum length of this same host data type is 32,765 on OS/400.

Data conversions from a large numeric type to a small numeric type are supported (from DOUBLE to SINGLE and from INT to
SMALLINT, for example), however truncation and conversion errors can occur that will not be reported by the Host File Transfer
ActiveX Control.

Using the Host File Transfer ActiveX Control, certain conversions of strings from EBCDIC to ASCII and then back to EBCDIC are
asymmetric, and can result in strings that are different from the original. The EBCDIC specification contains ordinals for which
there is no defined character. The Host File Transfer ActiveX Control translates all such undefined characters to the question mark
character (“?”). So when ASCII strings containing these characters are converted back to EBCDIC, these undefined characters will
be replaced with question marks. To protect EBCDIC strings containing undefined characters, these fields should be tagged as
binary strings and mapped by the application.

The ANSI to EBCDIC character conversions affected include the following:

Character Value (Decim
al)

Character Value (Hexadecim
al)

ANSI Code Page 12
52

EBCDIC Character After Conversion to CCSI
D 37

128 0x80 Not used ?
130 0x82 Single low quote ?
131 0x83 Latin F with hook ?
132 0x84 Double low quote ?
133 0x85 Ellipsis ?
134 0x86 Dagger ?
135 0x87 Double dagger ?
136 0x88 Per mile ?
137 0x89 S with caron ?
138 0x8A Left angle ?
139 0x8B Ligature OE ?
140 0x8C Not used ?
142 0x8E Not used ?
145-156 0x91-0x9C ?
158-159 0x9E-0x9F ?

Microsoft Host Integration Server 2000

Usernames and Passwords Using Host File Transfer
When connecting to host systems, most users must be authenticated by the remote system by passing a valid User ID and
Password.

The AS/400 computer is case sensitive with regard to User ID and Password. The AS/400 only accepts a User ID and Password in
uppercase. The Microsoft Host File Transfer ActiveX Control will force the User ID and Password into uppercase when it knows
that it is connecting to an AS/400 system.

The mainframe is not case sensitive. This means that on mainframe computers, one can enter the User ID and Password in any
case.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Troubleshooting the Host File Transfer ActiveX Control
The Microsoft® Host File Transfer ActiveX Control supplied with Host Integration Server 2000 has the ability to trace DRDA data
flows when used over TCP/IP.

This tracing capability is accessible from the SNADB2 Service tracing inside the Trace tool. This facility will show the same data as
an APPC trace but without the control indicators (For example, What_Received). Socket errors are traced and the error codes can
be looked up in Winsock2.h supplied with the Platform SDK.

The Host File Transfer ActiveX Control can return the following types of errors:

Errors from the remote hosts
Microsoft Host File Transfer-specific errors
Errors from the underlying DDM Application Requester network client

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Integration Reference
This section of the Microsoft® Host Integration Server 2000 Developer's Guide describes the objects, methods, properties,
controls, and other interfaces that allow you to integrate data into your Host Integration Server application.

This section contains:

OE DB Object and Interface Support
ADO Object, Method, Property and Collection Support
ADO Reference
Data Queue ActiveX Control Reference
Host File Transfer ActiveX Control Reference
Host Column Description
Conversion from Host to OLE DB Data Types
Character Code Conversions
Architecture
SDK Components for Data Integration

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Object and Interface Support
The OLE DB specification version 2.0 defines a number of objects and interfaces.

The Microsoft® OLE DB Provider for AS/400 and VSAM supports the OLE DB objects and interfaces appropriate for an OLE DB
data provider accessing a non-SQL host file system. The following topics provide detailed information on OLE DB support:

OLE DB Object Support in the OLE DB Provider for AS/400 and VSAM
OLE DB Interface Support in the OLE DB Provider for AS/400 and VSAM
OLE DB Property Support in the OLE DB Provider for AS/400 and VSAM

The Microsoft® OLE DB Provider for DB2 supports the OLE DB objects and interfaces appropriate for an OLE DB data provider
accessing an SQL database. The following topics provide detailed information on OLE DB support:

OLE DB Object Support in the OLE DB Provider for DB2
OLE DB Interface Support in the OLE DB Provider for DB2
OLE DB Property Support in the OLE DB Provider for DB2

In addition, the following topics provide a comparison of the objects and interfaces supported by the OLE DB Provider for AS/400
and VSAM and the OLE DB Provider for DB2:

OLE DB Object Support Comparison
OLE DB Interface Support Comparison

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Object Support Comparison
The following table compares the OLE DB version 2.0 objects that are supported by the current version of the Microsoft® OLE DB
Provider for AS/400 and VSAM and the Microsoft OLE DB Provider for DB2:

OLE DB object OLE DB Provider for AS/400 and VSAM OLE DB Provider for DB2
Command Yes, most interfaces Yes, most interfaces
CustomErrorObject No Yes, all interfaces
DataSource Yes, most interfaces Yes, some interfaces
Enumerator No No
ErrorObject Yes, all interfaces Yes, all interfaces
ErrorRecord Yes, all interfaces Yes, all interfaces
Index Yes, all interfaces No
MultipleResults No No
Rowset Yes, most interfaces Yes, some interfaces
Session Yes, some interfaces Yes, some interfaces
Transaction No Yes, some interfaces
TransactionOptions No Yes, all interfaces
View Yes, all interfaces No

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Interface Support Comparison
The following table compares the OLE DB version 2.0 interfaces that are supported by the current version of the Microsoft® OLE
DB Provider for AS/400 and VSAM and the OLE DB Provider for DB2:

Object Interface OLE DB
Provider for AS/400 and VSAM

OLE DB Provider for DB2

Command IAccessor Yes Yes
 IColumnsInfo Yes Yes
 IColumnsRowset No No
 ICommand Yes Yes
 ICommandPersist No No
 ICommandPrepare No Yes
 ICommandProperties Yes Yes
 ICommandText Yes Yes
 ICommandWithParameters No Yes
 IConvertType Yes Yes
 ISupportErrorInfo Yes Yes
CustomErrorObject IErrorLookup No Yes
 ISQLErrorInfo No Yes
DataSource IDBAsynchStatus No No
 IConnectionPointContainer No No
 IDBCreateSession Yes Yes
 IDBDataSourceAdmin No No
 IDBInfo No Yes
 IDBInitialize Yes Yes
 IDBProperties Yes Yes
 IPersist Yes No
 IPersistFile Yes No
 ISupportErrorInfo Yes Yes
Enumerator IDBInitialize No No
 IDBProperties No No
 IParseDisplayName No No
 ISourcesRowset No No
 ISupportErrorInfo No No
ErrorObject IErrorRecords Yes Yes
ErrorRecord IErrorInfo Yes Yes
Index IAccessor Yes No
 IColumnsInfo Yes No
 IConvertType Yes No
 IRowset Yes No
 IRowsetChange Yes No
 IRowsetFind Yes No
 IRowsetIdentity Yes No
 IRowsetIndex Yes No
 IRowsetInfo Yes No
 IRowsetLocate Yes No
 IRowsetRefresh Yes No
 IRowsetScroll Yes No
 IRowsetUpdate Yes No
 IRowsetView Yes No
 ISupportErrorInfo Yes No
MultipleResults IMultipleResults No No
 ISupportErrorInfo No No

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Rowset IAccessor Yes Yes
 IChapteredRowset Yes No
 IColumnsInfo Yes Yes
 IColumnsRowset Yes No
 IConnectionPointContainer No No
 IConvertType Yes Yes
 IDBAsynchStatus No No
 IRowset Yes Yes
 IRowsetChange Yes Yes
 IRowsetChapterMember No No
 IRowsetFind Yes No
 IRowsetIdentity Yes No
 IRowsetIndex Yes No
 IRowsetInfo Yes Yes
 IRowsetLocate Yes No
 IRowsetRefresh Yes No
 IRowsetScroll No No
 IRowsetUpdate Yes Yes
 IRowsetView Yes No
 ISupportErrorInfo Yes Yes
Session IAlterIndex No No
 IAlterTable No No
 IDBCreateCommand Yes Yes
 IDBSchemaRowset Yes Yes
 IGetDataSource Yes Yes
 IIndexDefinition No No
 IOpenRowset Yes Yes
 ISessionProperties Yes Yes
 ISupportErrorInfo Yes Yes
 ITableDefinition No No
 ITransaction No Yes
 ITransactionJoin No No
 ITransactionLocal No Yes
 ITransactionObject No Yes
Transaction IConnectionPointContainer No No
 ISupportErrorInfo No No
 ITransaction No No
TransactionOptions ISupportErrorInfo No Yes
 ITransactionOptions No Yes
View IAccessor Yes No
 IColumnsInfo Yes No
 ISupportErrorInfo Yes No
 IViewChapter Yes No
 IViewFilter Yes No
 IViewRowset Yes No
 IViewSort Yes No

Microsoft Host Integration Server 2000

OLE DB Object Support in the OLE DB Provider for AS/400 and
VSAM
The following table summarizes the OLE DB version 2.0 objects that are supported by the current version of the Microsoft® OLE
DB Provider for AS/400 and VSAM:

OLE DB object Support
Command Yes, most interfaces
CustomErrorObject No
DataSource Yes, most interfaces
Enumerator No
ErrorObject Yes, all interfaces
ErrorRecord Yes, all interfaces
Index Yes, all interfaces
MultipleResults No
Rowset Yes, most interfaces
Session Yes, some interfaces
Transaction No
TransactionOptions No
View Yes, all interfaces

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Interface Support in the OLE DB Provider for AS/400
and VSAM
The following table summarizes the OLE DB version 2.0 interfaces that are supported by the current version of the Microsoft®
OLE DB Provider for AS/400 and VSAM:

Object Interface Support
Command IAccessor Yes
 IColumnsInfo Yes
 IColumnsRowset No
 ICommand Yes
 ICommandPersist No
 ICommandPrepare No
 ICommandProperties Yes
 ICommandText Yes
 ICommandWithParameters No
 IConvertType Yes
 ISupportErrorInfo Yes
CustomErrorObject IErrorLookup No
 ISQLErrorInfo No
DataSource IDBAsynchStatus No
 IDBConnectionPointContainer No
 IDBCreateSession Yes
 IDBDataSourceAdmin No
 IDBInfo No
 IDBInitialize Yes
 IDBProperties Yes
 IPersist Yes
 IPersistFile Yes
 ISupportErrorInfo Yes
Enumerator IDBInitialize No
 IDBProperties No
 IParseDisplayName No
 ISourcesRowset No
 ISupportErrorInfo No
ErrorObject IErrorRecords Yes
ErrorRecord IErrorInfo Yes
Index IAccessor Yes
 IColumnsInfo Yes
 IConvertType Yes
 IRowset Yes
 IRowsetChange Yes
 IRowsetFind Yes
 IRowsetIdentity Yes
 IRowsetIndex Yes
 IRowsetInfo Yes
 IRowsetLocate Yes
 IRowsetRefresh Yes
 IRowsetScroll Yes
 IRowsetUpdate Yes
 IRowsetView Yes
 ISupportErrorInfo Yes
MultipleResults IMultipleResults No

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 ISupportErrorInfo No
Rowset IAccessor Yes
 IChapteredRowset Yes
 IColumnsInfo Yes
 IColumnsRowset Yes
 IConnectionPointContainer No
 IConvertType Yes
 IDBAsynchStatus No
 IRowset Yes
 IRowsetChange Yes
 IRowsetChapterMember No
 IRowsetFind Yes
 IRowsetIdentity Yes
 IRowsetIndex Yes
 IRowsetInfo Yes
 IRowsetLocate Yes
 IRowsetRefresh Yes
 IRowsetScroll No
 IRowsetUpdate Yes
 IRowsetView Yes
 ISupportErrorInfo Yes
Session IAlterIndex No
 IAlterTable No
 IDBCreateCommand Yes
 IDBSchemaRowset Yes
 IGetDataSource Yes
 IIndexDefinition No
 IOpenRowset Yes
 ISessionProperties Yes
 ISupportErrorInfo Yes
 ITableDefinition No
 ITransaction No
 ITransactionJoin No
 ITransactionLocal No
 ITransactionObject No
Transaction IConnectionPointContainer No
 ISupportErrorInfo No
 ITransaction No
TransactionOptions ISupportErrorInfo No
 ITransactionOptions No
View IAccessor Yes
 IColumnsInfo Yes
 ISupportErrorInfo Yes
 IViewChapter Yes
 IViewFilter Yes
 IViewRowset Yes
 IViewSort Yes

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM Command Object
The Command object is created by an OLE DB consumer, or by a service provider on behalf of a consumer. A Command object
is used to execute a DDM-specific command on a remote DDM server. The Command object currently supports executing
Command Language commands on AS/400 DDM servers.

It is important not to confuse a command, which is an OLE COM object, and its command text, which is a string. Commands are
generally used for data definition, such as creating a table or granting privileges, and data manipulation, such as updating or
deleting rows. A special case of data manipulation using the Command object is opening a rowset (a table).

Before a consumer can use a command, it must determine if commands are supported. To do this, the consumer calls
QueryInterface for IDBCreateCommand on a session. If this interface is exposed, the provider supports commands. To create a
command, the consumer then calls IDBCreateCommand::CreateCommand on the session. A single session can be used to
create multiple commands.

When the command is first created, it does not contain a command text. The consumer sets the command text with
ICommandText::SetCommandText. Because the text command syntax is provider-specific, the consumer passes the GUID of
the syntax to use. For use with Microsoft® OLE DB Provider for AS/400 and VSAM, the GUID is DBGUID_DBSQL. Please note that
under the OLE DB Provider for AS/400 and VSAM, this GUID does not signify that the text command is a superset of ANSI SQL.
The level at which the provider supports ANSI SQL is specified by the DBPROP_SQLSUPPORT property. This property is a bit
mask specifying the level of support for SQL. The OLE DB Provider for AS/400 and VSAM sets this property to
DBPROPVAL_SQL_NONE, indicating that SQL is not supported.

The syntax supported by the OLE DB Provider for AS/400 and VSAM for command text is as follows:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your platform
for a detailed list of possible commands.

The syntax supported by the OLE DB Provider for AS/400 and VSAM to open a rowset (table) using command text is as follows:

where FileName represents one of the following host file naming conventions:

Host file type File naming convention
VSAM Data Sets DATASETNAME.FILENAME
Partitioned Data Sets DATASETNAME.FILENAME(MEMBER)
OS/400 Files LIBRARY/FILE
OS/400 Files LIBRARY/FILENAME
OS/400 File Members LIBRARY/FILE(MEMBER)
OS/400 File Members LIBRARY.FILENAME(MEMBER)

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double quotes.
For example, if the member name is NAMES.DAT, the proper syntax used to open a rowset using command text is as follows:

To execute the command, the consumer calls ICommand::Execute. If the command text specifies the command to open a rowset,
(an EXEC OPEN command), Execute instantiates the rowset and returns an interface pointer to it.

The following interfaces of the Command object are supported by the current version of the OLE DB Provider for AS/400 and
VSAM:

IAccessor
IColumnsInfo
ICommand

EXEC COMMAND DDMCmd

EXEC OPEN FileName

EXEC OPEN LIBRARY/FILE("NAMES.DAT")

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

ICommandProperties
ICommandText
IConvertType
ISupportErrorInfo

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM DataSource Object
The DataSource object is created by an OLE DB consumer. The DataSource object contains the knowledge and ability to connect
to an IBM mainframe or AS/400 over APPC and LU6.2 (through Microsoft® Host Integration Server 2000) or over TCP/IP. The
DataSource object is used to create one or more Session objects.

The following interfaces of the DataSource object are supported by the current version of the Microsoft® OLE DB Provider for
AS/400 and VSAM:

IDBCreateSession
IDBInitialize
IDBProperties
IPersist
IPersistFile
ISupportErrorInfo

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM ErrorObject Object
The ErrorObject object is created by any interface on any SNA OLE DB object. The ErrorObject object is used to retrieve
additional information when an error occurs.

The following interfaces of the ErrorObject object are supported by the current version of the Microsoft® OLE DB Provider for
AS/400 and VSAM:

IErrorRecords

The IErrorRecords interface returns ErrorRecord objects with detailed information on the error that occurred.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM ErrorRecord Object
The ErrorRecord object is created by calling the IErrorRecord interface on the ErrorObject object. An ErrorObject is created on
any interface on any SNA OLE DB object when an error occurs. The ErrorRecord object is used to retrieve additional information
when an error occurs.

The following interfaces of the ErrorRecord object are supported by the current version of the Microsoft® OLE DB Provider for
AS/400 and VSAM:

IErrorInfo

OLE DB interface methods return error information in two ways. The error code returned by an interface method, known as the
return code, indicates the overall success or failure of a method. Error records provide detailed information about the error, such
as a text description of the error, the GUID of the interface that defined the error, and provider-specific error information. Error
objects in OLE DB are an extension of the error objects in Automation, they use many of the same mechanisms, and can be used
as Automation error objects.

OLE DB error return codes are of type HRESULT. There are two general classes of return codes: success and warning codes, and
error codes.

Success and warning codes begin with S_ or DB_S_ and indicate that the method successfully completed. The standard OLE DB
error codes are defined in the OLEDBERR.H include file.

If the return code is other than S_OK or S_FALSE, it is likely that an error occurred from which the method was able to recover. For
example, IRowset::GetNextRows returns DB_S_ENDOFROWSET when it is unable to return the requested number of rows due
to reaching the end of the rowset. If a single warning condition occurs, the method returns the code for that condition. If multiple
warning conditions occur, the method describes the hierarchy of warning return codes indicating which warning code should be
returned when given a choice between multiple warning return codes.

Error codes begin with E_ or DB_E_ and indicate that the method failed completely and was unable to do any useful work. For
example, GetNextRows returns E_INVALIDARG when the pointer in which it is to return a pointer to an array of row handles
(prghRows) is null. An exception to this is that some of the methods that return DB_E_ERRORSOCCURRED allocate memory in
which to return additional information about these errors. Consumers must free this memory. For information about which
methods allocate memory in this case, see the methods that return DB_E_ERRORSOCCURRED. Although error codes can indicate
run-time errors, such as running out of memory, they generally indicate programming errors. If multiple errors occur, the code
that is returned is provider-specific. If both errors and warnings occur, the method fails and returns an error code.

All methods can return S_OK, E_FAIL, and E_OUTOFMEMORY. The E_OUTOFMEMORY code applies only to those methods which
allocate memory that is returned to the consumer. In some cases, the E_OUTOFMEMORY code might be eliminated by calling the
method requesting fewer returned values, such as fewer rows from GetNextRows.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM Index Object
An OLE DB index, also known as an index rowset, is a rowset built over an index in a data source. It is generally used in
conjunction with a rowset built over a base table in the same data source. Each row of the index rowset contains a bookmark that
points to a row in the base-table rowset. Thus, an OLE DB consumer can traverse the index rowset and use it to access rows in the
base-table rowset.

Indexes are created using the Index interfaces of the Rowset object. Index rowsets allow an application to read records efficiently
by means of a key.

The following Index interfaces of the Rowset object are supported by the current version of the Microsoft® OLE DB Provider for
AS/400 and VSAM when applied to AS/400 keyed physical files, AS/400 logical files, VSAM KSDS files with unique keys, and
VSAM RRDS files with unique keys.

IAccessor
IColumnsInfo
IConvertType
IRowset
IRowsetChange
IRowsetFind
IRowsetIdentity
IRowsetIndex
IRowsetInfo
IRowsetLocate
IRowsetRefresh
IRowsetScroll
IRowsetUpdate
IRowsetView
ISupportErrorInfo

The OLE DB Provider for AS/400 and VSAM supports integrated indexes using the IRowsetIndex interface based on the
underlying rowset. For more information on indexes, see Chapter 8, "Indexes" and Chapter 16, "Integrated Indexes" in the OLE DB
Programmer's Reference.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM Rowset Object
Rowset objects are created by Session objects. The Rowset object exposes data in tabular format.

The following interfaces of the Rowset object are supported by the current version of the Microsoft® OLE DB Provider for
AS/400 and VSAM:

IAccessor
IChapteredRowset
IColumnsInfo
IColumnsRowset
IConvertType
IRowset
IRowsetChange
IRowsetFind
IRowsetIdentity
IRowsetIndex
IRowsetInfo
IRowsetLocate
IRowsetRefresh
IRowsetUpdate
IRowsetView
ISupportErrorInfo

 Note The IRowsetFind interface is only supported by the current version of the Microsoft® OLE DB Provider
for AS/400 and VSAM when applied to AS/400 keyed physical files, AS/400 logical files, VSAM KSDS files with
unique keys, and VSAM RRDS files with unique keys.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM Session Object
The Session object is created by a DataSource object. The Session object is used to create one or more Rowset objects.

The following interfaces of the Session object are supported by the current version of the Microsoft® OLE DB Provider for
AS/400 and VSAM:

IDBCreateCommand
IDBSchemaRowset
IGetDataSource
IOpenRowset
ISessionProperties
ISupportErrorInfo

Consumers can get information about a data store without knowing its structure by using the IDBSchemaRowset methods. The
methods on this interface can be used to retrieve advanced schema information. The OLE DB Provider for AS/400 and VSAM
represents organizes this information into a set of schemas that contain tables for each schema. These schema rowsets are
identifed by GUIDs.

The following schema rowset GUIDs are supported by the OLE DB Provider for AS/400 and VSAM:

DBSCHEMA_COLUMNS
DBSCHEMA_INDEXES
DBSCHEMA_PROVIDER_TYPES
DBSCHEMA_TABLES

The following table lists these GUIDs and the columns for which restrictions can be specified on the schema rowset when using
the OLE DB Provider for AS/400 and VSAM. The number of restriction columns for each schema rowset are defined as constants
prefixed with CRESTRICTIONS_ in the OLEDB header files. Restriction values are treated as literals rather than as search patterns.
For example, the restriction value "A_C" matches "A_C" but not "ABC".

GUID Number of Restrictions Restriction Columns
DBSCHEMA_COLUMNS 4 TABLE_CATALOG

TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

DBSCHEMA_INDEXES 5 TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TYPE
TABLE_NAME

DBSCHEMA_PROVIDER_TYPES 2 DATA_TYPE
BEST_MATCH

DBSCHEMA_TABLES 4 TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

The IDBSchemaRowset interface allows an application to pass at run time the target library of a Partioned Data Set (PDS/PDSE),
a dataset, or a member name when using the IDBSchemaRowset:GetSchemas function to retrieve the schema.

This following sample illustrates using a target library to retrieve a table schema:

hr = pIDBSchemaRowset->GetRowset(
 NULL, // punkOuter
 DBSCHEMA_TABLES, // schema IID
 2L, // # of restrictions
 rgRestrictions, // array of restrictions
 IID_IRowset, // rowset interface
 0L, // # of properties
 NULL, // properties
 (IUnknown**)&pIRowset); // rowset pointer

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The variable rgRestrictions is an array containing two restriction values. The first array entry is VT_EMPTY and the second array
entry is the target library name.

Microsoft Host Integration Server 2000

OLE DB Provider for AS/400 and VSAM View Object
The View object is created on a Rowset object. The View object is used to expose simple operations, such as sorting and filtering
a rowset by applying a view. Views can be applied when opening a Rowset object or applied to an existing Rowset object.

The following interfaces of the View object are supported by the current version of the Microsoft® OLE DB Provider for AS/400
and VSAM when applied to AS/400 keyed physical files, AS/400 logical files, VSAM KSDS files with unique keys, and VSAM RRDS
files with unique keys.

IAccessor
IColumnsInfo
ISupportErrorInfo
IViewChapter
IViewFilter
IViewRowset
IViewSort

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Property Support in the OLE DB Provider for AS/400
and VSAM
The following table summarizes the provider-specific OLE DB version 2.0 properties in the SNAOLEDB_DBPROPSET_DBINIT
property set that are supported by the current version of the Microsoft® OLE DB Provider for AS/400 and VSAM.

OLE D
B Pro
perty
ID

Description

DBPR
OP_S
NAOL
EDB_A
PPCM
ODE

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_SNAOLEDB_NETTYPE), this property is the AP
PC mode and must be set to a value that matches the host configuration and SNA server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #I
NTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IB
MRDB (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compressi
on are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing se
curity), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This VT_BSTR type property normally defaults to QPCSUPP.

DBPR
OP_S
NAOL
EDB_BI
NASC
HAR

This property indicates whether to process binary fields (CCSID of 65535) as character data type fields on a per data sourc
e basis. The host CCSID and PC Code Page values are required input parameters when this parameter is true.

This VT_BOOL type property defaults to VARIANT_FALSE, don't process binary fields as character fields.

DBPR
OP_S
NAOL
EDB_H
CDPAT
H

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 25
6 characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system direct
ory.

This VT_BSTR type property is required when connecting to mainframe systems and is optional when connecting to OS/4
00.

DBPR
OP_S
NAOL
EDB_H
OSTC
CSID

The character code set identifier (CCSID) matching the data as represented on the host. This property is required when pr
ocessing binary data as character data. Unless the DBPROP_SNAOLEDB_BINASCHAR property is set to true, character dat
a is converted based on the host column CCSID and default ANSI code page.

This VT_I4 property defaults to U.S./Canada (37).

DBPR
OP_S
NAOL
EDB_LI
BRARY

The default AS/400 library to be accessed.

This VT_BSTR property is not required for mainframe access and is optional when connecting to AS/400 files.

DBPR
OP_S
NAOL
EDB_L
OCALL
U

When LU 6.2 (SNA) is selected for the Network Transport Library, this property is the name of the local LU alias configure
d in the SNA server.

DBPR
OP_S
NAOL
EDB_N
ETADD
RESS

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target host compute
r. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. The netw
ork address is required when connecting via TCP/IP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

DBPR
OP_S
NAOL
EDB_N
ETPOR
T

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target DDM service a
ccess port when connecting via TCP/IP. This parameter represents the TCP/IP port used for communication with the DDM
service on the host.

The default value for the VT_BSTR type property is 446.

DBPR
OP_S
NAOL
EDB_N
ETTYP
E

This property which represents the dynamic link library used for transport designates whether the provider connects via S
NA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCP/IP or SNA.

If TCPIP is selected, then values for Network Address (DBPROP_SNAOLEDB_NETADDRESS) and Network Port (DBPROP_S
NAOLEDB_NETPORT) are required. TCP/IP connectivity to the mainframe is not supported by the OLE DB Provider for AS/
400 and VSAM.

If SNA is selected, then values for APPC Local LU Alias (DBPROP_SNAOLEDB_LOCALLU, APPC Mode Name (DBPROP_SN
AOLEDB_APPCMODE), and APPC Remote LU Alias (DBPROP_SNAOLEDB_REMOTELU) are required.

This value for this VT_BSTR property defaults to SNA.

DBPR
OP_S
NAOL
EDB_P
CCOD
EPAGE

The PC Code Page property ID indicates the code page to be used on the PC for character code conversion. This property i
s required when processing binary data as character data. Unless DBPROP_SNAOLEDB_BINASCHAR is set to true, charact
er data is converted based on the default ANSI code page configured in Windows.

If this parameter is set to Binary or 65535, then no character code conversions will take place.

The default value for this VT_I4 type property is 1252 (Latin-1).

DBPR
OP_S
NAOL
EDB_R
EMOT
ELU

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_SNAOLEDB_NETTYPE), this property ID is the
name of the remote LU alias configured in the SNA server.

DBPR
OP_S
NAOL
EDB_R
EPAIR
KEY

This property ID provides for repair of invalid key offsets received from OS/400 when keys have been defined using the D
DS "RENAME" clause. This parameter indicates whether the OLE DB provider should repair any host key values set in the r
egistry.

This VT_BOOL type property defaults to VARIANT_FALSE.

DBPR
OP_S
NAOL
EDB_S
TRICT
VAL

This property indicates whether strict validation should be used.

This VT_BOOL type property defaults to VARIANT_FALSE.

Microsoft Host Integration Server 2000

OLE DB Object Support in the OLE DB Provider for DB2
The following table summarizes the OLE DB version 2.0 objects that are supported by the current version of the Microsoft® OLE
DB Provider for DB2:

OLE DB object Support
Command Yes, most interfaces
CustomErrorObject Yes, all interfaces
DataSource Yes, some interfaces
Enumerator No
ErrorObject Yes, all interfaces
ErrorRecord Yes, all interfaces
Index No
MultipleResults No
Rowset Yes, some interfaces
Session Yes, some interfaces
Transaction Yes, some interfaces
TransactionOptions Yes, all interfaces
View No

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Interface Support in the OLE DB Provider for DB2
The following table summarizes the OLE DB version 2.0 interfaces that are supported by the current version of the Microsoft®
OLE DB Provider for DB2:

Object Interface Support
Command IAccessor Yes
 IColumnsInfo Yes
 IColumnsRowset No
 ICommand Yes
 ICommandPersist No
 ICommandPrepare Yes
 ICommandProperties Yes
 ICommandText Yes
 ICommandWithParameters Yes
 IConvertType Yes
 ISupportErrorInfo Yes
CustomErrorObject IErrorLookup Yes
 ISQLErrorInfo Yes
DataSource IDBAsynchStatus No
 IConnectionPointContainer No
 IDBCreateSession Yes
 IDBDataSourceAdmin No
 IDBInfo Yes
 IDBInitialize Yes
 IDBProperties Yes
 IPersist Yes
 IPersistFile Yes
 ISupportErrorInfo Yes
Enumerator IDBInitialize No
 IDBProperties No
 IParseDisplayName No
 ISourcesRowset No
 ISupportErrorInfo No
ErrorObject IErrorRecords Yes
ErrorRecord IErrorInfo Yes
Index IAccessor No
 IColumnsInfo No
 IConvertType No
 IRowset No
 IRowsetChange No
 IRowsetFind No
 IRowsetIdentity No
 IRowsetIndex No
 IRowsetInfo No
 IRowsetLocate No
 IRowsetRefresh No
 IRowsetScroll No
 IRowsetUpdate No
 IRowsetView No
 ISupportErrorInfo No
MultipleResults IMultipleResults No
 ISupportErrorInfo No
Rowset IAccessor Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 IChapteredRowset No
 IColumnsInfo Yes
 IColumnsRowset No
 IConnectionPointContainer No
 IConvertType Yes
 IDBAsynchStatus No
 IRowset Yes
 IRowsetChange Yes
 IRowsetChapterMember No
 IRowsetFind No
 IRowsetIdentity No
 IRowsetIndex No
 IRowsetInfo Yes
 IRowsetLocate No
 IRowsetRefresh No
 IRowsetScroll No
 IRowsetUpdate Yes
 IRowsetView No
 ISupportErrorInfo Yes
Session IAlterIndex No
 IAlterTable No
 IDBCreateCommand Yes
 IDBSchemaRowset Yes
 IGetDataSource Yes
 IIndexDefinition No
 IOpenRowset Yes
 ISessionProperties Yes
 ISupportErrorInfo Yes
 ITableDefinition No
 ITransaction Yes
 ITransactionJoin No
 ITransactionLocal Yes
 ITransactionObject Yes
Transaction IConnectionPointContainer No
 ISupportErrorInfo Yes
 ITransaction Yes
TransactionOptions ISupportErrorInfo Yes
 ITransactionOptions Yes
View IAccessor No
 IColumnsInfo No
 ISupportErrorInfo No
 IViewChapter No
 IViewFilter No
 IViewRowset No
 IViewSort No

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 Command Object
The Command object is created by an OLE DB consumer, or by a service provider on behalf of a consumer. A Command object
is used to execute a DDM-specific command on a remote DDM server. The Command object currently supports executing
Command Language commands on AS/400 DDM servers.

It is important not to confuse a command, which is an OLE COM object, and its command text, which is a string. Commands are
generally used for data definition, such as creating a table or granting privileges, and data manipulation, such as updating or
deleting rows. A special case of data manipulation using the Command object is the creation of rowsets based on DB2 tables.
When using the command text with DB2/400 on the AS/400, table names specified in a command are by default passed as
uppercase. If a table name uses mixed case, then the table name must be passed in a quoted string.

Before a consumer can use a command, it must determine if commands are supported. To do this, the consumer calls
QueryInterface for IDBCreateCommand on a session. If this interface is exposed, the provider supports commands. To create a
command, the consumer then calls IDBCreateCommand::CreateCommand on the session. A single session can be used to
create multiple commands.

When the command is first created, it does not contain a command text. The consumer sets the command text with
ICommandText::SetCommandText. Because the text command syntax is provider-specific, the consumer passes the GUID of
the syntax to use. For use with Microsoft® OLE DB Provider for DB2, the GUID is DBGUID_DBSQL. Please note that under the OLE
DB Provider for DB2, this GUID signifies that the text command is a superset of ANSI SQL. The level at which the provider
supports ANSI SQL is specified by the DBPROP_SQLSUPPORT property. This property is a bit mask specifying the level of support
for SQL.

The syntax supported by the OLE DB Provider for DB2 for command text is as Entry-Level ANSI SQL 92 (with some exceptions
based on the DB2 server host platform).

Legal SQL commands are documented in the following publications published by IBM:

AS/400 Advanced Series: DB2 for AS/400 SQL Reference Version 4 (Document Number SC41-5612-00)
DB2 for OS/390 Version 5: SQL Reference (Document Number SC26-8966)

To execute the command, the consumer calls ICommand::Execute. If the command text specifies the command to open a rowset,
Execute instantiates the rowset and returns an interface pointer to it.

The following interfaces of the Command object are supported by the current version of the OLE DB Provider for DB2.

IAccessor
IColumnsInfo
ICommand
ICommandPrepare
ICommandProperties
ICommandText
ICommandWithParameters
IConvertType
ISupportErrorInfo

When using the ICommand object, the Microsoft OLE DB Provider for DB2 cannot derive parameter type information from the
data store. The OLE DB client application must supply the native parameter type information through
ICommandWithParameters::SetParameterInfo function. The OLE DB provider uses the type information specified by
SetParameterInfo to determine how to convert parameter data from the type supplied by the consumer (as indicated by the
wType value in the binding structure) to the native type used by the data store. When the consumer specifies a data type with
known precision, scale, and size values, any information supplied by the consumer for precision, scale, or size is ignored by the
OLE DB Provider for DB2.

The information that the consumer supplies must be correct and must be supplied for all parameters. The OLE DB Provider for
DB2 cannot verify the supplied information against the parameter metadata, although the OLE DB provider can determine that
the specified values are legal values for the provider. The result of executing a command using incorrect parameter information or
passing parameter information for the wrong number of parameters is undefined. For example, if the parameter type is LONG
and the consumer specifies a type indicator of DBTYPE_STR in ICommandWithParameters::SetParameterInfo, the OLE DB
Provider for DB2 converts the data to a string before sending it to the data store. Because the data store is unepecting a LONG,
this will likely result in an error.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 CustomErrorObject Object
The CustomErrorObject object is created by a Command object when a command error occurs. The CustomErrorObject object
is used to retrieve additional information when an error occurs.

The following interfaces of the CustomErrorObject object are supported by the current version of the Microsoft® OLE DB
Provider for DB2:

IErrorLookup
ISQLErrorInfo

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 DataSource Object
The DataSource object is created by an OLE DB consumer. The DataSource object contains the knowledge and ability to connect
to DB2 over APPC and LU6.2 (through Microsoft® Host Integration Server 2000) or over TCP/IP. The DataSource object is used
to create one or more Session objects.

The following interfaces of the DataSource object are supported by the current version of the Microsoft® OLE DB Provider for
DB2:

IDBCreateSession
IDBInfo
IDBInitialize
IDBProperties
IPersist
IPersistFile
ISupportErrorInfo

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 ErrorObject Object
The ErrorObject object is created by any interface on any DB2 OLE DB object. The ErrorObject object is used to retrieve
additional information when an error occurs.

The following interfaces of the ErrorObject object are supported by the current version of the Microsoft® OLE DB Provider for
DB2:

IErrorRecords

The IErrorRecords interface returns ErrorRecord objects with detailed information on the error that occurred.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 ErrorRecord Object
The ErrorRecord object is created by calling the IErrorRecord interface on the ErrorObject object. An ErrorObject is created on
any interface on any SNA OLE DB object when an error occurs. The ErrorRecord object is used to retrieve additional information
when an error occurs.

The following interface of the ErrorRecord object is supported by the current version of the Microsoft® OLE DB Provider for DB2:

IErrorInfo

OLE DB interface methods return error information in two ways. The error code returned by an interface method, known as the
return code, indicates the overall success or failure of a method. Error records provide detailed information about the error, such
as a text description of the error, the GUID of the interface that defined the error, and provider-specific error information. Error
objects in OLE DB are an extension of the error objects in Automation, they use many of the same mechanisms, and can be used
as Automation error objects.

OLE DB error return codes are of type HRESULT. There are two general classes of return codes: success and warning codes, and
error codes.

Success and warning codes begin with S_ or DB_S_ and indicate that the method successfully completed. The standard OLE DB
error codes are defined in the OLEDBERR.H include file.

If the return code is other than S_OK or S_FALSE, it is likely that an error occurred from which the method was able to recover. For
example, IRowset::GetNextRows returns DB_S_ENDOFROWSET when it is unable to return the requested number of rows due
to reaching the end of the rowset. If a single warning condition occurs, the method returns the code for that condition. If multiple
warning conditions occur, the method describes the hierarchy of warning return codes, indicating which warning code should be
returned when given a choice between multiple warning return codes.

Error codes begin with E_ or DB_E_ and indicate that the method failed completely and was unable to do any useful work. For
example, GetNextRows returns E_INVALIDARG when a null pointer in which the OLE DB Provider to return a pointer to an array
of row handles (prghRows). An exception to this is that some of the methods that return DB_E_ERRORSOCCURRED allocate
memory to return additional information about these errors. Consumers must free this memory. For information about which
methods allocate memory in this case, see the methods that return DB_E_ERRORSOCCURRED. Although error codes can indicate
run-time errors, such as running out of memory, they generally indicate programming errors. If multiple errors occur, the code
that is returned is provider-specific. If both errors and warnings occur, the method fails and returns an error code.

All methods can return S_OK, E_FAIL, and E_OUTOFMEMORY. The E_OUTOFMEMORY code applies only to those methods which
allocate memory that is returned to the consumer. In some cases, the E_OUTOFMEMORY code might be eliminated by calling the
method requesting fewer returned values, such as fewer rows from GetNextRows.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 Rowset Object
Rowset objects are created by Session objects. The Rowset object exposes data in tabular format.

The following interfaces of the Rowset object are supported by the current version of the Microsoft® OLE DB Provider for DB2.

IAccessor
IColumnsInfo
IConvertType
IRowset
IRowsetChange
IRowsetInfo
IRowsetUpdate
ISupportErrorInfo

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 Session Object
The Session object is created by a DataSource object. The Session object is used to create one or more Rowset objects.

The following interfaces of the Session object are supported by the current version of the Microsoft® OLE DB Provider for DB2.

IDBCreateCommand
IDBSchemaRowset
IGetDataSource
IOpenRowset
ISessionProperties
ISupportErrorInfo
ITransaction
ITransactionLocal
ITransactionObject

Consumers can get information about a data store without knowing its structure by using the IDBSchemaRowset methods. The
methods on this interface can be used to retrieve advanced schema information. The OLE DB Provider for DB2 represents each
DB2 database server into a set of schemas that contain tables for each schema. These schema rowsets are identifed by GUIDs.

The following schema rowset GUIDs are supported by the OLE DB Provider for DB2:

DBSCHEMA_COLUMNS
DBSCHEMA_INDEXES
DBSCHEMA_PRIMARY_KEYS
DBSCHEMA_PROCEDURES
DBSCHEMA_PROCEDURE_PARAMETERS
DBSCHEMA_PROVIDER_TYPES
DBSCHEMA_TABLES

The following table lists these GUIDs and the columns for which restrictions can be specified on the schema rowset when using
the OLE DB Provider for DB2. The number of restriction columns for each schema rowset are defined as constants prefixed with
CRESTRICTIONS_ in the OLEDB header files. Restriction values are treated as literals rather than as search patterns. For example,
the restriction value "A_C" matches "A_C" but not "ABC".

GUID Number of Restrictions Restriction Columns
DBSCHEMA_COLUMNS 4 TABLE_CATALOG

TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME

DBSCHEMA_INDEXES 4 TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TABLE_NAME

DBSCHEMA_PRIMARY_KEYS 3 TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME

DBSCHEMA_PROCEDURES 4 PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PROCEDURE_TYPE

DBSCHEMA_PROCEDURE_PARAMETERS 4 PROCEDURE_CATALOG
PROCEDURE_SCHEMA
PROCEDURE_NAME
PARAMETER_NAME

DBSCHEMA_PROVIDER_TYPES 2 DATA_TYPE
BEST_MATCH

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

DBSCHEMA_TABLES 4 TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

Note that the TYPE restriction on the DBSCHEMA_INDEXES GUID is not supported by the OLE DB Provider for DB2.

The PROCEDURE_SCHEMA restriction on the DBSCHEMA_PROCEDURE GUID and the DBSCHEMA_PROCEDURE_PARAMETERS
GUID is not supported when connecting to DB/2 on OS/390 platforms.

Microsoft Host Integration Server 2000

OLE DB Provider for DB2 Transaction Object
The Transaction object is created by a Session object. The Transaction object is used to manage transactions on one or more
Rowset objects.

The following interfaces of the Transaction object are supported by the current version of the Microsoft® OLE DB Provider for
DB2.

ISupportErrorInfo
ITransaction

The current implementation of the OLE DB Provider for DB2 services all OLE DB Session, Command, and Rowset objects present
in a given instance of the DataSource object through a single APPC conversation or TCP/IP connection. One implication of this
design is that if two Rowset objects, each created from a different OLE DB Session object, use explicit commitment control
through the ITransaction interface, they will interfere with each other. When a Commit or Abort for one instance is invoked, all
work for the DataSource object will be either committed or aborted. This may yield undesirable results. The work around to this
problem is to instantiate two instances of the DataSource object.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Property Support in the OLE DB Provider for DB2
The OLE DB Provider for DB2 included with Host Integration Server 2000 supports a different set of provider-specific properties
than the earlier OLE DB Provider for DB2 supplied with SNA Server 4.0. The sections below provide information on provider-
specific and standard OLE DB properties supported by the current and the earlier OLE DB provider.

This section contains:

OLE DB Provider-Specific Property Support in the OLE DB Provider for DB2

OLE DB Data Source Property Support in the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB Provider-Specific Property Support in the OLE DB
Provider for DB2
The following table summarizes the provider-specific OLE DB version 2.0 properties in the DB2OLEDB_DBPROPSET_DBINIT
property set that are supported by the version of the Microsoft® OLE DB Provider for DB2 included with Host Integration Server
2000:

OLE D
B Prop
erty I
D

Description

DBPR
OP_DB
2OLED
B_APP
CMOD
E

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_DB2OLEDB_NETTYPE), this property is the AP
PC mode and must be set to a value that matches the host configuration and SNA server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #I
NTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IB
MRDB (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compressi
on are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing se
curity), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This VT_BSTR type property normally defaults to QPCSUPP.

DBPR
OP_DB
2OLED
B_BIN
ASCHA
R

This property indicates whether to process binary fields (CCSID of 65535) as character data type fields on a per data sour
ce basis. The host CCSID and PC Code Page values are required input parameters when this parameter is true.

This VT_BOOL type property defaults to VARIANT_FALSE, don't process binary fields as character fields.

DBPR
OP_DB
2OLED
B_CAT
ALOG
COL

The name of the collection where the OLE DB Provider for DB2 looks for catalog information. This is the default schema, t
he “SCHEMA” name for the target collection of tables and views. This property is the Data Schema value when configurin
g data sources. The OLE DB Provider for DB2 uses this default schema to restrict results sets for popular operations, such
as enumerating a list of tables in a target collection.

For DB2, the default schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the default schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the default schema is the SCHEMA name.

If the user does not provide a VT_BSTR value for DBPROP_DB2OLEDB_CATALOGCOL, then the OLE DB Provider uses the
USER_ID provided at login. For DB2/400, the driver will use QSYS2 if there is no collection found matching the USER_ID v
alue. Obviously, these values for the default schema are inappropriate in many cases, therefore it is essential that the Defa
ult Schema value in the data source be defined.

DBPR
OP_DB
2OLED
B_HOS
TCCSI
D

The character code set identifier (CCSID) matching the data as represented on the host. This property is required when pr
ocessing binary data as character data. Unless the DBPROP_DB2OLEDB_BINASCHAR property ID is set to true, character d
ata is converted based on the host column CCSID and default ANSI code page.

This VT_I4 type property defaults to 37 (U.S./Canada).

DBPR
OP_DB
2OLED
B_LOC
ALLU

When LU 6.2 (SNA) is selected for the Network Transport Library, this property is the name of the local LU alias configure
d in the SNA server.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_NET
ADDRE
SS

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target host compute
r. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. The netw
ork address is required when connecting via TCP/IP.

This VT_BSTR type property defaults to SNA.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

DBPR
OP_DB
2OLED
B_NET
PORT

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target DDM service
access port when connecting via TCP/IP. This parameter represents the TCP/IP port used for communication with the DD
M service on the host.

This VT_BSTR type property defaults to 446.

DBPR
OP_DB
2OLED
B_NET
TYPE

This property which represents the dynamic link library used for transport designates whether the provider connects via
SNA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCP/IP or SNA.

If TCPIP is selected, then values for Network Address (DBPROP_DB2OLEDB_NETADDRESS) and Network Port (DBPROP_D
B2OLEDB_NETPORT) are required.

If SNA is selected, then values for APPC Local LU Alias (DBPROP_DB2OLEDB_LOCALLU, APPC Mode Name (DBPROP_DB2
OLEDB_APPCMODE), and APPC Remote LU Alias (DBPROP_DB2OLEDB_REMOTELU) are required.

This VT_BSTR type property defaults to SNA.

DBPR
OP_DB
2OLED
B_PAC
KAGEC
OL

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and
bind DB2 packages. This could be the same as the Default Schema (DBPROP_DB2OLEDB_DEFAULTSCH).

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to i
ssue dynamic and static SQL statements. The OLE DB Provider for DB2 will create packages dynamically in the location to
which the user points using the this property ID.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_PCC
ODEPA
GE

The PC Code Page property ID indicates the code page to be used on the PC for character code conversion. This property i
s required when processing binary data as character data. Unless DBPROP_DB2OLEDB_BINASCHAR is set to true, charact
er data is converted based on the default ANSI code page configured in Windows.

If this parameter is set to Binary or 65535, then no character code conversions will take place.

This VT_I4 type property defaults to 1252 (Latin 1).

DBPR
OP_DB
2OLED
B_REM
OTELU

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_DB2OLEDB_NETTYPE), this property is the na
me of the remote LU alias configured in the SNA server.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_TPN
AME

This property represents the default transaction program name for the DB2 DRDA application server (AS) which is 07F6D
B (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that ca
se, this property is set to 0X07F9F9F9.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_UNI
TSOF
WORK

This property indicates whether two-phase commit (distributed unit of work) used for transactions is supported for this d
ata source. Distributed transactions are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Co
ordinator, and the SNA LU 6.2 Resync Service.

The following values for this property are supported by the OLE DB Provider for DB2:

RUW (remote unit of work)

DUW (distributed unit of work)

This VT_BSTR type property has a default value of RUW.

Distributed unit of work (two-phase commit) works only with DB2 for OS/390 v5R1 or later. This option also requires tha
t the SNA LU 6.2 service is selected as the network transport and Microsoft Transaction Server (MTS) is installed.

The following table summarizes the provider-specific OLE DB version 2.0 properties in the DB2OLEDB_DBPROPSET_DBINIT
property set that are supported by the version of the Microsoft® OLE DB Provider for DB2 included with SNA Server 4.0:

OLE D
B Pro
perty
ID

Description

DBPR
OP_DB
2OLED
B_APP
CMOD
E

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_DB2OLEDB_NETTYPE), this property is the AP
PC mode and must be set to a value that matches the host configuration and SNA server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #I
NTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IB
MRDB (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compressi
on are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing se
curity), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This VT_BSTR type property normally defaults to QPCSUPP.

DBPR
OP_DB
2OLED
B_BIN
ASCH
AR

This property indicates whether to process binary fields (CCSID of 65535) as character data type fields on a per data sourc
e basis. The host CCSID and PC Code Page values are required input parameters when this parameter is true.

This VT_BOOL type property defaults to VARIANT_FALSE, don't process binary fields as character fields.

DBPR
OP_DB
2OLED
B_BIN
DTYPE

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are
as follows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The NORM package binding option is designed to provide reasonable performance and maximum compatibility with diffe
rent versions of DB2, DB2 for MVS, DB2 for OS/390, DB2 UDB, and DB2 for OS/400. Optionally, administrators can use th
e FAST method when running the Create Package utility and creating packages in many target collections. The FAST optio
n should not be used with DB2 for MVS and DB2 UDB for NT due to known incompatibilities.

This VT_BSTR property defaults to NORM.

This VT_BOOL type property defaults to VARIANT_FALSE, don't process binary fields as character fields.

DBPR
OP_DB
2OLED
B_CO
MMIT
CTRL

This property indicates whether changes to data will be automatically committed or require a separate manual commit re
quest.

This parameter allows for implicit COMMIT on all SQL statements. In auto-commit mode, every database operation is a tr
ansaction that is committed when performed. This mode is suitable for common transactions that consist of a single SQL
statement. It is unnecessary to delimit or specify completion of these transactions. No ROLLBACK is allowed when using A
uto Commit mode.

This VT_BOOL type property defaults to VARIANT_TRUE (auto commit).

DBPR
OP_DB
2OLED
B_DEF
AULTS
CH

The name of the Collection where the OLE DB Provider for DB2 looks for catalog information. The Default Schema is the “
SCHEMA” name for the target collection of tables and views. The OLE DB Provider uses Default Schema to restrict results
sets for popular operations, such as enumerating a list of tables in a target collection.

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a VT_BSTR value for Default Schema, then the OLE DB Provider uses the USER_ID provided at
login. For DB2/400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this d
efault is inappropriate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

DBPR
OP_DB
2OLED
B_HOS
TCCSI
D

The character code set identifier (CCSID) matching the data as represented on the host. This property is required when pr
ocessing binary data as character data. Unless the DBPROP_DB2OLEDB_BINASCHAR property ID is set to true, character d
ata is converted based on the host column CCSID and default ANSI code page.

This VT_I4 type property defaults to 37 (U.S./Canada).

DBPR
OP_DB
2OLED
B_HOS
TGCCS
ID

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host c
omputer. This property is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and do
uble-byte (DBCS) data. When accessing DB2 for OS/390 or DB2 for MVS, a value must be specified for GCCSID if the "MIX
ED DATA" field (7) of the DB2 installation panel for Application Programming Defaults (DSNTIPF) is set to "YES".

This property is currently supported only by the Japanese version of the OLE DB Provider for DB2 client included with SN
A Server 4.0 with Service Pack 2 or later and by the OLE DB Provider for DB2 client included with SNA Server 4.0 with Ser
vice Pack 3 or later. This property only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This VT_I4 type property defaults to indicating that mixed CCSID conversions are not supported.

DBPR
OP_DB
2OLED
B_HOS
TMCC
SID

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host comput
er. This property is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-b
yte (DBCS) data. When accessing DB2 for OS/390 or DB2 for MVS, a value must be specified for MCCSID if the "MIXED DA
TA" field (7) of the DB2 installation panel for Application Programming Defaults (DSNTIPF) is set to "YES".

This property is currently supported only by the Japanese version of the OLE DB Provider for DB2 client included with SN
A Server 4.0 with Service Pack 2 or later and by the OLE DB Provider for DB2 client included with SNA Server 4.0 with Ser
vice Pack 3 or later. This property only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5
035.

This VT_I4 type property defaults to 0 indicating that mixed CCSID conversions are not supported.

DBPR
OP_DB
2OLED
B_ISO
LATIO
N

This property determines the isolation level provided for this data source. Legal values for the default isolation level are th
e following:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level correspon
ds to Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level correspon
ds to No Commit (NC).

UR—Uncommitted Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level corre
sponds to Read Uncommitted.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, isolation level this correspond
s to Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level correspo
nds to Serializable (Isolated).

This VT_BSTR type property defaults to NC.

DBPR
OP_DB
2OLED
B_LOC
ALLU

When LU 6.2 (SNA) is selected for the Network Transport Library, this property is the name of the local LU alias configure
d in the SNA server.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_NET
ADDR
ESS

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target host compute
r. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. The netw
ork address is required when connecting via TCP/IP.

DBPR
OP_DB
2OLED
B_NET
PORT

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target DDM service a
ccess port when connecting via TCP/IP. This parameter represents the TCP/IP port used for communication with the DDM
service on the host.

This VT_BSTR type property defaults to 446.

DBPR
OP_DB
2OLED
B_NET
TYPE

This property which represents the dynamic link library used for transport designates whether the provider connects via S
NA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCP/IP or SNA.

If TCPIP is selected, then values for Network Address (DBPROP_DB2OLEDB_NETADDRESS) and Network Port (DBPROP_D
B2OLEDB_NETPORT) are required.

If SNA is selected, then values for APPC Local LU Alias (DBPROP_DB2OLEDB_LOCALLU, APPC Mode Name (DBPROP_DB2
OLEDB_APPCMODE), and APPC Remote LU Alias (DBPROP_DB2OLEDB_REMOTELU) are required.

This VT_BSTR type property defaults to SNA.

DBPR
OP_DB
2OLED
B_PAC
KAGEC
OL

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and b
ind DB2 packages. This could be the same as the Default Schema (DBPROP_DB2OLEDB_DEFAULTSCH).

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to i
ssue dynamic and static SQL statements. The OLE DB Provider for DB2 will create packages dynamically in the location to
which the user points using the this property ID.

This is a VT_BSTR type property.

DBPR
OP_DB
2OLED
B_PCC
ODEP
AGE

The PC Code Page property ID indicates the code page to be used on the PC for character code conversion. This property i
s required when processing binary data as character data. Unless DBPROP_DB2OLEDB_BINASCHAR is set to true, characte
r data is converted based on the default ANSI code page configured in Windows.

If this parameter is set to Binary or 65535, then no character code conversions will take place.

This VT_I4 type property defaults to 1252 (Latin 1).

DBPR
OP_DB
2OLED
B_REA
DONL
Y

A property indicates whether the OLE DB Provider creates a read-only data source. When this property is true, the user ha
s only read access to objects such as tables and cannot perform certain operations (INSERT, UPDATE, and DELETE, for exa
mple).

This VT_BOOL type property defaults to VARIANT_TRUE.

DBPR
OP_DB
2OLED
B_REM
OTELU

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_DB2OLEDB_NETTYPE), this property is the na
me of the remote LU alias configured in the SNA server.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_TPN
AME

This property represents the default transaction program name for the DB2 DRDA application server (AS) which is 07F6D
B (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

This VT_BSTR type property has no default value.

Microsoft Host Integration Server 2000

OLE DB Data Source Property Support in the OLE DB Provider
for DB2
The following table summarizes the standard OLE DB version 2.0 data source properties from the DBPROP_DATASOURCE
property set that are supported by the version of the Microsoft® OLE DB Provider for DB2 included with Host Integration Server
2000:

OLE DB Proper
ty ID

Comments

DBPROP_CURR
ENTCATALOG

The name of the current catalog. This property is the derived from the Initial Catalog parameter when configurin
g data sources. An application can use the CATALOGS schema rowset to enumerate catalogs.

This VT_BSTR type property defaults to the value configured in the data source for Initial Catalog.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Object, Method, Property, and Collection Support
ActiveX® Data Objects (ADO) version 2.0 defines a number of objects, methods, properties, and collections.

The Microsoft® OLE DB Provider for AS/400 and VSAM supports the ADO objects, methods, properties, and collections that are
appropriate for an OLE DB data provider accessing a non-SQL host file system. The following topics provide detailed information
on ADO support:

ADO Object Support in the OLE DB Provider for AS/400 and VSAM
ADO Method Support in the OLE DB Provider for AS/400 and VSAM
ADO Property Support in the OLE DB Provider for AS/400 and VSAM
ADO Collection Support in the OLE DB Provider for AS/400 and VSAM

The Microsoft® OLE DB Provider for DB2 supports the ADO objects, methods, properties, and collections that are appropriate for
an OLE DB data provider accessing an SQL database. The following topics provide detailed information on ADO support:

ADO Object Support in the OLE DB Provider for DB2
ADO Method Support in the OLE DB Provider for DB2
ADO Property Support in the OLE DB Provider for DB2
ADO Collection Support in the OLE DB Provider for DB2

The Microsoft® ODBC Driver for DB2 supports the ADO objects, methods, properties, and collections that are appropriate for an
ODBC driver accessing an SQL database. The following topics provide detailed information on ADO support:

ADO Object Support in the ODBC Driver for DB2
ADO Method Support in the ODBC Driver for DB2
ADO Property Support in the ODBC Driver for DB2
ADO Collection Support in the ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Object Support in the OLE DB Provider for AS/400 and
VSAM
The following table summarizes the ADO version 2.0 objects that are supported by the current version of the Microsoft® OLE DB
Provider for AS/400 and VSAM.

ADO object Support
Collection Yes, most methods
Command Yes, some methods, some properties, and all collections
Connection Yes, some methods, some properties, and all collections
Error Yes, some properties
Field Yes, all methods, properties, and collections
Parameter No
Recordset Yes, most methods, most properties, and all collections

The Parameter object will be supported by a later version of the OLE DB Provider for AS/400 and VSAM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Method Support in the OLE DB Provider for AS/400 and
VSAM
The following table summarizes the ADO version 2.0 object methods that are supported by the current version of the Microsoft®
OLE DB Provider for AS/400 and VSAM.

ADO object Method Support
Collection Append No
 Clear Yes
 Delete Yes
 Item Yes
 Refresh Yes
Command CreateParameter No
 Cancel No
 Execute Yes, but options must be adCmdText
Connection BeginTrans No
 Cancel No
 Close Yes
 CommitTrans No
 Execute Yes, but options must be adCmdText
 Open Yes
 OpenSchema Yes
 RollbackTrans No
Field AppendChunk Yes
 GetChunk Yes
 ReadFromFile No
 WriteToFile No
Parameter AppendChunk No
Recordset AddNew Yes
 Cancel No
 CancelBatch Yes
 CancelUpdate Yes
 Clone Yes
 Close Yes
 Delete Yes
 Find Yes
 GetRows Yes
 Move Yes
 MoveFirst Yes
 MoveLast Yes
 MoveNext Yes
 MovePrevious Yes
 NextRecordset No
 Open Yes
 Requery Yes
 Resync No
 Save Yes
 Seek No
 Supports Yes
 Update Yes
 UpdateBatch Yes

Note that the Collection object is a special case, representing a collection of other ADO objects. These collection objects support
several methods:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Append to add an object to a collection
Clear to empty all objects from a collection
Delete to remove a single object from a collection
Item to return a specific member object of a collection by name or ordinal number
Refresh to update the objects in a collection to reflect objects available from and specific to the OLE DB provider

Microsoft Host Integration Server 2000

ADO Property Support in the OLE DB Provider for AS/400 and
VSAM
The following table summarizes the ADO version 2.0 object properties that are supported by the current version of the
Microsoft® OLE DB Provider for AS/400 and VSAM.

ADO object Property Support
Command ActiveConnection Yes
 CommandText Yes
 CommandTimeout No
 CommandType Yes
 Prepared No
 State Yes
Connection Attributes Yes
 CommandTimeout No
 ConnectionString Yes
 ConnectionTimeout No
 CursorLocation Yes.
 DefaultDatabase No
 IsolationLevel No
 Mode Yes
 Provider Yes
 State Yes
 Version Yes
Error Description Yes
 HelpContext No
 HelpFile No
 NativeError Yes
 Number Yes
 Source Yes
 SQLState No
Field ActualSize Yes
 Attributes Yes
 DataFormat No
 DefinedSize Yes
 Name Yes
 NumericScale Yes
 OriginalValue Yes
 Precision Yes
 Type Yes
 UnderlyingValue Yes
 Value Yes
Parameter Attributes No
 Direction No
 Name No
 NumericScale No
 Precision No
 Size No
 Type No
 Value No
Recordset AbsolutePage No
 AbsolutePosition No
 ActiveCommand Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 ActiveConnection Yes
 BOF Yes
 Bookmark Yes
 CacheSize Yes
 CursorLocation Yes
 CursorType Yes
 DataMember No
 DataSource No
 EditMode Yes
 EOF Yes
 Filter Yes
 Index No
 Locktype Yes
 MarshalOptions No
 MaxRecords No
 PageCount No
 PageSize No
 RecordCount No
 Sort Yes
 Source Yes
 State Yes
 Status Yes
 StayInSync No

Microsoft Host Integration Server 2000

ADO Collection Support in the OLE DB Provider for AS/400 and
VSAM
The following table summarizes the ADO version 2.0 object collections that are supported by the current version of the
Microsoft® OLE DB Provider for AS/400 and VSAM.

ADO object Collection Support
Command Parameters No
 Properties Yes
Connection Errors Yes
 Properties Yes
Field Properties Yes
Parameter Properties No
Recordset Fields Yes
 Properties Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Command Object in the OLE DB Provider for AS/400 and
VSAM
The ADO Command object is a definition of a specific command that is executed against an OLE DB data source.

Command objects are used to create a Recordset object and obtain records, execute a bulk operation, or manipulate the
structure of a database. When using the Microsoft® OLE DB Provider for AS/400 and VSAM, some collections, methods, or
properties of a Command object may generate an error when called.

The primary purpose of the Command object in the context of the OLE DB Provider for AS/400 and VSAM is to issue AS/400
Command Language (CL) commands for execution by the remote OS/400 DDM target server. For a listing of legal DDM
command-line strings, see the AS/400 DDM User’s Guide published by IBM.

The following Command object methods, properties, and collections are supported by the current version of the OLE DB Provider
for AS/400 and VSAM:

Name Comment
Execute method Evaluates command text as a text string (only supported Options parameter for this method is adCmdText, w

hich indicates that this is not an SQL command).
ActiveConnection
property

Sets or returns the information used to establish a connection to a data source (see notes following).

CommandText pr
operty

Sets or returns the command text to be executed.

CommandType pr
operty

Sets or returns the type of command in a CommandText property.

State property Describes the current state of an object.
Properties collect
ion

Collections of properties on the command.

The Execute method executes a command and returns a Recordset object, if appropriate. You can use the Command object to
open tables or execute DDM commands on a remote DDM server. If errors occur, they can be examined with the Errors collection
on the Connection object.

A Command object can be created independently of a previously defined Connection object by setting the ActiveConnection
property of the Command object to a valid connection string (see the ConnectionString property of the Connection object for
the proper syntax). ADO still creates a Connection object, but it does not assign that object to an object variable. However, if
multiple Command objects are to be associated with the same connection, the Connection object should be explicitly created
and opened. This assigns the Connection object to an object variable. If the ActiveConnection property of the Command
object is not set to this object variable, ADO creates a new Connection object for each Command object, even if the same
connection string is used.

The ActiveConnection property associates an open connection with a Command object. The CommandText property defines
the text version of a command. The syntax for the string in the CommandText property when used with the OLE DB Provider for
AS/400 and VSAM is as follows:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your platform
for a detailed list of possible commands.

The CommandType property specifies the type of command described in the CommandText property prior to execution in
order to optimize performance. The CommandType property must be set to adCmdText for use with OLE DB Provider for
AS/400 and VSAM.

The Command object can also be used to open a data file after a Connection object has been opened and the
ActiveConnection property has been set to this open connection. The CommandText property defines the data file to open (an
EXEC OPEN DataSetName statement, for example, where DataSetName represents a valid data file or library member on the
host). You must set the CommandType property to adCmdText for use with the OLE DB Provider for AS/400 and VSAM. If you
open a host data file from a Command object, then the data file is opened as read-only. This results from the limitation that no

EXEC COMMAND DDMCmd

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

argument or option is passed by ADO that supplies a parameter describing whether the data set should be opened as read-only
or updateable.

Microsoft Host Integration Server 2000

ADO Connection Object in the OLE DB Provider for AS/400 and
VSAM
The ADO Connection object represents an open connection to an OLE DB data source. The Provider property sets the OLE DB
provider. The connection can be configured before opening the data source by setting the ConnectionString properties. The
Version property determines the version of the ADO implementation in use.

The Open method establishes the physical connection to the data source and the Close method terminates the connection. If
errors occur, they can be examined with the Errors collection.

The following methods, properties, and collections for the Connection object are supported by the current version of the
Microsoft® OLE DB Provider for AS/400 and VSAM:

Name Comment
Close method Closes a connection to a data source.
Execute method Evaluates command text as a table name (only supported Options parameter for this method is adCmdTable).
Open method Opens a connection to a data source and may optionally pass ConnectionString parameters with this method.

(the only supported Options parameter for this method is adCmdText).
OpenSchema me
thod

Obtains database schema information from the OLE DB provider.

Attributes proper
ty

Indicates one or more characteristics supported for a given Connection object.

ConnectionString
property

Contains the information used to establish a connection to a data source (see note following).

CursorLocation
property

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

Mode property Indicates the available permissions for modifying data in a connection.
Provider propert
y

Sets or returns the name of the provider for a connection.

State property Describes the current state of an object.
Version property Returns the version number of the ADO implementation in use.
Errors collection Collections of Error objects on the connection.
Properties collec
tion

Collections of properties on the connection.

Note that the information needed to establish a connection to a data source can be set in the ConnectionString property or
passed as part of the Open method. In either case, this information must be in a specific format for use with the OLE DB Provider
for AS/400 and VSAM or the OLE DB Provider for DB2. This information is either a data source name (DSN) or a detailed
connection string containing a series of argument=value statements separated by semicolons.

ADO supports several standard ADO-defined arguments for the ConnectionString property as follows:

Argu
ment

Description

Data
Sourc
e

Name of the data source for the connection. This argument is optional when using the OLE DB Provider for AS/400 and VS
AM.

File N
ame

Name of the provider-specific file containing preset connection information. This argument cannot be used if a Provider ar
gument is passed and is not supported by the OLE DB Provider for AS/400 and VSAM.

Locati
on

The Remote Database Name used for connecting to OS/400 systems. This parameter is optional when connecting to mainf
rame systems.

Pass
word

Valid mainframe or AS/400 password to use when opening the connection. This password is used by Host Integration Serv
er 2000 to validate that the user can log on to the target host system and has appropriate access rights to the file.

Provi
der

Name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and VSAM, the Provider string mu
st be set to “SNAOLEDB.” To use the OLE DB Provider for DB2, the Provider string must be set to “DB2OLEDB.”

User I
D

Valid mainframe or AS/400 user name to use when opening the connection. This user name is used by Host Integration Se
rver 2000 to validate that the user can log on to the target host system and has appropriate access rights to the file.

The OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which will default to
values in the registry. These arguments are as follows:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0; don't process binary fields as char
acter fields).

This parameter is equivalent to the DBPROP_SNAOLEDB_BINASCHAR OLE DB property ID.

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitted,
the default value is U.S./Canada (37).

This parameter is equivalent to the DBPROP_SNAOLEDB_HOSTCCSID OLE DB property ID.

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when conne
cting to AS/400 files.

This parameter is equivalent to the DBPROP_SNAOLEDB_LIBRARY OLE DB property ID.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 256
characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system directory.
This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

This parameter is equivalent to the DBPROP_SNAOLEDB_HCDPATH OLE DB property ID.

Local
LU

The name of the local LU alias configured in the SNA server.

This parameter is equivalent to the DBPROP_SNAOLEDB_LOCALLU OLE DB property ID.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server 2000 configuratio
n).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

This parameter is equivalent to the DBPROP_SNAOLEDB_APPCMODE OLE DB property ID.

NetA
ddr

When TCP/IP is selected for the Network Transport Library, this parameter indicates the IP address of the host.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETADDRESS OLE DB property ID.

NetP
ort

When TCP/IP is selected for the Network Transport Library, this parameter is the TCP/IP port used for communication with
the source. The default value is TCP/IP port 446.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETPORT OLE DB property ID.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC are used for network communication. The possible values for this
parameter are TCPIP or SNA; the default value is SNA.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETTYPE OLE DB property ID.

PCCo
dePa
ge

The character code page to use on the computer. If this argument is omitted, the default value is set to Latin 1 (1252).

This parameter is equivalent to the DBPROP_SNAOLEDB_PCCODEPAGE OLE DB property ID.

RDB The Remote DataBase name for OS/400. You only need to specify this value if it is different from the remote LU alias config
ured in the SNA server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry; the default is fal
se.

This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

Rem
oteL
U

The name of the remote LU alias configured in the Host Integration Server 2000 computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_REMOTELU OLE DB property ID.

Strict
Val

This parameter indicates whether strict validation should be used; the default is false.

This parameter is equivalent to the DBPROP_SNAOLEDB_STRICTVAL OLE DB property ID.

A sample ConnectionString for use with the OLE DB Provider for AS/400 and VSAM follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following is
valid with ADO 1.5 and ADO 2.0 and will prompt the user for ConnectionString properties.

A sample Open method call with these parameters follows:

The last three parameters to the Open method correspond with the CursorType (the adOpenDynamic enum is 2, for example),
LockType (the adLockReadOnly enum is 1, for example), and Options (adCmdText is 1, which indicates that the Source name
should be evaluated as a table name). The Options parameter must be set to adCmdText (1) when used with a data source name
with OLE DB Provider for AS/400 and VSAM.

The allowable values for CCSID when using SNANLS (SNA National Language Support) for character code conversions (the
default) are as follows:

EBCDIC character set CCSID value
Arabic 20420
Binary (No Conversion) 65535
Chinese (Simplified) 935
Chinese (Traditional) 937
Cyrillic (Russian) 20880
Cyrillic (Serbian, Bulgarian) 21025
Denmark/Norway (Euro) 1142
Denmark/Norway 20277
Finland/Sweden (Euro) 1143
Finland/Sweden 20278
France (Euro) 1147
France 20297
Germany (Euro) 1141
Germany 20273
Greek (Modern) 875
Greek 20423
Hebrew 20424
Icelandic (Euro) 1149
Icelandic 20871
International (Euro) 1148
International 500
Italy (Euro) 1144
Italy 20280
Japanese (English-lower) 931
Japanese (Extend English) 939
Japanese (Extend Katakana) 930
Japanese (Katakana) 290

Conn.Provider="SNAOLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PCCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Conn.ConnectionString = "Provider=SNAOLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

RS.Open "library/member",Conn,2,1,1

Japanese (Katakana-Kanji) 5026
Japanese (Latin-Kanji) 5035
Korean 933
Latin America/Spain (Euro) 1145
Latin America/Spain 20284
Latin-1 Open System (Euro) 20924
Latin-1 Open System 1047
Multilingual/ROECE (Latin-2) 870
Thai 20838
Turkish (Latin-5) 1026
Turkish 20905
U.S./Canada (Euro) 1140
U.S./Canada 37
United Kingdom (Euro) 1146
United Kingdom 20285

Note that SNANLS conversion uses the locale configured for the data sources using data links. For more information on SNANLS,
see the SDK documentation on SNA National Language Support.

Microsoft Host Integration Server 2000

ADO Error Object in the OLE DB Provider for AS/400 and VSAM
The ADO Error object contains details about data access errors pertaining to a single operation involving ADO. You can read the
properties of an Error object to obtain specific details about each error.

The Error object does not support any methods or collections; however, the Errors collection supported by other objects provides
the standard Collection methods (Clear and Delete). Error objects are automatically appended to the Errors collection by the
OLE DB Provider when they occur. The following Error object properties are supported by the current version of the Microsoft®
OLE DB Provider for AS/400 and VSAM:

Property
Name

Comment

Description The text of the error alert that is returned based on the minor error code (specific to the OLE DB Provider for AS/400
and VSAM) contained in the Error object resulting from an error.

NativeError A Long integer value of the error code returned by the OLE DB Provider for AS/400 and VSAM.
Number The Long integer value of the error constant.
Source A string that indicates the name of the object or application that originally generated an error.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Field Object in the OLE DB Provider for AS/400 and VSAM
The ADO Field object represents a column of data with a common data type. Each Field object corresponds to a column in a
Recordset object.

The following Field object methods, properties, and collections are supported by the current version of the Microsoft® OLE DB
Provider for AS/400 and VSAM:

Name Comment
AppendChunk method Appends data to a large text or binary data Field object.
GetChunk method Returns all or portions of the contents of a large text or binary data Field object.
ActualSize property Actual length of a field’s value.
Attributes property One or more characteristics supported for a given Field object.
DefinedSize property Defined size of a Field object.
Name property Name of the Field object.
NumericScale property Scale of numeric values in a Field object for numeric data.
OriginalValue property Value of a Field object that existed in the record before changes were made.
Precision property Degree of precision for numeric values in a Field object for numeric data.
Type property Operational type or data type for a Field object.
UnderlyingValue property Current value of a Field object.
Value property Value assigned to a Field object in a Recordset.
Properties collection Collections of properties on the field.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Recordset Object in the OLE DB Provider for AS/400 and
VSAM
The ADO Recordset object represents the entire set of records from a base table. At any time, the Recordset object refers to only
one record within the set as the current record.

The following Recordset object methods, properties, and collections are supported by the current version of the Microsoft® OLE
DB Provider for AS/400 and VSAM:

Name Comment
AddNew method Creates a new record for an updateable Recordset object.
CancelBatch met
hod

Cancels a pending batch update.

CancelUpdate m
ethod

Cancels any changes made to a current record or to a new record prior to calling the UpdateBatch method.

Clone method Creates a duplicate Recordset object from an existing Recordset object.
Close method Closes an open object and any dependent objects.
Delete method Deletes the current record in an open Recordset object or an object from a collection.
Find method Finds the next record to match a condition (ADO 1.5 and later).
GetRows method Retrieves multiple records of a Recordset into an array.
Move method Moves the position of the current record in a Recordset object.
MoveFirst metho
d

Moves to the first record in a specified Recordset.

MoveLast metho
d

Moves to the last record in a specified Recordset.

MoveNext metho
d

Moves to the next record in a specified Recordset.

MovePrevious m
ethod

Moves to the previous record in a specified Recordset.

Open method Opens a cursor on a Recordset.
Requery method Updates the data in a Recordset object by re-executing the query on which the object is based (equivalent to c

alling the Close and Open methods in succession).
Save method Saves a Recordset in a file or Stream object.
Seek method
Supports method Determines whether a specified Recordset object supports a particular type of function.
Update method Saves any changes you make to the current record of a Recordset object.
UpdateBatch met
hod

Writes all pending batch updates to disk.

ActiveCommand
property

Returns the Command object that created the specified Recordset.

ActiveConnection
property

Sets or returns the Connection object that the specified Recordset object currently belongs.

BOF property Indicates whether the current record position is before the first record in a Recordset object.
Bookmark prope
rty

Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the current record
in a Recordset object identified by a valid bookmark.

CacheSize proper
ty

Sets or returns the number of records from a Recordset object that are cached locally in memory.

CursorLocation p
roperty

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

CursorType prop
erty

Sets or returns the type of cursor used in a Recordset object. Only the adOpenDynamic CursorType is supp
orted by the current version of the OLE DB Provider for AS/400 and VSAM.

EditMode proper
ty

Indicates the editing status of the current record type.

EOF property Indicates whether the current record position is after the last record in a Recordset object.
Filter property Indicates a filter for data in a Recordset (revised in ADO 1.5 and later).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LockType propert
y

Sets or returns the types of locks placed on records during editing. All four lock types (adLockReadOnly, adLo
ckOptimistic, adLockPessimistic, and adLockBatchOptimistic) are supported by the OLE DB Provider for A
S/400 and VSAM. Note that the OLE DB provider internally maps adLockPessimistic to a locktype of adLockB
atchOptimistic.

Sort property Indicates the column names and order to sort data in a Recordset object (new property in ADO 1.5 and later).
Source property Sets or returns the source (table name or command object) for the data in a Recordset.
State property Describes the current state of an object.
Status property Indicates the status of the current record with respect to batch updates or other bulk operations.
Fields collection Collections of fields on the Recordset.
Properties collec
tion

Collections of properties on the Recordset.

The syntax supported by the OLE DB Provider for AS/400 and VSAM to open a recordset (table) using the Recordset.Open
method is:

where TableName represents one of the following host file naming conventions.

Host file type File naming convention
VSAM Data Sets DATASETNAME.FILENAME
Partitioned Data Sets DATASETNAME.FILENAME(MEMBER)
OS/400 Files LIBRARY/FILE
OS/400 Files LIBRARY/FILE.NAME
OS/400 File Members LIBRARY/FILE(MEMBER)
OS/400 File Members LIBRARY/FILE.NAME(MEMBER)

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double quotes.
For example, if the member name is NAMES.DAT, the proper syntax for command text used for the Recordset.Open method is:

The full path to the mainframe data set must be specified. In the example above, there are two path elements (LIBRARY/FILE) and
one name element (NAMES.DAT).

Whenever a data set is allocated, it is given a unique name composed of one or more segments. Each segment of the data set
name is joined by periods and represents a level of qualification. For example, the following data set has four segments that
comprise the fully-qualified data set name (three path elements and one name element):

The high-level qualifier is SAMPLES. The low-level qualifier is TITLES. Each segment can be from 1-8 characters in length (the first
character must be alphabetic, while the remainder can be alphanumeric or hyphens). The full data set name must be no more
than 44 characters in length and contain no more than 22 segments.

The Recordset Bookmark method is supported for all AS/400 physical and logical files, as well as the following mainframe file
types:

KSDS if the file has a unique key
RRDS if the file has a unique key

The Recordset AddNew method can be used on ESDS files on the AS/400 only when you are positioned at the end of the
Recordset object (file). With Alternate Index files on the AS/400, the AddNew method can be used to add records when at the
end of the Recordset object or by key. With KSDS or RRDR files on the mainframe, the AddNew method adds new records by
key.

To use the Recordset Find method or the Filter property, an AS/400 logical file, an AS/400 keyed physical file, a mainframe KSDS
file with a unique key, or a mainframe RRDS file with a unique key must be used. If these methods or properties are used on an
AS/400 nonkeyed physical file or any other mainframe file type, then the method fails.

EXEC OPEN TableName

RecordSet.Open "EXEC OPEN LIBRARY/FILE(""NAMES.DAT"")",...

SAMPLES.DEMO.KSDS.TITLES

The Recordset Sort property is used with an open Recordset object based on an AS/400 physical file. The Sort property enables
the user to indicate which logical view to apply to an AS/400 physical file. The logical view must be a valid index specified in the
description of the AS/400 physical file. The logical view is provided by the AS/400 logical file. The OLE DB Provider for AS/400
and VSAM responds to the Sort property request by first closing the open physical file, and then opening the logical file that
points back to the data in the physical file.

The Recordset Sort property is only supported on AS/400 hosts. If the user opens a Recordset object based on an AS/400
logical file, then there is probably no need to use Recordset.Sort. For performance reasons, applications should be written to
open the AS/400 logical file first, because the overhead is so much greater when opening a physical file first.

Microsoft Host Integration Server 2000

ADO Object Support in the OLE DB Provider for DB2
The following table summarizes the ADO version 2.0 objects that are supported by the current version of the Microsoft® OLE DB
Provider for DB2.

ADO object Support
Collection Yes, most methods
Command Yes, some methods, some properties, and all collections
Connection Yes, some methods, some properties, and all collections
Error Yes, some properties
Field Yes, no methods, most properties, and all collections
Parameter Yes, most methods, most properties, and all collections
Recordset Yes, most methods, most properties, and all collections

The Parameter object will be supported by a later version of the OLE DB Provider for DB2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Method Support in the OLE DB Provider for DB2
The following table summarizes the ADO version 2.0 object methods that are supported by the current version of the Microsoft®
OLE DB Provider for DB2.

ADO object Method Support
Collection Append No
 Clear Yes
 Delete Yes
 Item Yes
 Refresh Yes
Command CreateParameter Yes
 Cancel No
 Execute Yes
Connection BeginTrans Yes
 Cancel No
 Close Yes
 CommitTrans Yes
 Execute Yes
 Open Yes
 OpenSchema Yes
 RollbackTrans Yes
Field AppendChunk No
 GetChunk No
 ReadFromFile No
 WriteToFile No
Parameter AppendChunk No
Recordset AddNew Yes
 Cancel No
 CancelBatch Yes
 CancelUpdate Yes
 Clone Yes
 Close Yes
 Delete Yes
 Find No
 GetRows Yes
 Move Yes
 MoveFirst Yes
 MoveLast No
 MoveNext Yes
 MovePrevious No
 NextRecordset No
 Open Yes
 Requery Yes
 Resync No
 Save Yes
 Seek No
 Supports Yes
 Update Yes
 UpdateBatch Yes

Note that the Collection object is actually a special case, representing a collection of other ADO objects. These collection objects
support several methods:

Append to add an object to a collection

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Clear to empty all objects from a collection
Delete to remove a single object from a collection
Item to return a specific member object of a collection by name or ordinal number
Refresh to update the objects in a collection to reflect objects available from and specific to the OLE DB provider

Microsoft Host Integration Server 2000

ADO Property Support in the OLE DB Provider for DB2
The following table summarizes the ADO version 2.0 object properties that are supported by the current version of the
Microsoft® OLE DB Provider for DB2.

ADO obje
ct

Property Support

Command ActiveConnection Yes
 CommandText Yes
 CommandTime

out
No

 CommandType Yes
 Prepared Yes
 State Yes
Connection Attributes Yes
 CommandTime

out
No

 ConnectionString Yes
 ConnectionTim

eout
No

 CursorLocation Yes.
 DefaultDatabas

e
No

 IsolationLevel Yes.
Note that versions of the OLE DB Provider for DB2 supplied with SNA Server 4.0 did not support thi
s property. IsolationLevel was specified in the Default Isolation parameter in the connection string
or Data Links dialog. This connection string parameter is not supported by the OLE DB provider sup
plied with Host Integration Server.

 Mode Yes
 Provider Yes
 State Yes
 Version Yes
Error Description Yes
 HelpContext No
 HelpFile No
 NativeError Yes
 Number Yes
 Source Yes
 SQLState Yes
Field ActualSize Yes
 Attributes Yes
 DataFormat No
 DefinedSize Yes
 Name Yes
 NumericScale Yes
 OriginalValue Yes
 Precision Yes
 Type Yes
 UnderlyingValue Yes
 Value Yes
Parameter Attributes Yes
 Direction Yes
 Name Yes
 NumericScale Yes
 Precision Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 Size Yes
 Type Yes
 Value Yes
Recordset AbsolutePage No
 AbsolutePositio

n
No

 ActiveCommand Yes
 ActiveConnection Yes
 BOF Yes
 Bookmark Yes
 CacheSize Yes
 CursorLocation Yes
 CursorType Yes
 DataMember No
 DataSource No
 EditMode Yes
 EOF Yes
 Filter No
 Index No
 Locktype Yes
 MarshalOptions No
 MaxRecords Yes
 PageCount No
 PageSize No
 RecordCount No
 Sort No
 Source Yes
 State Yes
 Status Yes
 StayInSync No

Microsoft Host Integration Server 2000

ADO Collection Support in the OLE DB Provider for DB2
The following table summarizes the ADO version 2.0 object collections that are supported by the current version of the
Microsoft® OLE DB Provider for DB2.

ADO object Collection Support
Command Parameters Yes
 Properties Yes
Connection Errors Yes
 Properties Yes
Field Properties Yes
Parameter Properties Yes
Recordset Fields Yes
 Properties Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Command Object in the OLE DB Provider for DB2
The ADO Command object is a definition of a specific command that is to be executed against an OLE DB data source.

Command objects can be used to create a Recordset object and obtain records, to execute a bulk operation, or to manipulate the
structure of a database. When using the Microsoft® OLE DB Provider for DB2, some collections, methods, or properties of a
Command object may generate an error when called.

The primary purpose of the Command object in the context of the OLE DB Provider for DB2 is to issue SQL commands for
execution by the remote DB2 target server. Legal SQL commands are documented for the target DB2 platforms in SQL Reference
Guides published by IBM.

The following Command object methods, properties, and collections are supported by the current version of the OLE DB Provider
for DB2:

Name Comment
Execute method Evaluates command text (only supported Options parameter for this method is adCmdText, which indicates

that this is an SQL text command).
ActiveConnection p
roperty

Sets or returns the information used to establish a connection to a data source (see notes following).

CommandText prop
erty

Sets or returns the command text to be executed.

CommandType pro
perty

Sets or returns the type of command in a CommandText property.

State property Describes the current state of an object.
Properties collectio
n

Collections of properties on the command.

The Execute method executes a command and returns a Recordset object, if appropriate. The Command object can be used to
open tables or execute SQL commands on a remote DB2 server. If errors occur, these can be examined with the Errors collection
on the Connection object.

A Command object can be created independently of a previously defined Connection object by setting the ActiveConnection
property of the Command object to a valid connection string (see the ConnectionString property of the Connection object for
the proper syntax). ADO still creates a Connection object, but it does not assign that object to an object variable. However, if
multiple Command objects are to be associated with the same connection, the Connection object should be explicitly created
and opened. This assigns the Connection object to an object variable. If the ActiveConnection property of the Command
object is not set to this object variable, ADO creates a new Connection object for each Command object, even if the same
connection string is used.

The ActiveConnection property associates an open connection with a Command object. The CommandText property defines
the text version of a command (SELECT ALL FROM TABLE, for example). The CommandType property specifies the type of
command described in the CommandText property prior to execution in order to optimize performance. The CommandType
property must be set to adCmdText for use with the OLE DB Provider for DB2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Connection Object in the OLE DB Provider for DB2
The ADO Connection object represents an open connection to an OLE DB data source. The Provider property sets the OLE DB
provider to use. The connection can be configured before opening the data source by setting the ConnectionString properties.
The version of the ADO implementation in use can be determined from the Version property.

The physical connection to the data source is established using the Open method and terminated with the Close method. If errors
occur, these can be examined with the Errors collection.

The following Connection object methods, properties, and collections are supported by the current version of the Microsoft®
OLE DB Provider for DB2:

Name Comment
Close method Closes a connection to a data source.
Execute method Evaluates command text.
Open method Opens a connection to a data source and may optionally pass ConnectionString parameters with this

method.
OpenSchema method Obtains database schema information from the OLE DB provider.
Attributes property One or more characteristics supported for a given Connection object.
ConnectionString proper
ty

Contains the information used to establish a connection to a data source (see notes following).

CursorLocation property Sets or returns the location of the cursor (whether the cursor is on the client or the server side).
IsolationLevel Sets or returns the level of isolation for a Connection object.

Note that versions of the OLE DB Provider for DB2 supplied with SNA Server 4.0 did not support this pr
operty.

Mode property Indicates the available permissions for modifying data in a connection.
Provider property Sets or returns the name of the provider for a connection.
State property Describes the current state of an object.
Version property Returns the version number of the ADO implementation in use.
Errors collection Collections of Error objects on the connection.
Properties collection Collections of properties on the connection.

The information needed to establish a connection to a data source can be set in the ConnectionString property or passed as part
of the Open method. In either case, this information must be in a specific format for use with the OLE DB Provider for DB2. This
information can be a data source name (DSN) or a detailed connection string containing a series of argument=value statements
separated by semicolons. ADO supports several standard ADO-defined arguments for the ConnectionString property as follows:

Argu
ment

Description

Data S
ource

Name of the data source for the connection. This argument is optional when using the OLE DB Provider for DB2.

File N
ame

Name of the provider-specific file containing preset connection information. This argument cannot be used if a Provider ar
gument is passed.

Locati
on

The Remote Database Name used for connecting to OS/400 systems. This parameter is optional when connecting to main
frame systems.

Passw
ord

Valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that the user
can log on to the target DB2 host system and has appropriate access rights to the database.

This parameter is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

Provid
er

Name of the provider to use for the connection. To use the OLE DB Provider for DB2, the Provider string must be set to “D
B2OLEDB.”

User I
D

Valid mainframe or AS/400 user name to use when opening the connection. This user name validates that the user can lo
g on to the target DB2 host system and has appropriate access rights to the database.

This parameter is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration Server 2000
differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2000 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The transaction program name when used with SQL/DS.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distribute
d unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions ar
e handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Serv
ice. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected a
s the network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the OLE DB Provider for DB2 supplied with SNA Server 4.0 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

Bi
nd
Ty
pe

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fo
llows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

Co
m
mi
t

This parameter indicates whether changes to data will be automatically committed or require a separate manual commit requ
est.

This parameter defaults to true (auto commit).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

G
C
CS
ID

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-b
yte (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Is
oL
vl

This parameter determines the isolation level provided for this data source. Legal values for the default isolation level are the f
ollowing:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommited Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspon
ds to Read Uncommited.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, isolation level this corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
C
CS
ID

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (D
BCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
ad
O
nl
y

When the Read Only parameter is set to true (ReadOnly=1), the OLE DB Provider for DB2 creates a read-only data source. A u
ser has read access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration.

TP
N
a
m
e

The transaction program name when used with SQL/DS.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the OLE DB Provider for DB2 follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following is
valid with ADO 1.5 and ADO 2.0 and will prompt the user for ConnectionString properties.

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PcCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

A sample Open method call with these parameters follows:

The last three parameters to the Open method correspond with the CursorType (the adOpenForwardOnly enum is 0, for
example), LockType (the adLockReadOnly enum is 1, for example), and Options (adCmdText is 1, which indicates that the
Source name should be evaluated as SQL text). The Options parameter must be set to adCmdText (1) when used with a data
source name with OLE DB Provider for DB2.

The allowable values for CCSID when using SNANLS (SNA National Language Support) for character code conversions (the
default) are as follows:

EBCDIC character set CCSID value
Arabic 20420
Binary (No Conversion) 65535
Chinese (Simplified) 935
Chinese (Traditional) 937
Cyrillic (Russian) 20880
Cyrillic (Serbian, Bulgarian) 21025
Denmark/Norway (Euro) 1142
Denmark/Norway 20277
Finland/Sweden (Euro) 1143
Finland/Sweden 20278
France (Euro) 1147
France 20297
Germany (Euro) 1141
Germany 20273
Greek (Modern) 875
Greek 20423
Hebrew 20424
Icelandic (Euro) 1149
Icelandic 20871
International (Euro) 1148
International 500
Italy (Euro) 1144
Italy 20280
Japanese (English-lower) 931
Japanese (Extend English) 939
Japanese (Extend Katakana) 930
Japanese (Katakana) 290
Japanese (Katakana-Kanji) 5026
Japanese (Latin-Kanji) 5035
Korean 933
Latin America/Spain (Euro) 1145
Latin America/Spain 20284
Latin-1 Open System (Euro) 20924
Latin-1 Open System 1047
Multilingual/ROECE (Latin-2) 870
Thai 20838
Turkish (Latin-5) 1026

Conn.ConnectionString = "Provider=DB2OLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

RS.Open "Accounting",Conn,0,1,1

Turkish 20905
U.S./Canada (Euro) 1140
U.S./Canada 37
United Kingdom (Euro) 1146
United Kingdom 20285

Note that the SNANLS conversion uses the locale configured for the data sources using data links. For more information, see the
SDK documentation on SNA National Language Support.

The allowable values for CCSID when using ANSI/OEM for character code conversions are:

ANSI/OEM character set CCSID value
ANSI - Arabic 1256
ANSI - Baltic 1257
ANSI - Cyrillic 1251
ANSI - Eastern Europe 1250
ANSI - Greek 1253
ANSI - Hebrew 1255
ANSI - Latin I 1252
ANSI - Turkish 1254
ANSI/OEM - Korean (Extended Wansung) 949
ANSI/OEM - Japanese Shift-JIS 932
ANSI/OEM - Simplified Chinese GBK 936
ANSI/OEM - Traditional Chinese Big5 950
ANSI/OEM - Thai 874
ANSI/OEM - Vietnam 1258

Microsoft Host Integration Server 2000

ADO Error Object in the OLE DB Provider for DB2
The ADO Error object contains details about data access errors pertaining to a single operation involving ADO. You can read the
properties of an Error object to obtain specific details about each error.

The Error object does not support any methods or collections; however, the Errors collection supported by other objects provides
the standard Collection methods (Clear and Delete). Error objects are automatically appended to the Errors collection by the
OLE DB Provider when they occur. The following Error object properties are supported by the current version of the Microsoft®
OLE DB Provider for DB2:

Property
Name

Comment

Description The text of the error alert that is returned based on the minor error code (specific to the OLE DB Provider for DB2) co
ntained in the Error object resulting from an error.

NativeError A Long integer value of the error code returned by the OLE DB Provider for DB2.
Number The Long integer value of the OLE DB error constant.
Source A string that indicates the name of the object or application that originally generated an error.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Field Object in the OLE DB Provider for DB2
The ADO Field object represents a column of data with a common data type. Each Field object corresponds to a column in a
Recordset object.

The following Field object methods, properties, and collections are supported by the current version of the Microsoft® OLE DB
Provider for DB2:

Name Comment
ActualSize property Actual length of a field’s value.
Attributes property One or more characteristics supported for a given Field object.
DefinedSize property Defined size of a Field object.
Name property Name of the Field object.
NumericScale property Scale of numeric values in a Field object for numeric data.
OriginalValue property Value of a Field object that existed in the record before changes were made.
Precision property Degree of precision for numeric values in a Field object for numeric data.
Type property Operational type or data type for a Field object.
UnderlyingValue property Current value of a Field object.
Value property Value assigned to a Field object in a Recordset.
Properties collection Collections of properties on the field.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Recordset Object in the OLE DB Provider for DB2
The ADO Recordset object represents the entire set of records from a base table. At any time, the Recordset object refers to only
one record within the set as the current record.

The following Recordset object methods, properties, and collections are supported by the current version of the Microsoft® OLE
DB Provider for DB2:

Name Comment
AddNew method Creates a new record for an updateable Recordset object.
CancelBatch met
hod

Cancels a pending batch update.

CancelUpdate m
ethod

Cancels any changes made to a current record or to a new record prior to calling the UpdateBatch method.

Clone method Creates a duplicate Recordset object from an existing Recordset object.
Close method Closes an open object and any dependent objects.
Delete method Deletes the current record in an open Recordset object or an object from a collection.
GetRows method Retrieves multiple records of a Recordset into an array.
Move method Moves the position of the current record in a Recordset object.
MoveFirst metho
d

Moves to the first record in a specified Recordset.

MoveNext metho
d

Moves to the next record in a specified Recordset.

Open method Opens a cursor on a Recordset.
Requery method Updates the data in a Recordset object by re-executing the query on which the object is based (equivalent to c

alling the Close and Open methods in succession).
Save method Saves a Recordset in a file or Stream object.
Supports method Determines whether a specified Recordset object supports a particular type of function.
Update method Saves any changes you make to the current record of a Recordset object.
UpdateBatch met
hod

Writes all pending batch updates to disk.

ActiveCommand
property

Returns the Command object that created the specified Recordset.

ActiveConnection
property

Sets or returns the Connection object that the specified Recordset object currently belongs.

BOF property Indicates whether the current record position is before the first record in a Recordset object.
Bookmark prope
rty

Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the current record
in a Recordset object identified by a valid bookmark.

CacheSize proper
ty

Sets or returns the number of records from a Recordset object that are cached locally in memory.

CursorLocation p
roperty

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

CursorType prop
erty

Sets or returns the type of cursor used in a Recordset object. Only the adOpenForwardOnly CursorType is s
upported by the current version of the OLE DB Provider for DB2.

EditMode proper
ty

Indicates the editing status of the current record type.

EOF property Indicates whether the current record position is after the last record in a Recordset object.
LockType propert
y

Sets or returns the types of locks placed on records during editing. The OLE DB Provider for DB2 supports locks
of type adLockReadOnly and adLockPessimistic.

MaxRecords pro
perty

Sets or returns the maximum number of records to return to a Recordset from a query.

Source property Sets or returns the source (table name or command object) for the data in a Recordset.
State property Describes the current state of an object.
Status property Indicates the status of the current record with respect to batch updates or other bulk operations.
Fields collection Collections of fields on the Recordset.
Properties collec
tion

Collections of properties on the Recordset.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Object Support in the ODBC Driver for DB2
The following table summarizes the ADO version 2.0 objects that are supported by the current version of the Microsoft® ODBC
Driver for DB2.

ADO object Support
Collection Yes, most methods
Command Yes, some methods, some properties, and all collections
Connection Yes, some methods, some properties, and all collections
Error Yes, some properties
Field Yes, no methods, most properties, and all collections
Parameter Yes, most methods, most properties, and all collections
Recordset Yes, most methods, most properties, and all collections

The Parameter object will be supported by a later version of the ODBC Driver for DB2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Method Support in the ODBC Driver for DB2
The following table summarizes the ADO version 2.0 object methods that are supported by the current version of the Microsoft
ODBC Driver for DB2.

ADO object Method Support
Collection Append No
 Clear Yes
 Delete Yes
 Item Yes
 Refresh Yes
Command CreateParameter Yes
 Cancel No
 Execute Yes
Connection BeginTrans Yes
 Cancel No
 Close Yes
 CommitTrans Yes
 Execute Yes
 Open Yes
 OpenSchema Yes
 RollbackTrans Yes
Field AppendChunk No
 GetChunk No
 ReadFromFile No
 WriteToFile No
Parameter AppendChunk No
Recordset AddNew Yes
 Cancel No
 CancelBatch Yes
 CancelUpdate Yes
 Clone Yes
 Close Yes
 Delete Yes
 Find No
 GetRows Yes
 Move Yes
 MoveFirst Yes
 MoveLast Yes, when using a client-side cursor only.
 MoveNext Yes
 MovePrevious Yes, when using a client-side cursor only.
 NextRecordset No
 Open Yes
 Requery Yes
 Resync No
 Save Yes
 Seek No
 Supports Yes
 Update Yes
 UpdateBatch Yes

Note that the Collection object is actually a special case, representing a collection of other ADO objects. These collection objects
support several methods:

Append to add an object to a collection

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Clear to empty all objects from a collection
Delete to remove a single object from a collection
Item to return a specific member object of a collection by name or ordinal number
Refresh to update the objects in a collection to reflect objects available from and specific to the ODBC Driver

Microsoft Host Integration Server 2000

ADO Property Support in the ODBC Driver for DB2
The following table summarizes the ADO version 2.0 object properties that are supported by the current version of the Microsoft
ODBC Driver for DB2.

ADO obje
ct

Property Support

Command ActiveConnection Yes
 CommandText Yes
 CommandTime

out
No

 CommandType Yes
 Prepared Yes
 State Yes
Connection Attributes Yes
 CommandTime

out
No

 ConnectionString Yes
 ConnectionTim

eout
No

 CursorLocation Yes.
 DefaultDatabas

e
No

 IsolationLevel Yes.
Note that versions of the ODBC Driver for DB2 supplied with SNA Server 4.0 did not support this pr
operty. IsolationLevel was specified in the DIL parameter in the connection string or Data Links di
alog. This connection string parameter is not supported by the OLE DB provider supplied with Host
Integration Server.

 Mode Yes
 Provider Yes
 State Yes
 Version Yes
Error Description Yes
 HelpContext No
 HelpFile No
 NativeError Yes
 Number Yes
 Source Yes
 SQLState Yes
Field ActualSize Yes
 Attributes Yes
 DataFormat No
 DefinedSize Yes
 Name Yes
 NumericScale Yes
 OriginalValue Yes
 Precision Yes
 Type Yes
 UnderlyingValue Yes
 Value Yes
Parameter Attributes Yes
 Direction Yes
 Name Yes
 NumericScale Yes
 Precision Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 Size Yes
 Type Yes
 Value Yes
Recordset AbsolutePage No
 AbsolutePositio

n
No

 ActiveCommand Yes
 ActiveConnection Yes
 BOF Yes
 Bookmark Yes
 CacheSize Yes
 CursorLocation Yes
 CursorType Yes
 DataMember No
 DataSource No
 EditMode Yes
 EOF Yes
 Filter No
 Index No
 Locktype Yes
 MarshalOptions No
 MaxRecords Yes
 PageCount No
 PageSize No
 RecordCount No
 Sort No
 Source Yes
 State Yes
 Status Yes
 StayInSync No

Microsoft Host Integration Server 2000

ADO Collection Support in the ODBC Driver for DB2
The following table summarizes the ADO version 2.0 object collections that are supported by the current version of the Microsoft
ODBC Driver for DB2.

ADO object Collection Support
Command Parameters Yes
 Properties Yes
Connection Errors Yes
 Properties Yes
Field Properties Yes
Parameter Properties Yes
Recordset Fields Yes
 Properties Yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Command Object in the ODBC Driver for DB2
The ADO Command object is a definition of a specific command that is to be executed against an ODBC Driver data source.

Command objects can be used to create a Recordset object and obtain records, execute a bulk operation, or manipulate the
structure of a database. When using the Microsoft® ODBC Driver for DB2, some collections, methods, or properties of a
Command object can generate an error when called.

The primary purpose of the Command object in the context of the ODBC Driver for DB2 is to issue SQL commands for execution
by the remote DB2 target server. Legal SQL commands are documented for the target DB2 platforms in SQL Reference Guides
published by IBM.

The following Command object methods, properties, and collections are supported by the current version of the ODBC Driver for
DB2:

Name Comment
Execute method Evaluates command text (only supported Options parameter for this method is adCmdText, which indicates

that this is an SQL text command).
ActiveConnection p
roperty

Sets or returns the information used to establish a connection to a data source (see notes following).

CommandText prop
erty

Sets or returns the command text to be executed.

CommandType pro
perty

Sets or returns the type of command in a CommandText property.

State property Describes the current state of an object.
Properties collectio
n

Collections of properties on the command.

The Execute method executes a command and returns a Recordset object, if appropriate. The Command object can be used to
open tables or execute SQL commands on a remote DB2 server. If errors occur, you can examine them with the Errors collection
on the Connection object.

You can create a Command object independently of a previously defined Connection object by setting the ActiveConnection
property of the Command object to a valid connection string (for the proper syntax, see the ConnectionString property of the
Connection object). ADO still creates a Connection object, but it does not assign that object to an object variable. However, if
multiple Command objects are to be associated with the same connection, the Connection object should be explicitly created
and opened. This assigns the Connection object to an object variable. If the ActiveConnection property of the Command
object is not set to this object variable, ADO creates a new Connection object for each Command object, even if the same
connection string is used.

The ActiveConnection property associates an open connection with a Command object. The CommandText property defines
the text version of a command (SELECT ALL FROM TABLE, for example). The CommandType property specifies the type of
command described in the CommandText property prior to execution to optimize performance. The CommandType property
must be set to adCmdText for use with the ODBC Driver for DB2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Connection Object in the ODBC Driver for DB2
The ADO Connection object represents an open connection to an ODBC data source. The Provider property sets the ODBC
Driver to use. Setting the ConnectionString properties configures the connection before opening the data source. The Version
property determines the version of the ADO implementation in use.

The Open method establishes the physical connection to the data source and the Close method terminates the connection. If
errors occur, these can be examined with the Errors collection.

The following Connection object methods, properties, and collections are supported by the current version of the Microsoft
ODBC Driver for DB2:

Name Comment
Close method Closes a connection to a data source.
Execute method Evaluates command text.
Open method Opens a connection to a data source and can optionally pass ConnectionString parameters with this

method.
OpenSchema method Obtains database schema information from the ODBC Driver.
Attributes property One or more characteristics supported for a given Connection object.
ConnectionString proper
ty

Contains the information used to establish a connection to a data source (see notes following).

CursorLocation propert
y

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

IsolationLevel Sets or returns the level of isolation for a Connection object.
Note that versions of the ODBC Driver for DB2 supplied with SNA Server 4.0 did not support this prope
rty.

Mode property Indicates the available permissions for modifying data in a connection.
Provider property Sets or returns the name of the provider for a connection.
State property Describes the current state of an object.
Version property Returns the version number of the ADO implementation in use.
Errors collection Collections of Error objects on the connection.
Properties collection Collections of properties on the connection.

The information needed to establish a connection to a data source can be set in the ConnectionString property or passed as part
of the Open method. In either case, this information must be in a specific format for use with the ODBC Driver for DB2. This
information can be a data source name (DSN) or a detailed connection string containing a series of argument=value statements
separated by semicolons. ADO supports several standard ADO-defined arguments for the ConnectionString property:

Arg
um
ent

Description

Dat
a S
our
ce

A required parameter that is used to define the data source. The ODBC driver manager uses this attribute value to load the c
orrect ODBC data source configuration from the registry or from a file. For File data sources, this field is used to name the D
SN file that is stored in the Program Files\Common Files\ODBC\Data Sources directory.

File
Na
me

Name of the provider-specific file containing preset connection information. This argument cannot be used if a Provider arg
ument is passed.

Loc
atio
n

The Remote Database Name used for connecting to OS/400 systems. This parameter is optional when connecting to mainfra
me systems.

Pas
swo
rd

Valid mainframe or AS/400 password for use when opening the connection. This password is used to validate that the user c
an log on to the target DB2 host system and has appropriate access rights to the database.

Pro
vide
r

Name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set to “DB2OLE
DB”.

Use
r ID

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate th
at the user can log on to the target DB2 host system and has appropriate access rights to the database.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values as specified
in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2000 differ from the
arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000 are as follows:

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the “SCHEMA” name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o “DB2OLEDB”.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, th
e alternative TP Name is set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of work)
or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions are
handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Servic
e. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected as t
he network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the ODBC Driver for DB2 supplied with SNA Server 4.0 are as follows:

A
r
g
u
m
e
n
t

Description

A
C
M

The Auto Commit Mode parameter indicates whether changes to data will be automatically committed or require a separate m
anual commit request.

This parameter allows for implicit COMMIT on all SQL statements. In auto-commit mode, every database operation is a transac
tion that is committed when performed. This mode is suitable for common transactions that consist of a single SQL statement.
It is unnecessary to delimit or specify completion of these transactions. No ROLLBACK is allowed when using Auto Commit mo
de.

The default value for this parameter is true (auto commit).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

B
T

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fol
lows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the “SCHEMA” name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

DI
L

This Default Isolation Level parameter determines the isolation level provided for this data source in cases of simultaneous acc
ess to DB2 objects by multiple applications. Legal values for the default isolation level are the following:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommitted Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspo
nds to Read Uncommitted.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, this isolation level corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

Please note that the ALL isolation level is not allowed. Users should set the isolation level to RS since this has the equivalent m
eaning and is defined in DB2 (ALL is not defined in any DB2 system).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

G
C
C
SI
D

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-by
te (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
C
C
SI
D

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (DB
CS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o “DB2OLEDB”.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
O

When the Read Only parameter is set to true (RO=1), the ODBC Driver for DB2 creates a read-only data source. A user has rea
d access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following
syntax is valid with ADO 1.5 and ADO 2.0 and prompts the user for ConnectionString properties.

A sample Open method call with these parameters follows:

The last three parameters to the Open method correspond with the CursorType (the adOpenForwardOnly enum is 0, for
example), LockType (the adLockReadOnly enum is 1, for example), and Options (adCmdText is 1, which indicates that the
Source name should be evaluated as SQL text). The Options parameter must be set to adCmdText (1) when used with the a data
source name with ODBC Driver for DB2.

The allowable values for CCSID when using SNANLS (SNA National Language Support) for character code conversions (the
default) are as follows:

EBCDIC character set CCSID value
Arabic 20420
Binary (No Conversion) 65535
Chinese (Simplified) 935
Chinese (Traditional) 937
Cyrillic (Russian) 20880
Cyrillic (Serbian, Bulgarian) 21025
Denmark/Norway (Euro) 1142
Denmark/Norway 20277
Finland/Sweden (Euro) 1143
Finland/Sweden 20278

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_
 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Conn.ConnectionString = "Provider=DB2OLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

RS.Open "Accounting",Conn,0,1,1

France (Euro) 1147
France 20297
Germany (Euro) 1141
Germany 20273
Greek (Modern) 875
Greek 20423
Hebrew 20424
Icelandic (Euro) 1149
Icelandic 20871
International (Euro) 1148
International 500
Italy (Euro) 1144
Italy 20280
Japanese (English-lower) 931
Japanese (Extend English) 939
Japanese (Extend Katakana) 930
Japanese (Katakana) 290
Japanese (Katakana-Kanji) 5026
Japanese (Latin-Kanji) 5035
Korean 933
Latin America/Spain (Euro) 1145
Latin America/Spain 20284
Latin-1 Open System (Euro) 20924
Latin-1 Open System 1047
Multilingual/ROECE (Latin-2) 870
Thai 20838
Turkish (Latin-5) 1026
Turkish 20905
U.S./Canada (Euro) 1140
U.S./Canada 37
United Kingdom (Euro) 1146
United Kingdom 20285

Note that the SNANLS conversions use the locale configured for the data sources using data links. For more information, see the
SDK documentation on SNA National Language Support.

The allowable values for CCSID when using ANSI/OEM for character code conversions are as follows:

ANSI/OEM character set CCSID value
ANSI - Arabic 1256
ANSI - Baltic 1257
ANSI - Cyrillic 1251
ANSI - Eastern Europe 1250
ANSI - Greek 1253
ANSI - Hebrew 1255
ANSI - Latin I 1252
ANSI - Turkish 1254
ANSI/OEM - Korean (Extended Wansung) 949
ANSI/OEM - Japanese Shift-JIS 932
ANSI/OEM - Simplified Chinese GBK 936
ANSI/OEM - Traditional Chinese Big5 950
ANSI/OEM - Thai 874
ANSI/OEM - Vietnam 1258

Microsoft Host Integration Server 2000

ADO Error Object in the ODBC Driver for DB2
The ADO Error object contains details about data access errors pertaining to a single operation involving ADO. You can read the
properties of an Error object to obtain specific details about each error.

The Error object does not support any methods or collections; however, the Errors collection supported by other objects provides
the standard Collection methods (Clear and Delete). Error objects are automatically appended to the Errors collection by the
ODBC Driver when they occur. The following Error object properties are supported by the current version of the Microsoft®
ODBC Driver for DB2:

Property
Name

Comment

Description The text of the error alert that is returned based on the minor error code (specific to the ODBC Driver for DB2) contai
ned in the Error object resulting from an error.

NativeError A Long integer value of the error code returned by the ODBC Driver for DB2.
Number The Long integer value of the ODBC error constant.
Source A string that indicates the name of the object or application that originally generated an error.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Field Object in the ODBC Driver for DB2
The ADO Field object represents a column of data with a common data type. Each Field object corresponds to a column in a
Recordset object.

The following Field object methods, properties, and collections are supported by the current version of the Microsoft® ODBC
Driver for DB2:

Name Comment
ActualSize property Actual length of a field’s value.
Attributes property One or more characteristics supported for a given Field object.
DefinedSize property Defined size of a Field object.
Name property Name of the Field object.
NumericScale property Scale of numeric values in a Field object for numeric data.
OriginalValue property Value of a Field object that existed in the record before changes were made.
Precision property Degree of precision for numeric values in a Field object for numeric data.
Type property Operational type or data type for a Field object.
UnderlyingValue Current value of a Field object.
Value property Value assigned to a Field object in a Recordset.
Properties collection Collections of properties on the field.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADO Recordset Object in the ODBC Driver for DB2
The ADO Recordset object represents the entire set of records from a base table. At any time, the Recordset object refers to only
one record within the set as the current record.

The following Recordset object methods, properties, and collections are supported by the current version of the Microsoft®
ODBC Driver for DB2:

Name Comment
AddNew method Creates a new record for an updateable Recordset object.
CancelBatch met
hod

Cancels a pending batch update.

CancelUpdate m
ethod

Cancels any changes made to a current record or to a new record prior to calling the UpdateBatch method.

Clone method Creates a duplicate Recordset object from an existing Recordset object.
Close method Closes an open object and any dependent objects.
Delete method Deletes the current record in an open Recordset object or an object from a collection.
GetRows method Retrieves multiple records of a Recordset into an array.
Move method Moves the position of the current record in a Recordset object.
MoveFirst metho
d

Moves to the first record in a specified Recordset.

MoveLast metho
d

Moves to the last record in a specified Recordset. This method is only supported when using a client-side curs
or.

MoveNext metho
d

Moves to the next record in a specified Recordset.

MovePrevious m
ethod

Moves to the previous record in a specified Recordset. This method is only supported when using a client-side
cursor.

Open method Opens a cursor on a Recordset.
Requery method Updates the data in a Recordset object by re-executing the query on which the object is based (equivalent to c

alling the Close and Open methods in succession).
Save method Saves a Recordset in a file or Stream object.
Supports method Determines whether a specified Recordset object supports a particular type of function.
Update method Saves any changes you make to the current record of a Recordset object.
UpdateBatch met
hod

Writes all pending batch updates to disk.

ActiveCommand
property

Returns the Command object that created the specified Recordset.

ActiveConnection
property

Sets or returns the Connection object that the specified Recordset object currently belongs.

BOF property Indicates whether the current record position is before the first record in a Recordset object.
Bookmark prope
rty

Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the current record
in a Recordset object identified by a valid bookmark.

CacheSize proper
ty

Sets or returns the number of records from a Recordset object that are cached locally in memory.

CursorLocation Sets or returns the location of the cursor (whether the cursor is on the client or the server side).
CursorType Sets or returns the type of cursor used in a Recordset object. Only the adOpenForwardOnly CursorType is s

upported by the current version of the ODBC Driver for DB2.
EditMode proper
ty

Indicates the editing status of the current record type.

EOF property Indicates whether the current record position is after the last record in a Recordset object.
LockType propert
y

Sets or returns the types of locks placed on records during editing. The ODBC Driver for DB2 supports locks of t
ype adLockReadOnly and adLockPessimistic.

MaxRecords Sets or returns the maximum number of records to return to a Recordset from a query.
Source property Sets or returns the source (table name or command object) for the data in a Recordset.
State property Describes the current state of an object.
Status property Indicates the status of the current record with respect to batch updates or other bulk operations.
Fields collection Collections of fields on the Recordset.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Properties collec
tion

Collections of properties on the Recordset.

Microsoft Host Integration Server 2000

ADO Reference
This section provides reference information on specific ActiveX® Data Objects (ADO) methods, properties, and collections
supported by the Microsoft® OLE DB Provider for AS/400 and VSAM and the Microsoft® OLE DB Provider for DB2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ActiveCommand Property
The ActiveCommand property on a Recordset object indicates which Command object created the associated Recordset
object. This property returns a Variant that contains a Command object. The default is a Null object reference.

Remarks

The ActiveCommand property is property is read-only. If a Command object was not used to create the current Recordset,
then a Null object reference is returned.

Use this property to find the associated Command object when you are given only the resulting Recordset object.

currentCommand = recordset.ActiveCommand

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ActiveConnection Property
The ActiveConnection property on a Command or Recordset object indicates to which Connection object the specified
Command or Recordset object currently belongs. This property sets or returns a String containing the definition for a
connection or a Connection object. The default is a Null object reference.

Remarks

The ActiveConnection property is used to determine the Connection object over which the specified Command object will
execute or the specified Recordset will be opened.

For Command objects, the ActiveConnection property is read/write.

If you attempt to call the Execute method on a Command object before setting the ActiveConnection property to an open
Connection object or valid connection string, an error occurs.

Under Microsoft® Visual Basic®, setting the ActiveConnection property to Nothing disassociates the Command object from
the current Connection and causes the OLE DB Provider to release any associated resources on the data source. You can then
associate the Command object with the same or another Connection object. Some providers allow you to change the
ActiveConnection property setting from one Connection to another, without having to first set the property to Nothing.

Closing the Connection object with which a Command object is associated sets the ActiveConnection property to Nothing.
Setting this property to a closed Connection object generates an error.

For open Recordset objects or for Recordset objects whose Source property is set to a valid Command object, the
ActiveConnection property is read-only. Otherwise, it is read/write.

You can set the ActiveConnection property to a valid Connection object or to a valid connection string. In this case, the OLE DB
Provider creates a new Connection object using this definition and opens the connection. Additionally, the provider may set this
property to the new Connection object to give you a way to access the Connection object for extended error information or to
execute other commands.

If the ActiveConnection parameter of the Open method is used to open a Recordset object, the ActiveConnection property will
inherit the value of the argument.

If the Source property of the Recordset object is set to a valid Command object variable, the ActiveConnection property of the
Recordset inherits the setting of the Command object's ActiveConnection property.

The information needed to establish a connection to a data source can be set in the ActiveConnection property of a Recordset
object or passed as part of the Open method on a Recordset object in the ActiveConnection parameter. In either case, this
information must be in a specific format for use with the Microsoft® OLE DB Provider for AS/400 and VSAM, the Microsoft® OLE
DB Provider for DB2, or the Microsoft®.ODBC Driver for DB2. This information can be a data source name (DSN) or a detailed
connection string containing a series of argument=value statements separated by semicolons.

ADO supports several standard ADO-defined arguments for the ActiveConnection property as follows:

Ar
gu
m
en
t

Description

Da
ta
So
urc
e

Specifies the name of the data source for the connection. This argument is optional when using the OLE DB Provider for AS/4
00 and VSAM or the OLE DB Provider for DB2.

Fil
e
Na
me

Specifies the name of the provider-specific file containing preset connection information. This argument cannot be used if a P
rovider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and VSAM.

command.ActiveConnection = connectionString
activeConnectionString = recordset.ActiveConnection

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Lo
cat
ion

The Remote Database Name used for connecting to OS/400 systems. This parameter is optional when connecting to mainfra
me systems.

Pa
ss
wo
rd

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that t
he user can log on to the target host system and has appropriate access rights to the file.

Pr
ovi
der

Specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and VSAM, the Provider
string must be set to "SNAOLEDB". To use the OLE DB Provider for DB2, the Provider string must be set to "DB2OLEDB". To us
e the ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or not used as part of the ConnectionString since t
his value is the default for ADO.

Us
er I
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate tha
t the user can log on to the target host system and has appropriate access rights to the file.

Microsoft Host Integration Server 2000

ActiveConnection Property Support Using the OLE DB Provider
for AS/400 and VSAM
The Microsoft® OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which
have default values as specified in the table below. These arguments are as follows:

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0, don't process binary fields as char
acter fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitted,
the default value is U.S./Canada (37).

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when conne
cting to AS/400 files.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 256
characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system directory.
This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in Host Integration Server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA. This value defaults to SNA.

PCCo
dePa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The Remote DataBase name for OS/400. You only need to specify this value if it is different from the remote LU alias config
ured in Host Integration Server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults to f
alse.

Rem
oteL
U

The name of the remote LU alias configured in Host Integration Server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString for use with the OLE DB Provider for AS/400 and VSAM follows:

Conn.Provider="SNAOLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PCCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following is
valid with ADO 1.5 and ADO 2.0 and will prompt the user for ConnectionString properties:

Conn.ConnectionString = "Provider=SNAOLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

Microsoft Host Integration Server 2000

ActiveConnection Property Support Using the OLE DB Provider
for DB2
The Microsoft® OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default
values as specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration
Server 2000 differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2000 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the OLE DB Provider for DB2 should store and bind DB2 packa
ges. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, T
PName is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distribute
d unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions ar
e handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Serv
ice. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected a
s the network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the OLE DB Provider for DB2 supplied with SNA Server 4.0 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

Bi
nd
Ty
pe

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fo
llows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

Co
m
mi
t

This parameter indicates whether changes to data will be automatically committed or require a separate manual commit requ
est.

This parameter defaults to true (auto commit).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

G
C
CS
ID

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-b
yte (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Is
oL
vl

This parameter determines the isolation level provided for this data source. Legal values for the default isolation level are the f
ollowing:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommited Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspon
ds to Read Uncommited.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, isolation level this corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
C
CS
ID

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (D
BCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
ad
O
nl
y

When the Read Only parameter is set to true (ReadOnly=1), the OLE DB Provider for DB2 creates a read-only data source. A u
ser has read access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the OLE DB Provider for DB2 follows:

The &_ character combination is used for continuing long lines in Visual Basic.

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PcCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Microsoft Host Integration Server 2000

ActiveConnection Property Support Using the ODBC Driver for
DB2
The Microsoft® ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values
as specified in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2000
differ from the arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000 are as follows:

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TP
N is set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of work)
or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions are
handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Servic
e. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected as t
he network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 supplied with Host Integration Server 2000 is as follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

The arguments supported by the ODBC Driver for DB2 supplied with SNA Server 4.0 are as follows:

A
r
g
u
m
e
n
t

Description

A
C
M

The Auto Commit Mode parameter indicates whether changes to data will be automatically committed or require a separate m
anual commit request.

This parameter allows for implicit COMMIT on all SQL statements. In auto-commit mode, every database operation is a transac
tion that is committed when performed. This mode is suitable for common transactions that consist of a single SQL statement.
It is unnecessary to delimit or specify completion of these transactions. No ROLLBACK is allowed when using Auto Commit mo
de.

The default value for this parameter is true (auto commit).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

B
T

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fol
lows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

Conn.Provider="MSDASQL"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_
 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).
C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

DI
L

This Default Isolation Level parameter determines the isolation level provided for this data source in cases of simultaneous acc
ess to DB2 objects by multiple applications. Legal values for the default isolation level are the following:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommitted Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspo
nds to Read Uncommitted.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, this isolation level corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

Please note that the ALL isolation level is not allowed. Users should set the isolation level to RS since this has the equivalent m
eaning and is defined in DB2 (ALL is not defined in any DB2 system).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

G
C
C
SI
D

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-by
te (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
C
C
SI
D

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (DB
CS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "DB2OLEDB".

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
O

When the Read Only parameter is set to true (RO=1), the ODBC Driver for DB2 creates a read-only data source. A user has rea
d access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 supplied with SNA Server 4.0 is as follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_
 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Microsoft Host Integration Server 2000

ActualSize Property
The ActualSize property on a Field object indicates the actual length of a field's value. This property returns a returns a Long
value.

Remarks

The ActualSize property is used to return the actual length of a Field object's value. For all fields, the ActualSize property is
read-only. If ADO cannot determine the length of the Field object's value, the ActualSize property returns adUnknown.

The ActualSize and DefinedSize properties on a Field object can be different. For example, a Field object with a declared type
of adVarChar (variable character data type) and a maximum length of 50 characters returns a DefinedSize property value of 50,
but the ActualSize property value it returns is the length of the data stored in the field for the current record.

size = field.ActualSize

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AddNew Method
The AddNew method on a Recordset object creates a new record for an updatable Recordset object.

Parameters

Fields
This optional parameter specifies a single name or an array of names or ordinal positions of the fields in the new record.

Values
This optional parameter specifies a single value or an array of values for the fields in the new record. If Fields is an array, Values
must also be an array with the same number of members; otherwise, an error occurs. The order of field names must match the
order of field values in each array.

Remarks

The AddNew method is used to create and initialize a new record. The Supports method can be used with adAddNew to verify
whether records can be added to the current Recordset object.

After the AddNew method is called, the new record becomes the current record and remains current after the Update method is
called. If the Recordset object does not support bookmarks, you may not be able to access the new record after you move to
another record. Depending on your cursor type, you may need to call the Requery method to make the new record accessible.

If AddNew is called while editing the current record or while adding a new record, ADO calls the Update method to save any
changes and then creates the new record.

The behavior of the AddNew method depends on the updating mode of the Recordset object and whether or not the Fields and
Values arguments are passed.

In immediate update mode, the OLE DB Provider writes changes to the underlying data source after the Update method is called.
In immediate update mode, calling the AddNew method without arguments sets the EditMode property to adEditAdd. The OLE
DB Provider caches any field value changes locally. Calling the Update method posts the new record to the database and resets
the EditMode property to adEditNone. If the Fields and Values arguments are passed, ADO immediately posts the new record to
the database (no Update call is necessary) and the EditMode property value does not change (adEditNone).

In batch update mode, the OLE DB Provider caches multiple changes and writes them to the underlying data source only when the
UpdateBatch method is called. In batch update mode, calling the AddNew method without arguments sets the EditMode
property to adEditAdd. The OLE DB Provider caches any field value changes locally. Calling the Update method adds the new
record to the current Recordset object and resets the EditMode property to adEditNone, but the OLE DB Provider does not
post the changes to the underlying database until the UpdateBatch method is called. If the Fields and Values arguments are
passed, ADO sends the new record to the provider for storage in a cache and the UpdateBatch method must be called to post
the new record to the underlying database.

recordset.AddNew Fields, Values

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AppendChunk Method
The AppendChunk method on a Field object appends data to a large text or binary data Field object.

Parameters

Data
This parameter specifies a Variant containing the data to be appended to the Field object.

Remarks

The AppendChunk method is used on a Field object to fill it with long binary or character data. In situations where system
memory is limited, the AppendChunk method can be used to manipulate long values in portions rather than in their entirety.

If the adFldLong bit in the Attributes property of a Field object is set to True, the AppendChunk method can be used for that
field.

The first AppendChunk call on a Field object writes data to the field, overwriting any existing data. Subsequent AppendChunk
calls add to existing data. If you are appending data to one field and then set or read the value of another field in the current
record, ADO assumes that you are finished appending data to the first field. If the AppendChunk method is called on the first
field again, ADO interprets the call as a new AppendChunk operation and overwrites the existing data. Accessing fields in other
Recordset objects (that are not clones of the first Recordset object) will not disrupt AppendChunk operations.

If there is no current record when the AppendChunk method is called on a Field object, an error occurs.

field.AppendChunk Data

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Attributes Property
The Attributes property on a Field object or a Property object in a Properties collection indicates one or more characteristics of
an object. This property returns a Long value.

Remarks

The Attributes property is used to return characteristics of Field objects or Property objects.

For a Field object, the Attributes property is read-only and its value can be the sum of any one or more of the
FieldAttributeEnum values. The allowable FieldAttributeEnum values can be one of the following constants:

Enumeration Val
ue

Description

adFldMayDefer 0x2 This value indicates that the field is deferred, that is, the field values are not retrieved from the data source
with the whole record, but only when you explicitly access them.

adFldUpdatabl
e

0x4 This value indicates that you can write to the field.

adFldUnknown
Updatable

0x8 This value indicates that the provider cannot determine if you can write to the field.

adFldFixed 0x1
0

This value indicates that the field contains fixed-length data.

adFldIsNullable 0x2
0

This value indicates that the field accepts Null values.

adFldMayBeNu
ll

0x4
0

This value indicates that you can read Null values from the field.

adFldLong 0x8
0

This value indicates that the field is a long binary field. This value also indicates that the AppendChunk an
d GetChunk methods on the Field object can be used.

adFldRowID 0x1
00

This value indicates that the field contains some kind of record identifier (record number, unique identifier,
and so on).

adFldRowVersi
on

0x2
00

This value indicates that the field contains some kind of time or date stamp (often used to track updates).

adFldCacheDef
erred

0x1
000

This value indicates that the provider caches field values and that subsequent reads are done from the cac
he.

For a Property object, the Attributes property is read-only and its value can be the sum of any one or more of the
PropertyAttributesEnum values. The allowable PropertyAttributesEnum values can be one of the following constants:

Enumeration Valu
e

Description

adPropNotSuppor
ted

0 This value indicates that the property is not supported by the provider.

adPropRequired 0x1 This value indicates that the user must specify a value for this property before the data source is initiali
zed.

adPropOptional 0x2 This value indicates that the user does not need to specify a value for this property before the data sou
rce is initialized.

adPropRead 0x20
0

This value indicates that the user can read the property.

adPropWrite 0x40
0

This value indicates that the user can set the property.

attribute = field.Attributes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

BOF Property
The BOF property on a Recordset object indicates that the current record position is before the first record in a Recordset object.
This property returns a Boolean value.

Remarks

The BOF property is used to determine whether a Recordset object contains records or whether you have gone beyond the limits
of a Recordset object when you move from record to record.

The BOF property returns True if the current record position is before the first record and False if the current record position is
on or after the first record.

If the BOF property is True, there is no current record.

If a Recordset object is opened containing no records, both the BOF and EOF properties are set to True, and the Recordset
object's RecordCount property setting is zero. When a Recordset object is opened that contains at least one record, the first
record is the current record and the BOF and EOF properties are False.

If the last remaining record in the Recordset object is deleted, the BOF and EOF properties may remain False until you attempt to
reposition the current record.

This table below indicates which Move methods are allowed with different combinations of the BOF and EOF properties.

 MoveFirst
MoveLast

MovePrevious
Move < 0

Move 0 MoveNext
Move > 0

BOF=True
EOF=False

Allowed Error Error Allowed

BOF=False
EOF=True

Allowed Allowed Error Error

Both True Error Error Error Error
Both False Allowed Allowed Allowed Allowed

 Note Executing a Move 0 method when the BOF property is True does not currently generate an error using the
OLE DB Provider for AS/400 and VSAM.

 Note Allowing a Move method does not guarantee that the method will successfully locate a record; it only means
that calling the specified Move method will not generate an error.

The following table shows what happens to the BOF and EOF property settings when various Move methods are called but are
unable to successfully locate a record.

 BOF property EOF property
MoveFirst
MoveLast

Set to True Set to True

Move 0 No change No change
MovePrevious
Move < 0

Set to True No change

MoveNext
Move > 0

No change Set to True

IsBOF = recordset.BOF

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Bookmark Property
The Bookmark property on a Recordset object returns a bookmark that uniquely identifies the current record in a Recordset
object or sets the current record in a Recordset object to the record identified by a valid bookmark. This property sets or returns
a Variant expression that evaluates to a valid bookmark.

Remarks

The Bookmark property is used to save the position of the current record and return to that record at any time. Bookmarks are
available only in Recordset objects (host tables) that support the bookmark feature.

When a Recordset object is opened, each of its records has a unique bookmark. To save the bookmark for the current record,
assign the value of the Bookmark property to a variable. To quickly return to that record at any time after moving to a different
record, set the Recordset object's Bookmark property to the value of that variable.

The user may not be able to view the value of the bookmark. Also, users should not expect bookmarks to be directly comparable
—two bookmarks that refer to the same record may have different values.

If the Clone method is used to create a copy of a Recordset object, the Bookmark property settings for the original and the
duplicate Recordset objects are identical and you can use them interchangeably. However, you cannot use bookmarks from
different Recordset objects interchangeably, even if they were created from the same source or command.

Using the OLE DB Provider for AS/400 and VSAM, only some data sources can be bookmarked. Calling the Supports method
with the adBookmark argument will indicate if the data source (table) can be bookmarked.

FirstBookmark = recordset.Bookmark
recordset.Bookmark = PreviousBookmark

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CacheSize Property
The CacheSize property on a Recordset object indicates the number of records from a Recordset object that are cached locally
in memory. This property sets or returns a Long value that must be greater than zero. The default value for the CacheSize
property is 1.

Remarks

The CacheSize property is used to control how many records the provider keeps in its buffer and how many to retrieve at one
time into local memory. For example, if the CacheSize is 10, after first opening the Recordset object, the provider retrieves the
first 10 records into local memory. As you move through the Recordset object, the provider returns the data from the local
memory buffer. As soon as you move past the last record in the cache, the provider retrieves the next 10 records from the data
source into the cache.

The value of the CacheSize property can be adjusted during the life of the Recordset object, but changing this value only affects
the number of records in the cache after subsequent retrievals from the data source. Changing the property value alone will not
change the current contents of the cache.

If there are fewer records to retrieve than the CacheSize property specifies, the provider returns the remaining records; no error
occurs.

A CacheSize setting of zero is not allowed and returns an error. Non-bookmarkable files cannot have the CacheSize property set
to greater than one, or an error will occur.

It is strongly recommended that a CacheSize of 1 be used with the OLE DB Provider for AS/400 and VSAM. If the CacheSize is
set greater than 1, it is possible for the local data cached in memory to be out of date from changes made by other users on the
host.

previousSize = recordset.CacheSize
recordset.CacheSize = 1

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CancelBatch Method
The CancelBatch method on a Recordset object cancels a pending batch update.

Parameters

AffectedRecords
This optional parameter specifies an AffectEnum value that determines how many records the CancelBatch method will
affect.

The AffectEnum value can be one of the following constants:

Enumera
tion

Val
ue

Description

adAffect
Current

1 This value cancels pending updates only for the current record.

adAffect
Group

2 This value cancels pending updates for records that satisfy the current Filter property setting. You must set the F
ilter property to one of the valid predefined constants to use this option.

adAffect
All

3 This value cancels pending updates for all the records in the Recordset object, including any hidden by the curr
ent Filter property setting. This value is the default.

Remarks

The CancelBatch method is used to cancel any pending updates in a Recordset object in batch update mode. If the Recordset
object is in immediate update mode, calling CancelBatch without adAffectCurrent generates an error.

If you are editing the current record or are adding a new record when CancelBatch is called, ADO first calls the CancelUpdate
method to cancel any cached changes, and then all pending changes in the recordset are canceled.

It is possible that the current record will be indeterminable after a CancelBatch call, especially if you were in the process of
adding a new record. For this reason, it is prudent to set the current record position to a known location in the recordset after the
CancelBatch method is called. For example, call the MoveFirst method.

If the attempt to cancel the pending updates fails because of a conflict with the underlying data (for example, a record has been
deleted by another user), the provider returns warnings to the Errors collection but does not halt program execution. A run-time
error occurs only if there are conflicts on all the requested records. The Filter property (adFilterAffectedRecords) and the Status
property can be used to locate records with conflicts.

recordset.CancelBatch AffectedRecords

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CancelUpdate Method
The CancelUpdate method on a Recordset object cancels any changes made to the current record or to a new record prior to
calling the Update method.

Parameters

None.

Remarks

The CancelUpdate method is used to cancel any changes made to the current record or to discard a newly added record. You
cannot undo changes to the current record or to a new record after the Update method is called unless the changes are part of a
batch update that you can cancel with the CancelBatch method.

If you are adding a new record when the CancelUpdate method is called, the record that was current prior to the AddNew
method call becomes the current record again.

If you have not changed the current record or added a new record, calling the CancelUpdate method generates an error.

recordset.CancelUpdate

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clear Method
The Clear method on a Collection object removes all of the objects in a collection.

Parameters

None.

Remarks

The Clear method is used on the Errors collection to remove all existing Error objects from the collection. When an error occurs,
ADO automatically clears the Errors collection and fills it with Error objects based on the new error. However, some properties
and methods return warnings that appear as Error objects in the Errors collection but do not halt a program's execution. Before
calling the Resync, UpdateBatch, or CancelBatch methods on a Recordset object or before setting the Filter property on a
Recordset object, call the Clear method on the Errors collection. Doing so enables you to read the Count property of the Errors
collection to test for returned warnings as a result of these specific calls.

collection.Clear

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clone Method
The Clone method on a Recordset object creates a duplicate Recordset object from an existing Recordset object.

Parameters

rstDuplicate
This object variable specifies the duplicate Recordset object to be created.

rstOriginal
This object variable specifies the Recordset object to be duplicated.

Remarks

The Clone method is used on a Recordset object to create multiple, duplicate Recordset objects, particularly if you want to be
able to maintain more than one current record in a given set of records. Using the Clone method is more efficient than creating
and opening a new Recordset object with the same definition as the original.

The current record of a newly created clone is set to the first record.

Changes made to one Recordset object are visible in all of its clones regardless of cursor type. However, after you execute
Requery on the original Recordset, the clones will no longer be synchronized to the original.

Closing the original Recordset does not close its copies; closing a copy does not close the original or any of the other copies.

You can only clone a Recordset object that supports bookmarks. Bookmark values are interchangeable; that is, a bookmark
reference from one Recordset object refers to the same record in any of its clones.

rstDuplicate = rstOriginal.Clone

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close Method
The Close method on a Connection or Recordset object closes an open object and any dependent objects.

Parameters

None

Remarks

The Close method is used to close either a Connection object or a Recordset object to free any associated system resources.
Closing an object does not remove it from memory; you may change its property settings and open it again later. To completely
eliminate an object from memory, set the object variable to Nothing.

Using the Close method to close a Connection object also closes any active Recordset objects associated with the connection. A
Command object associated with the Connection object you are closing will persist, but it will no longer be associated with a
Connection object, that is, its ActiveConnection property will be set to Nothing.

You can later call the Open method to reestablish the connection to the same or another data source. While the Connection
object is closed, calling any methods that require an open connection to the data source generates an error. Closing a
Connection object while there are open Recordset objects on the connection rolls back any pending changes in all of the
Recordset objects.

Using the Close method to close a Recordset object releases the associated data and any exclusive access you may have had to
the data through this particular Recordset object. You can later call the Open method to reopen the recordset with the same or
modified attributes. While the Recordset object is closed, calling any methods that require a live cursor generates an error.

If an edit is in progress while in immediate update mode, calling the Close method generates an error. The Update or
CancelUpdate methods should be called first. If you close the Recordset object during batch updating, everything changes since
the last UpdateBatch call is lost.

recordSet.Close

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CommandText Property
The CommandText property on a Command object contains the text of a command that you want to issue against a provider.
This property sets or returns a String value containing a provider command, such as an AS/400 Command Language (CL)
command for execution by the remote OS/400 DDM target server or an SQL command for execution on a DB2 database server.
The default value for the CommandText property is a zero-length string.

Remarks

The CommandText property is used to set or return the text of a Command object. When used with the OLE DB Provider for
AS/400 and VSAM, the text can be an AS/400 CL command for execution by the remote OS/400 DDM target server or a request
to open a table on a host (a remote DDM Server). When used with the OLE DB Provider for DB2, the text can be an SQL command
for execution or a call to a stored procedure.

If the Prepared property of the Command object is set to True and the Command object is bound to an open connection when
you set the CommandText property, ADO prepares the query when you call the Execute or Open methods.

Depending on the CommandType property setting, ADO may alter the CommandText property. The CommandText property
can be read at any time to see the actual command text that ADO will use during execution.

The CommandText property defines the text version of a command. The syntax for the string in the CommandText property
when used with the OLE DB Provider for AS/400 and VSAM is as follows:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your platform
for a detailed list of possible commands.

With the OLE DB Provider for AS/400 and VSAM, the Command object can also be used to open a data file after a Connection
object has been opened and the ActiveConnection property has been set to this open connection. The CommandText property
defines the data file to open. When used with the OLE DB Provider for AS/400 and VSAM, the syntax for the CommandText
property string in this case is as follows:

where DataSetName represents a valid data file or library member on the host. If you open a host data file from a Command
object, then the data file is opened as read-only. This results from the limitation that no argument or option is passed by ADO that
supplies a parameter describing whether the data set should be opened as read-only or updatable.

The syntax for the string in the CommandText property when used with the OLE DB Provider for DB2 can be one of the
following:

where SQLStatement represents a valid SQL statement supported by DB2.

where StoredProcedure represents a valid DB2 stored procedure on the database server.

The CommandType property specifies the type of command described in the CommandText property prior to execution in
order to optimize performance. The CommandType property must be set to adCmdText for use with the OLE DB Provider for
AS/400 and VSAM or the OLE DB Provider for DB2.

previousCommandtext = command.CommandText
command.CommandText = "EXEC COMMAND DDMCmd"

EXEC COMMAND DDMCmd

EXEC OPEN DataSetName

EXEC SQLStatement

CALL StoredProcedure

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CommandType Property
The CommandType property on a Command object Indicates the type of a Command object. This property sets or returns a
CommandTypeEnum value.

Remarks

The CommandType property is used to set or return the type of a Command object. This property specifies a
CommandTypeEnum value that can be one of the following constants:

Enumer
ation

V
al
u
e

Description

adCmd
Unspeci
fied

-1 This value indicates that the CommandType property has been unspecified.

adCmd
Text

1 This value evaluates the CommandText property as a textual definition of a command command or stored procedur
e call.

adCmd
Table

2 This value evaluates the CommandText property as a table name. This value is not supported by the OLE DB Provid
er for AS/400 and VSAM or the OLE DB Provider for DB2.

adCmd
StoredP
roc

4 This value evaluates the CommandText property as a stored procedure. This value is not supported by the OLE DB P
rovider for AS/400 and VSAM or the OLE DB Provider for DB2. See remarks below regarding using stored procedure
s using the OLE DB Provider for DB2.

adCmd
Unkno
wn

8 This value indicates that the type of command in a CommandText property is not known. This is the default value.

The OLE DB Provider for AS/400 and VSAM and the OLE DB Provider for DB2 only support the adCmdText type for the
CommandType property. If any other value for the CommandType property is set, errors will occur.

The OLE DB Provider for DB2 supports calling DB2 stored procedures. An application must use the CALL keyword before the SQL
statement in order to execute a stored procedure. When using ADO, a CommandType property of adCmdStoredProc cannot be
used for executing a stored procedure since ADO inserts an EXEC not CALL keyword before the command text. In order to execute
a stored procedure using ADO, the CommandType property should be set to adCmdText and the CALL keyword should be
used before the SQL statement containing the stored procedure to be executed.

oldType = command.CommandType
command.CommandType = newType

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConnectionString Property
The ConnectionString property on a Connection object contains the information used to establish a connection to a data
source. This property sets or returns a string value.

Remarks

The ConnectionString property is used to specify a data source by passing a detailed connection string containing a series of
argument = value statements separated by semicolons.

ADO supports several standard arguments for the ConnectionString property. Any other arguments are passed directly to the
provider without any processing by ADO. This information must be in a specific format for use with the Microsoft® OLE DB
Provider for AS/400 and VSAM, the Microsoft® OLE DB Provider for DB2, or the Microsoft® ODBC Driver for DB2. This
information can be a data source name (DSN) or a detailed connection string containing a series of argument=value statements
separated by semicolons. ADO supports several standard ADO-defined arguments for the ConnectionString property as follows:

Arg
um
ent

Description

Data
Sou
rce

This argument specifies the name of the data source for the connection. This argument is optional when using the OLE DB P
rovider for AS/400 and VSAM or the OLE DB Provider for DB2.

File
Na
me

This argument specifies the name of the provider-specific file containing preset connection information. This argument cann
ot be used if a Provider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and VSAM.

Loca
tion

The Remote Database Name used for connecting to OS/400 systems. This parameter is optional when connecting to mainfr
ame systems.

Pass
wor
d

This argument specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used
to validate that the user can log on to the target host system and has appropriate access rights to the file.

Prov
ider

This argument specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and VSA
M, the Provider string must be set to "SNAOLEDB". To use the OLE DB Provider for DB2, the Provider string must be set to "
DB2OLEDB". To use the ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or not used as part of the Conn
ectionString since this value is the default for ADO.

Rem
ote
Prov
ider

This argument specifies the name of a provider to use when opening a client-side connection (for a Remote Data Service onl
y). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Rem
ote
Serv
er

This argument specifies the path name of a server to use when opening a client-side connection (for a Remote Data Service
only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

User
ID

This argument specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is use
d to validate that the user can log on to the target host system and has appropriate access rights to the file.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which default have
default values as specified in the table below. These arguments are as follows:

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0, don't process binary fields as char
acter fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitted,
the default value is U.S./Canada (37).

oldString = connection.ConnectionString
connection.ConnectionString = newString

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when conne
cting to AS/400 files.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 256
characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system directory.
This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in Host Integration Server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA. This value defaults to SNA.

PCCo
dePa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The Remote DataBase name for OS/400. You only need to specify this value if it is different from the remote LU alias config
ured in Host Integration Server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults to f
alse.

Rem
oteL
U

The name of the remote LU alias configured in Host Integration Server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString for use with the OLE DB Provider for AS/400 and VSAM follows:

The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following is
valid with ADO 1.5 and ADO 2.0 and will prompt the user for ConnectionString properties:

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration Server 2000
differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2000 are as follows:

Conn.Provider="SNAOLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PCCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Conn.ConnectionString = "Provider=SNAOLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, T
PName is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distribute
d unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions ar
e handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Serv
ice. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected a
s the network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the OLE DB Provider for DB2 supplied with SNA Server 4.0 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

Bi
nd
Ty
pe

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fo
llows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

Co
m
mi
t

This parameter indicates whether changes to data will be automatically committed or require a separate manual commit requ
est.

This parameter defaults to true (auto commit).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

G
C
CS
ID

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-b
yte (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Is
oL
vl

This parameter determines the isolation level provided for this data source. Legal values for the default isolation level are the f
ollowing:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommited Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspon
ds to Read Uncommited.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, isolation level this corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
C
CS
ID

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (D
BCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
ad
O
nl
y

When the Read Only parameter is set to true (ReadOnly=1), the OLE DB Provider for DB2 creates a read-only data source. A u
ser has read access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the OLE DB Provider for DB2 supplied with SNA Server 4.0 is as follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

The ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values as specified
in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2000 differ from the

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PcCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000 are as follows:

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TP
N is set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of work)
or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions are
handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Servic
e. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected as t
he network transport and Microsoft Transaction Server (MTS) is installed.

Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 supplied with Host Integration Server 2000 is as follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

The arguments supported by the ODBC Driver for DB2 supplied with SNA Server 4.0 are as follows:

A
r
g
u
m
e
n
t

Description

A
C
M

The Auto Commit Mode parameter indicates whether changes to data will be automatically committed or require a separate m
anual commit request.

This parameter allows for implicit COMMIT on all SQL statements. In auto-commit mode, every database operation is a transac
tion that is committed when performed. This mode is suitable for common transactions that consist of a single SQL statement.
It is unnecessary to delimit or specify completion of these transactions. No ROLLBACK is allowed when using Auto Commit mo
de.

The default value for this parameter is true (auto commit).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

B
T

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fol
lows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

Conn.Provider="MSDASQL"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_
 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

DI
L

This Default Isolation Level parameter determines the isolation level provided for this data source in cases of simultaneous acc
ess to DB2 objects by multiple applications. Legal values for the default isolation level are the following:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommitted Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspo
nds to Read Uncommitted.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, this isolation level corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

Please note that the ALL isolation level is not allowed. Users should set the isolation level to RS since this has the equivalent m
eaning and is defined in DB2 (ALL is not defined in any DB2 system).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

G
C
C
SI
D

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-by
te (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
C
C
SI
D

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (DB
CS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "DB2OLEDB".

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
O

When the Read Only parameter is set to true (RO=1), the ODBC Driver for DB2 creates a read-only data source. A user has rea
d access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

 Note Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 supplied with SNA Server 4.0 is as follows:

 Note The &_ character combination is used for continuing long lines in Visual Basic.

After the ConnectionString property is set and the Connection object is opened, the provider may alter the contents of the
property, for example, by mapping the ADO-defined argument names to their provider equivalents. Using the OLE DB Provider
for AS/400 and VSAM or the OLE DB Provider for DB2, three items are stripped from the ConnectionString after a Connection
object is opened: Data Source, User ID, and Password.

The ConnectionString property automatically inherits the value used for the ConnectionString argument of the Open method
on a Connection object, so you can override the current ConnectionString property during the Open method call. Therefore,
the ConnectionString property of the Connection object can be set before opening the Connection object, or the
ConnectionString parameter can be used to set or override the current connection parameters during the Open method call.

The ConnectionString property is read/write when the connection is closed and read-only when it is open.

If user and password information is set in both the ConnectionString property and in the optional UserID and Password
parameters to the Open method, the results may be unpredictable. Such information should only be passed in either the
ConnectionString property (or the ConnectionString parameter to the Open method call) or in the UserID and Password
parameters.

There are a number of different ways to open a connection. The Open method can pass all of the appropriate connection
information as part of the ConnectionString parameter or by setting the ConnectionString property of the Connection object, if
this information is known in advance. The syntax in this case using the ConnectionString property is as follows:

There is a lack of spaces after the semicolons in the string. If spaces are inserted after the semicolons, an error will occur.

The simplest form of a ConnectionString property that contains all necessary information is as follows:

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_
 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

connection = CreateObject("ADODB.Connection.2.0")
connection.Provider="SNAOLEDB"
connection.ConnectionString = "User ID=USERNAME;Password=password;Local LU=LOCAL;Remote LU=DA
TABASE;ModeName=QPCSUPP;CCSID=37;CodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

connection = CreateObject("ADODB.Connection.2.0")
connection.ConnectionString = "Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNAME;Password=
password;ModeName=QPCSUPP"

 Note The User ID and Password must be included. Note the lack of spaces after the semicolons in the string. If
spaces are inserted after the semicolons, an error will occur.

In the case where you would like the user to input the connection information, the following syntax can be used. This syntax does
not specify any connection information except the provider, which is always required unless this is set in the ConnectionString
or Provider property of the Connection object:

This method of invoking the Open method automatically causes a dialog box to appear asking the user for the user name,
password, and other necessary information.

connection = CreateObject("ADODB.Connection.2.0")
connection.ConnectionString = "Provider=SNAOLEDB"
Conn.Properties("PROMPT")=adPromptAlways
connection.Open

Microsoft Host Integration Server 2000

CursorLocation Property
The CursorLocation property on a Connection object or Recordset object indicates the location of the cursor engine. This
property sets or returns a Long value representing a CursorLocationEnum.

Remarks

The CursorLocation property is used to set or return the location of the cursor. This property can be set to one of the following
CursorLocationEnum constants:

Enumeration Valu
e

Description

adUseNone 1 This value indicates no cursor location. This value is not supported by the Microsoft® OLE DB Provider for
AS/400 and VSAM.

adUseServer 2 This value indicates that the data provider or driver-supplied cursor is used.
adUseClient 3 This value indicates that a client-side cursor supplied by a local cursor library is to be used.
adUseClientBa
tch

3 For backward compatibility, this value indicates that a client-side cursor supplied by a local cursor library is
to be used.

This property setting only affects connections established after the property has been set. Changing the CursorLocation property
has no effect on existing connections.

This property is read/write on a Connection object or a closed Recordset, object and read-only on an open Recordset.

If the CursorLocation property is set to adUseClient, the recordset will be accessible as read-only, and recordset updates to the
host are not possible. When the CursorLocation property is set to adUseClient (use the client cursor engine), the Find method,
Filter property, and Sort property will work if MDAC 2.0 or higher is installed, but will not work properly with earlier versions of
ADO.

cursor = connection.CursorLocation
connection.CursorLocation = adUseServer

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CursorType Property
The CursorType property on a Recordset object indicates the type of the cursor engine. This property sets or returns a Long
value representing a CursorTypeEnum.

Remarks

The CursorType property is used to set or return the type of the cursor that the provider should use when opening the
Recordset. This property can be one of the following enumerated values for CursorTypeEnum:

Enume
ration

V
al
u
e

Description

adOpe
nUnsp
ecified

-
1

This indicates an unspecified value for the CursorType.

This value is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM or the Microsoft® OLE DB Prov
ider for DB2.

AdOpe
nForwa
rdOnly

0 Specifying this value opens a forward-only-type cursor. This CursorType is identical to a static cursor, except that you c
an only scroll forward through records. This improves performance when only one pass through a Recordset is need
ed.

This value is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM.

AdOpe
nKeyse
t

1 Specifying this value opens a keyset-type cursor. This CursorType is similar to a dynamic cursor with a few exceptions.
Records that other users delete are inaccessible from your Recordset. Data changes to existing records by other users
are still visible, but records added by other users are not visible (cannot be seen).

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

AdOpe
nDyna
mic

2 Specifying this value opens a dynamic-type cursor. Additions, changes, and deletions by other users are visible, and all
types of movement through the recordset are allowed, except for bookmarks if the provider does not support them.

A dynamic cursor is the only CursorType supported by the OLE DB Provider for AS/400 and VSAM.

AdOpe
nStatic

3 Specifying this value opens a static-type cursor. A static cursor provides a static copy of a set of records that can be us
ed to find data or generate reports. Additions, changes, or deletions by other users are not visible with a static cursor.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

Note that the Open method on a Recordset object defaults this property to adOpenForwardOnly, a value that is mapped to
adOpenDynamic by the OLE DB provider for AS/400 and VSAM.

This property setting only affects connections established after the property has been set. Changing the CursorType property has
no effect on existing connections. The CursorType property is read/write when the Recordset is closed and read-only when it is
open.

If a provider does not support the requested cursor type, the provider may return another cursor type. The CursorType property
will change to match the actual cursor type in use when the Recordset object is open. To verify whether a specific returned cursor
is supported, use the Supports method. When using the OLE DB Provider for AS/400 and VSAM, the Supports method returns
adMovePrevious as true with CursorType set to adOpenDynamic. After you close the Recordset, the CursorType property
reverts to its original setting.

oldType = recordset.CursorType
recordset.CursorType = newType

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DefinedSize Property
The DefinedSize property on a Field object indicates the defined size of a field object. This property returns a Long value that
reflects the defined size of a field as a number of bytes.

Remarks

The DefinedSize property is used to return the data capacity or length of a Field object. For all fields, the DefinedSize property
is read-only. If ADO cannot determine the length of the Field object, the ActualSize property returns adUnknown.

The ActualSize and DefinedSize properties on a field object can be different. For example, a Field object with a declared type of
adVarChar (variable character data type) and a maximum length of 50 characters returns a DefinedSize property value of 50,
but the ActualSize property value it returns is the length of the data stored in the field for the current record.

size = field.DefinedSize

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Delete Method
The Delete method on a Recordset object deletes the current record or a group of records.

Parameters

AffectedRecords
This optional parameter specifies an AffectEnum value that determines how many records the Delete method will affect.

The AffectEnum value can be one of the following constants:

Enumerati
on

Val
ue

Description

adAffectC
urrent

1 This value deletes only the current record.

adAffectG
roup

2 This value deletes the records that satisfy the current Filter property setting. You must set the Filter property to
one of the valid predefined constants to use this option.

Remarks

The Delete method is used to mark the current record or a group of records in a Recordset object for deletion. If the Recordset
object does not allow record deletion, an error occurs. If you are in immediate update mode, deletions occur in the database
immediately. Otherwise, the records are marked for deletion from the cache and the actual deletion happens when the
UpdateBatch method is called. (Use the Filter property to view the deleted records.)

Retrieving field values from the deleted record generates an error. After deleting the current record, the deleted record remains
current until you move to a different record. After you move away from the deleted record, it is no longer accessible.

If you are in batch update mode, the CancelBatch method can be used to cancel a pending deletion or group of pending deletions.

If the attempt to delete records fails because of a conflict with the underlying data (for example, a record has already been deleted
by another user), the data provider returns warnings to the Errors collection but does not halt program execution. A run-time
error occurs only if there are conflicts on all the requested records.

recordSet.Delete AffectedRecords

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Description Property
The Description property on a Error object describes the Error object. This property returns a String value that contains a
description of the error.

Remarks

The Description property on a Error object is used to obtain a short description of the error. Applications can display this
property to alert the user to an error that the application does not want to handle. The string will come from either ADO or a data
provider such as the Microsoft® OLE DB Provider for AS/400 and VSAM, the Microsoft® OLE DB Provider for DB2, or the
Microsoft® ODBC Driver for DB2. The provider is responsible for passing specific error text to ADO.

ADO adds an Error object to the Errors collection for each provider error or warning it receives. An application can enumerate the
Errors collection to trace the errors that the provider passes.

errorString = currentError.Description

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EditMode Property
The EditMode property on a Recordset object indicates the editing status of the current record. This property returns a Long
value representing a EditModeEnum.

Remarks

The EditMode property is used to return the editing status of the current recordset. This property can be one of the following
enumerated values for EditModeEnum:

Enumerati
on

Val
ue

Description

adEditNon
e

0 This value indicates that no editing operation is in progress.

adEditInPr
ogress

1 This value indicates that data in the current record has been modified but not saved.

adEditAdd 2 This value indicates that the AddNew method has been called, and the current record in the copy buffer is a ne
w record that has not been saved in the database.

adEditDele
te

4 This value indicates that the current record has been deleted.

ADO maintains an editing buffer associated with the current record. The EditMode property indicates whether changes have
been made to this buffer, or whether a new record has been created. Use the EditMode property to determine the editing status
of the current record. You can test for pending changes if an editing process has been interrupted and determine whether you
need to use the Update or CancelUpdate method.

See the AddNew method for a more detailed description of the EditMode property under different editing conditions.

currentMode = recordset.EditMode
connection.CursorType = newType

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EOF Property
The EOF property on a Recordset object indicates that the current record position is after the last record in a Recordset object.
This property returns a Boolean value.

Remarks

The EOF property is used to determine whether a Recordset object contains records or whether you have gone beyond the limits
of a Recordset object when you move from record to record.

The EOF property returns True if the current record position is after the last record and False if the current record position is on
or before the last record.

If the EOF property is True, there is no current record.

If a Recordset object is opened containing no records, both the BOF and EOF properties are set to True, and the Recordset
object's RecordCount property setting is zero. When a Recordset object is opened that contains at least one record, the first
record is the current record and the BOF and EOF properties are False.

If the last remaining record in the Recordset object is deleted, the BOF and EOF properties may remain False until you attempt to
reposition the current record.

This table below indicates which Move methods are allowed with different combinations of the BOF and EOF properties.

 MoveFirst
MoveLast

MovePrevious
Move < 0

Move 0 MoveNext
Move > 0

BOF=True
EOF=False

Allowed Error Error Allowed

BOF=False
EOF=True

Allowed Allowed Error Error

Both True Error Error Error Error
Both False Allowed Allowed Allowed Allowed

Allowing a Move method does not guarantee that the method will successfully locate a record; it only means that calling the
specified Move method will not generate an error.

The following table shows what happens to the BOF and EOF property settings when various Move methods are called, but are
unable to successfully locate a record:

 BOF Property EOF Property
MoveFirst
MoveLast

Set to True Set to True

Move 0 No change No change
MovePrevious
Move < 0

Set to True No change

MoveNext
Move > 0

No change Set to True

IsEOF = recordset.EOF

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Execute Method on Command Object
The Execute method on a Command object executes the statement specified in the CommandText property.

Parameters

RecordsAffected
This optional parameter specifies a Long variable to which the provider returns the number of records that the operation
affected.

Parameters
This optional parameter specifies a Variant array of parameter values passed with an SQL statement and is not used by the OLE
DB Provider for AS/400 and VSAM.

Options
This optional parameter specifies a Long value representing a CommandTypeEnum value that indicates how the provider
should evaluate the CommandText property of the Command object.

The CommandTypeEnum value can be one of the constants listed in the table following the Parameters section.

Constants used for CommandTypeEnum

Enumerat
ion

Va
lu
e

Description

adCmdUn
specified

-1 This value indicates that the CommandText property is unspecified. This value is not supported by the Microsoft
® OLE DB Provider for AS/400 and VSAM.

adCmdTe
xt

1 This value evaluates the CommandText property as a as a textual definition of a command or stored procedure c
all.

adCmdTa
ble

2 This value evaluates the CommandText property as a table name. This value is not supported by the OLE DB Pro
vider for AS/400 and VSAM or the Microsoft® OLE DB Provider for DB2.

adCmdSt
oredProc

4 This value evaluates the CommandText property as a stored procedure name. This value is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adCmdUn
known

8 This value indicates that the type of command in CommandText is not known. This value is the default. This valu
e is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

The default for Option is adCmdText under the OLE DB Provider for AS/400 and VSAM and the OLE DB Provider for DB2.

Remarks

When used with the OLE DB Provider for AS/400 and VSAM, the Execute method on a Command object can be used to open
tables or execute DDM commands on a remote DDM server. The Options parameter must be set to adCmdText for use with the
OLE DB Provider for AS/400 and VSAM.

The primary purpose of the Command object in the context of the OLE DB Provider for AS/400 and VSAM is to issue AS/400
Command Language (CL) commands for execution by the remote OS/400 DDM target server. To invoke DDM commands on a
remote DDM server, the CommandText property defines the text version of a command which must have been set to:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your platform
for a detailed list of possible commands.

Note that this method does not return the results or output of a remote DDM CL command. If the results or output of a remote
command are to be captured, the DDMCmd statement to be executed must include syntax to redirect the command output to a
file on the AS/400 host and then explicitly open this output file after the command has completed.

command.Execute(RecordsAffected, Parameters, Options)
set recordSet = command.Execute(RecordsAffected, Parameters,
Options)

EXEC COMMAND DDMCmd

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The Execute method on a Command object can also be used to open a data file after a Connection object has been opened and
the ActiveConnection property has been set to this open connection. The CommandText property defines the data file to open
and must be set to:

where DataSetName represents a valid data file or library member on the host. When used in this way, the Execute method
returns a Recordset object. If you open a host data file from a Command object, then the data file is opened as read-only. This
results from the limitation that no argument or option is passed by ADO that supplies a parameter describing whether the data
set should be opened as read-only or updatable.

When used with the OLE DB Provider for DB2, the Execute method on a Command object can be used to execute SQL
statements or call a stored procedure. The CommandText property defines the SQL statements to execute and must be set to
one of the following:

where SQLStatement represents a valid SQL statement supported by DB2.

where StoredProcedure represents a valid DB2 stored procedure on the database server.

If errors occur, these can be examined with the Errors collection on the Command object.

EXEC OPEN DataSetName

EXEC SQLStatement

CALL StoredProcedure

Microsoft Host Integration Server 2000

Execute Method on Connection Object
The Execute method on a Connection object executes the statement specified in the CommandText property.

Parameters

RecordsAffected
This optional parameter specifies a Long variable to which the provider returns the number of records that the operation
affected.

Options
This optional parameter specifies a Long value representing a CommandTypeEnum value that indicates how the provider
should evaluate the CommandText property of the Command object.

The CommandTypeEnum value can be one of the following constants:

Enumeration Val
ue

Description

adCmdUnspeci
fied

-1 This value indicates that the CommandText property is unspecified.

This value is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM or the Microsoft®
OLE DB Provider for DB2.

adCmdText 1 This value evaluates the CommandText property as a textual definition of a command or stored proced
ure call.

adCmdTable 2 This value evaluates the CommandText property as a table name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB
2.

adCmdStoredP
roc

4 This value evaluates the CommandText property as a stored procedure name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdUnkno
wn

8 This value indicates that the type of command in CommandText is not known. This value is the default.

This value is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB
2.

Remarks

The Execute method on a Connection object can be used to open tables or execute DDM commands on a remote DDM server.
The Options parameter must be set to adCmdText for use with the OLE DB Provider for AS/400 and VSAM.

The Execute method on a Connection object is primarily used to open a data file after a Connection object has been created.
The CommandText property defines the data file to open and must be set to:

where DataSetName represents a valid data file or library member on the host. When used in this way, the Execute method
returns a Recordset object. If you open a host data file from a Connection object, then the data file is opened as read-only. This
results from the limitation that no argument or option is passed by ADO that supplies a parameter describing whether the data
set should be opened as read-only or updatable. If a Recordset object is desired that is not read-only, then first create a
Recordset object with the desired property settings, and use the Recordset object’s Open method to return the open Recordset.

The Execute method on a Connection object can also be used to issue AS/400 Command Language (CL) commands for
execution by the remote OS/400 DDM target server. To invoke DDM commands on a remote DDM server, the CommandText
property defines the text version of a command which must have been set to:

connection.Execute CommandText, RecordsAffected, Options
set recordset = connection.Execute(CommandText, RecordsAffected,
Options)

EXEC OPEN DataSetName

EXEC COMMAND DDMCmd

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your platform
for a detailed list of possible commands.

Note that this method does not return the results or output of a remote DDM CL command. If the results or output of a remote
command are to be captured, the DDMCmd statement to be executed must include syntax to redirect the command output to a
file on the AS/400 host and then explicitly open this output file after the command has completed.

If errors occur, these can be examined with the Errors collection on the Connection object.

Microsoft Host Integration Server 2000

Filter Property
The Filter property on a Recordset object indicates a filter for data in a Recordset. This property sets or returns a Variant value.

Parameters

Criteria
This parameter specifies a Variant.

It can be either a criteria (a where clause) or one of the following enumerated values for FilterGroupEnum:

Enumeration Va
lue

Description

adFilterNone 0 No filter. This value removes the current filter and restores all records to view.
AdFilterPendin
gRecords

1 Use the pending records. This value allows viewing only those records that have changed but have not yet
been sent to the server. This value is only applicable for batch update mode.

AdFilterAffecte
dRecords

2 Use only records affected by the last Delete, Resync, UpdateBatch, or CancelBatch call.

AdFilterFetche
dRecords

3 Use the last fetched records. This value allows viewing the records in the current cache returned as a resul
t of the last call to retrieve records (implying a resynchronization).

AdFilterConflic
tingRecords

5 Use the conflicting records. This value allows viewing only those records that failed the last batch update.

Remarks

The Filter property is not supported by the Microsoft® OLE DB Provider for DB2 or the Microsoft® ODBC Driver for DB2.

The Filter property is supported by the Microsoft® OLE DB Provider for AS/400 and VSAM on certain files. In order to use the
Recordset Filter property, an AS/400 logical file, an AS/400 keyed physical file, a mainframe KSDS file with a unique key, or a
mainframe RRDS file with a unique key must be used. If this property is used on an AS/400 nonkeyed physical file or any other
mainframe file type, then the method fails.

When the Filter property is used with a criteria, the where clause is a combination of triplets. Each triplet consists of a column
name, an operator, and a literal value. These where clause triplets can be combined with ANDs and ORs for more complex logical
filters.

If Criteria is a single-condition where clause, then any operator can be used. The construction of a single-condition where clause
consists of a column name (the database field), an operator (greater than or equal, for example), and a literal value.

Examples of a single-condition where clause is as follows:

recordset.Filter = "LastName = 'Jones' "
recordset.Filter ="Salary > 30000.0"

The Criteria argument can be a two-condition with the following restrictions:

If the column name (the database field) is the same in both clauses, then the separate where clauses must define a
contiguous range.
If the column names are different, then the operators must be the same. If the operators are "LIKE", then the filtered region
may be unexpected.

Examples of acceptable two-condition where clauses are as follows:

recordset.Filter = "LastName = 'Jones' AND FirstName = 'Tom' "
recordset.Filter = "Cost = 5000.00 OR Cost > 5000.00 "

The Criteria argument can be three or more conditions with the following restrictions:

The operators must be the same for all conditions. If the operators are "LIKE", then the filtered region may be unexpected.

In all cases, if the "=" operator is used, then the column names specified in the where clause must be keyed columns in the file.

One restriction on these combinations is that OR clauses can only be used at the highest (major) level of the logical operation.

recordset.Filter = Criteria

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Examples of acceptable Criteria meeting these conditions are:

recordset.Filter = "(Title='Manager' AND Salary>30000) OR (Title='Administrator' AND Salary>50000)"
recordset.Filter ="Salary > 30000.0"

An example of illegal Criteria is:

recordset.Filter = "(Title='Associate' OR Salary >30000) AND (Title='Administrator')"

The operator can also use wildcards (* or %) in character expressions as follows:

recordset.Filter = "Lastname LIKE '*SMITH*'"

To determine if any records were found meeting the Criteria, the application should check the Recordset EOF property. If EOF is
true, then no records were found meeting the where clause specified in the Criteria parameter.

If the CursorLocation property is set to adUseClient (use the client cursor engine), the Filter property will work if MDAC 2.0 or
later is installed but will not work properly with earlier versions of ADO.

When operating on large VSAM files and only querying data on a subset of the records, using the Filter property is not desirable
because of the performance impact. The entire VSAM file is transferred to the client for filtering. A better solution is to use the
server cursor engine and the Find method.

Microsoft Host Integration Server 2000

Find Method
The Find method on a Recordset object locates or seeks to the next record in a Recordset object that meets a particular
condition and makes this the current record. This method can be used to seek to a specific record in a Recordset object based on
a where clause (similar to an SQL where clause) defined by the user.

Parameters

ADO supports four arguments for the Find method, but the last three arguments are optional and have default values as noted
below:

Criteria
This BSTR parameter specifies the criteria used for locating or seeking to a record in a Recordset object.

SkipRecords
This optional parameter specifies a Long expression that indicates the number of records to skip (whether to skip the current
record) when locating a record in a Recordset object. The default value for this argument is 0 (don’t skip the current record).
The first time a Find method is used, this argument is usually set to 0 (the default). On subsequent calls to this method to seek
other records that meet the specified condition, this argument would normally be set to 1, to skip one record forward before
finding the next record that matches the search Criteria. A negative value for this parameter is not supported by the Microsoft®
OLE DB Provider for AS/400 and VSAM.

SearchDirection
This optional parameter is an enumeration that specifies the direction for the search.

It can be one of the following enumerated values for SearchDirectionEnum:

Enumeration Valu
e

Description

adSearchForwar
d

0 Search forward from the current record.

AdSearchBackw
ard

1 Search backward from the current record. This option is not supported by the OLE DB Provider for AS/
400 and VSAM.

This optional argument defaults to adSearchForward.

Start
This optional parameter specifies the starting location for a search, which can be a bookmark or an enumeration indicating the
current, first, or last record in a Recordset object. This argument is a Variant.

It can be either a bookmark or one of the following enumerated values for BookmarkEnum:

Enumeration Value Description
adBookmarkCurrent 0 The current record.
AdBookmarkFirst 1 The first record.
AdBookmarkLast 2 The last record.

This optional argument defaults to adBookmarkCurrent.

Remarks

The Find method is not supported by the Microsoft® OLE DB Provider for DB2 or the Microsoft® ODBC Driver for DB2.

The Find method is supported by the Microsoft® OLE DB Provider for AS/400 and VSAM on certain files. In order to use the
Recordset Find method, an AS/400 logical file, an AS/400 keyed physical file, a mainframe KSDS file with a unique key, or a
mainframe RRDS file with a unique key must be used. If this method is used on an AS/400 nonkeyed physical file or any other
mainframe file type, then the method fails.

The first parameter is the only required argument for the Find method. All of the other arguments are optional and have default
values. This first argument is a single-condition where clause. The construction of a single-condition where clause consists of a
column name (the database field), an operator (greater than or equal, for example), and a literal value.

Examples of acceptable single-condition where clauses are as follows:

recordset.Find, "Cost > 10000.00"

recordset.Find Criteria, SkipRecords, SearchDirection, Start

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

recordset.Find, "Cost < 100.00"
recordset.Find, "Cost = 5000.00"
recordset.Find, "LastName = 'Jones' "

Note that variables cannot be used as substitutes for literal values. If the file has multiple keys in the index, using the "=" operator
will always fail since the values of all keys cannot be specified.

If the CursorLocation property is set to adUseClient (use the client cursor engine), the Filter method will work if MDAC 2.0 or
later is installed, but will not work properly with earlier versions of ADO.

When operating on large VSAM files and only querying data on a subset of the records, using the Filter property is not desirable
because of the performance impact. The entire VSAM file is transferred to the client for filtering. A better solution is to use the
server cursor engine and the Find method.

Microsoft Host Integration Server 2000

GetChunk Method
The GetChunk method on a Field object returns all or a portion of the contents of a large text or binary data Field object.

Parameters

Size
This parameter specifies a Long expression equal to the number of bytes or characters to be retrieved.

Return Values

A Variant.

Remarks

The GetChunk method on a Field object is used to retrieve part or all of its long binary or character data. In situations where
system memory is limited, the GetChunk method can be used to manipulate long values in portions rather than in their entirety.

The data that a GetChunk method returns is assigned to a variable. If the Size parameter is greater than the remaining data, the
GetChunk method returns only the remaining data without padding the variable with empty spaces. If the Field object is empty,
the GetChunk method returns Null.

Each subsequent GetChunk method call retrieves data starting from where the previous GetChunk call left off. However, if you
are retrieving data from one field and then set or read the value of another field in the current record, ADO assumes you are
finished retrieving data from the first field. If the GetChunk method is called on the first field again, ADO interprets the call as a
new GetChunk operation and starts reading from the beginning of the data. Accessing Field objects in other Recordset objects
(that are not clones of the first Recordset object) will not disrupt GetChunk operations.

If the adFldLong bit in the Attributes property of a Field object is set to True, the GetChunk method can be used for that Field
object.

If there is no current record when the GetChunk method is invoked on a Field object, error 3021 (no current record) occurs.

variable = field.GetChunk(Size)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GetRows Method
The GetRows method on a Recordset object retrieves multiple records of a recordset into an array.

Parameters

Rows
This optional parameter specifies a Long expression indicating the number of records to retrieve. The default value if this
parameter is not specified is an GetRowSetEnum which is adGetRowsRest (value = -1).

Start
This optional parameter specifies the starting location for the record from which the GetRows operation should begin, which
can be a bookmark or an enumeration indicating the current, first, or last record in a Recordset object. This argument is a
Variant.

It can be either a bookmark or one of the following enumerated values for BookmarkEnum:

Enumeration Value Description
adBookmarkCurrent 0 The current record
adBookmarkFirst 1 The first record
adBookmarkLast 2 The last record

This optional argument defaults to adBookmarkCurrent.

Fields
This optional parameter is a Variant and specifies a single field name or ordinal position or an array of field names or ordinal
position numbers. ADO returns only the data in these fields.

Return Values

A two-dimensional array.

Remarks

The GetRows method is used to copy records from a recordset into a two-dimensional array. The first subscript of the array
identifies the field and the second array subscript identifies the record number. The array variable is automatically dimensioned to
the correct size when the GetRows method returns the data.

If a value is not specified for the Rows parameter, the GetRows method automatically retrieves all the records in the Recordset
object. If more records are requested than are available, GetRows returns only the number of available records.

If the Recordset object supports bookmarks, you can specify at which record the GetRows method should begin retrieving data
by passing the value of that record's Bookmark property.

To restrict the fields that the GetRows method returns, you can pass either a single field name/number or an array of field
names/numbers in the Fields argument.

After the GetRows method is called, the next unread record becomes the current record, or the EOF property is set to True if
there are no more records.

array = recordset.GetRows(Rows, Start, Fields)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IsolationLevel Property
The IsolationLevel property on a Connection object indicates the level of isolation for a Connection object. This property sets or
returns a Long value representing an IsolationLevelEnum. The default value for this property is adXactChaos.

Remarks

The IsolationLevel property is used to set the type of isolation level placed on a connection that the provider should use when
opening the Conection object. This property can also be used to return the type of isolation level in use on an open Connection
object.

This property can be one of the following enumerated values for IsolationLevelEnum:

Enumeration Valu
e

Description

adXactUnspecifi
ed

-1 This value indicates that the provider is using a different isolation level than specified, but that the level
cannot be determined.

adXactChaos 16 This value indicates that pending changes from more highly isolated transactions cannot be overwritten
.

adXactBrowse 256 This value indicates that from one transaction you can view uncommitted changes in other transactions.
adXactReadUnco
mmitted

256 Same as adXactBrowse.

adXactCursorSta
bility

4096 This value indicates that from one transaction you can view changes in other transactions only after the
y have been committed.

adXactReadCom
mitted

4096 Same as adXactCursorStability.

adXactRepeatabl
eRead

6553
6

This value indicates that from one transaction you cannot see changes made in other transactions, but t
hat requerying can retrieve new Recordset objects.

adXactIsolated 1048
576

This value indicates that transactions are conducted in isolation of other transactions.

adXactSerializab
le

1048
576

Same as adXactIsolated.

This property is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM.

When setting the IsolationLevel property, this change does not take effect until the next time that the BeginTrans method is
called.

If the level of isolation you request is unavailable, the provider may return the next greater level of isolation.

When used with the Microsoft® OLE DB Provider for DB2 or the Microsoft® OLE DB Driver for DB2, the ADO IsolationLevel
property corresponds with the isolation level defined by the ANSI SQL standard and with IBM's DB2 implementation of isolation
level. The table below indicates how the ADO IsolationLevel Property corresponds with the terms used by ANSI SQL for isolation
level and with IBM documentation for isolation level in DB2.

ADO Isolati
onLevel Pro
perty

ANSI SQL Isolation Level IBM Documentation

 AUTOCOMMITTED (Note that this applies only to D
B2/400 and does not correspond with an ANSI SQ
L isolation level

COMMIT(*NONE) (NC).

This isolation level is used in DB2/400 auto-commit mode only
and has no corresponding isolation level on other DB2 platfor
ms or in ANSI SQL.

adXactRead
Uncommitt
ed

READ UNCOMMITTED UNCOMMITTED READ (UR).

This isolation level corresponds with ANSI SQL READ UNCOM
MITTED.

currentIsoLevel = connection.IsolationLevel
connection.IsolationLevel = newIsoLevel

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

adXactRead
Committed

or

adXactCurs
orStability

READ COMMITTED CURSOR STABILITY (CS).

This isolation level corresponds with ANSI SQL READ COMMIT
TED.

adXactRepe
atableRead

REPEATABLE READ READ STABILITY (RS).

This isolation level corresponds with ANSI SQL REPEATABLE RE
AD.

adXactSeria
lizable

or

adXactIsola
ted

SERIALIZABLE REPEATABLE READ (RR).

This isolation level corresponds with ANSI SQL SERIALIZABLE.

When used with the Remote Data Service on a client-side Connection object, the IsolationLevel property can be set only to
adXactUnspecified. Because users are working with disconnected Recordset objects on a client-side cache, there may be
multiuser issues. For instance, when two different users try to update the same record, Remote Data Service simply allows the
user who updates the record first to "win." The second user's update request will fail with an error.

Microsoft Host Integration Server 2000

Item Method
The Item method on a Collection object returns a specific member object of a collection by name or ordinal number. This
method is supported for the Errors, Fields, and Properties collections using the OLE DB Provider for AS/400 and VSAM.

Parameters

Index
This parameter specifies a Variant that evaluates either to the name or to the ordinal number of an object in a collection.

Return Values

An object reference from the collection.

Remarks

The Item method is used to return a specific object in a collection. If the method cannot find an object in the collection
corresponding to the Index parameter, an error occurs. Also, some collections do not support named objects; for these collections,
you must use ordinal number references.

The Item method is the default method for all collections; therefore, the following syntax forms are interchangeable:

collection.Item (Index)

collection (Index)

This method is only supported on the Errors, Fields, and Properties collections under the OLE DB Provider for AS/400 and
VSAM.

set Object = collection.Item (Index)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LockType Property
The LockType property on a Recordset object indicates the type of locks placed on records during editing. This property sets or
returns a Long value representing a LockTypeEnum. The default value for this property is adLockReadOnly.

Remarks

The LockType property is used to set the type of locks placed on records that the provider should use when opening the
Recordset. This property can also be used to return the type of locking in use on an open Recordset object. This property can be
one of the following enumerated values for LockTypeEnum:

Enumerati
on

V
al
u
e

Description

adLockUn
specified

-1 This value does not specify a type of lock. For a recordset created with the Clone method, the clone is created with
the same lock type as the original.

adLockRe
adOnly

1 This value indicates read-only records where the data cannot be altered.

adLockPes
simistic

2 This value indicates pessimistic locking, record by record. The provider does what is necessary to ensure successfu
l editing of the records, usually by locking records at the data source immediately after editing.

This lock type is supported by the Microsoft® OLE DB Provider for AS/400 and VSAM and the Microsoft® OLE DB
Provider for DB2. However, the OLE DB Provider for AS/400 and VSAM internally maps this lock type to adLockB
atchOptimistic.

adLockOp
timistic

3 This value indicates optimistic locking, record by record. The provider uses optimistic locking, locking records only
when the Update method is called.

This lock type is not supported by the OLE DB Provider for DB2.

adLockBat
chOptimis
tic

4 This value indicates optimistic batch updates and is required for batch update mode.

This option is not supported by the OLE DB Provider for DB2.

If a provider cannot support the requested LockType setting, it will substitute another type of locking. To determine the actual
locking options available on a Recordset object, use the Supports method with adUpdate and adUpdateBatch.

The adLockPessimistic setting is not supported if the CursorLocation property is set to adUseClient. If an unsupported value is
set, then no error will result; the closest supported LockType will be used instead.

The LockType property is read/write when the Recordset is closed and read-only when it is open.

currentLock = recordset.LockType
recordset.LockType = newtype

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MaxRecords Property
The MaxRecords property on a Recordset indicates the maximum number of records to return to a Recordset from a query.
This property sets or returns a Long value that indicates the maximum number of records to return. The default value for this
property is zero (no limit).

Remarks

The MaxRecords property is used to limit the number of records returned from a data source. The default setting of this property
is zero, which means that all requested records are returned.

The MaxRecords property is read/write when the Recordset is closed and read-only when it is open.

cntRecords = recordset.MaxRecords
recordset.MaxRecords = count

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Mode Property
The Mode property on a Connection object sets or returns the available permissions for modifying data on a Connection.

Remarks

The Mode property is used to set or return the access permissions in use by the provider on the current connection. The Mode
property can only be set when the Connection object is closed.

Several of the ADO enumerated values for the mode settings imply that the using certain mode settings will prevent other
applications from opening a connection to the file or table. Under the Microsoft® OLE DB provider for AS/400 and VSAM, these
mode settings result in a file lock, but don't prevent other applications from opening a connection.

The value for the Mode can be one of the following enumerated values for ConnectModeEnum:

Enumer
ation

V
a
l
u
e

Description

adMode
Unknow
n

0 This value indicates that the permissions have not yet been set or cannot be determined.

adMode
Read

1 This value indicates read-only permissions.

adMode
Write

2 This value indicates write-only permissions. This value is not supported by the OLE DB provider for AS/400 and VSA
M.

adMode
ReadWri
te

3 This value indicates read/write permissions.

adMode
ShareDe
nyRead

4 This value prevents others from opening a connection with read permissions.

adMode
ShareDe
nyWrite

8 This value prevents others from opening a connection with write permissions.

Under the OLE DB provider for AS/400 and VSAM, this mode setting is implemented as a file lock and doesn't result i
n excluding other applications from opening a connection. Other applications opening a connection will not receive a
n error, but the table or file will be locked preventing any changes from other applications.

adMode
ShareEx
clusive

0
x
c

This value prevents others from opening a connection.

Under the OLE DB provider for AS/400 and VSAM, this mode setting is implemented as a file lock and doesn't result i
n excluding other applications from opening a connection. Other applications opening a connection will not receive a
n error, but the table or file will be locked preventing any changes from other applications.

adMode
ShareDe
nyNone

0
x
1
0

This value prevents others from opening a connection with any permissions.

Under the OLE DB provider for AS/400 and VSAM this mode setting is implemented as a file lock and doesn't result i
n excluding other applications from opening a connection. Other applications opening a connection will not receive a
n error, but the table or file will be locked preventing any changes from other applications.

The Mode property defaults to adModeUnknown.

currentMode = connection.Mode
connection.Mode = newMode

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Move Method
The Move method on a Recordset object moves the position of the current record in a Recordset object.

Parameters

NumRecords
This parameter specifies a signed Long expression specifying the number of records the current record position moves.

Start
This optional parameter specifies the starting location for the record from which the Move operation should begin, which can
be a bookmark or an enumeration indicating the current, first, or last record in a Recordset object. This argument is a Variant.

It can be either a bookmark or one of the following enumerated values for BookmarkEnum:

Enumeration Value Description
adBookmarkCurrent 0 The current record
adBookmarkFirst 1 The first record
adBookmarkLast 2 The last record

This optional argument defaults to adBookmarkCurrent.

Return Values

None.

Remarks

The Move method is supported on all Recordset objects.

If the NumRecords parameter is greater than zero, the current record position moves forward (toward the end of the recordset). If
NumRecords is less than zero, the current record position moves backward (toward the beginning of the recordset).

If the Move method would move the current record position to a point before the first record, ADO sets the current record to the
position before the first record in the recordset (the BOF property is set to True). An attempt to move backward when the BOF
property is already True generates an error.

If the Move call would move the current record position to a point after the last record, ADO sets the current record to the
position after the last record in the recordset (the EOF property is set to True). An attempt to move forward when the EOF
property is already True generates an error.

Invoking the Move method from an empty Recordset object generates an error.

If the Start parameter is specified, the move is relative to the record with this bookmark assuming the Recordset object supports
bookmarks. If not specified, the move is relative to the current record.

If the CacheSize property is set to greater than 1 to locally cache records from the provider, passing a NumRecords value that
moves the current record position outside of the current group of cached records forces ADO to retrieve a new group of records
starting from the destination record. The CacheSize property determines the size of the newly retrieved group, and the
destination record is the first record retrieved.

If the Recordset object is forward-only, a user can still pass a NumRecords value less than zero as long as the destination is
within the current set of cached records. If the Move method call would move the current record position to a record before the
first cached record, an error occurs. Thus, you can use a record cache that supports full scrolling over a provider that only
supports forward scrolling. Because cached records are loaded into memory, you should avoid caching more records than
necessary. Even if a forward-only Recordset object supports backward moves in this way, calling the MovePrevious method on
any forward-only Recordset object still generates an error.

recordset.Move NumRecords, Start

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MoveFirst Method
The MoveFirst method on a Recordset object moves to the first record in a specified Recordset object and makes that record
current.

Parameters

None.

Remarks

The MoveFirst method is used to move the current record position to the first record in the recordset. The MoveFirst method
can be invoked on a forward-only Recordset object; but doing so may cause the provider to re-execute the command that
generated the Recordset object.

recordset.MoveFirst

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MoveLast Method
The MoveLast method on a Recordset object moves to the last record in a specified Recordset object and makes that record
current.

Parameters

None.

Remarks

The MoveLast method is used to move the current record position to the last record in the recordset.

When using a server-side cursor, the Recordset object must support bookmarks or backward cursor movement; otherwise, the
MoveLast method call generates an error.

recordset.MoveLast

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MoveNext Method
The MoveNext method on a Recordset object moves to the next record in a specified Recordset object and makes that record
current.

Parameters

None.

Remarks

The MoveNext method is used to to move the current record position one record forward (toward the bottom of the recordset).
If the last record is the current record and the MoveNext method is invoked, ADO sets the current record to the position after the
last record in the recordset (the EOF property is set to True). An attempt to move forward when the EOF property is already True
generates an error.

recordset.MoveLast

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MovePrevious Method
The MovePrevious method on a Recordset object moves to the previous record in a specified Recordset object and makes that
record current.

Parameters

None.

Remarks

The MovePrevious method is used to move the current record position one record backward (toward the top of the recordset).

When using a server-side cursor, if the Recordset object does not support either bookmarks or backward cursor movement, the
MovePrevious method generates an error.

If the first record is the current record and the MovePrevious method is invoked, ADO sets the current record to the position
before the first record in the recordset (the BOF property is set to True). An attempt to move backward when the BOF property is
already True generates an error.

Note that if a MovePrevious method is invoked after Delete method is invoked, this moves the current record back two records
instead of one.

recordset.MovePrevious

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Name Property
The Name property on a Command object sets or returns a string value indicating the name of the object. The Name property
on a Field or Property returns a string value indicating the name of the object.

Remarks

The Name property is used to assign a name to or retrieve the name of a Command, Field, or Property object. This value is
read/write on a Command object and read-only on a Property or Field object. Note that the Name property on a Command
object cannot be assigned (set) using the OLE DB Provider for AS/400 and VSAM.

The Name property of an object can be retrieved by an ordinal reference, after which you can refer to the object directly by name.
For example, if recordset.Properties(20).Name yields Updatability, you can subsequently refer to this property as
recordset.Properties("Updatability").

currentName = command.Name
command.Name = newName

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

NativeError Property
The NativeError property on a Error object indicates the provider-specific error code for a given Error object. This property
returns a a Long value that indicates the error code.

Remarks

The NativeError property on a Error object is used to retrieve the database-specific error information for a particular Error
object. For example, when using the Microsoft OLE DB Provider for DB2, native error codes that originate from the OLE DB
Provider for DB2 pass through ADO to the ADO NativeError property.

errorCode = currentError.NativeError

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Number Property
The Number property on a Error object indicates the number that uniquely identifies an Error object. This property returns a a
Long value that may correspond to one of the ErrorValueEnum constants.

Remarks

The Number property on a Error object is used to determine which error occurred. The value of the property is a unique number
that corresponds to the error condition.

The Errors collection returns an HRESULT. These HRESULTs can be raised by underlying components, such as OLE DB or even
OLE itself.

The value for the Number property on the Error object representing an ADO error (not an OLE DB error) can be one of the
following enumerated values for ErrorValueEnum listed in the table below. Note that three forms of the error number value are
listed in the table:

Positive decimal—The lower two bytes of the full number in decimal format. This number is displayed in the default Visual
Basic error message dialog box. For example, Run-time error '3707'.
Negative decimal—The decimal translation of the full error number.
Hexadecimal—The hexadecimal representation of the full error number. The Windows facility code is the lowest
hexadecimal fourth digit in the upper two bytes of the number. The facility code for ADO error numbers is A. For example:
0x800A0E7B.

Note that OLE DB errors may be passed to an ADO application. Typically, these OLE DB errors can be identified by a Windows
facility code of 4. For example, 0x8004xxxx. For more information about the possible error numbers returned by OLE DB, see
Chapter 16 of the OLE DB Programmer's Reference.

Enumeration Value Description
adErrBoundToComma
nd

3707
-214682
4581
0x800A
0E7B

The application cannot change the ActiveConnection property of a Recordset object that has a
Command object as its source.

adErrCannotComplete 3732
-214682
4556
0x800A
0E94

The server cannot complete the operation.

adErrCantChangeCon
nection

3748
-214682
4540
0x800A
0EA4

The connection was denied. The new connection requested has different characteristics than the o
ne already in use.

adErrCantChangeProv
ider

3220
-214682
5068
0X800A
0C94

The supplied provider is different from the one already in use.

adErrCantConvertvalu
e

3724
-214682
4564
0x800A
0E8C

The data value cannot be converted for reasons other than sign mismatch or data overflow. For e
xample, conversion would have truncated data.

adErrCantCreate 3725
-214682
4563
0x800A
0E8D

The data value cannot be set or retrieved because the field data type was unknown, or the provid
er had insufficient resources to perform the operation.

errorNumber = currentError.Number

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

adErrCatalogNotSet 3747
-214682
4541
0x800A
0EA3

The operation requires a valid ParentCatalog.

adErrColumnNotOnT
hisRow

3726
-214682
4562
0x800A
0E8E

The record does not contain this field.

adErrDataConversion 3421
-214682
4867
0x800A
0D5D

The application uses a value of the wrong type for the current operation.

adErrDataOverflow 3721
-214682
4567
0x800A
0E89

The data value is too large to be represented by the field data type.

adErrDelResOutOfSco
pe

3738
-214682
4550
0x800A
0E9A

The URL of the object to be deleted is outside the scope of the current record.

adErrDenyNotSuppor
ted

3750
-214682
4538
0x800A
0EA6

The provider does not support sharing restrictions.

adErrDenyTypeNotSu
pported

3751
-214682
4537
0x800A
0EA7

The provider does not support the requested kind of sharing restriction.

adErrFeatureNotAvail
able

3251
-214682
5037
0x800A
0CB3

The object or provider is not capable of performing requested operation.

adErrFieldsUpdateFail
ed

3749
-214682
4539
0x800A
0EA5

The Fields update failed. For further information, examine the Status property of individual field
objects.

adErrIllegalOperation 3219
-214682
5069
0x800A
0C93

The operation is not allowed in this context.

adErrIntegrityViolatio
n

3719
-214682
4569
0x800A
0E87

The data value conflicts with the integrity constraints of the field.

adErrInTransaction 3246
-214682
5042
0x800A
0CAE

The Connection object cannot be explicitly closed while in a transaction.

adErrInvalidArgument 3001
-214682
5287
0x800A
0BB9

The arguments are of the wrong type, are out of acceptable range, or are in conflict with one anot
her.

adErrInvalidConnectio
n

3709
-214682
4579
0x800A
0E7D

The operation is not allowed on an object referencing a closed or invalid connection.

adErrInvalidParamInf
o

3708
-214682
4580
0x800A
0E7C

The Parameter object is improperly defined. Inconsistent or incomplete information was provide
d.

adErrInvalidTransactio
n

3714
-214682
4574
0x800A
0E82

The coordinating transaction is invalid or has not started.

adErrInvalidURL 3729
-214682
4559
0x800A
0E91

The URL contains invalid characters. Make sure the URL is typed correctly.

adErrItemNotFound 3265
-214682
5023
0x800A
0CC1

The item cannot be found in the collection corresponding to the requested name or ordinal.

adErrNoCurrentRecor
d

3021
-214682
5267
0x800A
0BCD

Either the BOF or EOF property is True, or the current record has been deleted. The requested op
eration requires a current record.

adErrNotExecuting 3715
-214682
4573
0x800A
0E83

The operation cannot be performed while not executing.

adErrNotReentrant 3710
-214682
4578
0x800A
0E7E

The operation cannot be performed while processing event.

adErrObjectClosed 3704
-214682
4584
0x800A
0E78

The operation is not allowed when the object is closed.

adErrObjectInCollecti
on

3367
-214682
4921
0x800A
0D27

The object is already in collection. Cannot append.

adErrObjectNotSet 3420
-214682
4868
0x800A
0D5C

The object is no longer valid.

adErrObjectOpen 3705
-214682
4583
0x800A
0E79

The operation is not allowed when the object is open.

adErrOpeningFile 3002
-214682
5286
0x800A
0BBA

The file could not be opened.

adErrOperationCancel
led

3712
-214682
4576
0x800A
0E80

The operation has been cancelled by the user.

adErrOutOfSpace 3734
-214682
4554
0x800A
0E96

The operation cannot be performed. Provider cannot obtain enough storage space.

adErrPermissionDenie
d

3720
-214682
4568
0x800A
0E88

Insufficent permission prevents writing to the field.

adErrPropConflicting 3742
-214682
4546
0x800A
0E9E

Property value conflicts with a related property.

adErrPropInvalidColu
mn

3739
-214682
4549
0x800A
0E9B

Property cannot apply to the specified field.

adErrPropInvalidOpti
on

3740
-214682
4548
0x800A
0E9C

Property attribute is invalid.

adErrPropInvalidValu
e

3741
-214682
4547
0x800A
0E9D

Property value is invalid. Make sure the value is typed correctly.

adErrPropNotAllSetta
ble

3743
-214682
4545
0x800A
0E9F

Property is read-only or cannot be set.

adErrPropNotSet 3744
-214682
4544
0x800A
0EA0

Optional property value was not set.

adErrPropNotSettable 3745
-214682
4543
0x800A
0EA1

Read-only property value was not set.

adErrPropNotSupport
ed

3746
-214682
4542
0x800A
0EA2

Provider does not support the property.

adErrProviderFailed 3000
-214682
5288
0x800A
0BB8

Provider failed to perform the requested operation.

adErrProviderNotFou
nd

3706
-214682
4582
0x800A
0E7A

Provider cannot be found. It may not be properly installed.

adErrReadFile 3003
-214682
5285
0x800A
0BBB

File could not be read.

adErrResourceExists 3731
-214682
4557
0x800A
0E93

Copy operation cannot be performed. Object named by destination URL already exists. Specify a
dCopyOverwrite to replace the object.

adErrResourceLocked 3730
-214682
4558
0x800A
0E92

Object represented by the specified URL is locked by one or more other processes. Wait until the
process has finished and attempt the operation again.

adErrResourceOutOfS
cope

3735
-214682
4553
0x800A
0E97

Source or destination URL is outside the scope of the current record.

adErrSchemaViolation 3722
-214682
4566
0x800A
0E8A

Data value conflicts with the data type or constraints of the field.

adErrSignMismatch 3723
-214682
4565
0x800A
0E8B

Conversion failed because the data value was signed and the field data type used by the provider
was unsigned.

adErrStillConnecting 3713
-214682
4575
0x800A
0E81

Operation cannot be performed while connecting asynchronously.

adErrStillExecuting 3711
-214682
4577
0x800A
0E7F

Operation cannot be performed while executing asynchronously.

adErrTreePermission
Denied

3728
-214682
4560
0x800A
0E90

Permissions are insufficient to access tree or subtree.

adErrUnavailable 3736
-214682
4552
0x800A
0E98

Operation failed to complete and the status is unavailable. The field may be unavailable or the op
eration was not attempted.

adErrUnsafeOperatio
n

3716
-214682
4572
0x800A
0E84

Safety settings on this computer prohibit accessing a data source on another domain.

adErrURLDoesNotExis
t

3727
-214682
4561
0x800A
0E8F

Either the source URL or the parent of the destination URL does not exist.

adErrURLNamedRow
DoesNotExist

3737
-214682
4551
0x800A
0E99

Record named by this URL does not exist.

adErrVolumeNotFoun
d

3733
-214682
4555
0x800A
0E95

Provider cannot locate the storage device indicated by the URL. Make sure the URL is typed corre
ctly.

adErrWriteFile 3004
-214682
5284
0x800A
0BBC

Write to file failed.

Microsoft Host Integration Server 2000

NumericScale Property
The NumericScale property on a Field object indicates the scale of Numeric values in a Field object. This property returns a byte
value indicating the number of decimal places to which numeric values will be resolved.

Remarks

The NumericScale property is used to determine how many digits to the right of the decimal point will be used to represent
values for a numeric Field object.

The byte value that the NumericScale property will return is dependent on the data type of the Field object. The value for the
ADO data type of the Field object can be one of the following enumerated values for DataTypeEnum:

Enumer
ation

V
al
u
e

Description

adEmpt
y

0 This data type indicates that no value was specified (DBTYPE_EMPTY).

adSmal
lInt

2 This data type indicates a two-byte (16-bit) signed integer (DBTYPE_I2).

adInteg
er

3 This data type indicates a four-byte (32-bit) signed integer (DBTYPE_I4).

adSingl
e

4 This data type indicates a four-byte (32-bit) single precision IEEE floating point number (DBTYPE_R4).

adDou
ble

5 This data type indicates an eight-byte (64-bit) double precision IEEE floating point number (DBTYPE_R8).

adCurr
ency

6 A data type indicates a currency value (DBTYPE_CY). Currency is a fixed-point number with 4 digits to the right of the
decimal point. It is stored in an eight-byte signed integer scaled by 10,000. This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDate 7 This data type indicates a date value stored as a Double, the whole part of which is the number of days since Decemb
er 30, 1899, and the fractional part of which is the fraction of a day. This data type is not supported by the OLE DB Pro
vider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBSTR 8 This data type indicates a null-terminated Unicode character string (DBTYPE_BSTR). This data type is not supported by
the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIDisp
atch

9 This data type indicates a pointer to an IDispatch interface on an OLE object (DBTYPE_IDISPATCH). This data type is no
t supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adError 1
0

This data type indicates a 32-bit error code (DBTYPE_ERROR). This data type is not supported by the OLE DB Provider
for AS/400 and VSAM or the OLE DB Provider for DB2.

adBool
ean

1
1

This data type indicates a Boolean value (DBTYPE_BOOL). This data type is not supported by the OLE DB Provider for
AS/400 and VSAM or the OLE DB Provider for DB2.

adVaria
nt

1
2

This data type indicates an automation variant (DBTYPE_VARIANT). This data type is not supported by the OLE DB Pro
vider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIUnk
nown

1
3

This data type indicates a pointer to an IUnknown interface on an OLE object (DBTYPE_IUNKNOWN). This data type is
not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDeci
mal

1
4

This data type indicates numeric data with a fixed precision and scale (DBTYPE_DECIMAL).

adTinyI
nt

1
6

This data type indicates a single -byte (8-bit) signed integer (DBTYPE_I1). This data type is not supported by the OLE D
B Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedTi
nyInt

1
7

This data type indicates a single-byte (8-bit) unsigned integer (DBTYPE_UI1). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedS
mallInt

1
8

This data type indicates a two-byte (16-bit) unsigned integer (DBTYPE_UI2). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

scale = currentfield.NumericScale

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

adUnsi
gnedIn
t

1
9

This data type indicates a four-byte (32-bit) unsigned integer (DBTYPE_UI4). This data type is not supported by the OL
E DB Provider or the OLE DB Provider for DB2.

adBigIn
t

2
0

This data type indicates an eight-byte (64-bit) signed integer (DBTYPE_I8). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM.

adUnsi
gnedBi
gInt

2
1

This data type indicates an eight-byte (64-bit) unsigned integer (DBTYPE_UI8). This data type is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adGUID 7
2

This data type indicates a globally unique identifier or GUID (DBTYPE_GUID). This data type is not supported by the O
LE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBinar
y

1
2
8

This data type indicates fixed-length binary data (DBTYPE_BYTES).

adChar 1
2
9

This data type indicates a character string value (DBTYPE_STR).

adWCh
ar

1
3
0

This data type indicates a null-terminated Unicode character string (DBTYPE_WSTR). This data type is not supported b
y the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adNum
eric

1
3
1

This data type indicates numeric data where the precision and scale are exactly as specified (DBTYPE_NUMERIC).

adUser
Define
d

1
3
2

This data type indicates user-defined data (DBTYPE_UDT). This data type is not supported by the OLE DB Provider for
AS/400 and VSAM or the OLE DB Provider for DB2.

adDBD
ate

1
3
3

This data type indicates a OLE DB date structure (DBTYPE_DATE).

adDBTi
me

1
3
4

This data type indicates a OLE DB time structure (DBTYPE_TIME).

adDBTi
meSta
mp

1
3
5

This data type indicates a OLE DB timestamp structure (DBTYPE_TIMESTAMP).

adVarC
har

2
0
0

This data type indicates variable-length character data (DBTYPE_STR).

adLong
VarCha
r

2
0
1

This data type indicates a long string value.

adVar
WChar

2
0
2

This data type indicates a Unicode string value. This data type is not supported by the OLE DB Provider for AS/400 an
d VSAM or the OLE DB Provider for DB2.

adLong
VarWC
har

2
0
3

This data type indicates a long Unicode string value. This data type is not supported by the OLE DB Provider for AS/40
0 and VSAM or the OLE DB Provider for DB2.

adVarB
inary

2
0
4

This data type indicates variable-length binary data (DBTYPE_BYTES).

adLong
VarBin
ary

2
0
5

This data type indicates a long binary value.

Microsoft Host Integration Server 2000

Open Method on Connection Object
The Open method on a Connection object opens a connection to a data source.

Parameters

ConnectionString
This optional parameter specifies a String containing connection information. See the ConnectionString property on a
Connection object for details on valid settings. Possible values are listed in the table following the Parameters list.

 Note Not all of these parameters are required. The user can also be prompted for this information.

UserID
This optional parameter specifies a String containing a user name to use when establishing the connection.

Password
This optional parameter specifies a String containing a password to use when establishing the connection.

Values for the ConnectionString parameter

The information needed to establish a connection to a data source can be set in the ConnectionString property or passed as part
of the Open method in the ConnectionString parameter. In either case, this information must be in a specific format for use with
the Microsoft® OLE DB Provider for AS/400 and VSAM. This information can be a data source name (DSN) or a detailed
connection string containing a series of argument=value statements separated by semicolons. ADO supports several standard
ADO-defined arguments for the ConnectionString property as follows:

Arg
um
ent

Description

Dat
a So
urce

This argument specifies the name of the data source for the connection. This argument is the Data Source name stored in th
e registry under the OLE DB Provider for AS/400 and VSAM.

File
Na
me

This argument specifies the name of the provider-specific file containing preset connection information. This argument cann
ot be used if a Provider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and VSAM.

Loc
atio
n

This argument specifies the Remote Database Name used for connecting to OS/400 systems. This parameter is optional whe
n connecting to mainframe systems.

Pas
swo
rd

This argument specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used
to validate that the user can log on to the target host system and has appropriate access rights to the file.

Pro
vide
r

This argument specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and VSA
M, the Provider string must be set to "SNAOLEDB". To use the Microsoft® OLE DB Provider for DB2, the Provider string mus
t be set to "DB2OLEDB". To use the Microsoft® ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or not u
sed as part of the ConnectionString since this value is the default for ADO.

Re
mot
e Pr
ovid
er

This argument specifies the name of a provider to use when opening a client-side connection (for a Remote Data Service onl
y). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Re
mot
e Se
rver

This argument specifies the path name of a server to use when opening a client-side connection (for a Remote Data Service
only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Use
r ID

This argument specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is use
d to validate that the user can log on to the target host system and has appropriate access rights to the file.

The OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which have default
values as specified in the table below. These arguments are as follows:

connection.Open ConnectionString, UserID, Password

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0, don't process binary fields as char
acter fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitted,
the default value is U.S./Canada (37).

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when conne
cting to AS/400 files.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 256
characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system directory.
This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in Host Integration Server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA. This value defaults to SNA.

PCCo
dePa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The Remote DataBase name for OS/400. You only need to specify this value if it is different from the remote LU alias config
ured in Host Integration Server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults to f
alse.

Rem
oteL
U

The name of the remote LU alias configured in the Host Integration server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration Server 2000
differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2000 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, T
PName is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distribute
d unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions ar
e handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Serv
ice. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected a
s the network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the OLE DB Provider for DB2 supplied with SNA Server 4.0 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

Bi
nd
Ty
pe

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fo
llows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

Co
m
mi
t

This parameter indicates whether changes to data will be automatically committed or require a separate manual commit requ
est.

This parameter defaults to true (auto commit).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

G
C
CS
ID

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-b
yte (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Is
oL
vl

This parameter determines the isolation level provided for this data source. Legal values for the default isolation level are the f
ollowing:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommited Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspon
ds to Read Uncommited.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, isolation level this corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
C
CS
ID

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (D
BCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
ad
O
nl
y

When the Read Only parameter is set to true (ReadOnly=1), the OLE DB Provider for DB2 creates a read-only data source. A u
ser has read access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Not all of these parameters are required. The user can also be prompted for this information.

The ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values as specified
in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2000 differ from the
arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000 are as follows:

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TP
N is set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of work)
or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions are
handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Servic
e. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected as t
he network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the ODBC Driver for DB2 supplied with SNA Server 4.0 are as follows:

A
r
g
u
m
e
n
t

Description

A
C
M

The Auto Commit Mode parameter indicates whether changes to data will be automatically committed or require a separate m
anual commit request.

This parameter allows for implicit COMMIT on all SQL statements. In auto-commit mode, every database operation is a transac
tion that is committed when performed. This mode is suitable for common transactions that consist of a single SQL statement.
It is unnecessary to delimit or specify completion of these transactions. No ROLLBACK is allowed when using Auto Commit mo
de.

The default value for this parameter is true (auto commit).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.
B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

B
T

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fol
lows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

DI
L

This Default Isolation Level parameter determines the isolation level provided for this data source in cases of simultaneous acc
ess to DB2 objects by multiple applications. Legal values for the default isolation level are the following:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommitted Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspo
nds to Read Uncommitted.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, this isolation level corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

Please note that the ALL isolation level is not allowed. Users should set the isolation level to RS since this has the equivalent m
eaning and is defined in DB2 (ALL is not defined in any DB2 system).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

G
C
C
SI
D

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-by
te (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
C
C
SI
D

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (DB
CS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "DB2OLEDB".

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
O

When the Read Only parameter is set to true (RO=1), the ODBC Driver for DB2 creates a read-only data source. A user has rea
d access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

Remarks

The Open method on a Connection object is used to open tables on a remote DDM server. Using the Open method on a
Connection object establishes the physical connection to a data source. After this method successfully completes, the connection
is live and other methods can be invoked on the Connection object to process results.

The optional ConnectionString parameter is used to specify a connection string containing a series of argument=value
statements separated by semicolons. The ConnectionString property on a Connection object automatically inherits the value
used for the ConnectionString parameter. Therefore, the ConnectionString property of the Connection object can be set before
opening the Connection object, or the ConnectionString parameter can be used to set or override the current connection
parameters during the Open method call.

If user and password information is set in both the ConnectionString parameter and in the optional UserID and Password
parameters, the results may be unpredictable. Such information should only be passed in either the ConnectionString parameter

or the UserID and Password parameters.

There are a number of different ways to open a connection. The Open method can pass all of the appropriate connection
information as part of the ConnectionString parameter or by setting the ConnectionString property of the Connection object, if
this information is known in advance. The syntax in this case using the ConnectionString parameter for use with the OLE DB
Provider for AS/400 and VSAM is as follows:

Note that not all of these parameters are required. The registry settings for the Data Source usually have default values set for
remote LU, local LU, APPC mode, CCSID, and CodePage. If a data source is specified, this other information is not usually needed.
These registry settings are configured by using the Microsoft Management Console snap-in for the OLE DB Provider for AS/400
and VSAM.

The simplest form of an Open command that contains all necessary information is as follows:

The Data Source, User ID and Password must be included.

In the case where you would like the user to input the connection information, the following syntax can be used. This syntax does
not specify any connection information except the provider, which is always required unless this is set in the ConnectionString
or Provider property of the Connection object:

This method of invoking the Open method automatically causes a dialog box to appear asking the user for the data source, user
name, and password.

When operations have been concluded over an open Connection object, the Close method should be invoked on the
Connection object to free any associated system resources. Closing a Connection object does not remove it from memory; you
may change its property settings and use the Open method to open it again later. To completely eliminate an object from
memory, set the Connection object variable to Nothing.

If errors occur, these can be examined with the Errors collection on the Connection object.

connection = CreateObject("ADODB.Connection.2.0")
connection.Open "Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNAME;Password=password;Local
LU=LOCAL;Remote LU=DATABASE;ModeName=QPCSUPP;CCSID=37;CodePage=437"

connection = CreateObject("ADODB.Connection.2.0")
connection.Open "Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNAME;Password=password"

connection = CreateObject("ADODB.Connection.2.0")
connection.ConnectionString = "Provider=SNAOLEDB"
connection.Open

Microsoft Host Integration Server 2000

Open Method on Recordset Object
The Open method on a Recordset object opens a cursor that represents records from a base table or the results of a query.

Parameters

Source
This optional parameter specifies a Variant that evaluates to a valid Command object variable name or a valid string specifying
the command text specific to the Microsoft® OLE DB Provider for AS/400 and VSAM to open a data file on the host.

ActiveConnection
This optional parameter specifies either a Variant that evaluates to a valid Connection object variable name or a String
containing connection information equivalent to the ConnectionString property of a Connection object. Possible values are
listed in the table following the Parameters section.

CursorType
This optional parameter specifies a CursorTypeEnum value that determines the type of cursor that the provider should use
when opening the Recordset. See the CursorType property of a Recordset object for more information. Possible values are
listed in the table following the Parameters section.

LockType
This optional parameter specifies a LockTypeEnum value that determines what type of locking (concurrency) the provider
should use when opening the recordset. See the LockType property of a Recordset object for more information. Possible values
are listed in the table following the Parameters section.

Options
This optional parameter specifies a Long value representing a CommandTypeEnum value that indicates how the provider
should evaluate the Source parameter. Possible values are listed in the table following the Parameters section.

Possible values for the ActiveConnection parameter

The information needed to establish a connection to a data source can be set in the ActiveConnection property of a Recordset
object or passed as part of the Open method on a Recordset object in the ActiveConnection parameter. In either case, this
information must be in a specific format for use with the OLE DB Provider for AS/400 and VSAM. This information can be a data
source name (DSN) or a detailed connection string containing a series of argument=value statements separated by semicolons.
ADO supports several standard ADO-defined arguments for the ActiveConnection property as follows:

Arg
um
ent

Description

Data
Sou
rce

This argument specifies the name of the data source for the connection. This argument is the optional when used with OLE
DB Provider for AS/400 and VSAM or the Microsoft® OLE Provider for DB2.

File
Na
me

This argument specifies the name of the provider-specific file containing preset connection information. This argument cann
ot be used if a Provider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and VSAM.

Loca
tion

This argument specifies the Remote Database Name used for connecting to OS/400 systems. This parameter is optional wh
en connecting to mainframe systems.

Pass
wor
d

This argument specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used
by Microsoft® SNA Server to validate that the user can log on to the target host system and has appropriate access rights to
the file.

Prov
ider

This argument specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and VSA
M, the Provider string must be set to "SNAOLEDB". To use the OLE DB Provider for DB2, the Provider string must be set to "
DB2OLEDB". To use the ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or not used as part of the Conn
ectionString since this value is the default for ADO.

Rem
ote
Prov
ider

This argument specifies the name of a provider to use when opening a client-side connection (for a Remote Data Service onl
y). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

recordset.Open Source, ActiveConnection, CursorType, LockType,
Options

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Rem
ote
Serv
er

This argument specifies the path name of a server to use when opening a client-side connection (for a Remote Data Service
only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

User
ID

This argument specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is use
d by SNA Server to validate that the user can log on to the target host system and has appropriate access rights to the file.

The OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which have default
values as specified in the table below. These arguments are as follows:

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0, don't process binary fields as char
acter fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitted,
the default value is U.S./Canada (37).

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when conne
cting to AS/400 files.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 256
characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system directory.
This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in the SNA server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and SNA Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA. This value defaults to SNA.

PCCo
dePa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The Remote DataBase name for OS/400. You only need to specify this value if it is different from the remote LU alias config
ured in the SNA server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults to f
alse.

Rem
oteL
U

The name of the remote LU alias configured in the SNA server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration Server 2000
differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2000 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, T
PName is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distribute
d unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions ar
e handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Serv
ice. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected a
s the network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the OLE DB Provider for DB2 supplied with SNA Server 4.0 are as follows:

Ar
g
u
m
en
t

Description

Bi
nA
sC
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as char
acter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output para
meters.

This parameter defaults to false.

Bi
nd
Ty
pe

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fo
llows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

C
CS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

Co
m
mi
t

This parameter indicates whether changes to data will be automatically committed or require a separate manual commit requ
est.

This parameter defaults to true (auto commit).

De
fS
ch

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIBM;
SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

G
C
CS
ID

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-b
yte (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referred to
as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to as RDB
NAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/400 syste
m. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this property is ref
erred to as DATABASE.

This parameter has no default value.

Is
oL
vl

This parameter determines the isolation level provided for this data source. Legal values for the default isolation level are the f
ollowing:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommited Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspon
ds to Read Uncommited.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, isolation level this corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Lo
cal
LU

The name of the local LU alias configured in Host Integration Server.

M
C
CS
ID

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (D
BCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the OLE DB Provider for DB2 supplied with the Japanese version of the OLE DB Provider for D
B2 client included with SNA Server 4.0 with Service Pack 2, and by the OLE DB Provider for DB2 client included with all versio
ns of SNA Server 4.0 with Service Pack 3 or later.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BATC
HSC (batch), and custom modes.

N
et
Ad
dr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communication
with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this par
ameter are TCPIP or SNA.

This value defaults to SNA.

PC
Co
de
Pa
ge

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
gC
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bind
DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider will c
reate packages dynamically in the location to which the user points using the Package Collection parameter.

Re
ad
O
nl
y

When the Read Only parameter is set to true (ReadOnly=1), the OLE DB Provider for DB2 creates a read-only data source. A u
ser has read access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicati
on server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values as specified
in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2000 differ from the
arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000 are as follows:

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server 2000 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TP
N is set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of work)
or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions are
handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Servic
e. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is selected as t
he network transport and Microsoft Transaction Server (MTS) is installed.

 Note Not all of these parameters are required. The user can also be prompted for this information.

The arguments supported by the ODBC Driver for DB2 supplied with SNA Server 4.0 are as follows:

A
r
g
u
m
e
n
t

Description

A
C
M

The Auto Commit Mode parameter indicates whether changes to data will be automatically committed or require a separate m
anual commit request.

This parameter allows for implicit COMMIT on all SQL statements. In auto-commit mode, every database operation is a transac
tion that is committed when performed. This mode is suitable for common transactions that consist of a single SQL statement.
It is unnecessary to delimit or specify completion of these transactions. No ROLLBACK is allowed when using Auto Commit mo
de.

The default value for this parameter is true (auto commit).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 6553
5) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parameters.

B
T

This parameter indicates the bind type to be used when creating packages. Legal values for the package binding type are as fol
lows.

NORM—normal binding.

FAST—create all 64 package sections optimally in a single network flow.

NOSP—reserved for future use and currently not supported.

The default value for this parameter is NORM.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID property i
s required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted based
on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless th
e Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Windo
ws.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left blan
k.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information. Th
e Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Schema to
restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catalog SQLTa
bles).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/40
0, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappropriate
in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this attrib
ute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field is
used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

DI
L

This Default Isolation Level parameter determines the isolation level provided for this data source in cases of simultaneous acc
ess to DB2 objects by multiple applications. Legal values for the default isolation level are the following:

CS—Cursor Stability. In DB2/400, this isolation level corresponds to COMMIT(*CS). In ANSI, this isolation level corresponds to
Read Committed (RC).

NC—No Commit. In DB2/400, this isolation level corresponds to COMMIT(*NONE). In ANSI, this isolation level corresponds to
No Commit (NC).

UR—Uncommitted Read. In DB2/400, this isolation level corresponds to COMMIT(*CHG). In ANSI, this isolation level correspo
nds to Read Uncommitted.

RS—Read Stability. In DB2/400, this isolation level corresponds to COMMIT(*ALL). In ANSI, this isolation level corresponds to
Repeatable Read.

RR—Repeatable Read. In DB2/400, this isolation level corresponds to COMMIT(*RR). In ANSI, this isolation level corresponds t
o Serializable (Isolated).

This parameter defaults to NC.

Please note that the ALL isolation level is not allowed. Users should set the isolation level to RS since this has the equivalent m
eaning and is defined in DB2 (ALL is not defined in any DB2 system).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

G
C
C
SI
D

The graphics character code set identifier (GCCSID) matching the DB2 character data as represented on the remote host comp
uter. This parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-by
te (DBCS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for GCCSID are supported by the OLE DB Provider for DB2: 300, 834, 835, 837, or 4396.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Server
.

M
C
C
SI
D

The mixed character code set identifier (MCCSID) matching DB2 character data as represented on the remote host computer. T
his parameter is required when accessing DB2 databases configured to support mixed single-byte (SBCS) and double-byte (DB
CS) data. This parameter only applies when accessing DB2 for OS/390 or DB2 for MVS.

The following values for MCCSID are supported by the OLE DB Provider for DB2: 930, 931, 933, 935, 937, 939, 5026, or 5035.

This parameter defaults to 0 indicating that mixed CCSID conversions are not supported.

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

This parameter is supported by the Japanese version of the ODBC Driver for DB2 client included with SNA Server 4.0 with Serv
ice Pack 2, and by the ODBC Driver for DB2 client included with all versions of SNA Server 4.0 with Service Pack 3 or later.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a value
that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTER
SC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB
2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are also leg
al: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (bat
ch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or the
hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used for c
ommunication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. The p
ossible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind DB2
packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dyn
amic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user points usin
g the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this at
tribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this field
is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set t
o "DB2OLEDB".

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate that th
e user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parameter is t
he same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter i
s referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible l
ocations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look in the
TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation ma
nual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKR
DBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created using the
Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
O

When the Read Only parameter is set to true (RO=1), the ODBC Driver for DB2 creates a read-only data source. A user has rea
d access to objects such as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This parameter is not supported by the ODBC Driver for DB2 supplied with Host Integration Server 2000.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured inHost Integration Server.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applicatio
n server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate that
the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is the sam
e as the User ID parameter.

 Note Not all of these parameters are required. The user can also be prompted for this information.

Possible values for the LockType parameter

This parameter can be one of the following enumerated values for LockTypeEnum:

Enumerati
on

V
al
u
e

Description

adLockUn
specified

-1 Indicates an unspecified value for the LockType. This value is not supported by the OLE DB Provider for AS/400 an
d VSAM.

adLockRe
adOnly

1 Specifying this value opens a Recordset object read-only and data cannot be altered.

adLockPes
simistic

2 Specifying this value opens a recordset with pessimistic locking. Record-by-record, the OLE DB Provider does wha
tever is necessary to ensure successful editing of the records, usually by locking records at the data source immedi
ately upon editing.

This lock type is supported by the OLE DB Provider for AS/400 and VSAM and the OLE DB Provider. However, the
OLE DB Provider for AS/400 and VSAM internally maps this lock type to adLockBatchOptimistic.

adLockOp
timistic

3 Specifying this value opens a recordset with optimistic locking. Record-by-record, the OLE DB Provider locks recor
ds only when the Update method is invoked on a Recordset object.

This lock type is not supported by the OLE DB Provider for DB2.

adLockBat
chOptimis
tic

4 Specifying this value opens a Recordset with batch optimistic locking. This value is required for batch update mo
de as opposed to immediate update.

This lock type is not supported by the OLE DB Provider for DB2.

This optional argument defaults to adLockReadOnly.

Possible values for the CursorType parameter

This parameter can be one of the following enumerated values for CursorTypeEnum:

Enume
ration

V
al
u
e

Description

adOpe
nUnsp
ecified

-
1

This indicates an unspecified value for the CursorType.

This value is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM or the Microsoft® OLE DB Prov
ider for DB2.

adOpe
nForwa
rdOnly

0 Specifying this value opens a forward-only-type cursor. This CursorType is identical to a static cursor, except that you c
an only scroll forward through records. This improves performance when only one pass through a Recordset is need
ed.

This value is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM.

adOpe
nKeyse
t

1 Specifying this value opens a keyset-type cursor. This CursorType is similar to a dynamic cursor with a few exceptions.
Records that other users delete are inaccessible from your Recordset. Data changes to existing records by other users
are still visible, but records added by other users are not visible (cannot be seen).

This value is not supported by the OLE DB Provider for AS/400 and VSAM..

adOpe
nDyna
mic

2 Specifying this value opens a dynamic-type cursor. Additions, changes, and deletions by other users are visible, and all
types of movement through the recordset are allowed, except for bookmarks if the provider does not support them.

A dynamic cursor is the only CursorType supported by the OLE DB Provider for AS/400 and VSAM.

adOpe
nStatic

3 Specifying this value opens a static-type cursor. A static cursor provides a static copy of a set of records that can be us
ed to find data or generate reports. Additions, changes, or deletions by other users are not visible with a static cursor.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

This optional argument defaults to adOpenForwardOnly, a value that is mapped to adOpenDynamic by the OLE DB provider
for AS/400 and VSAM.

Possible values for the Options parameter

The CommandTypeEnum value can be one of the following constants:

Enumeration Valu
e

Description

adCmdUnspecifi
ed

-1 This value indicates that the CommandText property is unspecified.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdText 1 This value evaluates the CommandText property as a textual definition of a command or stored proce
dure call.

adCmdTable 2 This value evaluates the CommandText property as a table name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdStoredPro
c

4 This value evaluates the CommandText property as a stored procedure name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdUnknown 8 This value indicates that the type of command in CommandText property is not known. This is the def
ault value.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

Remarks

The Open method on a Recordset object is used to open tables on a remote DDM server. Using the Open method on a
Recordset object establishes the physical connection to a data source and opens a cursor that represents records from a base
table or the results of a query. After this method successfully completes, the Recordset object is live and other methods can be
invoked on the Recordset object to process results.

The optional Source parameter is used to specify the command text required to open a data file on the host using the OLE DB
Provider for AS/400 and VSAM. The syntax in this case is as follows:

Using the OLE DB Provider for AS/400 and VSAM, the Source parameter represents a table name and uses one of the following
host file naming conventions.

Host file type File naming convention
VSAM Data Sets DATASETNAME.FILENAME
Partitioned Data Sets DATASETNAME.FILENAME(MEMBER)
OS/400 Files LIBRARY/FILE
OS/400 Files LIBRARY/FILE.NAME
OS/400 File Members LIBRARY/FILE(MEMBER)
OS/400 File Members LIBRARY/FILE.NAME(MEMBER)

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double quotes.
For example, if the member name is NAMES.DAT, the proper syntax for command text used for the Recordset.Open method is:

Note the doubled quotes are required surrounding the member name in this example since the member name contains a period.
The full path to the mainframe data set must be specified when using the OLE DB Provider for AS/400 and VSAM. In the example
above, there are two path elements (LIBRARY/FILE) and one name element (NAMES.DAT).

Whenever a VSAM data set is allocated, it is given a unique name composed of one or more segments. Each segment of the data
set name is joined by periods and represents a level of qualification. For example, the following data set has four segments that
comprise the fully-qualified data set name (three path elements and one name element):

The high-level qualifier is SAMPLES. The low-level qualifier is TITLES. Each segment can be from 1-8 characters in length (the first
character must be alphabetic, while the remainder can be alphanumeric or hyphens). The full data set name must be no more
than 44 characters in length and contain no more than 22 segments.

recordset = CreateObject("ADODB.Recordset.2.0")
recordset.Open "EXEC OPEN LIBRARY/FILE", connection, adOpenDynamic, adLockOptimistic, adCmdTe
xt

recordset = CreateObject("ADODB.Recordset.2.0")
recordset.Open "EXEC OPEN LIBRARY/FILE(""NAMES.DAT"")", connection, adOpenDynamic, adLockOpti
mistic, adCmdText

SAMPLES.DEMO.KSDS.TITLES

The optional ActiveConnection parameter corresponds to the ActiveConnection property on a Recordset object and specifies
on which connection to open the Recordset object. If a connection string definition is passed for this argument, ADO opens a new
connection using the specified parameters. The value of this ActiveConnection property can be changed after opening the
Recordset to send updates to another provider. The ActiveConnection property is set to Nothing (in Microsoft® Visual
Basic®) to disconnect the recordset from the OLE DB Provider. If the optional ActiveConnection parameter is used to specify a
connection string, this string must contain a series of argument=value statements separated by semicolons.

The ActiveConnection property on a Recordset object automatically inherits the value used for the ActiveConnection
parameter. Therefore, the ActiveConnection property of the Recordset object can be set before opening the Recordset object,
or the ActiveConnection parameter can be used to set or override the current connection parameters during the Open method
call.

The CursorType parameter cannot be omitted using the OLE DB Provider for AS/400 and VSAM since this parameter defaults to
adOpenForwardOnly, a CursorType that is not supported on the OLE DB Provider. The CursorType parameter must be set to
adOpenDynamic, otherwise an error will occur and results will be unpredictable.

There are a number of different ways to open a recordset and connect to a data source. The Open method of the Recordset
object can pass all of the appropriate connection information as part of the ActiveConnection parameter or by setting the
ActiveConnection property of the Recordset object, if this information is known in advance. The syntax, in this case using the
ActiveConnection parameter and the OLE DB Provider for AS/400 and VSAM, is as follows:

 Note Not all of these parameters are required. The registry settings for the Data Source usually have default values
set for remote LU, local LU, APPC mode, CCSID, and CodePage. If a data source is specified, this other information is
not usually needed. These registry settings are configured by using the Microsoft Management Console snap-in for
the OLE DB Provider for AS/400 and VSAM.

For the other parameters that correspond directly to the properties of a Recordset object (Source, CursorType, and LockType), the
relationship of the parameters to the properties is as follows:

The property is read/write before the Recordset object is opened.
The property settings are used unless the corresponding parameters are passed when executing the Open method. If a
parameter is passed, it overrides the corresponding property setting, and the property setting is updated with the parameter
value.
After the Recordset object is opened, these properties become read-only.

 Note For Recordset objects whose Source property is set to a valid Command object, the ActiveConnection
property is read-only, even if the Recordset object is not open.

If a Command object is passed in the Source parameter and an ActiveConnection parameter is also passed, an error occurs. The
ActiveConnection property of the Command object must already be set to a valid Connection object or connection string.

If a Command object is not passed in the Source argument, the Options argument must be set to adCmdText. If the Options
argument is not defined, you may experience diminished performance because ADO must make calls to the OLE DB Provider to
determine if the argument is a command statement. If you know what Source type you are using, setting the Options argument
instructs ADO to jump directly to the relevant code.

If the data source returns no records, the provider sets both the BOF and EOF properties on the Recordset object to True, and the
current record position is undefined. You can still add new data to this empty Recordset object if the cursor type allows it.

When operations have been concluded over an open Recordset object, the Close method should be invoked on the Recordset
object to free any associated system resources. Closing a Recordset object does not remove it from memory; you may change its
property settings and use the Open method to open it again later. To completely eliminate an object from memory, set the
Recordset object variable to Nothing.

If errors occur, these can be examined with the Errors collection on the Recordset object.

recordset = CreateObject("ADODB.Recordset.2.0")
recordset.Open "EXEC OPEN LIBRARY/FILE","Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNAME
;Password=password;Local LU=LOCAL;Remote LU=DATABASE;ModeName=QPCSUPP;CCSID=37;CodePage=437",
adOpenDynamic, adLockOptimistic, adCmdText

Microsoft Host Integration Server 2000

OpenSchema Method
The OpenSchema method on a Connection object obtains database schema information from the provider.

Parameters

QueryType
This parameter specifies a SchemaEnum value that indicates the type of schema query to run.

The SchemaEnum values supported by the Microsoft® OLE DB Provider for AS/400 and VSAM are listed in a table following
the Parameters section

Criteria
This optional parameter specifies an array of query constraints for each QueryType option, as listed below.

The values supported by the OLE DB Provider for AS/400 and VSAM can be one of the following constants depending on the
QueryType:

 Note The adSchemaindexes TYPE restriction is not supported by the OLE DB Provider for DB2.

The adSchemaProcedures PROCEDURE_SCHEMA, and adSchemaProcedureParameters PROCEDURE_SCHEMA
restrictions are not supported when connecting to DB/2 on OS/390 platforms.

Values used for the Criteria parameter are listed in the table following the Parameters section.

SchemaID
This optional parameter specifies the GUID for a provider-schema schema query not defined by the OLE DB specification. This
parameter is required if the QueryType parameter is set to adSchemaProviderSpecific; otherwise, it is not used. This
parameter is not supported by the OLE DB Provider for AS/400 and VSAM.

Possible values used by QueryType

Enumeration Val
ue

Description

adSchemaColum
ns

4 This value indicates that the QueryType is requesting column information for tables on the server (not su
pported when connecting to mainframes).

adSchemaIndex
es

12 This value indicates that the QueryType is requesting index information about the tables on the server (n
ot supported when connecting to mainframes).

adSchemaTables 20 This value indicates that the QueryType is requesting information about the tables on the server.
adSchemaProvid
erTypes

22 This value indicates that the QueryType is requesting provider-type information.

The SchemaEnum values supported by the Microsoft® OLE DB Provider for DB2 and the Microsoft® ODBC Driver for DB2 can
be one of the following constants:

Enumeration Val
ue

Description

adSchemaColumns 4 This value indicates that the QueryType is requesting column information for tables on the server (no
t supported when connecting to mainframes).

adSchemaIndexes 12 This value indicates that the QueryType is requesting index information about the tables on the serve
r (not supported when connecting to mainframes).

adSchemaProcedure
s

16 This value indicates that the QueryType is requesting information about stored procedures on the ser
ver.

adSchemaTables 20 This value indicates that the QueryType is requesting information about the tables on the server.
adSchemaProviderT
ypes

22 This value indicates that the QueryType is requesting provider-type information.

adSchemaProcedure
Parameters

26 This value indicates that the QueryType is requesting information about parameters used by stored p
rocedures on the server.

adSchemaPrimaryKe
ys

28 This value indicates that the QueryType is requesting information about the primary keys for tables o
n the server.

recordset = connection.OpenSchema (QueryType, Criteria, SchemaID)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Values used by the Criteria parameter

QueryType / Enumeration
adSchemaColumns
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
adSchemaIndexes
TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TYPE
TABLE_NAME
adSchemaTables
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE
adSchemaProviderTypes
DATA_TYPE
BEST_MATCH

The values supported by the OLE DB Provider for DB2 and the ODBC Driver for DB2 can be one of the following constants
depending on the QueryType:

QueryType / Enumeration
adSchemaColumns
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
adSchemaIndexes
TABLE_CATALOG
TABLE_SCHEMA
INDEX_NAME
TABLE_NAME
adSchemaPrimaryKeys
TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
adSchemaProcedures
PROCEDURE_CATALOG
PROCEDURE_SCHEMA (see Notes)
PROCEDURE_NAME
PROCEDURE_TYPE
adSchemaProcedureParameters
PROCEDURE_CATALOG
PROCEDURE_SCHEMA (see Notes)
PROCEDURE_NAME
PROCEDURE_TYPE
adSchemaProviderTypes
DATA_TYPE
BEST_MATCH
adSchemaTables

TABLE_CATALOG
TABLE_SCHEMA
TABLE_NAME
TABLE_TYPE

Return Values

Returns a Recordset object that contains schema information requested.

Remarks

The OpenSchema method on a Connection object is used to return information about the data source, such as information
about the tables on the server and the columns in the tables.

The Criteria argument is an array of values that can be used to limit the results of a schema query. Each schema query supports a
different set of parameters. The actual schemas are defined by the OLE DB specification under the IDBSchemaRowset interface.
The schema queries supported in ADO 1.5 and later by the OLE DB Provider for AS/400 and VSAM are listed above.

The OpenSchema method allows an application to pass at run time the target library of a Partioned Data Set (PDS/PDSE), a
dataset, or a member name as one of the Criteria array arguments to retrieve the schema.

Providers are not required to support all of the OLE DB standard schema QueryType values. Specifically, only adSchemaTables,
adSchemaColumns, and adSchemaProviderTypes are required by the OLE DB specification. However, the provider is not
required to support the Criteria constraints listed above for those schema queries. Support for other schema QueryType values is
optional.

The schema information specified in OLE DB is based on the assumption that providers support the concepts of a catalog and a
schema. The ANSI SQL 92 specification defines them as follows:

A catalog contains one or more schemas, but always contains a schema named INFORMATION_SCHEMA which contains the
views and domains of the information schema. In Microsoft® SQL Server and Microsoft® Access terms, a catalog is a
database; in ODBC 2.x terms, a catalog is a qualifier.
A schema is a collection of database objects that are owned or have been created by a particular user. In Microsoft SQL
Server and ODBC 2.x terms, a schema is an owner; there is no equivalent to a schema in a Microsoft Access database.

Schema information in ADO and OLE DB is retrieved using predefined schema rowsets. The following section lists the contents of
each schema rowset supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Microsoft Host Integration Server 2000

adSchemaColumns
The adSchemaColumns QueryType identifies the columns of tables defined in the catalog that are accessible to a given user.
This QueryType is supported by the Microsoft® OLE DB Provider for AS/400 and VSAM and the Microsoft® OLE DB Provider for
DB2.

The rowset returned by an adSchemaColumns QueryType contains the following columns:

Colum
n nam
e

Ty
pe
in
dic
at
or

Description

TABLE_
CATAL
OG

DB
TY
PE
_W
ST
R

Catalog name. NULL if the provider does not support catalogs.

TABLE_
SCHE
MA

DB
TY
PE
_W
ST
R

Unqualified schema name. NULL if the provider does not support schemas.

TABLE_
NAME

DB
TY
PE
_W
ST
R

Table name.

COLU
MN_N
AME

DB
TY
PE
_W
ST
R

The name of the column; this might not be unique. If this cannot be determined, a NULL is returned. This column, toge
ther with the COLUMN_GUID and COLUMN_PROPID columns, forms the column ID. One or more of these columns w
ill be NULL depending on which elements of the DBID structure the provider uses. If possible, the resulting column ID
should be persistent. However, some providers do not support persistent identifiers for columns. The column ID of a
base table should be invariant under views.

COLU
MN_G
UID

DB
TY
PE
_G
UI
D

Column GUID.

COLU
MN_P
ROPID

DB
TY
PE
_UI
4

Column property ID.

ORDIN
AL_PO
SITION

DB
TY
PE
_UI
4

The ordinal of the column. Columns are numbered starting from one. NULL if there is no stable ordinal value for the c
olumn.

COLU
MN_H
ASDEF
AULT

DB
TY
PE
_B
O
OL

VARIANT_TRUE: The column has a default value.
VARIANT_FALSE: The column does not have a default value or it is unknown whether the column has a default value.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

COLU
MN_D
EFAUL
T

DB
TY
PE
_W
ST
R

Default value of the column. A provider may expose DBCOLUMN_DEFAULTVALUE but not DBCOLUMN_HASDEFAULT
(for SQL 92 tables) in the rowset returned by IColumnsRowset::GetColumnsRowset. If the default value is the NUL
L value, COLUMN_HASDEFAULT is VARIANT_TRUE, and the COLUMN_DEFAULT column is a NULL value.

COLU
MN_FL
AGS

DB
TY
PE
_UI
4

A bitmask that describes column characteristics. The DBCOLUMNFLAGS enumerated type specifies the bits in the bit
mask. For information about DBCOLUMNFLAGS, see IColumnsInfo::GetColumnInfo. This column cannot contain a
NULL value.

IS_NUL
LABLE

DB
TY
PE
_B
O
OL

VARIANT_TRUE: The column might be nullable.
VARIANT_FALSE: The column is known not to be nullable.

DATA_
TYPE

DB
TY
PE
_UI
2

The indicator of the column’s data type. If the data type of the column varies from row to row, this must be DBTYPE_V
ARIANT.

TYPE_
GUID

DB
TY
PE
_G
UI
D

The GUID of the column’s data type.

CHARA
CTER_
MAXIM
UM_LE
NGTH

DB
TY
PE
_UI
4

The maximum possible length of a value in the column. For character, binary, or bit columns, this is one of the followi
ng:

The maximum length of the column in characters, bytes, or bits, respectively, if one is defined. For example, a CHAR(5)
column in an SQL table has a maximum length of five (5).

The maximum length of the data type in characters, bytes, or bits, respectively, if the column does not have a defined l
ength.

Zero (0) if neither the column nor the data type has a defined maximum length.

NULL for all other types of columns.

CHARA
CTER_
OCTET
_LENG
TH

DB
TY
PE
_UI
4

Maximum length in octets (bytes) of the column, if the type of the column is character or binary. A value of zero mean
s the column has no maximum length. NULL for all other types of columns.

NUME
RIC_PR
ECISIO
N

DB
TY
PE
_UI
2

If the column’s data type is numeric, this is the maximum precision of the column. The precision of columns with a dat
a type of DBTYPE_DECIMAL or DBTYPE_NUMERIC depends on the definition of the column. If the column’s data type i
s not numeric, this is NULL.

NUME
RIC_SC
ALE

DB
TY
PE
_I2

If column’s type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the number of digits to the right of the de
cimal point. Otherwise, this is NULL.

DATETI
ME_PR
ECISIO
N

DB
TY
PE
_UI
4

Datetime precision (number of digits in the fractional seconds portion) of the column if the column is a datetime or in
terval type.

CHARA
CTER_
SET_C
ATALO
G

DB
TY
PE
_W
ST
R

Catalog name in which the character set is defined. NULL if the provider does not support catalogs or different charac
ter sets.

CHARA
CTER_
SET_SC
HEMA

DB
TY
PE
_W
ST
R

Unqualified schema name in which the character set is defined. NULL if the provider does not support schemas or diff
erent character sets.

CHARA
CTER_
SET_N
AME

DB
TY
PE
_W
ST
R

Character set name. NULL if the provider does not support different character sets.

COLLA
TION_
CATAL
OG

DB
TY
PE
_W
ST
R

Catalog name in which the collation is defined. NULL if the provider does not support catalogs or different collations.

COLLA
TION_
SCHE
MA

DB
TY
PE
_W
ST
R

Unqualified schema name in which the collation is defined. NULL if the provider does not support schemas or differe
nt collations.

COLLA
TION_
NAME

DB
TY
PE
_W
ST
R

Collation name. NULL if the provider does not support different collations.

DOMAI
N_CAT
ALOG

DB
TY
PE
_W
ST
R

Catalog name in which the domain is defined. NULL if the provider does not support catalogs or domains.

DOMAI
N_SCH
EMA

DB
TY
PE
_W
ST
R

Unqualified schema name in which the domain is defined. NULL if the provider does not support schemas or domain
s.

DOMAI
N_NA
ME

DB
TY
PE
_W
ST
R

Domain name. NULL if the provider does not support domains.

DESCR
IPTION

DB
TY
PE
_W
ST
R

Human-readable description of the column. For example, the description for a column named Name in the Employee
table might be "Employee name."

The default sort order for the adSchemaColumns rowset is TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME.

Microsoft Host Integration Server 2000

adSchemaIndexes
The adSchemaIndexes QueryType identifies the indexes defined in the catalog that are owned by a given user. This QueryType is
supported by the Microsoft® OLE DB Provider for AS/400 and VSAM and the Microsoft® OLE DB Provider for DB2.

The rowset returned by an adSchemaIndexes QueryType contains the following columns:

Colu
mn n
ame

Typ
e in
dic
ato
r

Description

TABL
E_CA
TALO
G

DBT
YPE
_W
STR

Catalog name. NULL if the provider does not support catalogs.

TABL
E_SC
HEM
A

DBT
YPE
_W
STR

Unqualified schema name. NULL if the provider does not support schemas.

TABL
E_NA
ME

DBT
YPE
_W
STR

Table name.

INDE
X_CA
TALO
G

DBT
YPE
_W
STR

Catalog name. NULL if the provider does not support catalogs.

INDE
X_SC
HEM
A

DBT
YPE
_W
STR

Unqualified schema name. NULL if the provider does not support schemas.

INDE
X_NA
ME

DBT
YPE
_W
STR

Index name.

PRIM
ARY_
KEY

DBT
YPE
_BO
OL

Whether the index represents the primary key on the table. NULL if this is not known.

UNIQ
UE

DBT
YPE
_BO
OL

Whether index keys must be unique. One of the following:
VARIANT_TRUE: The index keys must be unique.
VARIANT_FALSE: Duplicate keys are allowed.

CLUS
TERE
D

DBT
YPE
_BO
OL

Whether an index is clustered. One of the following:
VARIANT_TRUE: The leaf nodes of the index contain full rows, not bookmarks. This is a way to represent a table cluster
ed by key value.
VARIANT_FALSE: The leaf nodes of the index contain bookmarks of the base table rows whose key value matches the
key value of the index entry.

TYPE DBT
YPE
_UI
2

The type of the index. One of the following:
DBPROPVAL_IT_BTREE: The index is a B+-tree.
DBPROPVAL_IT_HASH: The index is a hash file using, for example, linear or extensible hashing.
DBPROPVAL_IT_CONTENT: The index is a content index.
DBPROPVAL_IT_OTHER: The index is some other type of index.

FILL_
FACT
OR

DBT
YPE
_I4

For a B+-tree index, this property represents the storage utilization factor of page nodes during the creation of the ind
ex. The value is an integer from 1 to 100 representing the percentage of use of an index node. For a linear hash index,
this property represents the storage utilization of the entire hash structure (the ratio of used area to total allocated are
a) before a file structure expansion occurs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

INITI
AL_SI
ZE

DBT
YPE
_I4

The total amount of bytes allocated to this structure at creation time.

NULL
S

DBT
YPE
_I4

Whether null keys are allowed. One of the following:
DBPROPVAL_IN_DISALLOWNULL: The index does not allow entries where the key columns are NULL. If the consumer
attempts to insert an index entry with a NULL key, then the provider returns an error.
DBPROPVAL_IN_IGNORENULL: The index does not insert entries containing NULL keys. If the consumer attempts to in
sert an index entry with a NULL key, then the provider ignores that entry and no error code is returned.
DBPROPVAL_IN_IGNOREANYNULL: The index does not insert entries where some column key has a NULL value. For a
n index having a multicolumn search key, if the consumer inserts an index entry with NULL value in some column of t
he search key, then the provider ignores that entry and no error code is returned.

SORT
_BOO
KMA
RKS

DBT
YPE
_BO
OL

How the index treats repeated keys. One of the following:
VARIANT_TRUE: The index sorts repeated keys by bookmark.
VARIANT_FALSE: The index does not sort repeated keys by bookmark.

AUTO
_UPD
ATE

DBT
YPE
_BO
OL

Whether the index is maintained automatically when changes are made to the corresponding base table. One of the fo
llowing:
VARIANT_TRUE: The index is automatically maintained.
VARIANT_FALSE: The index must be maintained by the consumer through explicit calls to IRowsetChange. Ensuring c
onsistency of the index as a result of updates to the associated base table is the responsibility of the consumer.

NULL
_COL
LATI
ON

DBT
YPE
_I4

How NULLs are collated in the index. One of the following:
DBPROPVAL_NC_END: NULLs are collated at the end of the list, regardless of the collation order.
DBPROPVAL_NC_START: NULLs are collated at the start of the list, regardless of the collation order.
DBPROPVAL_NC_HIGH: NULLs are collated at the high end of the list.
DBPROPVAL_NC_LOW: NULLs are collated at the low end of the list.

ORDI
NAL_
POSI
TION

DBT
YPE
_UI
4

Ordinal position of the column in the index, starting with one.

COLU
MN_
NAM
E

DBT
YPE
_W
STR

Column name. This column, together with the COLUMN_GUID and COLUMN_PROPID columns, forms the column ID.
One or more of these columns will be NULL depending on which elements of the DBID structure the provider uses.

COLU
MN_
GUID

DBT
YPE
_GU
ID

Column GUID.

COLU
MN_
PROP
ID

DBT
YPE
_UI
4

Column property ID.

COLL
ATIO
N

DBT
YPE
_I2

One of the following:
DB_COLLATION_ASC: The sort sequence for the column is ascending.
DB_COLLATION_DESC: The sort sequence for the column is descending.
NULL: A column sort sequence is not supported.

CARD
INALI
TY

DBT
YPE
_I4

Number of unique values in the index.

PAGE
S

DBT
YPE
_I4

Number of pages used to store the index.

FILTE
R_CO
NDITI
ON

DBT
YPE
_W
STR

The WHERE clause identifying the filtering restriction.

The default sort order for the adSchemaIndexes rowset is UNIQUE, TYPE, INDEX_CATALOG, INDEX_SCHEMA, INDEX_NAME, and
ORDINAL_POSITION.

Microsoft Host Integration Server 2000

adSchemaPrimaryKeys
The adSchemaPrimaryKeys QueryType identifies the primary key columns defined in the catalog by a given user. This
QueryType is supported by the Microsoft® OLE DB Provider for DB2.

The rowset returned by an adSchemaPrimaryKeys QueryType contains the following columns:

TABLE_
CATALO
G

DBTYP
E_WS
TR

Catalog name in which the table is defined. NULL if the provider does not support catalogs.

TABLE_
SCHEM
A

DBTYP
E_WS
TR

Unqualified schema name in which the table is defined. NULL if the provider does not support schemas.

TABLE_
NAME

DBTYP
E_WS
TR

Table name.

COLUM
N_NAM
E

DBTYP
E_WS
TR

Primary key column name. This column, together with the COLUMN_GUID and COLUMN_PROPID columns, form
s the column ID. One or more of these columns will be NULL depending on which elements of the DBID structure
the provider uses.

COLUM
N_GUID

DBTYP
E_GUI
D

Primary key column GUID.

COLUM
N_PRO
PID

DBTYP
E_UI4

Primary key column property ID.

ORDIN
AL

DBTYP
E_UI4

The order of the column names (and GUIDs and property IDs) in the key.

PK_NA
ME

DBTYP
E_WS
TR

Primary key name. NULL if the provider does not support primary key constraints.

The default sort order for the adSchemaPrimaryKeys rowset is UNIQUE, TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

adSchemaProcedures
The adSchemaProcedures QueryType identifies information about the columns of rowsets returned by procedures. This
QueryType is supported by the Microsoft® OLE DB Provider for DB2.

The rowset returned by an adSchemaProcedures QueryType contains the following columns:

Colum
n nam
e

Ty
pe
in
dic
at
or

Description

PROCE
DURE_
CATAL
OG

DB
TY
PE
_W
ST
R

Catalog name. NULL if the provider does not support catalogs.

PROCE
DURE_
SCHE
MA

DB
TY
PE
_W
ST
R

Unqualified schema name. NULL if the provider does not support schemas.

PROCE
DURE_
NAME

DB
TY
PE
_W
ST
R

Table name.

COLU
MN_N
AME

DB
TY
PE
_W
ST
R

The name of the column; this might not be unique. If this cannot be determined, a NULL is returned. This column, toge
ther with the COLUMN_GUID and COLUMN_PROPID columns, forms the column ID. One or more of these columns w
ill be NULL depending on which elements of the DBID structure the provider uses. If possible, the resulting column ID
should be persistent. However, some providers do not support persistent identifiers for columns. The column ID of a
base table should be invariant under views.

COLU
MN_G
UID

DB
TY
PE
_G
UI
D

Column GUID.

COLU
MN_P
ROPID

DB
TY
PE
_UI
4

Column property ID.

ROWS
ET_NU
MBER

DB
TY
PE
_UI
4

Number of the rowset containing the column. This is greater than one only if the procedure returns multiple rowsets.

ORDIN
AL_PO
SITION

DB
TY
PE
_UI
4

The ordinal of the column. Columns are numbered starting from one. NULL if there is no stable ordinal value for the c
olumn.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

IS_NUL
LABLE

DB
TY
PE
_B
O
OL

VARIANT_TRUE: The column might be nullable.
VARIANT_FALSE: The column is known not to be nullable.

DATA_
TYPE

DB
TY
PE
_UI
2

The indicator of the column’s data type. If the data type of the column varies from row to row, this must be DBTYPE_V
ARIANT.

TYPE_
GUID

DB
TY
PE
_G
UI
D

The GUID of the column’s data type.

CHARA
CTER_
MAXIM
UM_LE
NGTH

DB
TY
PE
_UI
4

The maximum possible length of a value in the column. For character, binary, or bit columns, this is one of the followi
ng:

The maximum length of the column in characters, bytes, or bits, respectively, if one is defined. For example, a CHAR(5)
column in an SQL table has a maximum length of five (5).

The maximum length of the data type in characters, bytes, or bits, respectively, if the column does not have a defined l
ength.

Zero (0) if neither the column nor the data type has a defined maximum length.

NULL for all other types of columns.

CHARA
CTER_
OCTET
_LENG
TH

DB
TY
PE
_UI
4

Maximum length in octets (bytes) of the column, if the type of the column is character or binary. A value of zero mean
s the column has no maximum length. NULL for all other types of columns.

NUME
RIC_PR
ECISIO
N

DB
TY
PE
_UI
2

If the column’s data type is numeric, this is the maximum precision of the column. The precision of columns with a dat
a type of DBTYPE_DECIMAL or DBTYPE_NUMERIC depends on the definition of the column. If the column’s data type i
s not numeric, this is NULL.

NUME
RIC_SC
ALE

DB
TY
PE
_I2

If column’s type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the number of digits to the right of the de
cimal point. Otherwise, this is NULL.

DESCR
IPTION

DB
TY
PE
_W
ST
R

Human-readable description of the column. For example, the description for a column named Name in the Employee
table might be "Employee name."

The default sort order for the adSchemaProcedures rowset is PROCEDURE_CATALOG, PROCEDURE_SCHEMA, and
PROCEDURE_NAME.

Microsoft Host Integration Server 2000

adSchemaProcedureParameters
The adSchemaProcedureParameters QueryType identifies information about the parameters and return codes of procedures.
This QueryType is supported by the Microsoft® OLE DB Provider for DB2.

The rowset returned by an adSchemaProcedureParameters QueryType contains the following columns:

Column na
me

Type
indic
ator

Description

PROCEDURE
_CATALOG

DBTY
PE_W
STR

Catalog name. NULL if the provider does not support catalogs.

PROCEDURE
_SCHEMA

DBTY
PE_W
STR

Unqualified schema name. NULL if the provider does not support schemas.

PROCEDURE
_NAME

DBTY
PE_W
STR

Table name.

PARAMETER
_NAME

DBTY
PE_W
STR

Parameter name. NULL if the parameter is not named.

ORDINAL_P
OSITION

DBTY
PE_UI
2

If the parameter is an input, input/output, or output parameter, this is the one-based ordinal position of the p
arameter in the procedure call.

If the parameter is the return value, this is zero.

PARAMETER
_TYPE

DBTY
PE_UI
2

One of the following:

DBPARAMTYPE_INPUT—The parameter is an input parameter.

DBPARAMTYPE_INPUTOUTPUT—The parameter is an input/output parameter.

DBPARAMTYPE_OUTPUT—The parameter is an output parameter.

DBPARAMTYPE_RETURNVALUE—The parameter is a procedure return value.

If the provider cannot determine the parameter type, this is NULL.

PARAMETER
_HASDEFAU
LT

DBTY
PE_B
OOL

VARIANT_TRUE: The parameter has a default value.

VARIANT_FALSE: The parameter does not have a default value or it is unknown whether the parameter has a
default value.

PARAMETER
_DEFAULT

DBTY
PE_W
STR

Default value of the parameter.

If the default value is the NULL value, PARAMETER_HASDEFAULT is VARIANT_TRUE, and the PARAMETER_DE
FAULT value is a NULL value.

IS_NULLABL
E

DBTY
PE_B
OOL

VARIANT_TRUE: The parameter might be nullable.
VARIANT_FALSE: The parameter is not nullable.

DATA_TYPE DBTY
PE_UI
2

The indicator of the parameter’s data type.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CHARACTER
MAXIMUM
LENGTH

DBTY
PE_UI
4

The maximum possible length of a value in the parameter. For character, binary, or bit columns, this is one of
the following:

The maximum length of the parameter in characters, bytes, or bits, respectively, if one is defined. For example,
a CHAR(5) column in an SQL table has a maximum length of five (5).

The maximum length of the data type in characters, bytes, or bits, respectively, if the parameter does not have
a defined length.

Zero (0) if neither the parameter nor the data type has a defined maximum length.

NULL for all other types of parameters.

CHARACTER
_OCTET_LEN
GTH

DBTY
PE_UI
4

Maximum length in octets (bytes) of the parameter, if the type of the parameter is character or binary. A value
of zero means the parameter has no maximum length. NULL for all other types of parameter.

NUMERIC_P
RECISION

DBTY
PE_UI
2

If the parameter’s data type is numeric, this is the maximum precision of the parameter. The precision of para
meters with a data type of DBTYPE_DECIMAL or DBTYPE_NUMERIC depends on the definition of the paramet
ers. If the parameter’s data type is not numeric, this is NULL.

NUMERIC_S
CALE

DBTY
PE_I2

If parameter’s type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the number of digits to the rig
ht of the decimal point. Otherwise, this is NULL.

DESCRIPTIO
N

DBTY
PE_W
STR

Human-readable description of the parameter. For example, the description for a parameter named Name in
a procedure that adds a new employee might be "Employee name."

TYPE_NAME DBTY
PE_W
STR

Provider-specific data type name.

LOCAL_TYPE
_NAME

DBTY
PE_W
STR

Localized version of TYPE_NAME. NULL is returned if a localized name is not supported by the data provider.

The default sort order for the adSchemaProcedureParameters rowset is PROCEDURE_CATALOG, PROCEDURE_SCHEMA, and
PROCEDURE_NAME.

Microsoft Host Integration Server 2000

adSchemaProviderTypes
The adSchemaProviderTypes QueryType identifies the data types supported by the data provider. This QueryType is supported
by the Microsoft® OLE DB Provider for AS/400 and VSAM and the Microsoft® OLE DB Provider for DB2.

The rowset returned by an adSchemaProviderType QueryType contains the following columns:

C
ol
u
m
n
n
a
m
e

T
y
p
e
in
di
c
at
o
r

Description

T
Y
P
E_
N
A
M
E

D
B
T
Y
P
E_
W
S
T
R

Provider-specific data type name.

D
A
T
A
_T
Y
P
E

D
B
T
Y
P
E_
UI
2

The indicator of the data type.

C
O
L
U
M
N
_
SI
Z
E

D
B
T
Y
P
E_
UI
4

The length of a non-numeric column or parameter refers to either the maximum or the defined length for this type by the pr
ovider. For character data, this is the maximum or defined length in characters. If the data type is numeric, this is the upper b
ound on the maximum precision of the data type.

LI
T
E
R
A
L_
P
R
E
FI
X

D
B
T
Y
P
E_
W
S
T
R

Character or characters used to prefix a literal of this type in a text command.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LI
T
E
R
A
L_
S
U
F
FI
X

D
B
T
Y
P
E_
W
S
T
R

Character or characters used to suffix a literal of this type in a text command.

C
R
E
A
T
E_
P
A
R
A
M
S

D
B
T
Y
P
E_
W
S
T
R

The creation parameters are specified by the consumer when creating a column of this data type. For example, the SQL data
type DECIMAL needs a precision and a scale. In this case, the creation parameters might be the string "precision,scale". In a t
ext command, to create a DECIMAL column with a precision of 10 and a scale of 2, the value of the TYPE_NAME column mig
ht be DECIMAL() and the complete type specification would be DECIMAL(10,2). The creation parameters appear as a comma
-separated list of values, in the order they are to be supplied, with no surrounding parentheses. If a creation parameter is len
gth, maximum length, precision, or scale, "length", "max length", "precision", and "scale" should be used, respectively. If the c
reation parameters are some other value, it is provider-specific what text is used to describe the creation parameter. If the d
ata type requires creation parameters, "()" generally appears in the type name. This indicates the position at which to insert t
he creation parameters. If the type name does not include "()", the creation parameters are enclosed in parentheses and app
ended to the end of the data type name.

IS
_
N
U
L
L
A
B
L
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is nullable.
VARIANT_FALSE: The data type is not nullable.
NULL: It is not known whether the data type is nullable.

C
A
S
E_
S
E
N
SI
TI
V
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is a character type and is case-sensitive.
VARIANT_FALSE: The data type is not a character type or is not case-sensitive.

S
E
A
R
C
H
A
B
L
E

D
B
T
Y
P
E_
UI
4

If the provider supports ICommandText, then this column is an integer indicating the searchability of a data type, otherwis
e this column is NULL. One of the following:
DB_UNSEARCHABLE: The data type cannot be used in a WHERE clause.
DB_LIKE_ONLY: The data type can be used in a WHERE clause only with the LIKE predicate.
DB_ALL_EXCEPT_LIKE: The data type can be used in a WHERE clause with all comparison operators except LIKE.
DB_SEARCHABLE: The data type can be used in a WHERE clause with any comparison operator.

U
N
SI
G
N
E
D
_
A
T
T
RI
B
U
T
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is unsigned.
VARIANT_FALSE: The data type is signed.
NULL: Not applicable to data type.

FI
X
E
D
_
P
R
E
C
_
S
C
A
L
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type has a fixed precision and scale.
VARIANT_FALSE: The data type does not have a fixed precision and scale.

A
U
T
O
_
U
N
I
Q
U
E_
V
A
L
U
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: Values of this type can be auto-incrementing.
VARIANT_FALSE: Values of this type cannot be auto-incrementing.

L
O
C
A
L_
T
Y
P
E_
N
A
M
E

D
B
T
Y
P
E_
W
S
T
R

Localized version of TYPE_NAME. NULL is returned if a localized name is not supported by the data provider.

M
I
N
I
M
U
M
_
S
C
A
L
E

D
B
T
Y
P
E_
I2

If the type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the minimum number of digits allowed to the right of
the decimal point. Otherwise, this is NULL.

M
A
XI
M
U
M
_
S
C
A
L
E

D
B
T
Y
P
E_
I2

If the type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the maximum number of digits allowed to the right of
the decimal point. Otherwise, this is NULL.

G
UI
D

D
B
T
Y
P
E_
G
UI
D

The GUID of the type. All types supported by a provider are described in a type library, so each type has a corresponding GU
ID.

T
Y
P
E
LI
B

D
B
T
Y
P
E_
W
S
T
R

The type library containing the description of this type. All types supported by a provider are described in one or more type l
ibraries.

V
E
R
SI
O
N

D
B
T
Y
P
E_
W
S
T
R

The version of the type definition. Providers may wish to version type definitions. Different providers may use different versi
on schemes, such as a timestamp or number (integer or float). NULL if not supported.

IS
_L
O
N
G

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is a BLOB that contains very long data; the definition of very long data is provider-specific.
VARIANT_FALSE: The data type is a BLOB that does not contain very long data or is not a BLOB.
This value determines the setting of the DBCOLUMNFLAGS_ISLONG flag returned by GetColumnInfo in IColumnsInfo an
d GetParameterInfo in ICommandWithParameters. For more information, see GetColumnInfo and GetParameterInfo
.

B
E
S
T_
M
A
T
C
H

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is the best match between all data types in the data source and the OLE DB data type indicate
d by the value in the DATA_TYPE column.
VARIANT_FALSE: The data type is not the best match. For each set of rows in which the value of the DATA_TYPE column is th
e same, the BEST_MATCH column is set to VARIANT_TRUE in only one row.

The default sort order for the adSchemaProviderTypes rowset is DATA_TYPE.

Microsoft Host Integration Server 2000

adSchemaTables
The adSchemaTables QueryType identifies the tables defined in the catalog that are accessible to a given user. This QueryType is
supported by the Microsoft® OLE DB Provider for AS/400 and VSAM and the Microsoft® OLE DB Provider for DB2.

The rowset returned by an adSchemaTables QueryType contains the following columns:

Column na
me

Type indica
tor

Description

TABLE_CATAL
OG

DBTYPE_WS
TR

Catalog name. NULL if the provider does not support catalogs.

TABLE_SCHE
MA

DBTYPE_WS
TR

Unqualified Schema Name. NULL if the provider does not support schemas.

TABLE_NAME DBTYPE_WS
TR

Table name.

TABLE_TYPE DBTYPE_WS
TR

Table type. One of the following or a provider-specific value.
"ALIAS"
"TABLE"
"SYNONYM"
"SYSTEM TABLE"
"VIEW"
"GLOBAL TEMPORARY"
"LOCAL TEMPORARY"

TABLE_GUID DBTYPE_GUI
D

GUID that uniquely identifies the table. Providers that do not use GUIDs to identify tables should retur
n NULL in this column.

DESCRIPTIO
N

DBTYPE_WS
TR

Human-readable description of the table.

The default sort order for the adSchemaTables rowset is TABLE_TYPE, TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Precision Property
The Precision property on a Field object indicates the degree of precision for Numeric values for numeric Field objects. This
property returns a byte value indicating the maximum number of digits used to represent numeric values in a Field object.

Remarks

The Precision property is used to return the precision of a numeric field object.

The byte value that the Precision property will return is dependent on the data type of the Field object. The value for the ADO
data type of the Field object can be one of the following enumerated values for DataTypeEnum:

Enume
ration

V
al
u
e

Description

adEmp
ty

0 This data type indicates that no value was specified (DBTYPE_EMPTY).

adSma
llInt

2 This data type indicates a two-byte (16-bit) signed integer (DBTYPE_I2).

adInte
ger

3 This data type indicates a four-byte (32-bit) signed integer (DBTYPE_I4).

adSing
le

4 This data type indicates a four-byte (32-bit) single precision IEEE floating point number (DBTYPE_R4).

adDou
ble

5 This data type indicates an eight-byte (64-bit) double precision IEEE floating point number (DBTYPE_R8).

adCurr
ency

6 A data type indicates a currency value (DBTYPE_CY). Currency is a fixed-point number with 4 digits to the right of the d
ecimal point. It is stored in an eight-byte signed integer scaled by 10,000. This data type is not supported by the Micros
oft® OLE DB Provider for AS/400 and VSAM or the Microsoft® OLE DB Provider for DB2.

adDat
e

7 This data type indicates a date value stored as a Double, the whole part of which is the number of days since Decembe
r 30, 1899, and the fractional part of which is the fraction of a day. This data type is not supported by the OLE DB Provi
der for AS/400 and VSAM or the OLE DB Provider for DB2.

adBST
R

8 This data type indicate a null-terminated Unicode character string (DBTYPE_BSTR). This data type is not supported by t
he OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIDis
patch

9 This data type indicates a pointer to an IDispatch interface on an OLE object (DBTYPE_IDISPATCH). This data type is not
supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adErro
r

1
0

This data type indicates a 32-bit error code (DBTYPE_ERROR). This data type is not supported by the OLE DB Provider f
or AS/400 and VSAM or the OLE DB Provider for DB2.

adBool
ean

1
1

This data type indicates a Boolean value (DBTYPE_BOOL). This data type is not supported by the OLE DB Provider for A
S/400 and VSAM.

adVari
ant

1
2

This data type indicates an automation variant (DBTYPE_VARIANT). This data type is not supported by the OLE DB Prov
ider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIUn
known

1
3

This data type indicates a pointer to an IUnknown interface on an OLE object (DBTYPE_IUNKNOWN). This data type is
not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDeci
mal

1
4

This data type indicates numeric data with a fixed precision and scale (DBTYPE_DECIMAL).

adTiny
Int

1
6

This data type indicates a single -byte (8-bit) signed integer (DBTYPE_I1). This data type is not supported by the OLE D
B Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedTi
nyInt

1
7

This data type indicates a single-byte (8-bit) unsigned integer (DBTYPE_UI1). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedS
mallIn
t

1
8

This data type indicates a two-byte (16-bit) unsigned integer (DBTYPE_UI2). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

numericPrecision = currentfield.Precision

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

adUnsi
gnedIn
t

1
9

This data type indicates a four-byte (32-bit) unsigned integer (DBTYPE_UI4). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBigI
nt

2
0

This data type indicates an eight-byte (64-bit) signed integer (DBTYPE_I8). This data type is not supported by the OLE D
B Provider for AS/400 and VSAM.

adUnsi
gnedBi
gInt

2
1

This data type indicates an eight-byte (64-bit) unsigned integer (DBTYPE_UI8). This data type is not supported by the O
LE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adGUI
D

7
2

This data type indicates a globally unique identifier or GUID (DBTYPE_GUID). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBina
ry

1
2
8

This data type indicates fixed-length binary data (DBTYPE_BYTES).

adChar 1
2
9

This data type indicates a character string value (DBTYPE_STR).

adWC
har

1
3
0

This data type indicates a null-terminated Unicode character string (DBTYPE_WSTR). This data type is not supported by
the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adNu
meric

1
3
1

This data type indicates numeric data where the precision and scale are exactly as specified (DBTYPE_NUMERIC).

adUser
Define
d

1
3
2

This data type indicates user-defined data (DBTYPE_UDT). This data type is not supported by the OLE DB Provider for A
S/400 and VSAM or the OLE DB Provider for DB2.

adDBD
ate

1
3
3

This data type indicates a OLE DB date structure (DBTYPE_DATE).

adDBT
ime

1
3
4

This data type indicates a OLE DB time structure (DBTYPE_TIME).

adDBT
imeSta
mp

1
3
5

This data type indicates a OLE DB timestamp structure (DBTYPE_TIMESTAMP).

adVar
Char

2
0
0

This data type indicates variable-length character data (DBTYPE_STR).

adLon
gVarC
har

2
0
1

This data type indicates a long string value.

adVar
WChar

2
0
2

This data type indicates a Unicode string value. This data type is not supported by the OLE DB Provider for AS/400 and
VSAM or the OLE DB Provider for DB2.

adLon
gVarW
Char

2
0
3

This data type indicates a long Unicode string value. This data type is not supported by the OLE DB Provider for AS/40
0 and VSAM or the OLE DB Provider for DB2.

adVar
Binary

2
0
4

This data type indicates variable-length binary data (DBTYPE_BYTES).

adLon
gVarBi
nary

2
0
5

This data type indicates a long binary value.

Note that the Precision property returns values that differ from the precision of the host data type for the following ADO data
types:

ADO Data Type Comments
adSmallInt The precision on the host is 4, but the OLE DB Provider returns a precision of 5.
adInteger The precision on the host is 8, but the OLE DB Provider returns a precision of 10.

adSingle The precision on the host is 9, but the OLE DB Provider returns a precision of 7.
adDouble The precision on the host is 17, but the OLE DB Provider returns a precision of 15.

Microsoft Host Integration Server 2000

OriginalValue Property
The OriginalValue property on a Field object indicates the value of a Field that existed in the record before any changes were
made. This property returns a Variant.

Remarks

The OriginalValue property is used to return the original field value for a field from the current record.

In immediate update mode (the provider writes changes to the underlying data source once the Update method is called), the
OriginalValue property returns the field value that existed prior to any changes (that is, since the last Update method call). This
is the same value that the CancelUpdate method uses to replace the Value property.

In batch update mode (the provider caches multiple changes and writes them to the underlying data source only when the
UpdateBatch method is called), the OriginalValue property returns the field value that existed prior to any changes (that is,
since the last UpdateBatch method call). This is the same value that the CancelBatch method uses to replace the Value
property. When this property is used with the UnderlyingValue property, you can resolve conflicts that arise from batch
updates.

oldValue = currentfield.OriginalValue

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Provider Property
The Provider property on a Connection object indicates the name of the provider. This property sets or returns a String value.

Remarks

The Provider property is used to set or return the name of the provider for the connection. This property can also be set by the
contents of ConnectionString property or the ConnectionString argument of the Open method. However, specifying a
provider in more than one place while calling the Open method can have unpredictable results. If no provider is specified, the
property will default to MSDASQL (Microsoft® OLE DB Provider for ODBC).

The Microsoft® OLE DB Provider for AS/400 and VSAM requires "SNAOLEDB" as the Provider property string.

The Microsoft® OLE DB Provider for DB2 requires "DB2OLEDB" as the Provider property string.

The Provider property is read/write when the connection is closed and read-only when it is open. The setting does not take effect
until either the Connection object is opened or the Properties collection of the Connection object is accessed. If the setting is
invalid, an error occurs.

oldProvider = currentConnection.Provider
currentConnection.Provider = "SNAOLEDB"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Refresh Method
The Refresh method on a Collection object updates the objects in a collection to reflect objects available from and specific to the
OLE DB provider.

Parameters

None.

Remarks

This method is only supported on the Fields and Properties collections under the Microsoft® OLE DB Provider for AS/400 and
VSAM.

The Refresh method accomplishes different tasks depending on the collection object on which it is called.

Using the Refresh method on the Fields collection has no visible effect. To retrieve changes from the underlying database
structure, either the Requery method must be used or, if the Recordset object does not support bookmarks, the MoveFirst
method must be used.

Using the Refresh method on a Properties collection of some objects populates the collection with the dynamic properties the
provider exposes. These properties provide information about features specific to the provider beyond the built-in properties
ADO supports. The OLE DB Data Provider for AS/400 and VSAM does not support any provider-specific properties.

collection.Refresh

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Requery Method
The Requery method on a Recordset object updates the data in a Recordset object by re-executing the query on which the
object is based.

Parameters

None.

Remarks

The Requery method is used to refresh the entire contents of a Recordset object from the data source by reissuing the original
command and retrieving the data a second time. Calling this method is equivalent to calling the Close and Open methods in
succession. If you are editing the current record or adding a new record, an error occurs.

While the Recordset object is open, the properties that define the nature of the cursor (CursorType, LockType, MaxRecords,
and other properties) are read-only. Thus, the Requery method can only refresh the current cursor. To change any of the cursor
properties and view the results, the Close method must be used so that the properties become read/write again. You can then
change the property settings and call the Open method to reopen the cursor.

recordset.Requery

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Save Method
The Save method on a Recordset object saves the Recordset in a file or Stream object.

Parameters

Destination
This optional parameter specifies a Variant representing the complete path name of the file where the Recordset is to be saved,
or a reference to a Stream object.

Persistent Format
This optional parameter specifies a Long integer value representing a PersistFormatEnum value that specifies the format in
which the Recordset is to be saved (XML or ADTG). The default value is adPersistADTG.

The PersistFormatEnum value can be one of the following constants:

Enumeration Value Description
adPersistADTG 0 This value indicates Microsoft Advanced Data TableGram (ADTG) format.
adPersistXML 1 This value indicates Extensible Markup Language (XML) format.

Remarks

The Save method can only be invoked on an open Recordset. Use the Open method to later restore the Recordset from
Destination.

When using the Microsoft® OLE DB Provider for AS/400 and VSAM and the Filter property is in effect for the Recordset, then
only the rows accessible under the filter are saved.

The first time you save the Recordset, it is optional to specify Destination. If the Destination parameter is omitted, a new file will
be created with a name set to the value of the Source property of the Recordset.

The Destination parameter should be omitted when you subsequently call Save after the first save, or a run-time error will occur.
If you subsequently call Save with a new Destination, the Recordset is saved to the new destination. However, the new
destination and the original destination will both be open.

Save does not close the Recordset or Destination, so you can continue to work with the Recordset and save your most recent
changes. Destination remains open until the Recordset is closed, during which time other applications can read but not write to
Destination.

For reasons of security, the Save method permits only the use of low and custom security settings from a script executed by
Microsoft® Internet Explorer. For a more detailed explanation of security issues, see "ADO and RDS Security Issues in Microsoft
Internet Explorer" found in the ActiveX® Data Objects (ADO) Technical Articles of the Microsoft Data Access Technical Articles.

If the Save method is called while an asynchronous Recordset fetch, execute, or update operation is in progress, then Save waits
until the asynchronous operation is complete.

Records are saved beginning with the first row of the Recordset. When the Save method is finished, the current row position is
moved to the first row of the Recordset.

For best results, set the CursorLocation property to adUseClient with Save. If your provider does not support all of the features
necessary to save Recordset objects, the Cursor Service will provide these features.

When a Recordset is persisted with the CursorLocation property set to adUseServer, the update capability for the Recordset is
limited. Typically, only single-table updates, insertions, and deletions are allowed (dependent on features supported by the
provider). The Resync method is also unavailable in this configuration.

Note that saving a Recordset with Fields of type adVariant, adIDispatch, or adIUnknown is not supported by ADO and can
cause unpredictable results.

Because the Destination parameter can accept any object that supports the OLE DB IStream interface, a Recordset can be saved
directly to the ASP Response object. For more information, see the XML Recordset Persistence Scenario in the ADO Programmer's
Reference.

recordset.Save Destination, Persistent Format

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sort Property
The Sort property on a Recordset object indicates that a recordset should be sorted.

Parameters

Criteria
This parameter specifies the criteria used for sorting the Recordset object. This Sort property contains a comma-delimited list
of column names and a direction specifier (ascending or descending) to be used for sorting records in a Recordset object. The
direction specifier is a string (ASC or DESC). When a direction is not specified, the direction defaults to ascending.

An example of a Sort property criteria is as follows:

"LastName ASC, FirstName DESC, Initial"

Remarks

The Sort property is not supported by the OLE DB Provider for DB2 or the ODBC Driver for DB2.

The Sort property is used with an open Recordset object based on an AS/400 physical file. The Sort property allows the user to
indicate which logical view to apply to an AS/400 physical file. The logical view must be a valid index specified in the description
of the AS/400 physical file. The logical view is provided by the AS/400 logical file. The Microsoft® OLE DB Provider for AS/400
and VSAM responds to a Sort request by first closing the open physical file, and then opening the logical file that points back to
the data in the physical file.

The Recordset Sort property is only supported on AS/400 hosts. If the user opens a Recordset object based on an AS/400
logical file, then there is likely no need to use Recordset.Sort. For performance reasons, applications should be written to open
the AS/400 logical file first, because the overhead is so much greater when opening a physical file first.

If the CursorLocation property is set to adUseClient (use the client cursor engine), the Sort property will work if MDAC 2.0 or
later is installed but will not work properly with earlier versions of ADO.

Recordset.Sort BSTR Criteria

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Source Property on Error Object
The Source property on a Error object indicates the name of the object or application that originally generated an error. This
property returns a String value that indicates the name of an object or application.

Remarks

The Source property on a Error object is used to determine the name of the object or application that originally generated an
error. This could be the object's class name or programmatic ID.

For errors in ADO, the property value will be ADODB.ObjectName, where ObjectName is the name of the object that triggered
the error. For ADOX and ADO MD, the value will be ADOX.ObjectName and ADOMD.ObjectName, respectively.

Based on the error documentation from the Source, Number, and Description properties of Error objects, you can write code that
will handle the error appropriately.

The Source property is read-only for Error objects.

errorSource = currentError.Source

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Source Property on Recordset Object
The Source property on a Recordset object indicates the data source for the Recordset object. This property sets a String value or
Command object reference or returns only a String value that indicates the source of the Recordset.

Remarks

The Source property on a Recordset is used to specify a data source for a Recordset object.

Using the Microsoft® OLE DB Provider for AS/400 and VSAM, the Source property can be either a Command object variable or
a table name.

Using the Microsoft® OLE DB Provider for DB2, the Source property can be one of the following: a Command object variable, an
SQL statement, or a stored procedure. If the Source property is an SQL statement or a stored procedure, you can optimize
performance by passing the appropriate Options argument with the Open method call.

If you set the Source property to a Command object, the ActiveConnection property of the Recordset object will inherit the
value of the ActiveConnection property for the specified Command object. However, reading the Source property does not
return a Command object; instead, it returns the CommandText property of the Command object to which you set the Source
property.

The Source property is read/write for closed Recordset objects and read-only for open Recordset objects.

currentSource = currentRecordset.Source
recordset.Source = newSource

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

State Property
The State property on a Connection, Command, or Recordset object describes the current state of an object. This property sets
or returns a Long value.

Remarks

The State property is used to set or return the current state of an object. The value of the State property can be one of the
following enumerated values:

Enumeration Value Description
adStateClosed 0 This value indicates that the object is closed. This is the default value.
AdStateOpen 1 This value indicates that the object is open.

The State property can be used to determine the current state of a given object at any time.

oldState = currentConnection.State
currentConnection.State = adStateClosed

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status Property
The Status property on a Recordset object indicates the status of the current record with respect to batch updates or other bulk
operations. This property returns a Long value.

Remarks

The Status property is used to return the current status of a recordset object at any time. The value of the Status property returns
a sum of the following RecordStatusEnum enumerated values:

Enumeration Value Description
adRecOK 0 This value indicates that the recordset object was successfully updated.
AdRecNew 0x1 This value indicates that the recordset object is new.
AdRecModified 0x2 This value indicates that the recordset object was modified.
AdRecDeleted 0x4 This value indicates that the recordset object was deleted.
AdRecUnmodified 0x8 This value indicates that the recordset object was not modified.
adRecInvalid 0x10 This value indicates that the recordset object was not saved because its bookmark is invalid.
adRecMultipleChange
s

0x40 This value indicates that the recordset object was not saved because it would have affected multi
ple records.

adRecPendingChange
s

0x80 This value indicates that the recordset object was not saved because it refers to a pending insert.

adRecCanceled 0x100 This value indicates that the recordset object was not saved because the operation was canceled.
adRecCantRelease 0x400 This value indicates that the new recordset object was not saved because of existing record locks

.
adRecConcurencyViol
ation

0x800 This value indicates that the recordset object was not saved because optimistic concurrency was
in use.

adRecIntegrityViolatio
n

0x100
0

This value indicates that the recordset object was not saved because the user violated integrity c
onstraints.

adRecMaxChangesExc
eeded

0x200
0

This value indicates that the recordset object was not saved because there were too many pendi
ng changes.

adRecObjectOpen 0x400
0

This value indicates that the recordset object was not saved because of a conflict with an open st
orage object.

adRecOutOfMemory 0x800
0

This value indicates that the recordset object was not saved because the computer has run out o
f memory.

adRecPermissionDeni
ed

0x100
00

This value indicates that the recordset object was not saved because the user has insufficient per
missions.

adRecSchemaViolatio
n

0x200
00

This value indicates that the recordset object was not saved because it violates the structure of t
he underlying database.

adRecDBDeleted 0x400
00

This value indicates that the recordset object has already been deleted from the data source.

Use the Status property to see what changes are pending for records modified during batch updating. You can also use the
Status property to view the status of records that fail during bulk operations such as when you call the Resync, UpdateBatch, or
CancelBatch methods on a recordset object, or set the Filter property on a recordset object to an array of bookmarks. With this
property, you can determine how a given record failed and resolve it accordingly.

oldStatus = currentRecordset.Status

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Supports Method
The Supports method on a Recordset object determines whether a specified Recordset object supports a particular type of
feature.

Parameters

CursorOptions
This parameter specifies a Long expression that consists of one or more of the CursorOptionEnum values indicating which
feature is being queried. The CursorOptionEnum value can be one of the constants shown in the table following the
Parameters section.

Values for the CursorOptions parameter

Enumerat
ion

Valu
e

Description

adAddNe
w

0x100
0400

This value indicates whether the AddNew method can be used to add new records.

adApprox
Position

0x400
0

This value indicates whether the AbsolutePosition and AbsolutePage properties can read and set.

adBookM
ark

0x200
0

This value indicates whether the Bookmark property can be used to access specific records.

adDelete 0x100
0800

This value indicates whether the Delete method can be used to delete records.

adFind 0x800
00

This value indicates whether the Find method can be used to locate a row in a Recordset.

adHoldRe
cords

0x100 This value indicates whether you can retrieve more records or change the next retrieve position without commi
tting all pending changes.

adIndex 0x100
000

This value indicates whether the Index property can be name an index.

adMoveP
revious

0x200 This value indicates whether the MoveFirst and MovePrevious methods, and Move or GetRows methods ca
n be used to move the current record position backward without requiring bookmarks.

adNotify 0x400
00

This value indicates that the underlying data provider supports notifications (which determines whether Recor
dset events are supported).

adResync 0x200
00

This value indicates whether the recordset cursor can be updated with the data visible in the underlying databa
se using the Resync method.

adSeek 0x200
000

This value indicates whether the Seek method can be used to locate a row in a Recordset.

adUpdate 0x100
8000

This value indicates whether the Update method can be used to modify existing data.

adUpdate
Batch

0x100
00

This value indicates whether batch updating can be used on the recordset (the UpdateBatch and CancelBatc
h methods) to transmit changes to the provider in groups.

Return Values

Returns a Boolean value that indicates whether all of the features identified by the CursorOptions argument are supported by the
provider.

Remarks

The Supports method is used to determine what types of features (methods and properties) a Recordset object supports. If the
Recordset object supports the features whose corresponding constants are in CursorOptions, the Supports method returns
True. Otherwise, it returns False.

Although the Supports method may return True for a given feature, it does not guarantee that the OLE DB Provider can make the
feature available under all circumstances. The Supports method simply returns whether the provider can support the specified
function assuming certain conditions are met. For example, the Supports method may indicate that a Recordset object supports
updates even though the cursor is based on a multitable join, some columns of which are not updatable.

boolean = recordset.Supports (CursorOptions)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Type Property
The Type property on a Field object indicates the operational type or data type for Field or Property objects. This property sets
or returns a DataTypeEnum value.

Remarks

The Type property is used to return the data type of a numeric field object.

The value returned by the Type property on a Field object can be one of the following enumerated values for DataTypeEnum:

Enume
ration

V
a
l
u
e

Description

adEmp
ty

0 This data type indicates that no value was specified (DBTYPE_EMPTY).

AdSma
llInt

2 This data type indicates a two-byte (16-bit) signed integer (DBTYPE_I2).

AdInte
ger

3 This data type indicates a four-byte (32bit) signed integer (DBTYPE_I4).

AdSin
gle

4 This data type indicates a four-byte (32-bit) single-precision IEEE floating-point number (DBTYPE_R4).

AdDou
ble

5 This data type indicates an eight-byte (64-bit) double-precision IEEE floating-point number (DBTYPE_R8).

adCurr
ency

6 A data type indicates a currency value (DBTYPE_CY). Currency is a fixed-point number with four digits to the right of th
e decimal point. It is stored in an eight-byte signed integer scaled by 10,000. This data type is not supported by the Mic
rosoft® OLE DB Provider for AS/400 and VSAM or the Microsoft® OLE DB Provider for DB2.

adDat
e

7 This data type indicates a date value stored as a Double, the whole part of which is the number of days since December
30, 1899, and the fractional part of which is the fraction of a day. This data type is not supported by the OLE DB Provid
er for AS/400 and VSAM or the OLE DB Provider for DB2.

adBST
R

8 This data type indicates a null-terminated Unicode character string (DBTYPE_BSTR). This data type is not supported by t
he OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIDis
patch

9 This data type indicates a pointer to an IDispatch interface on an OLE object (DBTYPE_IDISPATCH). This data type is no
t supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adErro
r

1
0

This data type indicates a 32-bit error code (DBTYPE_ERROR). This data type is not supported by the OLE DB Provider f
or AS/400 and VSAM or the OLE DB Provider for DB2.

adBool
ean

1
1

This data type indicates a Boolean value (DBTYPE_BOOL). This data type is not supported by the OLE DB Provider for A
S/400 and VSAM.

adVari
ant

1
2

This data type indicates an Automation variant (DBTYPE_VARIANT). This data type is not supported by the OLE DB Prov
ider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIUn
known

1
3

This data type indicates a pointer to an IUnknown interface on an OLE object (DBTYPE_IUNKNOWN). This data type is
not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDeci
mal

1
4

This data type indicates numeric data with a fixed precision and scale (DBTYPE_DECIMAL).

adTiny
Int

1
6

This data type indicates a single-byte (8-bit) signed integer (DBTYPE_I1). This data type is not supported by the OLE DB
Provider.

adUnsi
gnedTi
nyInt

1
7

This data type indicates a singlebyte (8-bit) unsigned integer (DBTYPE_UI1). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedS
mallIn
t

1
8

This data type indicates a two-byte (16-bit) unsigned integer (DBTYPE_UI2). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

datatype = currentfield.Type

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

adUnsi
gnedIn
t

1
9

This data type indicates a four-byte (32-bit) unsigned integer (DBTYPE_UI4). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBigI
nt

2
0

This data type indicates an eight-byte (64-bit) signed integer (DBTYPE_I8). This data type is not supported by the OLE D
B Provider for AS/400 and VSAM.

adUnsi
gnedBi
gInt

2
1

This data type indicates an eight-byte (64-bit) unsigned integer (DBTYPE_UI8). This data type is not supported by the O
LE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adGUI
D

7
2

This data type indicates a globally unique identifier or GUID (DBTYPE_GUID). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBina
ry

1
2
8

This data type indicates fixed-length binary data (DBTYPE_BYTES).

adChar 1
2
9

This data type indicates a character string value (DBTYPE_STR).

adWC
har

1
3
0

This data type indicates a null-terminated Unicode character string (DBTYPE_WSTR). This data type is not supported by
the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adNu
meric

1
3
1

This data type indicates numeric data where the precision and scale are exactly as specified (DBTYPE_NUMERIC).

adUser
Define
d

1
3
2

This data type indicates user-defined data (DBTYPE_UDT). This data type is not supported by the OLE DB Provider for A
S/400 and VSAM or the OLE DB Provider for DB2.

adDBD
ate

1
3
3

This data type indicates a OLE DB date structure (DBTYPE_DATE).

adDBT
ime

1
3
4

This data type indicates a OLE DB time structure (DBTYPE_TIME).

adDBT
imeSta
mp

1
3
5

This data type indicates a OLE DB timestamp structure (DBTYPE_TIMESTAMP).

adVar
Char

2
0
0

This data type indicates variable-length character data (DBTYPE_STR).

adLon
gVarC
har

2
0
1

This data type indicates a long string value.

adVar
WChar

2
0
2

This data type indicates a Unicode string value. This data type is not supported by the OLE DB Provider for AS/400 and
VSAM or the OLE DB Provider for DB2.

adLon
gVarW
Char

2
0
3

This data type indicates a long Unicode string value. This data type is not supported by the OLE DB Provider for AS/40
0 and VSAM or the OLE DB Provider for DB2.

adVar
Binary

2
0
4

This data type indicates variable-length binary data (DBTYPE_BYTES).

adLon
gVarBi
nary

2
0
5

This data type indicates a long binary value.

The corresponding OLE DB type indicator is shown in parentheses in the description column of the above table. For more
information on OLE DB data types, see the OLE DB 2.0 Programmer's Reference.

Microsoft Host Integration Server 2000

UnderlyingValue Property
The UnderlyingValue property on a Field object indicates the Field object's current value in the database. This property returns
a Variant.

Remarks

The UnderlyingValue property is used to return the current field value from the database. The field value in the
UnderlyingValue property is the value that is visible to your transaction and may be the result of a recent update by another
transaction. This may differ from the OriginalValue property, which reflects the value that was originally returned to the
Recordset.

This is similar to the affect of calling the Resync method, however the UnderlyingValue property returns only the value for a
specific field from the current record. This is the same value that the Resync method uses to replace the Value property.

When this property is used with the OriginalValue property, you can resolve conflicts that arise from batch updates.

actualValue = currentfield.UnderlyingValue

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Update Method
The Update method on a Recordset object saves any changes you make to the current record of a Recordset object.

Parameters

Fields
This optional parameter specifies a Variant representing a single name or a Variant array representing names or ordinal
positions of the field or fields you wish to modify.

Values
This optional parameter specifies a Variant representing a single value or a Variant array representing values for the field or
fields in the new record.

Remarks

The Update method is used to save any changes you make to the current record of a Recordset object since calling the AddNew
method or since changing any field values in an existing record. The Recordset object must support updates for the Update
method to be used successfully.

To set field values, do one of the following:

Assign values to a Field object's Value property and call the Update method.
Pass a field name and a value as arguments with the Update call.
Pass an array of field names and an array of values with the Update call.

When arrays of fields and values are used, there must be an equal number of elements in both arrays. Also, the order of field
names must match the order of field values. If the number and order of fields and values do not match, an error occurs.

If the Recordset object supports batch updating, then multiple changes to one or more records can be cached locally when the
UpdateBatch method is called. If you are editing the current record or adding a new record when the UpdateBatch method is
called, ADO will automatically call the Update method to save any pending changes to the current record before transmitting the
batched changes to the OLE DB Provider.

If you move from the record you are adding or editing before calling the Update method, ADO will automatically call Update to
save the changes. The CancelUpdate method must be called if you want to cancel any changes made to the current record or to
discard a newly added record.

The current record remains current after the Update method is called.

recordset.Update Fields, Values

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

UpdateBatch Method
The UpdateBatch method on a Recordset object writes all pending batch updates to the host.

Parameters

AffectedRecords
This optional parameter specifies an AffectEnum value that determines how many records the UpdateBatch method will
affect.

The AffectEnum value can be one of the following constants:

Enumera
tion

Val
ue

Description

adAffect
Current

1 This value writes pending changes only for the current record.

adAffect
Group

2 This value writes pending changes for the records that satisfy the current Filter property setting. You must set th
e Filter property to one of the valid predefined constants to use this option.

adAffect
All

3 This value writes pending changes for all the records in the Recordset object, including any hidden by the curre
nt Filter property setting. This value is the default.

Remarks

The UpdateBatch method is used when modifying a Recordset object in batch update mode to transmit all changes made in a
Recordset object to the underlying database.

If the Recordset object supports batch updating, then multiple changes to one or more records can be cached locally until the
UpdateBatch method is called. If you are editing the current record or adding a new record when the UpdateBatch method is
called, ADO will automatically call the Update method to save any pending changes to the current record before transmitting the
batched changes to the provider.

If the attempt to transmit changes fails because of a conflict with the underlying data (for example, a record has already been
deleted by another user), the provider returns warnings to the Errors collection but does not halt program execution. A run-time
error occurs only if there are conflicts on all the requested records. Use the Filter property (adFilterAffectedRecords) and the
Status property to locate records with conflicts.

To cancel all pending batch updates, use the CancelBatch method.

recordset.UpdateBatch AffectedRecords

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Value Property
The Value property on a Field object indicates the value assigned to a Field or Property object. This property sets or returns a
Variant value. The default value depends on the Type property of the Field object.

Remarks

The Value property is used to set or return data from Field objects or to set or return property settings with Property objects.
Whether the Value property is read/write or read-only depends upon numerous factors. For a Field object, this includes whether
the Recordset was opened as read-only or read/write.

ADO allows setting and returning long binary data with the Value property.from the database.

oldValue = currentfield.Value
currentField.Value = newValue

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Version Property
The Version property on a Connection object indicates the ADO version number. This property returns a String value.

Remarks

The Version property is used to return the version number of the ADO implementation. The version of the provider will be
available as a dynamic property in the Properties collection.

versionADO = currentConnection.Version

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Queue ActiveX Control Reference
This section provides reference information on specific ActiveX® methods, properties, and event notifications supported by the
Microsoft® Data Queue ActiveX Control. The function syntax and code examples are based on Microsoft Visual Basic.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AddQueueItem Method
The AddQueueItem method on an IEGDataQueue object adds a record to a specified data queue using the Data Queue ActiveX
Control.

Parameters

QueueItem
This required parameter representing an IEIGDataQueueItem object instance specifying the queue item to add to the queue.

fBlock
This optional parameter specifies whether the operation should block until the completion status is known. This parameter can
be set to one of the eigAnswerYesNoEnum constants listed in the fBlock Values table which follows the Parameters section.

fBlock Values

Enumerati
on

Valu
e

Description

eigAnswer
Yes

0 This value indicates that the operation should block until the completion status is known.

eigAnswer
No

1 This value indicates that the operation should not block. This is the default value for this parameter if it is omitt
ed from the method call.

Remarks

The queue the item is sent to is represented by QItemType property on the IEIGDataQueueItem. The QueueItem is an object of
type IEIGDataQueueItem that may have been initialized by the user or returned by a call to GetQueueItem.

object.AddQueueItem QueueItem, fBlock

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Cancel Method
The Cancel method on an IEGDataQueue object terminates a transfer operation that is already in progress. This method cancels
an item transfer using the Data Queue ActiveX Control.

Parameters

None.

Remarks

The Cancel method is used to cancel a transfer operation that is already in progress.

object.Cancel

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CancelQueue Method
The CancelQueue method on an IEGDataQueue object indicates that an application using the Data Queue ActiveX Control no
longer wants to be notified of an incoming queue data item. This can be used to stop pending notifications that were queued as a
result of calling GetQueueItem.

Parameters

CancelReqCount
This optional parameter is a count (a short value) of the number of outstanding queue receive requests to cancel. This
parameter defaults to a value of 1.

CancelReqType
This optional parameter specifies the type of queue request to cancel. This parameter can be set to one of the
eigQItemTypeEnum constants shown in the CancelReqType Values table which follows the Parameters section.

KeyValue
This optional parameter is a VARIANT representing the key value and has no default value. If the CancelReqType is eigKQItem,
then this value specifies the key value to stop waiting on.

CancelReqType Values

Enumeration Value Description
eigKQItem 0 A keyed item.
eigQItem 1 A non-keyed item. This is the default value for this parameter if it is not specified.

Remarks

An application can call the CancelQueue method passing a CancelReqCount value of 0, in order to retrieve the number of
queued receive requests.

It is possible that a notification event is in process during this method call. If this occurs, the application may receive a notification
following the successful completion of this function. Entering a CancelReqCount value that is larger than the queued requests will
result in all requests being cancelled. No error will be returned under this condition. Calling this method while no queued
requests are outstanding will result in a non-critical error return code indicating this condition.

object.CancelQueue CancelReqCount, CancelReqType, KeyValue

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CCSID Property
The CCSID property on an IEGDataQueueCtrl object indicates the character code set identifier (CCSID) that must match the data
in the queue as represented on the remote host computer. This property affects how data conversion is handled using the Data
Queue ActiveX Control. This property sets or returns a short value representing a host CCSID for the data file. The default value
for this property is 37 representing a CCSID for U.S./Canada.

Remarks

The CCSID property is used to set or return the character code set identifier (CCSID) matching the data in the data queue as
represented on the remote host computer. This value is used for data conversion of any character data in the host data queue to
the PCCodePage property specified representing ANSI or Unicode character data on the Windows machine.

current CCSID = object.CCSID
object.CCSID = 37

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ClearAll Method
The ClearAll method on the EIGDataQueue object removes all items from the queue.

Parameters

OverWrite
This optional parameter specifies whether to overwrite data in the queue. This parameter can be set to one of the
eigAnswerYesNoEnum constants shown in the table following the Parameters list.

Possible values for OverWrite

Enumeration Value Description
eigAnswerYes 0 This value indicates that the operation should overwrite data in the queue.

This is the default value for this parameter if it is omitted from the method call.

eigAnswerNo 1 This value indicates that the operation should not overwrite data in the queue.

object.ClearAll OverWrite

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Connect Method
The Connect method on an IEGDataQueueCtrl object establishes a connection to the configured host using the Data Queue
ActiveX Control and reports to the user an indication of the success or failure of the action.

Parameters

None.

Remarks

The Connect method is used to establish a connection to the host.

If the Data Queue ActiveX Control support DLL cannot be loaded, the Win32 SetErrorMode function is called with an error value
of SEM_NOOPENFILEERRORBOX | SEM_FAILCRITICALERRORS. Other types of errors are returned using the ISupportErrorInfo
object.

object.Connect

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConnectionState Property
The ConnectionState property on an IEGDataQueueCtrl object indicates the current state of the connection to the host using
the Data Queue ActiveX Control. The state of a connection can be unspecified, idle, connecting, connected, or disconnecting. This
property returns a Long value representing a eigConnectionStateEnum. The default value for this property is
eigConnStateIdle.

Remarks

The ConnectionState property is used to return the current state of the connection to the host. This property is read only and
can be one of the following eigConnectionStateEnum constants:

Enumeration Valu
e

Description

eigConnStateUnspecified -1 This value indicates that the connection state is unspecified.
eigConnStateIdle 0 This value indicates that the connection state is idle and no connection to the host exists.
eigConnStateConnecting 1 This value indicates that the connection state is in the process of connecting to the host.
eigConnStateConnected 2 This value indicates that the connection state is connected indicating a connection to the ho

st.
eigConnStateDisconnectin
g

3 This value indicates that the connection state is in the process of disconnecting from the hos
t.

currentConnectionState = object.ConnectionState

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConnectionType Property
The ConnectionType property on an IEGDataQueueCtrl object indicates the network transport used for this connection. This
property sets or returns a Long value representing a eigConnectionTypeEnum. The default value for this property is
eigConnTypeAPPC indicating an APPC connection using SNA.

Remarks

The ConnectionType property is used to set or return the connection type used to connect to the host. This property can be one
of the following eigConnectionTypeEnum constants:

Enumeration Value Description
eigConnTypeUnspecified -1 This value indicates that the connection type is unspecified.
eigConnTypeAPPC 0 This value indicates an APPC connection to the host using SNA LU 6.2.

If APPC (SNA LU 6.2) is selected for ConnectionType, then values for the LocalLU, ModeName, and RemoteLU properties are
required.

currentConnectionType = object.ConnectionType

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CreateQueue Method
The CreateQueue method on an IEGDataQueue object creates a data queue using the Data Queue ActiveX Control. Following
the successful creation of the queue, the object has a virtual connection to the data queue, such that a single instance of this object
represents a single queue connection. In order to break this connection, the application can modify the QueueName property
thus altering the queue association to a new value.

Parameters

MaxMsgLength
This required parameter indicates the maximum length of a record in the queue represented as a short integer with possible
values ranging from 1 to 31,744. This parameter defaults to a value of 256.

QAuthority
This required parameter specifies the authority to grant users of this queue. This parameter can be set to one of the
eigQAuthorityEnum constants listed in the QAuthority Values table which follows the Parameters section.

QueueClass
This required parameter indicates how the data will be received from the data queue. This parameter can be set to one of the
eigQClassEnum constants listed in the QueueClass Values table which follows the parameter section.

AddSenderInfo
This required parameter indicates whether the queue sender's ID should be kept. This parameter can be set to one of the
eigAnswerYesNoEnum constants shown in the AddSenderInfo Values table which follows the Parameters section.

HostCCSID
This optional parameter indicates the character code set identifier (CCSID) represented as a short to be used on the host and
affects how data conversion is handled. This value must match the data in the queue as represented on the remote host
computer. This parameter has no default value, but if this parameter is not specified the HostCCSID defaults to the value of the
CCSID property set on the IEGDataQueueCtl object.

InitialSize
This optional parameter indicates the initial data queue size represented as a short integer.

queueLoc
This optional parameter indicates the queue location represented as VARIANT_BOOL.

recordLenCls
This optional parameter indicates the record length class. This parameter can be set to one of the eigRecordLenClsEnum
constants listed in the recordLenCls Values table which follows the Parameters section.

Title
This optional parameter indicates a text description of the queue represented as a BSTR with a maximum length of 50
characters. The default value for this parameter is an empty string.

AllowDupKeys
This optional parameter indicates whether duplicate keys are allowed. This parameter can be set to one of the
eigAnswerYesNoEnum constants listed in the AllowDupKeys Values table which follows the Parameters section. Note that this
parameter is only valid if the QueueClass is specified as eigQClassKeyed.

MakeKeyLen
This optional parameter indicates the maximum length of a key for this data queue represented as a short integer ranging from
1 to 256. Note that this parameter is only valid if the QueueClass is specified as eigQClassKeyed. This parameter has no default
value.

QAuthority Values

Enumeration Valu
e

Description

eigQAuthUnspecifi
ed

-1 This value indicates that the authority is unspecified.

eigQAuthDefault 0 This value indicates directory default authorization. This is the default value for this parameter if it is n
ot specified.

eigQAuthAll 1 This value indicates all authorization.
eigQAuthExclude 2 This value indicates exclude authorization.
eigQAuthChange 3 This value indicates change authorization.

object.CreateQueue MaxMsgLength, QAuthority, QueueClass,
 AddSenderInfo, HostCCSID, InitialSize, queueLoc, recordLenCls,
 Title, AllowDupKeys, MakeKeyLen

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

eigQAuthUse 4 This value indicates use authorization.
eigQAuthLibCreate 5 This value indicates library create authorization.

AddSenderInfo Values

Enumerati
on

Val
ue

Description

eigAnswer
Yes

0 This value indicates that the sender ID should be kept.

eigAnswer
No

1 This value indicates that the sender ID should not be kept. This is the default value for this parameter if it is not
specified in the method call.

QueueClass Values

Enumeration Value Description
eigQClassUnspecified -1
eigQClassFIFO 0 A first in, first out queue. This is the default value for this parameter if it is not specified.
eigQClassLIFO 1 A last in, first out queue.
eigQClassKeyed 2 A keyed ordered queue.

recordLenCls Values

Enumeration Valu
e

Description

eigRecordLenUnspecifi
ed

-1 This value indicates that the record length class is unspecified.

eigRecordLenFixed 0 This value indicates fixed length records. This is the default value for this parameter if it is not sp
ecified.

eigRecordLenInitVarLe
n

1 This value indicates initial variable record length.

eigRecordLenVarLen 2 This value indicates variable record length.

AllowDupKeys Values

Enumerati
on

Val
ue

Description

eigAnswer
Yes

0 This value indicates that duplicate key capability is supported.

eigAnswer
No

1 This value indicates that duplicate key capability is not supported. This is the default value for this parameter if it
is not specified in the method call.

Remarks

The type of data queue created is dependent on the value of the QueueClass parameter. If a QueueClass of eigQClassKeyed is
specified, then a keyed data queue is created. A QueueClass of eigQClassFIFO and eigQClassLIFO will result in a non-keyed data
queue being created.

Microsoft Host Integration Server 2000

CreateQueueContainer Method
The CreateQueue method on an IEGDataQueueCtl object creates an instance of a IEIGDataQueue container object using the
Data Queue ActiveX Control and optionally initializes the QueueName property. The default value for this property is VT_EMPTY.

Parameters

QueueName
This optional parameter is a BSTR string representing the name of the data queue that this object instance is connected to. This
parameter corresponds with the value for the QueueName property.

Remarks

The created queue object is assumed to be associated with the connection object that created it for the life of the connection or
the life of the queue object.

object.CreateQueueContainer QueueName

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DeleteQueue Method
The DeleteQueue method on an IEGDataQueue object clears all messages from the queue and then deletes the queue using
the Data Queue ActiveX Control.

Parameters

OverWriteData
This required parameter indicates whether data should be overwritten in the data queue. This parameter can be set to one of
the eigAnswerYesNoEnum constants listed in the OverWriteData Values table which follows the Parameters section.

This parameter had a default value of eigAnswerYes.

OverWriteData Values

Enumeration Value Description
eigAnswerYes 0 This value indicates that the operation should overwrite data in the queue.

This is the default value for this parameter if it is omitted from the method call.

eigAnswerNo 1 This value indicates that the operation should not overwrite data in the queue.

object.DeleteQueue OverWriteData

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Disconnect Method
The Disconnect method on an IEGDataQueueCtrl object terminates an existing connection to a host machine using the Data
Queue ActiveX Control.

Parameters

None.

Remarks

The Disconnect method is used to terminate a connection to the host. Errors are returned using the ISupportErrorInfo object.

object.Disconnect

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GetQueueItem Method
The GetQueueItem method on an IEGDataQueue object receives an item from a keyed queue.using the Data Queue ActiveX
Control.

Parameters

QueueType
This required parameter specifies the type of the queue request. This parameter can be set to one of the eigQItemTypeEnum
constants listed in the QueueType Values table which follows the Parameters section.

BlockComplete
This required parameter specifies whether the operation should block until the completion status is known. This parameter can
be set to one of the eigAnswerYesNoEnum constants listed in the BlockComplete Values table which follows the parameters
section.

PeekQItem
This required parameter indicates whether to keep the record in the data queue. This parameter can be set to one of the
eigAnswerYesNoEnum constants listed in the PeekQItem Values table which follows the Parameters section.

ProvideExtInfo
This required parameter indicates whether to provide information in the External Job, name, and user properties. This
parameter can be set to one of the eigAnswerYesNoEnum constants listed in the ProvideExtInfo Values table which follows
the Parameters section.

TimeOut
This required parameter indicates the amount of time in seconds represented as a short value to block before indicating a
failure. This parameter has a default value of 0.

UserProfile
This required parameter indicates whether to provide user profile feedback. This parameter can be set to one of the
eigAnswerYesNoEnum constants listed in the UserProfile Values table which follows the Parameters section.

SenderInfo
This required parameter indicates whether the sender's ID should be returned. This parameter can be set to one of the
eigAnswerYesNoEnum constants listed in the SenderInfo Values table which follows the Parameters section.

SearchKey
This optional parameter indicates the key used in conjunction with the SearchOrder parameter used to identify the queue data
item being requested. This must be the same length as specified in the CreateDataQueue method call. This parameter is
represented as a VARIANT and has no default value.

Note that this parameter is only valid when the QueueClass for the data queue is eigQClassKeyed.

SearchOrder
This optional parameter indicates the relational order used in receiving keyed data queue items. This parameter can be set to
one of the eigSearchKeyEnum constants listed in the SearchOrder Values table which follows the Parameters section.

Note that this parameter is only valid when the QueueClass for the data queue is eigQClassKeyed.

QueueItem
This returned parameter is the requested IEGDataQueueItem.

QueueType Values

Enumeration Value Description
eigKQItem 0 A keyed item.
eigQItem 1 A non-keyed item. This is the default value for this parameter if it is not specified.

BlockComplete Values

Enumer
ation

Va
lue

Description

eigAns
werYes

0 This value indicates that the operation should block until the completion status is known.

object.GetQueueItem QueueType, BlockComplete, PeekQItem,
 ProvideExtInfo, TimeOut, UserProfile, SenderInfo, SearchKey,
 SearchOrder, QueueItem

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

eigAns
werNo

1 This value indicates that the operation should not block.
Although this is the default value for this parameter if it is omitted from the method call, this value is not supported
by the Data Queue ActiveX Control. Asynchronous read operations are not supported.

PeekQItem Values

Enumerat
ion

Val
ue

Description

eigAnswe
rYes

0 This value indicates that the record should be kept in the data queue.

eigAnswe
rNo

1 This value indicates that the record should not be kept in the data queue. This is the default value for this parame
ter if it is omitted from the method call.

UserProfile Values

Enumera
tion

Val
ue

Description

eigAnsw
erYes

0 This value indicates that user profile feedback should be provided in the queue item.

eigAnsw
erNo

1 This value indicates that user profile feedback should not be provided in the queue item. This is the default value f
or this parameter if it is omitted from the method call.

ProvideExtInfo Values

Enum
eratio
n

Va
lu
e

Description

eigAns
werYe
s

0 This value indicates that information should be provided in the External Job, name, and user properties on the IEGDat
aQueueItem to be returned.

eigAns
werNo

1 This value indicates that information should not be provided in the External Job, name, and user properties on the IEG
DataQueueItem to be returned. This is the default value for this parameter if it is not specified in the method call.

SenderInfo Values

Enumerati
on

Val
ue

Description

eigAnswer
Yes

0 This value indicates that the sender ID should be returned.

eigAnswer
No

1 This value indicates that the sender ID should not be returned. This is the default value for this parameter if it is
not specified in the method call.

SearchOrder Values

Enumeration Valu
e

Description

eigSearchKeyUnspecified -1 This value indicates that the SearchOrder parameter is unspecified.
eigSearchKeyEqual 0 This value indicates a search for items equal to the specified SearchKey parameter.
eigSearchKeyGreaterTha
n

1 This value indicates a search for items greater than the specified SearchKey parameter.

eigSearchKeyLessThan 2 This value indicates a search for items less than the specified SearchKey parameter.
eigSearchKeyGreaterEqu
al

3 This value indicates a search for items greater than or equal to the specified SearchKey param
eter.

eigSearchKeyLessEqual 4 This value indicates a search for items less than or equal to the specified SearchKey parameter
.

Remarks

If the BlockComplete parameter is eigAnswerNo and no queue item is available, the request will be queued. Following the
receipt of a queue data item, an event will be fired to the client indicating the availability of data. The client application will be

required to call this function again in order to receive the queue data.

If the BlockComplete parameter is eigAnswerYes and no data arrives on the queue within the specified amount of time, the
operation is cancelled and no data is returned. An error indication is returned to the client indicating that a timeout has occurred.

Each call to this method may result in a queued process. Multiple calls may result in multiple notifications.

If the SenderInfo item is empty, then the information will not be returned. The client must allocate the storage as an indication that
it wishes to receive this information. The type of data queue is dependent on the value of the QueueClass parameter when the
data queue is created. For a QueueClass of eigQClassKeyed, a keyed data queue is created. A QueueClass of eigQClassFIFO or
eigQClassLIFO will result in a non-keyed data queue being created.

Microsoft Host Integration Server 2000

LocalLU Property
The LocalLU property on an IEGDataQueueCtrl object indicates the local LU alias for an APPC (SNA LU 6.2) connection type to
the remote host computer using the Data Queue ActiveX Control. This property sets or returns a BSTR string value representing
the local LU name. The default value for this property is the "LOCAL" string.

Remarks

The LocalLU property is used to set or return the local LU alias. When LU 6.2 (SNA) is selected for the ConnectionType property,
this property must match the name of the local LU alias configured using SNA Manager.

currentLocalLu = object.LocalLU
object.LocalLu = "Local2"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ModeName Property
The ModeName property on an IEGDataQueueCtrl object indicates the APPC mode used for an APPC (SNA LU 6.2) connection
type to the remote host computer using the Data Queue ActiveX Control. This property sets or returns a BSTR string value
representing the APPC mode. The default value for this property is the "QPCSUPP" string.

Remarks

The ModeName property is used to set or return the APPC mode. When APPC (LU 6.2 SNA) is selected for the ConnectionType
property, this field must bet set to the APPC mode that matches the host configuration and Host Integration Server configuration.
This property is ignored when TCP/IP is selected for the ConnectionType property.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTERSC
(interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB2
remote database access), and custom modes. The following modes that support bi-directional LZ89 compression are also legal:
#INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (batch
with compression), and BATCHCS (batch with compression and minimal routing security).

currentAppcMode = object.ModeName
object.ModeName = "QPCSUPP"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Password Property
The Password property on an IEGDataQueueCtrl object indicates the password used for authentication. This property affects
connection and authentication to a host computer using the Data Queue ActiveX Control. This property sets or returns a BSTR and
has no default value.

Remarks

The Password property is used to set or return the password used for authenticating the user on a host computer. A valid user
name and password are normally required to access data on a host computer. The password is case sensitive and is normally
displayed as asterisks in a dialog box for security purposes.

currentUserPassword = object.Password
object.Password = Dialog.UserPassword

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PCCodePage Property
The PCCodePage property on an IEGDataQueueCtrl object indicates the code page to be used on the PC. This property affects
how data conversion is handled using the Data Queue ActiveX Control. This property sets or returns a short value representing
the PC code page for the data file. The default value for this property is 1252 representing a PC code page of Latin 1.

Remarks

The PCCodePage property is used to set or return the code page to be used on the PC. This value is used for data conversion of
any character data in the host file to ANSI or Unicode character data in the local file on the Windows machine.

currentPCCodePage = object.PCCodePage
object.PCCodePage = 1252

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

QueryAttribute Method
The QueryAttribute method on the EIGDataQueue object returns the value of an attribute associated with a data queue.

Parameters

Attribute
This required parameter indicates the attribute value to be retrieved. This parameter can be set to one of the
eigAttributeEnum constants listed in the Attribute Values table which follows the Parameters section.

Value
This required parameter points to a variant that will receive the value for this attribute.

Attribute Values

Enumeration Value Description
eigAttributeUnspecified -1
eigAttributeCCSID 0 The code character set identifier used on the host.
eigAttributeDirName 1 Directory name
eigAttributeDataClass 2 Data class name
eigAttributeKeyDef 3 Key definition
eigAttributeDupKeys 4 Indicates whether the duplicate keys capability is enabled for this data queue.
eigAttributeMgmCls 5 Management class name
eigAttributeQueCls 6 The queue class corresponding with the QueueClass parameter on the CreateQueue method.
eigAttributeSize 7 The queue initial size
eigAttributeQLoc 8 Queue location
eigAttributeSenderInfo 9 Queue senders ID kept
eigAttributeMaxMsgLen 10 The maximum record length for a message.
eigAttributeRecLenClass 11 Record length class
eigAttributeStgClass 12 Storage class name
eigAttributeTitle 13 Description text

Remarks

Most of these attributes correspond with the parameters specified to the CreateQueue method when the data queue is created.

object.QueryAttribute Attribute, Value

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

QueueName Property
The QueueName property on an IEGDataQueue object indicates the name of the data queue this object is associated with.

Remarks

The value of the QueueName property is the name of the queue represented as a BSTR string.

Following the successful creation of a queue using the CreateQueue method, the object has a virtual connection to the data
queue, such that a single instance of this object represents a single queue connection. In order to break this connection, a client
application can modify the QueueName property thus altering the queue association to a new value.

currentQueueName = object.QueueName
object.QueueName = "OrderEntry"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RemoteLU Property
The RemoteLU property on an IEGDataQueueCtrl object indicates the remote LU alias for an APPC (SNA) connection type to the
remote host computer using the Data Queue ActiveX Control. This property sets or returns a BSTR string value representing the
remote LU name. This property has no default value.

Remarks

The RemoteLU property is used to set or return the remote LU alias. When LU 6.2 (SNA) is selected for the ConnectionType
property, this property must match the name of the remote LU alias configured using SNA Manager.

currentRemoteLu = object.RemoteLU
object.RemoteLu = "Remote10"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SetAttribute Method
The SetAttribute method on the EIGDataQueue object changes an attribute associated with a data queue.

Parameters

Attribute
This required parameter indicates the attribute to be set. This parameter can be set to one of the eigAttributeEnum constants
listed in the Attribute Values table which follows the Parameters section.

Value
This required parameter specifies a variant representing the value to set for this attribute.

Attribute Values

Enumeration Value Description
eigAttributeUnspecified -1
eigAttributeCCSID 0 Coded character set identifier
eigAttributeDirName 1 Directory name
eigAttributeDataClass 2 Data class name
eigAttributeKeyDef 3 Key definition
eigAttributeDupKeys 4 Duplicate keys capability
eigAttributeMgmCls 5 Management class name
eigAttributeQueCls 6 The queue class corresponding with the QueueClass parameter on the CreateQueue method.
eigAttributeSize 7 Queue initial size
eigAttributeQLoc 8 Queue location
eigAttributeSenderInfo 9 Queue senders ID kept
eigAttributeMaxMsgLen 10 Record length
eigAttributeRecLenClass 11 Record length class
eigAttributeStgClass 12 Storage class name
eigAttributeTitle 13 Description text

Remarks

Most of these attributes correspond with the parameters specified to the CreateQueue method when the data queue is created.

object.SetAttribute Attribute, Value

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

StopQueue Method
The StopQueue method on an IEGDataQueue object suspend send and receive operations for a queue using the Data Queue
ActiveX Control.

Parameters

None.

object.StopQueue

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

UserID Property
The UserID property on an IEGDataQueueCtrl object indicates the username used for authentication. This property affects
connection and authentication to a host computer using the Data Queue ActiveX Control. This property sets or returns a BSTR and
has no default value.

Remarks

The UserID property is used to set or return the username used for authenticating the user on a host computer. A valid user
name and password are normally required to access data on a host computer. The username is case sensitive.

currentUserName = object.UserID
object.UserID = Dialog.UserName

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host File Transfer ActiveX Control Reference
This section provides reference information on specific ActiveX® methods, properties, and event notifications supported by the
Microsoft® Host File Transfer ActiveX Control. The function syntax and code examples are based on Microsoft Visual Basic.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AppendToEnd Property
The AppendToEnd property on an IEIGFileTransferCtl object indicates whether a file transfer operation should append to the
end of a file if the file exists, or whether a file transfer operation should overwrite the existing contents replacing the data with the
new information. This property affects file transfer operations using the Host File Transfer ActiveX Control.This property sets or
returns a Long value representing a eigAnswerYesNoEnum. The default value for this property is eigAnswerYes.

Remarks

The AppendToEnd property is used to set or return a flag that indicates whether a file transfer operation will append to the end
of a file or overwrite the file. This property can be set to one of the following eigAnswerYesNoEnum constants:

Enumeration Value Description
eigAnswerYes 0 This value indicates that the file transfer operation will append to the end of a file if it exists.
eigAnswerNo 1 This value indicates that the file transfer operation will overwrite the existing contents of a file if it exists.

The AppendToEnd property and the OverwriteHostFile property are mutually exclusive, so it is not possible to enable (set to
yes) one of these properties before the opposing property is disabled (set to no). The AppendToEnd property takes precedence
over the OverwriteHostFile property, since AppendToEnd defaults to yes and OverwriteHostFile defaults to no. Consequently,
the order that these properties are set will affect the outcome. For example, the following order will result in the properties being
set correctly:

In contrast, setting the properties in the improper order will cause the properties to be set incorrectly as follows:

In this second case, the OverwriteHostFile property cannot be set to yes (enabled) until AppendToEnd property is set to no
(disabled).

currentAppendFlag = object.AppendToEnd
object.AppendToEnd = eigAnswerYes

FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no
FileTransfer.OverwriteHostFile = eigAnswerYes // correctly set to yes

FileTransfer.OverwriteHostFile = eigAnswerYes // remains at no
// AppendToEnd defaults to eigAnswerYes, so this change is illegal
FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Cancel Method
The Cancel method on an IEIGFileTransferCtl object terminates a file transfer operation that is already in progress. This method
cancels a file transfer using the Host File Transfer ActiveX Control.

Parameters

None.

Remarks

The Cancel method is used to cancel a file transfer operation that is already in progress. If the Cancel method is executed while
uploading a file with the AppendToEnd property set to yes, this will result in no change to the host file. However, if the Cancel
method is executed while uploading a file with the OverwriteHostFile property set to yes, this will result in an empty host file.
The Cancel method implies the transfer has been stopped and all the files are at their original values but this is not really the case
when the OverwriteHostFile property is set to yes.

object.Cancel

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CCSID Property
The CCSID property on an IEIGFileTransferCtl object indicates the character code set identifier (CCSID) that must match the data
in the file as represented on the remote host computer. This property affects how data conversion is handled using the Host File
Transfer ActiveX Control. This property sets or returns a short value representing a host CCSID for the data file. The default value
for this property is 37 representing a CCSID for U.S./Canada.

Remarks

The CCSID property is used to set or return the character code set identifier (CCSID) matching the data in the file as represented
on the remote host computer. This value is used for data conversion of any character data in the host file to the PCCodePage
property specified representing ANSI or Unicode character data on the Windows computer.

current CCSID = object.CCSID
object.CCSID = 37

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Connect Method
The Connect method on an IEIGFileTransferCtl object establishes a connection to the configured host using the Host File
Transfer ActiveX Control and reports to the user an indication of the success or failure of the action.

Parameters

None.

Remarks

The Connect method is used to establish a connection to the host.

If the Host File Transfer Control support DLL cannot be loaded, the Win32 SetErrorMode function is called with an error value of
SEM_NOOPENFILEERRORBOX | SEM_FAILCRITICALERRORS. Other types of errors are returned using the ISupportErrorInfo
object.

object.Connect

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConnectionState Property
The ConnectionState property on an IEIGFileTransferCtl object indicates the current state of the connection to the host using
the Host File Transfer ActiveX Control. The state of a connection can be unspecified, idle, connecting, connected, or disconnecting.
This property returns a Long value representing a eigConnectionStateEnum. The default value for this property is
eigConnStateIdle.

Remarks

The ConnectionState property is used to return the current state of the connection to the host. This property is read only and
can be one of the following eigConnectionStateEnum constants:

Enumeration Valu
e

Description

eigConnStateUnspecified -1 This value indicates that the connection state is unspecified.
eigConnStateIdle 0 This value indicates that the connection state is idle and no connection to the host exists.
eigConnStateConnecting 1 This value indicates that the connection state is in the process of connecting to the host.
eigConnStateConnected 2 This value indicates that the connection state is connected indicating a connection to the ho

st.
eigConnStateDisconnectin
g

3 This value indicates that the connection state is in the process of disconnecting from the hos
t.

currentConnectionState = object.ConnectionState

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConnectionType Property
The ConnectionType property on an IEIGFileTransferCtl object indicates the network transport used for this connection. The
ConnectioneType property designates whether the Host File Transfer ActiveX Control connects via APPC (SNA LU6.2) or TCP/IP.
This property sets or returns a Long value representing a eigConnectionTypeEnum. The default value for this property is
eigConnTypeAPPC indicating an APPC connection using SNA.

Remarks

The ConnectionType property is used to set or return the connection type used to connect to the host. This property can be one
of the following eigConnectionTypeEnum constants:

Enumeration Value Description
eigConnTypeUnspecified -1 This value indicates that the connection type is unspecified.
eigConnTypeAPPC 0 This value indicates an APPC connection to the host using SNA LU 6.2.
eigConnTypeTCPIP 1 This value indicates a TCP/IP connection to the host.

If APPC (SNA) is selected for ConnectionType, then values for the LocalLU, ModeName, and RemoteLU properties are
required.

If TCP/IP is selected for ConnectionType, then values for the NetAddr and NetPort properties are required.

currentConnectionType = object.ConnectionType
object.ConnectionType = eigConnTypeTCPIP

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CreateIfNonExisting Property
The CreateIfNonExisting property on a IEIGFileTransferCtl object indicates whether a file transfer operation should create a
new destination file if one does not already exist. This property affects file transfer operations using the Host File Transfer ActiveX
Control. This property sets or returns a Long value representing a eigAnswerYesNoEnum. The default value for this property is
eigAnswerNo.

Remarks

The CreateIfNonExisting property is used to set or return a flag that indicates whether a file transfer operation should create a
new destination file if one does not already exist. This property can be set to one of the following eigAnswerYesNoEnum
constants:

Enume
ration

Va
lu
e

Description

eigAns
werYes

0 This value indicates that the file transfer operation will create a new destination file if the file does not already exist.

eigAns
werNo

1 This value indicates that the file transfer operation will not create a new destination file if the file does not already exi
st. If the destination file does not already exist, then the file copy operation will not take place.

currentCreateFlag = object.CreateIfNonExisting
object.CreateIfNonExisting = eigAnswerYes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Disconnect Method
The Disconnect method on an IEIGFileTransferCtl object terminates an existing connection to a host machine using the Host
File Transfer ActiveX Control.

Parameters

None.

Remarks

The Disconnect method is used to terminate a connection to the host. Errors are returned using the ISupportErrorInfo object.

object.Disconnect

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GetFile Method
The GetFile method on an IEIGFileTransferCtl object copies a file from host storage to local storage using the Host File Transfer
ActiveX Control.

Parameters

LocalFile
This required parameter specifies the path of a local file that will be written to as a result of this operation.

HostFile
This required parameter specifies the name of the host file that will be copied to the local file.

Remarks

The GetFile method can only be called after a connection has been established to the host (when the ConnectionState property is
connected). The behavior of the GetFile method is affected by the values of the AppendToEnd, CreateIfNonExisting, and
OverwriteHostFile properties.

Errors are returned for this method using the ISupportErrorInfo object.

object.GetFile LocalFile, HostFile

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LocalLU Property
The LocalLU property on an IEIGFileTransferCtl object indicates the local LU alias for an APPC (SNA) connection type to the
remote host computer using the Host File Transfer ActiveX Control. This property sets or returns a BSTR string value representing
the local LU name. The default value for this property is the "LOCAL" string.

Remarks

The LocalLU property is used to set or return the local LU alias. When LU 6.2 (SNA) is selected for the ConnectionType property,
this property must match the name of the local LU alias configured using SNA Manager.

This property is ignored when TCP/IP is selected for the ConnectionType property.

currentLocalLu = object.LocalLU
object.LocalLu = "Local2"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ModeName Property
The ModeName property on an IEIGFileTransferCtl object indicates the APPC mode used for an APPC (SNA) connection type to
the remote host computer using the Host File Transfer ActiveX Control. This property sets or returns a BSTR string value
representing the APPC mode. The default value for this property is the "QPCSUPP" string.

Remarks

The ModeName property is used to set or return the APPC mode. When APPC (LU 6.2 SNA) is selected for the ConnectionType
property, this field must bet set to the APPC mode that matches the host configuration and Host Integration Server configuration.
This property is ignored when TCP/IP is selected for the ConnectionType property.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INTERSC
(interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB2
remote database access), and custom modes. The following modes that support bi-directional LZ89 compression are also legal:
#INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), BATCHC (batch
with compression), and BATCHCS (batch with compression and minimal routing security).

currentAppcMode = object.ModeName
object.ModeName = "QPCSUPP"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

NetAddr Property
The NetAddr property on an IEIGFileTransferCtl object indicates the IP address of the host computer for a TCP/IP connection
type to the remote host computer using the Host File Transfer ActiveX Control. This property sets or returns a BSTR string value
representing the IP address of the host computer. This property has no default value.

Remarks

The NetAddr property is used to set or return the IP address of the host computer. When TCP/IP is selected for the
ConnectionType property, this property must match the IP address of the host computer used where files will be transferred. This
property can be an IP address or the name representing the host IP address using the Domain Name System (sna.microsoft.com,
for example). This property is ignored when SNA is selected for the ConnectionType property.

currentHostIP = object.NetAddr
object.NetAddr = "207.136.131.30"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

NetPort Property
The NetPort property on an IEIGFileTransferCtl object indicates the TCP/IP port used for communication with the host for a
TCP/IP connection type to the remote host computer using the Host File Transfer ActiveX Control. This property sets or returns a
BSTR string value representing the TCP/IP port used for communication with the host. The default value for this property is the
string "446" representing TCP/IP port 446.

Remarks

The NetPort property is used to set or return the TCP/IP port used for communication with the host. When TCP/IP has been
selected for the ConnectionType property, this parameter is the TCP/IP port used for communication with the host. This property
is ignored when SNA is selected for the ConnectionType property.

currentIPPort = object.NetPort
object.NetPort = "446"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OverwriteHostFile Property
The OverwriteHostFile property on a IEIGFileTransferCtl object indicates whether a file transfer operation request to copy a file
that will write over an existing file will be executed. This property affects file transfer operations using the Host File Transfer
ActiveX Control.This property sets or returns a Long value representing a eigAnswerYesNoEnum. The default value for this
property is eigAnswerNo.

Remarks

The OverwriteHostFile property is used to set or return a flag that indicates whether a file transfer operation will over an existing
file. This property can be set to one of the following eigAnswerYesNoEnum constants:

Enumeration Value Description
eigAnswerYes 0 This value indicates that the file transfer operation will overwrite an existing host file if it exists.
eigAnswerNo 1 This value indicates that the file transfer operation will not overwrite and existing host file file if it exists.

The OverwriteHostFile property and the AppendToEnd property are mutually exclusive, so it is not possible to enable (set to
yes) one of these properties before the opposing property is disabled (set to no). The AppendToEnd property takes precedence
over the OverwriteHostFile property, since AppendToEnddefaults to yes and OverwriteHostFile defaults to no. Consequently,
the order that these properties are set will affect the outcome. For example, the following order will result in the properties being
set correctly:

In contrast, setting the properties in the improper order will cause the properties to be set incorrectly as follows:

In this second case, the OverwriteHostFile property cannot be set to yes (enabled) until AppendToEnd property is set to no
(disabled).

currentOverwriteFlag = object.OverwriteHostFile
object.OverwriteHostFile = eigAnswerYes

FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no
FileTransfer.OverwriteHostFile = eigAnswerYes // correctly set to yes

FileTransfer.OverwriteHostFile = eigAnswerYes // remains at no
// AppendToEnd defaults to eigAnswerYes, so this change is illegal
FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Password Property
The Password property on an IEIGFileTransferCtl object indicates the password used for authentication. This property affects
connection and authentication to a host computer using the Host File Transfer ActiveX Control. This property sets or returns a
BSTR and has no default value.

Remarks

The Password property is used to set or return the password used for authenticating the user on a host computer. A valid user
name and password are normally required to access files on a host computer. The password is case sensitive and is normally
displayed as asterisks in a dialog box for security purposes.

currentUserPassword = object.Password
object.Password = Dialog.UserPassword

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PCCodePage Property
The PCCodePage property on an IEIGFileTransferCtl object indicates the code page to be used on the PC. This property affects
how data conversion is handled using the Host File Transfer ActiveX Control. This property sets or returns a short value
representing the PC code page for the data file. The default value for this property is 1252 representing a PC code page of Latin 1.

Remarks

The PCCodePage property is used to set or return the code page to be used on the PC. This value is used for data conversion of
any character data in the host file to ANSI or Unicode character data in the local file on the Windows machine.

currentPCCodePage = object.PCCodePage
object.PCCodePage = 1252

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PutFile Method
The PutFile method on an IEIGFileTransferCtl object copies a file from host storage to local storage using the Host File Transfer
ActiveX Control.

Parameters

HostFile
This required parameter specifies the name of the host file that will be written to as a result of this operation. This parameter is
a BSTR.

LocalFile
This required parameter specifies the path to a local file that will be copied to the host file. This parameter is a BSTR.

Remarks

The PutFile method can only be called after a connection has been established to the host (when the ConnectionState property is
connected). The behavior of the PutFile method is affected by the values of the AppendToEnd, CreateIfNonExisting, and
OverwriteHostFile properties.

Errors are returned for this method using the ISupportErrorInfo object.

object.PutFile HostFile, LocalFile

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RDBName Property
The RDBName property on an IEIGFileTransferCtl object indicates the remote database name and the Host Column Description
(HCD) file that describes the data types and data conversions used to transfer this file using the Host File Transfer ActiveX Control.
This property sets or returns a BSTR string value and has no default value.

Remarks

The RDBName property is used to set or return the name of the remote database name and the Host Column Description (HCD)
file that describes the data types and data conversions used to transfer this file. The HCD file describing the data should be located
in the system subdirectory below the root directory where Host Integration Server was installed. Setup defaults to the following
location: C:\Program Files\Host Integration Server

When TCP/IP is selected for the ConnectionType property, the RDBName must also match the name of the remote database
system.

currentRDbName = object.RDBName
object.RDBName = "Inventory"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RemoteLU Property
The RemoteLU property on an IEIGFileTransferCtl object indicates the remote LU alias for an APPC (SNA) connection type to
the remote host computer using the Host File Transfer ActiveX Control. This property sets or returns a BSTR string value
representing the remote LU name. This property has no default value.

Remarks

The RemoteLU property is used to set or return the remote LU alias. When LU 6.2 (SNA) is selected for the ConnectionType
property, this property must match the name of the remote LU alias configured using SNA Manager.

This property is ignored when TCP/IP is selected for the ConnectionType property.

currentRemoteLu = object.RemoteLU
object.RemoteLu = "Remote10"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

UserID Property
The UserID property on an IEIGFileTransferCtl object indicates the username used for authentication. This property affects
connection and authentication to a host computer using the Host File Transfer ActiveX Control. This property sets or returns a
BSTR and has no default value.

Remarks

The UserID property is used to set or return the username used for authenticating the user on a host computer. A valid user
name and password are normally required to access files on a host computer. The username is case sensitive.

currentUserName = object.UserID
object.UserID = Dialog.UserName

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Column Description
The Microsoft® OLE DB Provider for AS/400 and VSAM uses a host column description (HCD) file to specify how data on the host
is converted by the OLE DB provider. These HCD files are not necessary when used with AS/400 machines since the host data
format is automatically determined by the OLE DB Provider. When used with AS/400 machines, the OLE DB Provider uses default
conversions from host data type to OLE DB data types. However, HCD files can be used with AS/400 machines to override the
host data format and specify a particular local OLE DB data type that the data is to be converted to.

The following topics describe the host column description file format in detail and provide an example of an HCD file for
illustration.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Column Description File Format
The Microsoft® OLE DB Provider for AS/400 and VSAM uses a host column description (HCD) file to describe the format of data
files on IBM mainframes and dictate how the data in columns or fields in these files is to be converted by the OLE DB provider.
Host column description files can also be used for data on AS/400 machines to override the data format description maintained
by the AS/400 host.

The default naming convention for the HCD file is <data source>.hcd, where <data source> is the remote LU alias, and hcd is the
file extension of the record description file. For example, if the remote LU alias configured on Host Integration Server is named
ABC01234, the host column description file would be named ABC01234.hcd as the default. Any name may be used for an HCD
file as long as the file extension is ".hcd."

All the VSAM files that have local record descriptions are listed in the [Files] section of the record description file. Each file that is
listed in the [Files] section has a record description section, and that section name is the same as the file name. For example, a
VSAM file named PUBS/AUTHORS has its record description saved in the [PUBS/AUTHORS] section.

The first key of a record description section is the number of the columns for the file. The syntax is as follows:

where <number of columns> is the actual number of columns described in the section. Each column of a file is described by one
key. The naming convention for the key name is as follows:

For example the ninth column’s key is col9. Each key has an attribute list that contains eleven concatenated attributes that
describe the column. Attributes are separated by semicolons.

numcol=<number of columns>

col<column number>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Column Description Attributes
Attributes are shown in the following table:

Attribute Field number Description
Reserved 1 Always zero
Column Name 2 Character string
Alias 3 Character string
Precision 4 Numeric value
Scale 5 Numeric value
Length 6 Numeric value
Host Type 7 Keyword representing the host data type
OLE DB Type 8 Keyword representing the local OLE DB data type
Nullable 9 Y or N
CCSID 10 Numeric value
Title 11 Character string
Column Name

The column name attribute is the character string that represents the name of the column. This attribute may be null.
Alias

The alias attribute is an optional character string that represents an alias label for the column string name. This attribute may be
null.

Precision
The precision is the total number of decimal digits in the column containing numeric data on the host. The only two fixed-point
numeric data types that require this information are the NUMERIC and DECIMAL keyword data types, and for these types this
field cannot be null and must contain a valid numeric value.

The precision must be set the same as the length attribute for CHAR and BINARY keyword data types, and set to zero for the
other types. (Note that under ODBC, the precision was also used to indicate the length of nonnumeric data types including
character, date, time, and binary data types.) Precision has no default value and must not be left null.

Scale
The scale is the number of decimal digits to the right of any decimal point for numeric data on the host. The only two numeric
data types that require this information are the NUMERIC and DECIMAL keyword data types, and for these types this field
cannot be null and must contain a valid numeric value. For other numeric (the SINGLE and DOUBLE keywords, for example) and
nonnumeric data types (binary, character, date, time, and timestamp), the scale should be set to zero. This field must not be left
null and must contain a numeric value.

Length
The length attribute is the total length of the data on the host. This field must not be left empty and must contain a numeric
value.

Host Type
The Host Type attribute is a keyword value that represents the data type of the host data. This keyword value is based on
standard data types used on AS/400 and VSAM files. If no keyword is entered, this attribute defaults to the BINARY keyword.
The allowable types are as follows:
Host type
name

Keyw
ord

Comment

Binary BINAR
Y

Fixed-length binary data (no character code conversions). The length must be specified.

Character CHAR Fixed-length character data. The length must be specified.
Date DATE The date represented as character data in the format yyyy-mm-dd that fits in 10 bytes
DBCS DBCS Fixed-length character data that can contain only DBCS data.
DCBS – Mi
xed Either

MIXED
_EITHE
R

Fixed-length character data that can contain either DBCS or alphanumeric data.

DCBS – Mi
xed Open

MIXED
_OPEN

Fixed-length character data that can contain both DBCS and alphanumeric data. DBCS data is distinguished f
rom alphanumeric data with shift-control characters.

DBCS – Va
riable

VARD
BCS

Variable-length character data with a prefix of 2 bytes for length that contains only DBCS data. The maximu
m possible length for the column containing this data type must be specified.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

DCBS – Va
riable Mix
ed Either

VARMI
XED_EI
THER

Variable-length character data with a prefix of 2 bytes for length that can contain either DBCS or alphanumer
ic data. The maximum possible length for the column containing this data type must be specified.

DCBS – Va
riable Mix
ed Open

VARMI
XED_O
PEN

Variable-length character data with a prefix of 2 bytes for length that can contain both DBCS and alphanume
ric data. DBCS data is distinguished from alphanumeric data with shift-control characters. The maximum pos
sible length for the column containing this data type must be specified.

Double DOUB
LE

Floating-point data that fits in 8 bytes (64 bits).

Long LONG Integer data that fits in 4 bytes (32 bits).
Long Vari
able Binar
y

LONG
VARBI
NARY

Variable-length binary data represented as an unsigned character array with prefix 2 bytes for length. The m
aximum possible length for the column containing this data type must be specified.

Long Vari
able Chara
cter

LONG
VARC
HAR

Variable-length character data with a prefix of 2 bytes for the length. The maximum possible length for the c
olumn containing this data type must be specified.

Packed PACKE
D

Packed decimal numeric data where the precision, and scale are exactly as specified.

Short SHOR
T

Integer data that fits in 2 bytes (16 bits).

Single SINGL
E

Floating-point data that fits in 4 bytes (32 bits).

Time TIME The time represented as character data in the format hh:mm:ss that fits in 8 bytes.
Time Stam
p

TIMES
TAMP

Timestamp represented as characters in the format yyyy-mm-dd hh:mm:ss.ffffff that fits in 19 bytes.

Variable Bi
nary

VARBI
NARY

Variable-length binary data represented as an unsigned character array with prefix 2 bytes for length. The m
aximum possible length for the column containing this data type must be specified.

Variable C
haracter

VARC
HAR

Variable-length character data with a prefix of 2 bytes for length. The maximum possible length for the colu
mn containing this data type must be specified.

Zoned ZONE
D

Zoned decimal numeric data where the precision and scale are exactly as specified.

Note that the OLE DB provider limits the maximum length character field that can be accessed on an AS/400 machine to 32,745.
Attempting to access a character field greater than this length on an AS/400 machine can have unpredictable results and can
cause the OLE DB Provider to hang.

Note that the floating-point data format assumed by the OLE DB Provider for AS/400 and VSAM depends on the host. For
AS/400, the host floating-point data format is assumed to be IEEE. On mainframe hosts, floating-point data types are assumed
to be in IBM floating-point formats. Since OLE DB supports the IEEE floating-point format, data conversion errors can occur
when converting the extreme values of VSAM floating-point data in IBM format to IEEE floating-point data by the OLE DB
provider.

Note that the DECIMAL, FLOAT, INTEGER, NUMERIC, REAL, and SMALLINT keywords should not be used in HCD files and
should be replaced with the newer keywords as follows:

The DOUBLE keyword replaces the FLOAT keyword.

The LONG keyword replaces the INTEGER keyword.

The PACKED keyword replaces the NUMERIC keyword.

The SHORT keyword replaces the SMALLINT keyword.

The SINGLE replaces the REAL keyword.

The ZONED keyword replaces the DECIMAL keyword.

The Data Descriptions management console snap-in provided with Host Integration Server will not work properly with HCD
files containing these older keywords and will give unpredictable results.

OLE DB Type
The OLE DB Type attribute is a keyword that represents the data type of the local PC data. This keyword value is based on the
standard OLE DB data types as defined in the OLEDB.H header file included with the OLE DB SDK version 1.5 and later The data
structures for the date, time, and timestamp C data types are defined as typedefs in the OLEDB.H header file included with the
OLE DB SDK. Similar data types are also used by ODBC. If no keyword is entered, this attribute defaults to the BINARY keyword.

For the decimal and numeric host data types, the OLE DB Type attribute must be set to DBTYPE_STR. These two fixed-point
numeric types are currently converted to character data strings by the DDM layer of the Microsoft OLE DB Provider for AS/400
and VSAM. If these host types are converted to any of the defined OLE DB numeric C types, then numeric accuracy can be lost.

The allowable types are as follows:

OLE DB type name Keyword Comment
DBTYPE_BYTES BINARY Fixed-length binary data represented as an unsigned char array.
DBTYPE_DBDATE DATE The OLE DB DBDATE typedef struct as defined in the OLEDB.H header file.
DBTYPE_DBTIME TIME The OLE DB DBTIME typedef as defined in the OLEDB.H header file.
DBTYPE_DBTIMESTAMP TIMESTAMP The OLE DB DBTIMESTAMP typedef struct as defined in the OLEDB.H header file.
DBTYPE_DECIMAL DECIMAL The OLE DB DECIMAL typedef struct as defined in the OLEDB.H header file.
DBTYPE_I2 SHORT Integer data stored in 2 bytes (16 bits).
DBTYPE_I4 LONG Integer data stored in 4 bytes (32 bits).
DBTYPE_NUMERIC NUMERIC The OLE DB NUMERIC typedef struct as defined in the OLEDB.H header file.
DBTYPE_R4 FLOAT Floating-point data stored in 4 bytes (32 bits).
DBTYPE_R8 DOUBLE Floating-point data stored in 8 bytes (64 bits).
DBTYPE_STR CHAR Character data.
DBTYPE_I1 Not supported (signed tiny integer stored in one byte, 8 bits).
DBTYPE_I8 Not supported (signed long long integer stored in eight bytes, 64 bits).
DBTYPE_UI1 Not supported (unsigned tiny integer stored in one byte, 8 bits).
DBTYPE_UI2 Not supported (unsigned short integer stored in two bytes, 16 bits).
DBTYPE_UI4 Not supported (unsigned long integer stored in four bytes, 32 bits).
DBTYPE_UI8 Not supported (unsigned long long integer stored in eight bytes, 64 bits).

Nullable
The Nullable attribute indicates whether this field can be a null value. Legal values for this field are Y or N. If this field is empty,
the default value for nullable is N. The current version of the OLE DB Provider for AS/400 and VSAM does support nullable
fields, so this value must be set to N.

CCSID
The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this field is empty, the default
value for CCSID is set to EBCDIC US English (37). The CCSID setting used by the OLE DB Provider must be set to match the
CCSID actually used on the host, otherwise data loss will occur. Note that some AS/400 systems default to a CCSID of 937,
rather than 37, for enabling double-byte character sets (DBCS).

If the CCSID is set to 0 or 65535, then no character translation will take place when converting character data from the host to
the PC by the OLE DB Provider. The allowable values for CCSID when used with OLE DB Provider for AS/400 and VSAM are as
follows:

EBCDIC character set CCSID value
U.S./Canada 37
Germany 273
Denmark/Norway 277
Finland/Sweden 278
Italy 280
Latin America/Spain 284
United Kingdom 285
France 297
International 500

Note that this value needs to correspond to the CCSID used on the host.

Title
The Title attribute is an optional character string that represents a comment describing the column. This attribute may be null.

Microsoft Host Integration Server 2000

Host Column Description Example File
The following is an example for an HCD file containing two sample database file descriptions — SAMPLE/ACCOUNTS and
PUBS/AUTHORS. The first sample file (SAMPLE/ACCOUNTS) has four columns of data while the second example
(PUBS/AUTHORS) has nine columns that must be described.

[files]
SAMPLE/ACCOUNTS=1
PUBS/AUTHORS=1

[SAMPLE/ACCOUNTS]
numcol=4
col1=0;CUST_NO;CUST_NO;8;0;0;ZONED;LONG;N;37;;
col2=0;CUST_NAME;CUST_NAME;0;0;40;CHAR;CHAR;N;37;;
col3=0;BALANCE;BALANCE;10;2;0;ZONED;FLOAT;N;37;;
col4=0;LAST_ACC;LAST_ACC;0;0;26;TIMESTAMP;TIMESTAMP;N;37;;

[PUBS/AUTHORS]
NumCol=9
Col1=0;AU_ID;AU_ID;11;0;11;CHAR;CHAR;N;37;;
Col2=0;AU_LNAME;AU_LNAME;0;0;40;VARCHAR;CHAR;N;37;;
Col3=0;AU_FNAME;AU_FNAME;0;0;20;VARCHAR;CHAR;N;37;;
Col4=0;PHONE;PHONE;0;0;12;CHAR;CHAR;N;37;;
Col5=0;ADDRESS;ADDRESS;0;0;40;VARCHAR;CHAR;N;37;;
Col6=0;CITY;CITY;0;0;20;VARCHAR;CHAR;N;37;;
Col7=0;STATE;STATE;2;0;2;CHAR;CHAR;N;37;;
Col8=0;ZIP;ZIP;0;0;5;CHAR;SHORT;N;37;;
Col9=0;CONTRACT;CONTRACT;0;0;9;BINARY;BINARY;N;37;;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Conversion from Host to OLE DB Data Types
The external record description for data files residing on mainframes is configured in a host column description (HCD) file using
the SNA OLE DB Management snap-in. This HCD file is used to convert from host EBCDIC data types to ASCII C data types for the
PC in the Distributed Data Management (DDM) DLL. These C data types are then mapped to OLE DB data types by the SNAOLEDB
DLL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Default OLE DB Data Types
The following table indicates the default OLE DB data types that result from the mapping of the host data types by the Microsoft
OLE DB Provider for AS/400 and VSAM.

Host data type OLE DB data ty
pe

Comments

Binary DBTYPE_BYTES A fixed-length array of bytes (unsigned char)
Character DBTYPE_STR Null-terminated ASCII character string
Date DBTYPE_DBDATE The DBDATE typedef struct defined in OLEDB.H header file.
DBCS DBTYPE_STR Null-terminated ASCII character string
DCBS – Mixed Either DBTYPE_STR Null-terminated ASCII character string
DCBS – Mixed Open DBTYPE_STR Null-terminated ASCII character string
DBCS – Variable DBTYPE_STR Null-terminated ASCII character string
DCBS – Variable Mixe
d Either

DBTYPE_STR Null-terminated ASCII character string

DCBS – Variable Mixe
d Open

DBTYPE_STR Null-terminated ASCII character string

Double DBTYPE_R8 8-byte floating-point data
Float DBTYPE_R8 8-byte floating-point data
Long Integer DBTYPE_I4 4-byte signed integer
Long Variable Binary DBTYPE_BYTES A fixed-length array of bytes (unsigned char)
Long Variable Charac
ter

DBTYPE_STR Null-terminated ASCII character string

Packed DBTYPE_DECIMA
L

The DECIMAL structure typedef defined in OLEDB.H. This is an exact numeric value with a
fixed precision and fixed scale.

Real DBTYPE_R4 4-byte floating-point data
Short DBTYPE_I2 2-byte signed integer
Single DBTYPE_R4 4-byte floating-point data
Time DBTYPE_DBTIME The DBTIME typedef defined in OLEDB.H header file.
Time Stamp DBTYPE_DBTIME

STAMP
The DBTIMESTAMP typedef defined in OLEDB.H header file.

Variable Binary DBTYPE_BYTES A fixed-length array of bytes (unsigned char)
Variable Character DBTYPE_STR Null-terminated ASCII character string
Zoned DBTYPE_NUMERI

C
The NUMERIC typedef structure defined in OLEDB.H. This is an exact numeric value with
a fixed precision and fixed scale.

The host Binary, VarBinary, and Long VarBinary data types are converted to SQL_C_CHAR type by the DDM DLL and mapped to
the DBTYPE_BYTES data type by the SNAOLEDB DLL. The host Zoned data type is converted to SQL_C_CHAR type by the DDM
DLL and mapped to the DBTYPE_NUMERIC data type by the SNAOLEDB DLL. The host Packed data type is converted to
SQL_C_CHAR type by the DDM DLL and mapped to the DBTYPE_DECIMAL data type by the SNAOLEDB DLL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DBDATE
The DBDATE structure typedef is defined as follows:

Members

year
The year (0 to 9999) is measured from 0 A.D.

month
The month ranges from 1 to 12 representing January through December.

day
The day ranges from 1 to a maximum of 31, depending on the number of days in the month.

typedef struct tagDBDATE {
 SHORT year;
 USHORT month;
 USHORT day
} DBDATE;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DBTIME
The DBTIME structure typedef is defined as follows:

Members

hour
The hour ranges from 0 to 23.

minute
The minute ranges from 0 to 59.

second
The second ranges from 0 to 59.

typedef struct tagDBTIME {
 USHORT hour;
 USHORT minute;
 USHORT second
} DBTIME;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DBTIMESTAMP
The DBTIMESTAMP structure typedef is defined as follows:

Members

year
The year (0 to 9999) is measured from 0 A.D.

month
The month ranges from 1 to 12 representing January through December.

day
The day ranges from 1 to a maximum of 31, depending on the number of days in the month.

hour
The hour ranges from 0 to 23.

minute
The minute ranges from 0 to 59.

second
The second ranges from 0 to 59.

fraction
The fraction represents billionths of a second ranging from 0 to 999,999,999.

typedef struct tagDBTIMESTAMP {
 SHORT year;
 USHORT month;
 USHORT day;
 USHORT hour;
 USHORT minute;
 USHORT second;
 ULONG fraction
} DBTIMESTAMP;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DECIMAL
The DECIMAL typedef structure is an exact numeric value with a fixed precision and fixed scale, stored in the same way as in OLE
Automation. The DECIMAL typedef structure is defined as follows:

Members

wReserved
This member is reserved and should be 0.

scale
Specifies the number of digits to the right of the decimal point and ranges from 0 to 28.

sign
The sign is 0 if positive, 0x80 if negative.

Hi32
The high part of the integer (32-bit aligned).

Mid32
The middle part of the integer (32-bit aligned).

Lo32
The low part of the integer (32-bit aligned).

For example, to specify the number 12.345, the scale is 3, the sign is 0, and the number stored in the 12-byte integer is 12345.

typedef struct tagDECIMAL {
 USHORT wReserved;
 union {
 struct {
 BYTE scale;
 BYTE sign;
 };
 USHORT signscale;
 };
 ULONG Hi32;
 union {
 struct {
 ULONG Lo32;
 ULONG Mid32;
 };
 ULONGLONG Lo64;
 };
} DECIMAL;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

NUMERIC
The NUMERIC typedef structure is an exact numeric value with a fixed precision and fixed scale. The NUMERIC typedef structure
is defined as follows:

Members

precision
The maximum number of digits in base 10.

scale
The number of digits to the right of the decimal point.

sign
The sign is 1 for positive numbers, and 0 for negative numbers.

val
A number stored as a 16-byte scaled integer, with the least-significant byte on the left.

For example, to specify the base 10 number 20.003 with a scale of 4, the number is scaled to an integer of 200030 (20.003 shifted
by four tens digits), which is 186AA in hexadecimal. The value stored in the 16-byte integer is 5E 0D 03 00 00 00 00 00 00 00 00
00 00 00 00 00, the precision is the maximum precision, the scale is 4, and the sign is 1.

typedef struct tagNUMERIC {
 BYTE precision;
 BYTE scale;
 BYTE sign;
 BYTE val[16];
} DB_NUMERIC;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Character Code Conversions
Character code conversions under the OLE DB Provider for AS/400 and VSAM are controlled by a hierarchy of parameters. When
connecting to mainframes all of these parameters are controlled on the PC. However, when connecting to data sources on the
AS/400, parameter settings on the AS/400 as well as parameter settings on the PC can be involved.

The Character Code Set Identifier (CCSID) used by the host for a data source can be specified in several locations. The Host CCSID
setting used by the OLE DB Provider must bet set to match the CCSID actually used on the host otherwise data loss will occur.
Note that some AS/400 systems default to a CCSID of 937 rather than 37 for enabling double-byte character sets (DBCS).

The following table illustrates the separate hierarchy controlling the Host CCSID parameter on the SNA client, AS/400 host, and
mainframe host:

SNA client AS/400 host Mainframe host
SNA OLE DB Provider (defaults to U.S./Canada 37) System (DSPSYSVA

L, QCCSID)
None. Determined by the Data Description (HC
D file) on the SNA Client.

Data Source (the Host CCSID parameter in the Data Links fil
e describing the Data Source)

User identifier (wrk
usrprf)

Data Description (HCD file) Job (dspjob, crtjobd)
 File (dspfd, crtpf)
 Column (dspffd)

Only those fields in a Data Source that contain character data will be affected by the Host CCSID parameters and
character conversions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host CCSID and SNA OLE DB Provider
The Host CCSID setting at the OLE DB provider level defaults to U.S./Canada (37).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host CCSID and Data Source
The Host CCSID setting at the Data Source level is configured using Data Links for each Data Source. The Host CCSID parameter
is configured under the All tab of the Data Links dialog box.

Valid values for the Host CCSID registry setting are any CCSID, including 65535. If the Host CCSID attribute is set to 65535, then
no character conversion will occur (the data will be treated as binary). If the Host CCSID setting at the Data Source level does not
exist, then the value for Host CCSID defaults to the value at the SNA OLE DB Provider level.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host CCSID and Data Description
A Host CCSID attribute can be applied at the Data Description level. Each column in a Host Column Description (HCD) file can
have a Host CCSID attribute that determines how the character data in the column is to be converted. These attributes in the HCD
file at the Data Description level should be configured using the SNA OLE DB Management Console snap-in (see
Configuring Data Descriptions). Valid values are any CCSID including 65535.

The Host CCSID attribute at the column Data Description level can be any value and may be empty. A Host CCSID value at the
Data Description level overrides the value specified at the Data Source and OLE DB Provider levels. If the Host CCSID is blank, then
the value for Host CCSID defaults to the value at the Data Source level. If the Host CCSID attribute is set to 65535, then no
character conversion will occur (the data will be treated as binary).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host CCSID and the Process Binary As Character Parameter
There is a Data Source parameter configurable using Data Links that affects whether binary data is considered as character data
and is converted based on the Host CCSID setting. This Process Binary As Character parameter defaults to false. If this
parameter is false, binary data is not treated as character (binary data is not affected by the Host CCSID setting). If this parameter
is set to true, then binary data will be converted based on the Host CCSID setting.

This parameter is configured for each Data Source using Data Links under the All tab of the Data Links dialog box.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Architecture
The table below lists the architectural components used to support the Microsoft OLE DB Provider for AS/400 and VSAM.

Mod
ule

Description

DDM
SERV.
EXE

The DDM Server implements a source-only DDM Application Requester that communicates with the target DDM Servers r
unning on MVS, OS/390, or OS/400. The DDM Server handles connection management, memory management, file manag
ement, and error handling.

On Microsoft® Windows 2000 and Windows NT®, DDMSERV runs by default as an auto-started Windows NT service, alth
ough this behavior can be changed.

MMC
RLIO.
DLL

The Data Descriptions Management Console snap-in provided with Host Integration Server and Host Integration Client. Thi
s component manages data descriptions and host column description files under the Microsoft® Windows 2000, Window
s NT, Windows® 98, and Windows® 95 operating systems.

SNA
OLED
B.DLL

The OLE DB provider for AS/400 and VSAM. Server-based and client-based OLE DB and ADO programs call this provider t
o gain record-level access to host files.

The following additional components must be installed in the system subdirectory below the root directory where
Host Integration Server 2000 is installed (setup defaults to C:\Program Files\Host Integration Server) to support the OLE DB
Provider for AS/400 and VSAM:

CONV.DLL

DCONV2.DLL

DDM.DLL

DDMAPI.DLL

DDMRLIO.DLL

DDMRC.DLL

DDMSTR.DLL

DDMTCP2.DLL

DDMWAPPC.DLL

SNADDMEL.DLL

SNAOLEDB.MSC

WAPPC32.DLL

WINAPPC.DLL

The following additional components must be installed in the WINDOWS SYSTEM subdirectory (typically WINNT\System32 on
Windows 2000 and Windows NT and Windows\System on Windows 98 and Windows 95) to support the OLE DB Provider for
AS/400 and VSAM:

MSVBVM50.DLL

MSVBVM60.DLL

The following utilities are also supplied to support the OLE DB Provider for AS/400 and VSAM:

CrtPkg.exe

NewSnaDS.exe

reg2udl.exe

The table below lists the architectural components used to support the Microsoft OLE DB Provider for DB2.

Modu
le

Description

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

DRDA_
VB.EXE

The DRDA Application Requester implemented as a service that communicates with the target DD2 Servers running on M
VS, OS/390, or OS/400. The DRDA requester handles connection management, memory management, data access, and er
ror handling.

On Microsoft® Windows 2000 and Windows NT®, DRDA_VB runs by default as an auto-started Windows NT service, alt
hough this behavior can be changed.

DB2OL
EDB.D
LL

The OLE DB provider for DB2. Server-based and client-based OLE DB and ADO programs call this provider to gain access
to DB2.

The following additional components must be installed in the system subdirectory below the root directory where
Host Integration Server 2000 is installed (setup defaults to C:\Program Files\Host Integration Server) to support the OLE DB
Provider for DB2:

CONV.DLL

DB2WAPPPC.DLL

DCONV2.DLL

DDMRC.DLL

DDMSTR.DLL

DDMTCP2.DLL

MSEIDRDA.DLL

MSEIDPM.DLL

MSEIDT.DLL

DRDAPERF.DEF

DRDAPERF.INI

SNADDMEL.DLL

WAPPC32.DLL

WINAPPC.DLL

The following additional components must be installed in the WINDOWS SYSTEM subdirectory (typically WINNT\System32 on
Windows 2000 and Windows NT and Windows\System on Windows 98 and Windows 95) to support the OLE DB Provider for
DB2:

MSVBVM50.DLL

MSVBVM60.DLL

The following utilities are also supplied to support the OLE DB Provider for DB2:

CrtPkg.exe

CrtPkg.dll

NewSnaDS.exe

The table below lists the architectural components used to support the Microsoft ODBC Driver for DB2.

Mod
ule

Description

DRDA
_VB.E
XE

The DRDA Application Requester implemented as a service that communicates with the target DD2 Servers running on M
VS, OS/390, or OS/400. The DRDA requester handles connection management, memory management, data access, and er
ror handling.

On Microsoft® Windows 2000 and Windows NT®, DRDA_VB runs by default as an auto-started Windows NT service, alth
ough this behavior can be changed.

MSEI
DBC.D
LL

The ODBC Driver for DB2 configuration DLL.

MSEI
DBD.
DLL

The ODBC Driver for DB2.

The following additional components must be installed in the system subdirectory below the root directory where
Host Integration Server 2000 is installed (setup defaults to C:\Program Files\Host Integration Server) to support the ODBC Driver
for DB2:

CONV.DLL

DB2WAPPPC.DLL

DCONV2.DLL

DDMRC.DLL

DDMSTR.DLL

DDMTCP2.DLL

MSEIDRDA.DLL

MSEIDPM.DLL

MSEIDT.DLL

DRDAPERF.DEF

DRDAPERF.INI

SNADDMEL.DLL

WAPPC32.DLL

WINAPPC.DLL

The following additional components must be installed in the WINDOWS SYSTEM subdirectory (typically WINNT\System32 on
Windows 2000 and Windows NT and Windows\System on Windows 98 and Windows 95) to support the ODBC Driver for DB2:

MSVBVM50.DLL

MSVBVM60.DLL

The following utilities are also supplied to support the ODBC Driver for DB2:

CrtPkg.exe

CrtPkg.dll

NewSnaDS.exe

The table below lists the architectural components used to support the Microsoft Host File Transfer ActiveX Control.

Mod
ule

Description

DDM
SERV
.EXE

The DDM Server implements a source-only DDM Application Requester that communicates with the target DDM Servers ru
nning on MVS, OS/390, or OS/400. The DDM Server handles connection management, memory management, file manage
ment, and error handling.

On Microsoft® Windows 2000 and Windows NT®, DDMSERV runs by default as an auto-started Windows NT service, alth
ough this behavior can be changed.

MMC
RLIO.
DLL

The Data Descriptions Management Console snap-in provided with Host Integration Server and Host Integration Client. Thi
s component manages data descriptions and host column description files under the Microsoft® Windows 2000, Windows
 NT, Windows® 98, and Windows® 95 operating systems.

MSEI
GFT.
DLL

The Host File Transfer ActiveX Control library.

The following additional components must be installed in the system subdirectory below the root directory where
Host Integration Server 2000 is installed (setup defaults to C:\Program Files\Host Integration Server) to support the Host File
Transfer ActiveX Control:

CONV.DLL

DCONV2.DLL

DDM.DLL

DDMAPI.DLL

DDMRLIO.DLL

DDMRC.DLL

DDMSTR.DLL

DDMTCP2.DLL

DDMWAPPC.DLL

WAPPC32.DLL

WINAPPC.DLL

WINCSV.DLL

WINCSV32.DLL

The following additional components must be installed in the WINDOWS SYSTEM subdirectory (typically WINNT\System32 on
Windows 2000 and Windows NT and Windows\System on Windows 98 and Windows 95) to support the Host File Transfer
ActiveX Control:

MSVBVM50.DLL

MSVBVM60.DLL

Microsoft Host Integration Server 2000

SDK Components for Data Integration
The Microsoft® Host Integration Server 2000 SDK contains software components used for data integration applications and data
access. The components used for data access are described in the following topics.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Program and DLL Files for Data Integration
The following executable system file and DLL library files are included with the Host Integration Server 2000 SDK for use with the
OLE DB Provider for AS/400 and VSAM, the OLE DB Provider for DB2, the ODBC Driver for DB2, the AS/400 Data Queue ActiveX
Control, and the Host File Transfer ActiveX Control:

File
nam
e

Description

conv.
dll

DDM support library used for ASCII-to-EBCDIC conversion during host logon.

CrtP
kg.dl
l

Support library for DB2 create package utility.

CrtP
kg.ex
e

Create package utility for use with the OLE DB Provider for DB2 and the ODBC Driver for DB2.

db2o
ledb.
dll

The OLE DB provider for DB2.

dcon
v2.dl
l

DDM support library used for data conversion.

ddm.
dll

DDM Record Level I/O Requester library that communicates with the DDM Server.

ddm
api.d
ll

DDM Record Access Library.

DDM
RC.dl
l

DDM support library containing resource strings used by error-handling routines.

ddm
rlio.d
ll

DDM support library used by snaoledb.dll.

ddm
serv.
exe

The DDM Server handles connection management, memory management, file management, and error handling.

DDM
Str.dl
l

DDM support library containing the OLE DB provider error string resources.

ddm
tcp2.
dll

DDM support library used by TCP/IP by the OLE DB Provider for DB2 and the ODBC Driver for DB2.

ddm
wap
pc.dll

DDM support library used for OLE DB Data configuration and communication with the WINAPPC.DLL.

drda
_vb.e
xe

The DRDA Server handles connection management, memory management, file management, and error handling.

mmc
rlio.d
ll

The Data Descriptions Management Console snap-in support library used to create or modify data descriptions for use with
the OLE DB Provider for AS/400 and VSAM or with the Host File Transfer ActiveX Control.

mmc
rlio.c
hm

Help file for the MMC snap-in for the OLE DB Provider for AS/400 and VSAM.

mmc
RLIO
.msc

The Data Descriptions Management Console snap-in utility used to configure or modify data description files for use with t
he OLE DB Provider for AS/400 and VSAM or with the Host File Transfer ActiveX Control.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

msei
db2c
.dll

The ODBC Driver for DB2 configuration DLL (installed in the Windows 2000 or Windows NT System 32 directory).

msei
db2d
.dll

The ODBC Driver for DB2 (installed in the Windows 2000 or Windows NT System 32 directory).

msei
drda.
dll

Support library for use by the OLE DB Provider for DB2 and the ODBC Driver for DB2 used to provide the DRDA agent for t
he DB2 provider.

MSEI
DPM
.dll

Support library for use by the OLE DB Provider for DB2 and the ODBC Driver for DB2 used for DB2 performance monitorin
g.

MSEI
DT.dl
l

Support library for use by the OLE DB Provider for DB2 and the ODBC Driver for DB2 used for DB2 data transformation.

MSEI
GFT.
dll

The Host File Transfer ActiveX Control library.

MSEI
GDQ
.dll

The AS/400 Data Queues ActiveX Control library.

MSV
BVM
50.D
LL

Visual Basic 5.0 runtime dynamic link library.

Msv
bvm
60.dl
l

Visual Basic 6.0 runtime dynamic link library.

New
Sna
DS.e
xe

A utility program to create new Data Links UDL files used with Host Integration Server 2000.

reg2
udl.e
xe

A utility program to convert Win32 registry-based data sources used with previous versions of the OLE DB Provider for AS/
400 and VSAM supplied with SNA Server 4.0 to Data Links UDL files used with Host Integration Server 2000. This file is loca
ted in the Options\Maintenance folder on the Host Integration Server CD-ROM and is not installed as part of the product.

snad
dmel
.dll

Event log resource file.

snao
ledb.
dll

The OLE DB provider for AS/400 and VSAM.

The following executable system file and DLL library files were included with SNA Server 4.0 Service Pack 3 and Service Pack 4 for
use with the OLE DB Provider for AS/400 and VSAM, the OLE DB Provider for DB2, and the ODBC Driver for DB2:

File na
me

Description

CONV.D
LL

DDM support library used for ASCII-to-EBCDIC conversion during host logon.

DB2OLE
DB.DLL

The OLE DB provider for DB2.

DB2SER
V.EXE

The DB2 Server handles connection management, memory management, file management, and error handling.

DB2WA
PPC.DLL

Support library used for OLE DB Data configuration and communication with the WINAPPC.DLL.

DCONV.
DLL

DDM support library used for data conversion.

DDM.DL
L

DDM Record Level I/O Requester library that communicates with the DDM Server.

DDMAPI
.DLL

DDM Record Access Library.

DDMRLI
O.DLL

DDM support library used by SNAOLEDB.DLL.

DDMSE
RV.EXE

The DDM Server handles connection management, memory management, file management, and error handling.

DDMSQ
L.DLL

DDM support library used by DB2OLEDB.DLL.

DDMST
R.DLL

DDM support library containing the OLE DB provider error string resources.

DDMTC
P2.DLL

DDM support library used by TCP/IP by the OLE DB Provider for DB2 and the ODBC Driver for DB2. (DDMTCP.DLL was s
upplied with the earlier SNA Server 4.0.)

DDMTC
P.DLL

DDM support library used by TCP/IP by the OLE DB Provider for AS/400 and VSAM.

DDMW
APPC.DL
L

DDM support library used for OLE DB Data configuration and communication with the WINAPPC.DLL.

DRDA.D
LL

DRDA support library.

DRDAA
PI.DLL

DRDA support library.

DRDAPE
RF.DEF

Performance Monitor support file.

DRDAPE
RF.INI

Performance Monitor support file.

MMCRLI
O.DLL

The Data Descriptions OLE DB Management Console snap-in used to create or modify data descriptions for use with the
OLE DB Provider for AS/400 and VSAM.

MMCRLI
O.HLP

Help file for the MMC snap-in for the OLE DB Provider for AS/400 and VSAM.

MSDB2
BAS.DLL

Support library for ODBC Driver for DB2.

MSDB2
OLE.DLL

Support library for ODBC Driver for DB2.

MSDB2
OLE.HLP

Help file for the ODBC Driver for DB2.

MSDB2
UTL.DLL

Utility support library for ODBC Driver for DB2.

MSVBV
M50.DL
L

Visual Basic 5.0 runtime dynamic link library.

PMHLP
RDR.DL
L

Performance Monitor support file.

PMPRXY
DR.DLL

Performance Monitor support file.

REG2UD
L.EXE

A utility program to convert Win32 registry-based data sources used with previous versions of the OLE DB Provider for
AS/400 and VSAM supplied with SNA Server 4.0 to Data Links UDL files used with Host Integration Server 2000.

SNADD
MEL.DLL

Event log resource file.

SNAOLE
DB.DLL

The OLE DB provider for AS/400 and VSAM.

SNAOLE
DB.MSC

SNA OLE DB Management Console snap-in utility used to configure data sources in the registry and host column descri
ption files.

Microsoft Host Integration Server 2000

Symbol Files for Data Integration
The following symbol files for use when debugging are included with Host Integration Server 2000 for use with the Microsoft®
OLE DB Provider for AS/400 and VSAM, the Microsoft® OLE DB Provider for DB2, the Microsoft® ODBC Driver for DB2, the
Microsoft Host File Transfer ActiveX Control, and the Microsoft Data Queues ActiveX Control. These files are installed as part of
the Host Integration Server package and a copy of these files are also located on the Host Integration Server CD-ROM under the
Support\Symbols folder:

File name Description
DLL\conv.dbg Symbols from Conv.dll
DLL\CrtPkg.dbg Symbols from CrtPkg.dll
EXE\CrtPkg.dbg Symbols from CrtPkg.exe
DLL\db2oledb.dbg Symbols from db2oledb.dll
DLL\dconv2.dbg Symbols from dconv2.dll
DLL\ddm.dbg Symbols from ddm.dll
DLL\ddmapi.dbg Symbols from ddmapi.dll
DLL\ddmrlio.dbg Symbols from ddmrlio.dll
DLL\ddmserv.dbg Symbols from ddmserv.exe
DLL\DDMStr.dbg Symbols from DDMStr.dll
DLL\ddmtcp2.dbg Symbols from ddmtcp2.dll
DLL\ddmwappc.dbg Symbols from ddmwappc.dll
EXE\DRDA_VB.dbg Symbols from drdda_vb.exe
DLL\mmcrlio.dbg Symbols from mmcrlio.dll
DLL\mdeidb2c.dbg Symbols from MSEIDB2C.DLL
DLL\mseidb2d.dbg Symbols from MSEIDB2D.DLL
DLL\mseidrda.dbg Symbols from mseidrda.dll
DLL\MSEIDPM.dbg Symbols from MSEIDPM.dll
DLL\MSEIDSBD.dbg Symbols from MSEIDSBD.DLL
DLL\MSEIDSBN.dbg Symbols from MSEIDSBN.DLL
DLL\MSEIDSBP.dbg Symbols from MSEIDSBP.DLL
DLL\MSEIDT.dbg Symbols from MSEIDT.dll
DLL\MSEIGFT.dbg Symbols from MSEIGFT.dll
DLL\MSEIGDQ.dbg Symbols from MSEIGDQ.dll
EXE\NewSnaDS.dbg Symbols from NewSnaDS.exe
DLL\reg2udl.dbg Symbols from REG2UDL.EXE
DLL\snaddmel.dbg Symbols from snaddmel.dll
DLL\snaoledb.dbg Symbols from snaoledb.dll

The following symbol files for use when debugging were included with SNA Server 4.0 Service Pack 3 and Service Pack 4 for use
with the Microsoft® OLE DB Provider for AS/400 and VSAM, the Microsoft® OLE DB Provider for DB2, and the Microsoft® ODBC
Driver for DB2:

File name Description
CONV.DBG Symbols from CONV.DLL
CRTPKG.DBG Symbols from CRTPKG.EXE
CRTPKGW.DBG Symbols from CRTPKGW.EXE
DB2OLEDB.DBG Symbols from DB2OLEDB.DLL
DB2SERV.DBG Symbols from DB2SERV.EXE
DB2WAPPC.DBG Symbols from DBWAPPC.DLL
DCONV.DBG Symbols from DCONV.DLL
DDM.DBG Symbols from DDM.DLL
DDMAPI.DBG Symbols from DDMAPI.DLL
DDMRLIO.DBG Symbols from DDMRLIO.DLL
DDMSERV.DBG Symbols from DDMSERV.EXE
DDMSQL.DBG Symbols from DDMSQL.DLL
DDMSTR.DBG Symbols from DDMSTR.DLL

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

DDMTCP.DBG Symbols from DDMTCP.DLL
DDMTCP2.DBG Symbols from DDMTCP2.DLL
DDMWAPPC.DBG Symbols from DDMAPPC.DLL
DRDA.DBG Symbols from DRDA.DLL
DRDAAPI.DBG Symbols from DRDAAPI.DLL
MMCRLIO.DBG Symbols from MMCRLIO.DLL
MSDB2BAS.DBG Symbols from MSDB2BAS.DLL
MSDB2OLE.DBG Symbols from MSDB2OLE.DLL
MSDB2UTL.DBG Symbols from MSDB2UTL.DLL
PMHLPRDR.DBG Symbols from PMHLPRDR.DLL
PMPRXYDR.DBG Symbols from PMPRXYDR.DLL
REG2UDL.DBG Symbols from REG2UDL.EXE
SNADDMEL.DBG Symbols from SNADDMEL.DLL
SNAOLEDB.DBG Symbols from SNAOLED.DLL

Microsoft Host Integration Server 2000

Header Files for Data Integration
Provider-specific header files needed to build the ADO, OLE DB, and ODBC sample applications are included with the Microsoft®
OLE DB Provider for AS/400 and VSAM, the Microsoft® OLE DB Provider for DB2, and the Microsoft® ODBC Driver for DB2.
These header files are located in the SDK\Include subdirectory on the Host Integration Server 2000 CD-ROM.

The following provider-specific files are provided for developing applications using ADO, OLE DB, and ODBC using the OLE DB
Provider for AS/400 and VSAM, the OLE DB Provider for DB2, and the ODBC Driver for DB2:

File name Description
db2oledb.h GUID definitions, enumeration constants, and error codes for use with the OLE DB Provider for DB2.
snaoledb.h GUID definitions, enumeration constants, and error codes for use with the OLE DB Provider for AS/400 and VSAM.

The following header files are provided as part of the OLE DB version 2.1 and ADO version 2.1 SDK. These OLE DB and ADO
header files are generally required to build applications in C or C++ using the Host Integration Server SDK and may be
downloaded from the Microsoft Universal Data Access Free Downloads page. http://go.microsoft.com/fwlink/?LinkId=12754 as
part of the Microsoft Data Access SDK 2.1.

File name Description
ADOID.H ADO GUID definitions.
ADOINT.H ADO Interface header for calling from C++.
ADOJAVAS.INC ADO constants include file for JavaScript.
ADOVBS.INC ADO constants include file for VBScript.
MSDADC.H OLE DB Data Conversion include file.
MSDAGUID.H Microsoft Data Access GUID definitions.
MSDASC.H Microsoft Data Access Datalinks interfaces.
MSDASQL.H OLE DB Provider for ODBC data.
ODBCINST.H ODBC install include file.
OLEDB.H Primary OLE DB include file.
OLEDBERR.H OLE DB error include file.
OLEDBJVS.INC OLE DB error constant include file for JavaScript.
OLEDBVBS.INC OLE DB error constant include file for VBScript.
SQL.H Main include file for ODBC core functions.
SQLEXT.H Include file for applications using Microsoft SQL extensions.
SQLTYPES.H Defines types used in ODBC.
SQLUCODE.H Unicode include file for ODBC core functions.
TRANSACT.H Transactions header file.

These include files are also included in the SDK\INC subdirectory on the SNA Server 4.0 Service Pack 3 and Service Pack 4 CD-
ROM for Win32 platforms on I386 and Alpha.

http://go.microsoft.com/fwlink/?LinkId=12754
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Import Library Files for OLE DB Data Integration
The following import library files are on Microsoft Developer Network CD-ROMs and as a downloadable Software Development
Kit from the the Microsoft Universal Data Access Free Downloads Web site at http://go.microsoft.com/fwlink/?LinkId=12754
provided as part of the Microsoft Data Access SDK 2.0 and the Microsoft Data Access SDK 2.1 update:

File name Description
ADOID.LIB GUID library for client C++ classes
MSDASC.LIB Data Links library
OLEDB.LIB The OLE DB library
OLEDBD.LIB The OLE DB debug library

The MSDASC.LIB, OLEDB.LIB, and OLEDBD.LIB library files are also included in the SDK\LIB\WINNT subdirectory on the SNA
Server 4.0 Service Pack 3 and Service Pack 4 CD-ROM for Win32 platforms on I386 and Alpha.

http://go.microsoft.com/fwlink/?LinkId=12754
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Import Library Files for ODBC Data Integration
The following import library files are on Microsoft Developer Network CD-ROMs and as a downloadable Software Development
Kit from the the Microsoft Universal Data Access Free Downloads Web site at http://go.microsoft.com/fwlink/?LinkId=12754
provided as part of the Microsoft Data Access SDK 2.1 update:

File name Description
GTRTST32.LIB An ODBC support library
ODBC32.LIB The main ODBC library
ODBCCP32.LIB An ODBC support library

These files are also included with the Microsoft® ODBC Driver for DB2 in the SDK\LIB\WINNT subdirectory on SNA Server 4.0
Service Pack 3 and Service Pack 4 CD-ROM for Win32 platforms on I386 and Alpha.

http://go.microsoft.com/fwlink/?LinkId=12754
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB and ADO Import Library Files
The following import library files are on Microsoft Developer Network CD-ROMs and as a downloadable Software Development
Kit from the Microsoft Universal Data Access Free Downloads Web site at http://go.microsoft.com/fwlink/?LinkId=12754 provided
as part of the Microsoft Data Access SDK 2.0 and the Microsoft Data Access SDK 2.1 update:

File name Description
ADOID.LIB GUID library for client C++ classes
MSDASC.LIB Data Links library
OLEDB.LIB The OLE DB library
OLEDBD.LIB The OLE DB debug library

The MSDASC.LIB, OLEDB.LIB, and OLEDBD.LIB library files are also included in the SDK\LIB\WINNT subdirectory on the SNA
Server 4.0 Service Pack 3 and Service Pack 4 CD-ROM for Win32 platforms on I386 and Alpha.

http://go.microsoft.com/fwlink/?LinkId=12754
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Integration Samples
This section of the Microsoft® Host Integration Server 2000 Developer's Guide describes the sample applications that implement
data integration using DB providers, drivers, and ActiveX® controls.

This section contains:

Sample Programs for Data Access
Sample Programs for Data Queues
Sample Programs for Host File Transfer

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Programs for Data Access
The source code and executable files for several sample programs that illustrate using the Microsoft® OLE DB Provider for
AS/400 and VSAM, the Microsoft® OLE DB Provider for DB2, and the Microsoft® ODBC Driver for DB2 are included on the
Microsoft® Host Integration Server 2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. These
sample programs are located in the \SDK\Samples\DataAccess subdirectory on the Host Integration Server 2000 CD-ROM. These
files are also copied to your hard drive during Host Integration Server and Host Integration Client installation when the SDK
option is selected.

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\DataAccess
subdirectory below where the MSDN Platform SDK has been installed.

These sample programs include the files in the following subdirectories:

Subdirector
y

Description

DRDA_ASP ADO sample script written in Microsoft® Active Server Pages (ASP) using the OLE DB Provider for DB2
DRDA_VB ADO sample program written in Microsoft® Visual Basic® using the OLE DB Provider for DB2
DRDA_VBS ADO sample script written in Microsoft® VBScript using the OLE DB Provider for DB2
RLIO_ASP ADO sample script written in Microsoft® Active Server Pages (ASP) using the OLE DB Provider for AS/400 and VS

AM
RLIO_VB ADO sample program written in Microsoft® Visual Basic® using the OLE DB Provider for AS/400 and VSAM
RLIO_VBS ADO sample script written in Microsoft® VBScript using the OLE DB Provider for AS/400 and VSAM

The file named SAMPLE.HCD located in the DataAccess subdirectory contains two examples of a Host Column Description (HCD)
file required to access host VSAM files using the OLE DB Provider for AS/400 and VSAM. Please see documentation on the
Host Column Description in the Data Access Reference section for more information. The SAMPLE.HCD file is described in this
same reference section as well.

Several sample programs with source code are provided with Host Integration Server 2000 that illustrate data access. These
sample programs include the following:

Visual Basic ADO sample program This application allows you to open a connection through the OLE DB Provider, open a
recordset, and browse the records of a host file. Two versions of this sample application are provided. The sample in the
DRDA_VB folder is for use with the OLE DB Provider for DB2. The sample in the RLIO_VB folder is for use with the OLE DB
Provider for AS/400 and VSAM. Seeking on a key value in a host indexed file is also possible with this sample when the
version of this sample is used with the OLE DB Provider for AS/400 and VSAM.
Visual Basic Script ADO sample program This VBScript application allows you to open a connection through the OLE DB
Provider, open a recordset, and browse the records of a host file. Two versions of this sample application are provided. The
sample in the DRDA_VBS folder is for use with the OLE DB Provider for DB2. The sample in the RLIO_VBS folder is for use
with the OLE DB Provider for AS/400 and VSAM.
Active Server Pages (ASP) sample programs Two ASP sample programs are included. One is a report application that allows
you to return and display the first ten records in a host file to a client browser in a table view. The second sample allows you
to display columns of a host file in a form view. Two versions of these sample applications are provided. The samples in the
DRDA_ASP folder are for use with the OLE DB Provider for DB2. The samples in the RLIO_ASP folder are for use with the
OLE DB Provider for AS/400 and VSAM.

Several additional SDK sample files for data access are included with Microsoft Data Access Components (MDAC) SDK and are
available as part of the Microsoft MSDN Platform SDK. These data access sample programs include the following files:

Sample Pr
ogram

Description

ODBCQuer
y

The ODBC Query demo application written in C. This sample can be used with the ODBC Driver for DB2.

RowsetVie
wer

The OLE DB RowsetViewer sample application written in C++. This sample can be with either the OLE DB Provider fo
r DB2 or the OLE DB Provider for AS/400 and VSAM.

These sample programs with source code are provided as part of the MDAC SDK and the MSDN Platform SDK can be used with
the data access features of Host Integration Server 2000:

OLE DB RowsetViewer sample program This application written on C++ allows you to connect to the OLE DB Provider, open
a table window, type the host file name or database, return a rowset, and browse the contents. You can navigate the table,

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

using seek and set range on indexed files when the version of this sample is used with the OLE DB Provider for AS/400 and
VSAM.

Before running any of these examples with the OLE DB Provider for AS/400 and VSAM, it is necessary to create a data file on the
SNA host that will be used for demonstration purposes. After a suitable file is created on the host, it is necessary to run the Data
Descriptions management console snap-in application in order to configure the appropriate default settings for the OLE DB
Provider for AS/400 and VSAM, such as APPC mode, the character code set Identifier (CCSID) to be used when converting host
data, and the Code Page to be used on the local PC.

If the data is on a mainframe host, it is also necessary to configure a data description (create a host column description file) using
the Data Descriptions management console snap-in. The host column description specifies the column description of the data file
on the host and how the OLE DB Provider for AS/400 and VSAM should convert data from the host to the PC. Although an HCD
file is unnecessary to access data files on the AS/400, a host column description can be specified that will override the default
conversions.

The following sections discuss setting up and using each sample application in more detail.

Microsoft Host Integration Server 2000

Visual Basic ADO Sample
The SDK\Samples\DataAccess folder contains an ADO sample application written in Visual Basic version 6.0 that accesses data
provided by an OLE DB Provider. Two versions of this sample are supplied. One sample is for use with the Microsoft OLE DB
Provider for AS/400 and VSAM (source files located in the RLIO_VB subdirectory). One sample is for use with the Microsoft OLE
DB Provider for DB2(source files located in the DRDA_VB subdirectory).

This sample illustrates using ADO to access data on a host.

In order to use this sample, the ConnectionString property will need to be changed to point to a host you can access and a data
file or DB2 database to browse on the host.

This application allows you to open a connection through the OLE DB Provider, open a recordset, and browse the records on a
host file. This sample is built with ActiveX® Data Objects version 2.0. Before building this Visual Basic sample, be sure to include
the Microsoft ActiveX Data Objects 2.0 Library in your project. You can do this from inside the Visual Basic Integrated
Development Environment by selecting References on the Project menu.

The sample application can be built with Microsoft Visual Basic version 5.0 or later.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Visual Basic Script ADO Sample
The SDK\Samples\DataAccess folder contains a sample web client application written in VBScript using ADO designed to access
data provided by an OLE DB provider. Two versions of this sample are supplied. One sample is for use with the Microsoft® OLE
DB Provider for AS/400 and VSAM (source files located in the RLIO_VBS subdirectory). One sample is for use with the Microsoft®
OLE DB Provider for DB2 (source files located in the DRDA_VBS subdirectory).

This web client application allows you to open a connection through the OLE DB Provider, open a recordset, and browse the
records of a host file.

In order to use this sample, the ConnectionString property will need to be changed to point to a host you can access and a data
file or DB2 database to browse on the host.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Active Server Pages Samples
The SDK\Samples\DataAccess folder contains an Active Server Pages sample web server application designed to access data
provided by an OLE DB provider. Two versions of this sample application are supplied. One sample is for use with the Microsoft®
OLE DB Provider for AS/400 and VSAM (source files located in the RLIO_ASP subdirectory). One sample is for use with the
Microsoft® OLE DB Provider for DB2 (source files located in the DRDA_ASP subdirectory).

These sample applications require Microsoft Internet Information Server version 3.0 or higher with Active Server Pages installed.

REPORT.ASP will return and display the first ten (10) records in a host file to a client browser in a table view.

OLEDBDDM.ASP and GLOBAL.ASA combine to display columns of a host file in a form view.

You will need to edit the host table names or DB2 database names in order to use these samples in your environment.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OLE DB RowsetViewer Sample
The Microsoft® Data Access SDK and the Microsoft Developer Network (MSDN) Platform SDK contain an OLE DB RowsetViewer
sample application written in C++. This application allows you to connect to either the Microsoft OLE DB Provider for AS/400 and
VSAM or the Microsoft OLE DB Provider for DB2, open a table window, type the host file name or DB2 database, return a rowset,
and browse the contents. You can navigate the table, using seek and set range on indexed files when this sample is used with the
OLE DB Provider for AS/400 and VSAM.

To open a rowset using the OLE DB Provider for AS/400 and VSAM, type the following command in the command window:

You can use "/" or "." depending on whether you are accessing a host mainframe or an AS/400 file. Note that if a "." appears in the
host filename, then the filename must be enclosed in double quotes.

This sample is written to access bookmarkable AS/400 and VSAM file types only. You will not be able to access mainframe SAM,
ESDS, PDS/PDSE because these data set types do not support bookmarks.

You may not be able to build this sample application, if certain OLE DB header and library files are not installed. The Microsoft®
Host Integration Server 2000 CD-ROM does not include a copy of the Microsoft Data Access SDK (DASDK) or the earlier OLE DB
SDK. If you do not have the Data Access SDK or the OLE DB SDK installed, then you need to copy the following header files from
the Microsoft Platform SDK into your project.

If you do not have the Data Access SDK or the Platform SDK installed, then you will need to build your application using one of
the following library files copied from the Microsoft Platform SDK.

Note that only i386 LIB files are supported using Host Integration Server 2000. On the Microsoft® SNA Server 4.0 CD-ROM,
different OLE DB LIB files are supplied for i386 and Alpha processors.

exec open library/filename

adoid.h
adoint.h
db2oledb.h
msdadc.h
msdaguid.h
msdasql.h
oledb.h
oledberr.h
snaoledb.h
transact.h

OLEDB.LIB
OLEDBD.LIB (debug version of OLEDB library)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Programs for Data Queues
The source code for several sample programs that illustrate using the Microsoft® Data Queue ActiveX Control are included on the
Microsoft® Host Integration Server 2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. These
sample programs are located in the \SDK\Samples\DataQueues subdirectory on the Host Integration Server 2000 CD-ROM.
These files are copied to your hard drive during Host Integration Server software or Host Integration Client software installation
when the Host Integration Server Software Development Kit option is selected. These samples are installed in the
Samples\DataQueues subdirectory below where the Host Integration Server SDK software is installed
(C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\DataQueues
subdirectory below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files in the following subdirectories:

Subdirecto
ry

Description

DQChatC A chat program written in Microsoft® Visual C++ that illustrates using the Data Queue ActiveX Control and AS/400
data queues.

DQChatB A chat program written in Microsoft Visual Basic that illustrates using the Data Queue ActiveX Control and AS/400 d
ata queues.

The DQChatC sample is designed to be built using Microsoft® Visual C/C++ 6.0 or later using the command-line compiler or
using the Microsoft® Visual Studio 6.0 or Microsoft® Visual Studio .NET interactive development environment (IDE). To build the
DQChatC sample using the command-line compiler, set up your build environment as follows:

Run VCVARS32.bat (for VS6) or VSVARS32.bat (for VS.NET) from the Visual Studio bin directory(by default,
C:\Program Files\Microsoft Visual Studio\VC98\Bin for VS6 or C:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools for VS.NET))

To build the DQChatC sample, open an MS-DOS Command Prompt window, navigate to DataQueues\DQChatC subdirectory, and
invoke NMAKE.

To build the DQChatC using the Visual Studio .NET IDE, start Microsoft Visual Studio .NET 7.0 and open the appropriate Visual
C++ 7.0 project file (DataQueues\DQChatC\dqchatc.vcproj) from the File menu. Select a configuration and build the sample from
the Build menu. Each VC7 project file has two configurations, one for a DEBUG build and one for a RETAIL build.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DQChatC Sample
The sample program DQChatC is a Microsoft Visual C++ program that demonstrates the use of Data Queues in the form of an
Internet "chat room". Data, in the form of messages or "chat" strings, is transferred back and forth through a data queue. The
DQChatC program was created using the Visual C++ AppWizard.

The files initially created by AppWizard included for this sample program are:

DQChatC.dsp

The Visual C+++ project file used to build this sample. Other users can share the project (.dsp) file, but they should export
any makefiles locally.

DQChatC.h

This is the main header file for the application. It includes other project specific headers (including Resource.h) and declares
the CDQChatCApp application class.

DQChatC.cpp

This is the main application source file that contains the application class CDQChatCApp.

DQChatC.rc

This is a listing of all of the Microsoft Windows resources that the program uses. It includes the icons, bitmaps, and cursors
that are stored in the RES subdirectory. This file can be directly edited in Microsoft Visual C++.

DQChatC.clw

This file contains information used by the Visual C++ ClassWizard to edit existing classes or add new classes. ClassWizard
also uses this file to store information needed to create and edit message maps and dialog data maps and to create
prototype member functions.

DQChatCDlg.h, DQChatCDlg.cpp - the dialog

These files contain your CDQChatCDlg class. This class defines the behavior of your application's main dialog. The dialog's
template is in DQChatC.rc, which can be edited in Microsoft Visual C++.

eigdataqueue.cpp

This source file contains machine generated IDispatch wrapper classes created by Microsoft Visual C++.

eigdataqueue.h

This header file contains machine generated IDispatch wrapper classes created by Microsoft Visual C++.

StdAfx.h, StdAfx.cpp

These files are used to build a precompiled header (PCH) file named DQChatC.pch and a precompiled types file named
StdAfx.obj used by Visual C++.

Resource.h

This is the standard header file, which defines new resource IDs. Microsoft Visual C++ reads and updates this file.

The following files are located in the DataQueues\DQChatC\res subdirectory:

DQChatC.ico

This is an icon file, which is used as the application's icon. This icon is included by the main resource file DQChatC.rc.

res\DQChatC.rc2

This file contains resources that are not edited by Microsoft Visual C++. All resources that are not able to be edited should
be placed in this file.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Programs for Host File Transfer
The source code for several sample programs that illustrate using the Microsoft® Host File Transfer ActiveX Control are included
on the Microsoft® Host Integration Server 2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK.
These sample programs are located in the \SDK\Samples\FileTransfer subdirectory on the Host Integration Server 2000 CD-ROM.
These files are copied to your hard drive during Host Integration Server software or Host Integration Client software installation
when the Host Integration Server Software Development Kit option is selected. These samples are installed in the
Samples\FileTransfer subdirectory below where the Host Integration Server software is installed
(C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\FileTransfer
subdirectory below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files in the following subdirectories:

Subdirectory Description
TestConnectC A sample script written in Microsoft® Visual C++ using the Host File Transfer ActiveX Control.
TestConnectVB A sample program written in Microsoft® Visual Basic® using the Host File Transfer ActiveX Control.

The TestConnectC sample is designed to be built using Microsoft® Visual C/C++ 6.0 or later using the command-line compiler or
using the Microsoft® Visual Studio 6.0 or Microsoft® Visual Studio .NET interactive development environment (IDE). To build the
TestConnectC sample using the command-line compiler, set up your build environment as follows:

Run VCVARS32.bat (for VS6) or VSVARS32.bat (for VS.NET) from the Visual Studio bin directory(by default,
C:\Program Files\Microsoft Visual Studio\VC98\Bin for VS6 or C:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools for VS.NET))

To build the TestConnectC sample, open an MS-DOS Command Prompt window, navigate to FileTransfer\TestConnectC
subdirectory, and invoke NMAKE.

To build the TestConnectC using the Visual Studio .NET IDE, start Microsoft Visual Studio .NET 7.0 and open the appropriate Visual
C++ 7.0 project file (FileTransfer\TestConnectC\testconnectc.vcproj) from the File menu. Select a configuration and build the
sample from the Build menu. Each VC7 project file has two configurations, one for a DEBUG build and one for a RETAIL build.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Application Programming
This section describes how to create applications in a Systems Network Architecture (SNA) environment.

This section contains:

APPC Applications
CPI-C Applications
LUA Applications
3270 Emulator Interface Specifications
AFTP File Transfer Protocol

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

APPC Applications
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information required to develop C-
language applications that use Advanced Program-to-Program Communications (APPC) to exchange data in a Systems Network
Architecture (SNA) environment.

This section contains:

About the APPC Guide
APPC Programmer's Guide
APPC Reference
APPC Sample Applications

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

About the APPC Guide
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop C-
language applications that use Advanced Program-to-Program Communications (APPC) to exchange data in a Systems Network
Architecture (SNA) environment.

This guide is intended for the programmer writing applications that use CPI-C to exchange data. It provides conceptual
information and detailed reference information.

To use this guide effectively, you should be familiar with:

Microsoft® Host Integration Server 2000
One of the following operating environments:

Microsoft Windows® 2000
Microsoft Windows NT®
Microsoft Windows 98
Microsoft Windows 95

SNA concepts

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Operating Systems Support for APPC Development
This section of the guide contains information relating to following operating systems:

Microsoft® Windows® 2000
Microsoft Windows NT®
Microsoft Windows 98
Microsoft Windows 95
Microsoft Windows version 3.x
Microsoft MS-DOS®
OS/2

Microsoft Host Integration Server 2000 supports the development of APPC applications for Windows 2000, Windows NT,
Windows 98, and Windows 95. Under these operating systems, support for APPC applications is provided only for the Win32®
subsystem.

The previous Microsoft SNA Server product also supported the development of APPC applications for Windows 3.x, MS-DOS, and
OS/2. Most APPC applications developed for Windows 3.x, MS-DOS, and OS/2 with SNA Server can be used with Host Integration
Server 2000. The Windows 3.x, MS-DOS, and OS/2 interface is described here for completeness, but Windows 3.x, MS-DOS, or
OS/2 APPC application development is not supported using Host Integration Server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Finding Further Information
This guide does not describe the products, architectures, or standards developed by other companies or organizations. For
information about the Microsoft® Windows® graphical environment, Windows NT®, Windows 95, Windows 98, and the MS-
DOS® and IBM OS/2 operating systems, consult your product documentation.

The following documents provide additional information about SNA Server APIs:

Microsoft Host Integration Server CPI-C Programmer’s Guide
Microsoft Host Integration LUA Programmer’s Guide

For more information about SNA and about 3270 information display systems, see the following manuals:

IBM 3270 Information Display System: 3274 Control Unit Description and Programmer’s Guide
IBM 3270 Information Display System: Color and Programmed Symbols
IBM 3270 Information Display System: 3274 Control Unit Display Station: Operator’s Guide
IBM Systems Network Architecture: Technical Overview
IBM Systems Network Architecture: Concepts and Products
IBM Advanced Communications Function Products Installation Guide
IBM Installation and Resource Definition
IBM 9370 LAN Token Ring Support
IBM SNA Format and Protocol Reference Manual: Architectural Logic

For background information about logical unit (LU) 6.2, APPC, or the Common Programming Interface for Communications (CPI-
C), see the following manuals:

IBM Systems Network Architecture: Introduction to APPC
IBM Systems Network Architecture: Transaction Programmer’s Reference Manual for LU Type 6.2
IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2
IBM SNA: Formats
IBM SNA: Technical Overview
IBM SNA: ACF/VTAM Programming for LU Type 6.2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

APPC Programmer's Guide
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about programming the
Advanced Program-to-Program Communications (APPC) in a distributed processing environment.

This section contains:

Introduction to APPC
About Transaction Programs
Windows CSV Overview
Support for APPC Automatic Logon

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Introduction to APPC
This section introduces the fundamental concepts of Advanced Program-to-Program Communications (APPC) in a distributed
processing environment. These concepts include:

APPC verbs
Microsoft® Windows® APPC extensions
Using APPC verbs in C programs
Operating system considerations

Detailed descriptions of APPC verbs are provided in APPC Management Verbs, APPC TP Verbs, and APPC Conversation Verbs.

APPC is an application programming interface (API) that allows peer-to-peer communications in a Systems Network Architecture
(SNA) environment. Through APPC, programs distributed across a network can work together, communicating with each other
and exchanging data, to accomplish a single processing task such as querying a remote database, copying a remote file, or
sending and receiving electronic mail.

APPC Verb Overview
APPC verbs fall into three categories: management, transaction program (TP), and conversation.

Management Verbs
Management verbs provide management functions. They are:

ACTIVATE_SESSION

CNOS

DEACTIVATE_SESSION

DISPLAY

TP Verbs
TP verbs start and end TPs, and get and set TP properties. They are:

GET_TP_PROPERTIES

SET_TP_PROPERTIES

TP_ENDED

TP_STARTED

Conversation Verbs
Conversation verbs enable TPs to allocate and deallocate conversations, send and receive data, and change conversation states.
The conversation verbs are listed in the following table.

Conversation verbs fall into two groups: mapped conversation verbs and basic conversation verbs. The mapped conversation is
intended for programs that use the conversation directly. The basic conversation is intended for more complex programs that
provide services to other users. In typical situations, end-user TPs use mapped conversations and service TPs use basic
conversations.

Mapped conversation verbs can only be issued by a TP in mapped conversations, while basic conversation verbs are reserved for
basic conversations. There is one exception to this rule: ALLOCATE can be used to start either a basic or a mapped conversation.

Mapped conversation verbs Basic conversation verbs
MC_ALLOCATE ALLOCATE
MC_CONFIRM CONFIRM

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

MC_CONFIRMED CONFIRMED
MC_DEALLOCATE DEALLOCATE
MC_FLUSH FLUSH
MC_GET_ATTRIBUTES GET_ATTRIBUTES
GET_LU_STATUS GET_LU_STATUS
GET_STATE GET_STATE
GET_TYPE GET_TYPE
MC_POST_ON_RECEIPT POST_ON_RECEIPT
MC_PREPARE_TO_RECEIVE PREPARE_TO_RECEIVE
RECEIVE_ALLOCATE RECEIVE_ALLOCATE
MC_RECEIVE_AND_POST RECEIVE_AND_POST
MC_RECEIVE_AND_WAIT RECEIVE_AND_WAIT
MC_RECEIVE_IMMEDIATE RECEIVE_IMMEDIATE
MC_RECEIVE_LOG_DATA RECEIVE_LOG_DATA
MC_REQUEST_TO_SEND REQUEST_TO_SEND
MC_SEND_CONVERSATION SEND_CONVERSATION
MC_SEND_DATA SEND_DATA
MC_SEND_ERROR SEND_ERROR
MC_TEST_RTS TEST_RTS

Mapped and basic verbs have the same functions in their respective types of conversation. For example, MC_CONFIRM performs
the same function in a mapped conversation that CONFIRM performs in a basic conversation.

APPC Verb Summary
This section briefly describes each APPC verb, grouped by function.

Verbs for Starting Conversations
ALLOCATE or MC_ALLOCATE

Issued by the local TP. This verb allocates a session between the local logical unit (LU) and a partner LU, and establishes a
conversation between the local TP and the partner TP.

ALLOCATE can establish either a basic or a mapped conversation. MC_ALLOCATE can start only a mapped conversation. After
the conversation is allocated, APPC uses this verb to return a conversation identifier (conv_id).

RECEIVE_ALLOCATE
Issued by the partner TP. This verb confirms that the partner TP is ready to begin a conversation with the local TP that issued
ALLOCATE or MC_ALLOCATE. Upon successful execution, this verb returns a TP identifier (tp_id) for the partner TP and the
conv_id.

TP_STARTED
Issued by the local TP. This verb notifies APPC that the local TP is starting. Upon successful execution, this verb returns a tp_id
for the local TP.

Verbs for Sending Data
CONFIRM or MC_CONFIRM

Sends the contents of the local LU's send buffer and a confirmation request to the partner TP.
FLUSH or MC_FLUSH

Flushes the local LU's send buffer, sending the contents of the buffer to the partner LU and TP. If the send buffer is empty, no
action takes place.

PREPARE_TO_RECEIVE or MC_PREPARE_TO_RECEIVE
Changes the state of the conversation from SEND to RECEIVE. Before changing the conversation state, this verb performs the
equivalent of FLUSH, MC_FLUSH, CONFIRM, or MC_CONFIRM. After this verb has successfully executed, the local TP can
receive data.

REQUEST_TO_SEND or MC_REQUEST_TO_SEND
Informs the partner TP that the local TP wants to send data. The local TP must wait until the partner TP issues

PREPARE_TO_RECEIVE, MC_PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, or MC_RECEIVE_AND_WAIT, and the
conversation state changes to RECEIVE for the partner TP, before the local TP begins sending data.

SEND_DATA or MC_SEND_DATA
Puts data in the local LU's send buffer for transmission to the partner TP.

The data collected in the local LU's send buffer is transmitted to the partner LU and partner TP when one of the following
occurs:

The send buffer fills up.
The local TP issues FLUSH, MC_FLUSH, CONFIRM, MC_CONFIRM, DEALLOCATE, MC_DEALLOCATE, or another verb that
flushes the local LU's send buffer.

Verbs for Receiving Data
POST_ON_RECEIPT or MC_POST_ON_RECEIPT (Microsoft® Windows 2000, Microsoft Windows NT®, Microsoft Windows® 98,
and Microsoft Windows® 95 operating systems only)

Issuing this verb allows the application to register to receive a notification when data or status arrives at the local LU without
actually receiving it at the same time. This verb can only be issued while in RECEIVE state and it never causes a change in
conversation state.

When the TP issues this verb, APPC returns control to the TP immediately. When the specified conditions are satisfied, the
Win32® event specified as a parameter is signalled and the verb completes. Then the TP looks at the return code in the verb
control block to determine whether or not any data or status notification has arrived at the local LU and issues a
RECEIVE_IMMEDIATE or RECEIVE_AND_WAIT verb to actually receive the data or status notification.

This verb is only supported by Host Integration Server 2000 or by SNA Server 3.0 with Service Pack 1 or later when the APPC
applications are running on Windows 2000, Windows NT 4.0, Windows 98, or Windows 95.

RECEIVE_AND_POST or MC_RECEIVE_AND_POST (Windows 2000, Windows NT, Windows 98, Windows 95, and OS/2 operating
systems only)

Issuing this verb while the conversation is in RECEIVE state changes the conversation state to PENDING_POST and causes the
local TP to receive data asynchronously. This allows the local TP to proceed with processing while data is still arriving at the
local LU.

Issuing this verb while the conversation is in SEND state flushes the LU's send buffer and changes the conversation state to
PENDING_POST. The local TP then begins to receive data asynchronously.

RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT
Issuing this verb while the conversation is in RECEIVE state causes the local TP to receive any data that is currently available
from the partner TP. If no data is available, the local TP waits for data to arrive.

Issuing this verb while the conversation is in SEND state flushes the LU's send buffer and changes the conversation state to
RECEIVE. The local TP then begins to receive data.

RECEIVE_IMMEDIATE or MC_RECEIVE_IMMEDIATE
Receives any data that is currently available from the partner TP. If no data is available, the local TP does not wait.

TEST_RTS or MC_TEST_RTS
Determines whether a REQUEST_TO_SEND or MC_REQUEST_TO_SEND or notification has been received.

Verbs for Confirming Data or Reporting Errors
CONFIRMED or MC_CONFIRMED

Replies to a confirmation request from the partner TP. It informs the partner TP that the local TP has received and processed the
data without error.

RECEIVE_LOG_DATA or MC_RECEIVE_LOG_DATA
Issuing this verb allows the user to register to receive the log data associated with an inbound Function Management Header 7
(FMH7) error report. The verb passes a buffer to APPC, and any log data received is placed in that buffer. APPC continues to use
this buffer as successive FMH7s arrive until it is provided with another buffer (that is, until the TP issues another
RECEIVE_LOG_DATA or MC_RECEIVE_LOG_DATA specifying a different buffer or no buffer at all).

This verb is only supported by Host Integration Server 2000 or by SNA Server 3.0 with Service pack 1 or later when the APPC
applications are running on Windows 2000, Windows NT 4.0, Windows 98, and Windows 95.

SEND_CONVERSATION or MC_SEND_CONVERSATION

Issued by the invoking TP, this verb allocates a session between the local LU and partner LU, sends data on the session, and then
deallocates the session.

SEND_ERROR or MC_SEND_ERROR
Notifies the partner TP that the local TP has encountered an application-level error.

Verbs for Getting and Setting Information
GET_ATTRIBUTES or MC_GET_ATTRIBUTES

Used by a TP to get the attributes of the conversation.
GET_LU_STATUS

Used to report the status of a particular remote LU.
GET_STATE

Used by a TP to interrogate the state of a particular conversation.
GET_TP_PROPERTIES

Returns attributes of the TP and the current transaction.
GET_TYPE

Used by a TP to determine the conversation type (basic or mapped) of a particular conversation. With this information, the TP
can decide whether to issue basic or mapped conversation verbs.

SET_TP_PROPERTIES
Used to set the attributes of the TP and the current transaction.

Verbs that Provide Management Functions
ACTIVATE_SESSION

Activates a session between the local LU and a specified partner LU, using a specified mode.

This APPC verb is only supported by applications running on Windows 2000, Windows NT, Windows 98, and Windows 95.

CNOS (Change Number of Sessions)
Establishes APPC LU 6.2 session limits.

DEACTIVATE_SESSION
Deactivates a particular session, or all sessions on a particular mode.

This APPC verb is only supported by APPC applications running on Windows 2000, Windows NT, Windows 98, and Windows
95.

DISPLAY
Returns configuration information and current operating values for the SNA node.

Verbs for Ending Conversations
DEALLOCATE or MC_DEALLOCATE

Deallocates a conversation between two TPs. Before deallocating the conversation, this verb performs the equivalent of FLUSH,
MC_FLUSH, CONFIRM, or MC_CONFIRM.

TP_ENDED
Issued by both the local and partner TPs. It notifies APPC that the TP is ending. Issuing this verb also terminates any active
conversations.

Windows APPC Overview
A Windows SNA standard was created to provide one common API to port applications from various operating environments to
Microsoft® Windows NT®, Windows® 95, and Windows version 3.x. As a direct result of this work, Windows APPC was
developed.

The information provided in this guide is source code and executable code compatible with the following implementations of
APPC:

APPC applications based on Host Integration Server 2000 or SNA Server residing on the server or on a client. These
applications can be running on Windows 2000, Windows NT, Windows 98, Windows 95, Windows 3.x, MS-DOS®, or OS/2.

IBM APPC Extended Services for OS/2 version 1.0.

Programs written to use this implementation of APPC can exchange data with programs written to use other implementations of
APPC that adhere to the SNA LU 6.2 architecture.

The use of the Windows APPC interface on Windows 2000, Windows NT, Windows 98, Windows 95, and OS/2 will cause
additional threads to be created within the calling process. These other threads perform interprocess communication with the
Host Integration Server 2000 or SNA Server service over the LAN interface that the client is configured to use (TCP/IP, IPX/SPX, or
named pipes, for example).

If an application using Windows APPC is running on Windows 2000 or Windows NT, stopping the SNABASE service will cause the
application to be unloaded from memory.

Windows APPC Asynchronous Support
A program that issues a call and does not regain control until the call completes cannot perform any other operations. This type of
operation, referred to as blocking, is not suited to a server application designed to handle multiple requests from many clients.
Asynchronous call completion returns the initial call immediately so the application can continue with other processes.

Microsoft® Host Integration Server 2000 or SNA Server uses the RegisterWindowsMessage function for asynchronous support
for APPC applications. With "WinAsyncAPPC" as the input string, an application passes a window handle by which it can be
notified of verb completion. The application then issues the verb. When the verb completes, a message is posted to the window
handle that was passed, notifying the application that the verb is complete.

With the exception of asynchronous RECEIVE_AND_WAIT, MC_RECEIVE_AND_WAIT, RECEIVE_AND_POST, and
MC_RECEIVE_AND_POST, which can issue certain other verbs while pending, a conversation can have only one incomplete
operation at any time.

APPC Verbs and Windows Extensions
This topic describes the APPC verbs and Windows extensions that are supported by Host Integration Server 2000 and SNA Server:

APPC Verbs
The following APPC verb descriptions contain important features and should be read before using this version of Windows APPC.

ALLOCATE or MC_ALLOCATE
Issued by the invoking TP, this verb allocates a session between the local LU and partner LU and (in conjunction with
RECEIVE_ALLOCATE) establishes a conversation between the invoking TP and the invokable TP. After this verb executes
successfully, APPC generates a conversation identifier (conv_id). The conv_id is a required parameter for all other APPC
conversation verbs.

For a user or group using TPs, 5250 emulators, or APPC applications, you can assign default local and remote LUs. In this case,
the field for LU alias is left blank or null and the default LUs are accessed when the user or group member starts an APPC
program. For more information on using default LUs, see the Network Integration Services section of the Microsoft Host
Integration Server 2000 online guide.

For Windows version 3.x systems, it is recommended that you use WinAsyncAPPC rather than the blocking version of these
calls.

RECEIVE_ALLOCATE

Issued by the invokable TP to confirm that it is ready to begin a conversation with the invoking TP that issued ALLOCATE or
MC_ALLOCATE. This must be the first APPC verb issued by the invokable TP. The initial state is RESET. If the verb executes
successfully (primary_rc is AP_OK), the state changes to RECEIVE.

RECEIVE_AND_POST or MC_RECEIVE_AND_POST
Receives application data and status information asynchronously. This allows the local TP to proceed with processing while data
is still arriving at the local LU. RECEIVE_AND_POST and MC_RECEIVE_AND_POST are only supported by the Windows NT,
Windows 95, and OS/2 operating systems. For similar functionality under the Windows version 3.x system, use
RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT in conjunction with WinAsyncAPPC.

While an asynchronous RECEIVE_AND_POST or MC_RECEIVE_AND_POST is outstanding, the following verbs can be issued:

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

GET_TYPE

GET_ATTRIBUTES or MC_GET_ATTRIBUTES

TEST_RTS or MC_TEST_RTS

DEALLOCATE

SEND_ERROR or MC_SEND_ERROR

TP_ENDED

RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT
Receives any data that is currently available from the partner TP. If no data is currently available, the local TP waits for data to
arrive. For Windows version 3.x systems, it is recommended that you use WinAsyncAPPC rather than the blocking version of
this call.

RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT have been altered to act like RECEIVE_AND_POST and
MC_RECEIVE_AND_POST. While an asynchronous RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT is outstanding, the
following verbs can be issued:

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

GET_TYPE

GET_ATTRIBUTES or MC_GET_ATTRIBUTES

TEST_RTS or MC_TEST_RTS

DEALLOCATE

SEND_ERROR or MC_SEND_ERROR

TP_ENDED

TP_STARTED
Issued by the invoking TP, this verb notifies APPC that the TP is starting. For a user or group using TPs, 5250 emulators, or APPC
applications, you can assign default local and remote APPC LUs. These default LUs are accessed when the user or group
member starts an APPC program (a TP, 5250 emulator, or APPC application) and the program does not specify LU aliases. For
more information on using default LUs, see the Network Integration Services section of the Microsoft Host Integration Server
2000 online guide.

Windows Extensions
Windows APPC provides a complete set of Windows extensions that allow asynchronous communication using Windows version
3.x. These extensions provide maximum programming compatibility between Windows 2000, Windows NT, Windows 98,
Windows 95, and Windows version 3.x. They include the following:

WinAPPCCancelAsyncRequest
Cancels an outstanding WinAsyncAPPC-based request.

WinAPPCCancelBlockingCall
Cancels any outstanding blocking operation for its thread.

WinAPPCCleanup
Terminates and deregisters an application from a Windows APPC implementation. When an application is finished, it must call
this function to deregister itself from a Windows APPC implementation.

WinAPPCIsBlocking
Determines if a thread is executing while waiting for a previous blocking call to finish.

WinAPPCSetBlockingHook
Allows a Windows APPC implementation to block APPC function calls by means of a new function. This call is used by Windows
version 3.x applications to make blocking calls without blocking the rest of the system. Blocking procedures apply only if you do
not use asynchronous calls. If a function needs to block, the blocking procedure is called repeatedly until the original request
completes. This allows Windows to continue to run while the original application waits for the call to return. Note that while
inside the blocking procedure, the application can be re-entered.

WinAPPCSetBlockingHook is used by Windows version 3.x applications that go into a PeekMessageLoop to make blocking
calls without blocking the rest of the system.

By default, Windows NT, Windows 95, and Windows 98 do not go into a PeekMessageLoop; they actually block on an event
waiting for the call to complete. The only time you need to use WinAPPCSetBlockingHook on Windows 2000, Windows NT,
Windows 98, or Windows 95 is when a single-threaded application for these systems and Windows version 3.x share common
source code. In this case, you must explicitly make this call. This is in contrast with the WinAPPCIsBlocking and
WinAPPCUnhookBlockingHook functions.

WinAPPCStartup
Registers an application and specifies the version of Windows APPC required. An application must call this extension to register
itself with a Windows APPC implementation before issuing any further Windows APPC calls.

WinAPPCUnhookBlockingHook
Removes any previous blocking hook that has been installed and reinstalls the default blocking mechanism.

WinAsyncAPPC
Provides an asynchronous version for all of the APPC verbs. It is recommended that you use this extension instead of the
blocking versions of the verbs if you run your application under Windows version 3.x. APPC verbs that can block are:

ALLOCATE or MC_ALLOCATE

CONFIRM or MC_CONFIRM

CONFIRMED or MC_CONFIRMED

DEALLOCATE or MC_DEALLOCATE

FLUSH or MC_FLUSH

PREPARE_TO_RECEIVE or MC_PREPARE_TO_RECEIVE

RECEIVE_ALLOCATE

RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

SEND_CONVERSATION or MC_SEND_CONVERSATION

SEND_DATA or MC_SEND_DATA

SEND_ERROR or MC_SEND_ERROR

TP_ENDED

TP_STARTED

Limits
Host Integration Server 2000 and SNA Server permit one outstanding Windows APPC asynchronous call per connection and one
blocking verb per thread. For example:

void ProcessVerbCompletion (WPARAM wParam, LPARAM lParam)
{
 int i;

 for (i = 0; i < nPendingVerbs; i++)
 if (pPendingVerbs[i].hAsync == wParam)
 ProcessVCB((LPVCB) lParam);
} . . .

LRESULT CALLBACK SampleWndProc (...)
{
 if (msg == uAsyncAPPC) {
 ProcessVerbCompletion(wParam; lParam);
 }
 else switch (msg) {
 case WM_USER:
 if (hAsync = WinAsyncAPPC(hwnd, &vcb))
 pPendingVerbs [nPendingVerbs++].hAsync = hAsync;

 break;
 }

 Note The exceptions to the rule of one outstanding asynchronous call are RECEIVE_AND_POST,
MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, and MC_RECEIVE_AND_WAIT. While these verbs are outstanding,
certain other verbs can also be called.

Using APPC Verbs in C Programs
This implementation of APPC is available for programs written in Microsoft® C version 5.1 or later. A C program calls APPC
through the external function APPC. For compatibility with previous versions of Microsoft C, the external function APPC_C is also
supported.

 Note Compilers other than the Microsoft C compiler can also be used to build applications using this
implementation of APPC.

Verb Control Block
The only parameter passed to the APPC function is the address of a verb control block (VCB). The VCB is a structure made up of
variables that:

Identify the APPC verb to be executed.
Supply information to be used by the verb.
Contain information returned by the verb when execution is complete.

Each APPC verb has its own VCB structure, which is declared in the WINAPPC.H header file. For compatibility with earlier versions,
the APPC_C.H header file is also supported.

The WINAPPC.H file is supplied as part of the Host Integration Server 2000 or SNA Server Software Development Kit.

APPC Definition
The prototype definitions of the APPC function are as follows:

The VCB address parameter, a 32-bit pointer, is declared as a long integer and thus requires casting from a pointer to a long
integer.

Issuing an APPC Verb
The following procedure is required to issue a blocking APPC verb. In the sample code, the verb issued is MC_SEND_DATA.

}

WinMain (...)
{
 if ((WinAPPCStartup (...) = = FALSE) {
 return FALSE ;

 }

 uAsyncAPPC = RegisterWindowsMessage ("WinAsyncAPPC") ;
 while (GetMessage (...)) {

 ...
 WinAPPCCleanup (...)

}

void WINAPI APPC(long);
HANDLE WINAPI WinAsyncAPPC (hWnd, LPAPPC);

To issue a blocking APPC verb

1. Create a structure variable from the VCB structure that applies to the APPC verb to be issued.

2. Clear (set to zero) the variables within the VCB structure.

3. Assign values to the VCB variables that supply information to APPC.

4. The values AP_MAPPED_CONVERSATION and AP_M_SEND_DATA are symbolic constants representing integers. These
constants are defined in WINAPPC.H.

5. Invoke the APPC function. The only parameter is a pointer to the address of the structure containing the VCB for the desired
verb.

6. Use WinAsyncAPPC if you are running the application under Windows version 3.x.

7. To call WinAsyncAPPC:

9. When the asynchronous operation is complete, the application's window hWnd receives the message returned by
RegisterWindowMessage with "WinAsyncAPPC" as the input string.

10. Use the variables that were returned by APPC.

Windows 2000, Windows NT, Windows 98, and Windows 95
Considerations
This topic summarizes information about developing transaction programs (TPs) using APPC for the Microsoft® Windows®
2000, Windows NT®, Windows 98, and Windows 95 operating systems.

Host Integration Server 2000 with Service Pack 1 runs on the following additional operating systems:

Microsoft Windows XP Professional

#include <winappc.h>
 .
 .
struct mc_send_data mcsend;

The VCB structures are declared in WINAPPC.H; one of these structures is:
mc_send_data

memset(mcsend, '\0', sizeof(mcsend));

mcsend.opcode = AP_M_SEND_DATA;
mcsend.opext = AP_MAPPED_CONVERSATION;
memcpy(mcsend.tp_id, tp_id, sizeof(tp_id));
mcsend.conv_id = conv_id;
mcsend.dlen = datalen;
mcsend.dptr = sharebufptr;

APPC ((long) (void FAR *) &mcsend);

8. HANDLE WINAPI WinAsyncAPPC (hWnd, 1pVCB)

if(mcsend.primary_rc != AP_OK)
/* Do error routine */
 .
 .
 .

Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

Byte ordering
The values of constants defined in WINAPPC.H and WINCSV.H are dependent on the byte ordering of the hardware used.
Macros are used to set the constants to the correct value.

By default, Intel little-endian byte ordering is used, with the low byte of a 16-bit value followed by the high byte. However, when
defining inline macros, the NON_INTEL_BYTE_ORDER macro used in WINAPPC.H and WINCSV.H will not reverse (flip) the byte
order for constants. Non-constant input parameters in VCBs (such as lengths, pointers, and so on) are always in the native
format.

For example, the primary return code of AP_PARAMETER_CHECK is defined to have a value of 0x0001. Depending on the
environment (byte ordering), the constant AP_PARAMETER_CHECK may or may not be 0x0001. Some formats define the value
as it appears in memory; others define it as a 2-byte variable. Because you cannot assume that the application will always use
provided constants rather than hardwired values, you can define a macro to swap the bytes. The following is an example of
using the macro:

Events
To receive data asynchronously, an event handle is passed in the semaphore field of the VCB. This event must be in the non-
signaled state when passed to APPC, and the handle must have EVENT_MODIFY_STATE access to the event.

Library names
In order to support the coexistence of Win16 and Win32® API libraries on the same computer, the Win32 DLL names have
been changed.
Old DLL names New DLL names
WINAPPC.DLL WAPPC32.DLL
WINCSV.DLL WINCSV32.DLL

The old DLL names should be used for Win32-based applications that are required to run on SNA Server version 2.0. The new
DLL names should be used for Win32-based applications that are intended to run only on SNA Server version 2.1 or later and
Host Integration Server 2000.

If you intend your Win32-based application to be used with SNA Server version 2.0, you should link with the libraries included
with SNA Server version 2.0. Otherwise, use the new libraries provided with SNA Server versions 2.1, 3.0, and 4.0 and provided
with Host Integration Server 2000.

Limits
For Windows 2000, Windows NT, Windows 98, and Windows 95, the number of simultaneous CSVs allowed per process is 64.
Only one of these verbs per thread can be synchronous (blocking).

Using APPC, the maximum number of simultaneous conversations per process is 15,000. Each process supports up to 15,000
simultaneous TPs.

Multiple threads
A TP can have multiple threads that issue verbs. Windows APPC makes provisions for multithreaded Windows-based processes.
A process contains one or more threads of execution. All references to threads refer to actual threads in the multithreaded
Windows 2000, Windows NT, Windows 98, and Windows 95 environments.

With the exception of RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, and MC_RECEIVE_AND_WAIT, only
one conversation verb can be outstanding at a time on any conversation; however, other verbs can be issued for other
conversations. This guideline also applies to TP verbs and TPs. Although multiple TP verbs can be issued, only one TP verb can
be outstanding at a time on a TP. This applies to both multithreaded applications and single-threaded applications that use
asynchronous calls.

/* when NON_INTEL_BYTE_ORDER is specified, the APPC_FLIPI macro defined in WINAPPC.H macro b
ecomes */
#define APPC_FLIPI(x) (x)

/* otherwise this macro flips bytes by defining */
#define APPC_FLIPI(X) APPC_MAKUS(APPC_HI_UC(X),APPC_LO_UC(X))

/* the AP_PARAMETER_CHECK macro is now defined using the APPC_FLIPI macro */
#define AP_PARAMETER_CHECK APPC_FLIPI (0X0001) /* X '0001' */

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or DWORD (4-byte) boundaries, whichever is smaller. As a result, DWORDs are aligned
on DWORD boundaries, WORDs are aligned on WORD boundaries, and BYTEs are aligned on BYTE boundaries. This means, for
example, that there is a 2-byte gap between the primary and secondary return codes. Therefore, the elements in a VCB should
only be accessed using the structures provided.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers. For compatibility
with the supplied LUA libraries, make sure to use an equivalent structure and union member packing option when using other
C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft compilers.

Registering and deregistering applications
All Windows APPC applications must call WinAPPCStartup at the beginning of the session to register the application and
WinAPPCCleanup at the end of the session to deregister the application.

All Windows CSV applications must call the Windows SNA extension WinCSVStartup at the beginning of the session to register
the application and WinCSVCleanup to deregister the application when the session is finished.

Run-time linking
For a TP to be dynamically linked to APPC at run time, the TP must issue the following calls:

LoadLibrary to load the dynamic-link libraries WINAPPC.DLL or WAPPC32.DLL.
GetProcAddress to specify APPC on all the desired entry points to the DLL such as APPC, WinAsyncAPPC,
WinAPPCStartup, and WinAPPCCleanup.

For a TP to be dynamically linked to CSV at run time, the TP must issue the following calls:

LoadLibrary to load WINCSV.DLL or WINCSV32.DLL, the dynamic-link libraries for Windows CSV.
GetProcAddress to specify CSV on all the desired entry points to the DLL such as ACSSVC, WinAsyncCSV, WinCSVStartup,
and WinCSVCleanup.

The TP must issue the FreeLibrary call when the APPC or CSV library is no longer required.

Yielding to other components
Because the Windows 2000, Windows NT, Windows 98, and Windows 95 environments are multithreaded, there is no need to
yield to other components. However, if an application is single-threaded and is intended for both Windows version 3.x and
these other operating systems, use the Windows extensions WinAPPCSetBlockingHook and WinAPPCUnhookBlockingHook.
These extensions must be explicitly called to accomplish the yield procedure.

Windows 3.x Considerations
This topic summarizes information about developing TPs for the Microsoft® Windows® version 3.x system.

Blocking routines
Do not use blocking functions if your application runs in Windows version 3.x. Instead, use WinAsyncAPPC in conjunction with a
WinAsyncAPPC Windows message.

Limits
For the Windows version 3.x system, the number of simultaneous CSVs allowed per process is 64. Only one of these verbs per
process can be synchronous.

Using APPC, the maximum number of simultaneous conversations per process is 64. Each process supports up to 16
simultaneous TPs.

Load-time linking
For a TP to be dynamically linked to APPC at load time, you must do one of the following at link time:

Insert the following IMPORTS statements in the definition (.DEF) file used to link the TP:

Link the TP to WINAPPC.LIB, which contains the entry point linkage information for APPC. If you intend to use CSVs, you
must also link to WINCSV.LIB, which contains the entry point information for CSVs.

IMPORTS WINAPPC.APPC
IMPORTS WINAPPC WinAsyncAPPC.APPC

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or WORD (2-byte) boundaries, whichever is smaller. As a result, DWORDs and WORDs
are aligned on WORD boundaries and BYTEs are aligned on BYTE boundaries. For portability to Win32, VCBs should be
accessed using the structures provided since the alignment of structure members differs.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers producing 16-bit
code. For compatibility with the supplied LUA libraries, make sure to use an equivalent structure and union member packing
option when using other C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft
compilers.

RECEIVE_AND_POST and MC_RECEIVE_AND_POST
These verbs have been replaced for Windows version 3.x by calling RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT using
WinAsyncAPPC.

Registering and deregistering applications
All Windows APPC applications must call WinAPPCStartup at the beginning of the session to register the application and
WinAPPCCleanup at the end of the session to deregister the application.

All Windows CSV applications must call the Windows SNA extension WinCSVStartup at the beginning of the session to register
the application and WinCSVCleanup to deregister the application when the session is finished.

Run-time linking
For a TP to be dynamically linked to APPC at run time, the TP must issue the following calls:

LoadLibrary to load WINAPPC.DLL, the dynamic-link library for APPC.
GetProcAddress to specify APPC on all the desired entry points to the DLL such as APPC, WinAsyncAPPC,
WinAPPCStartup, and WinAPPCCleanup.

The TP must issue the FreeLibrary call when the APPC library is no longer required.

Simultaneous conversations
A TP can participate in as many as 64 conversations simultaneously within the Windows 3.x environment. However, if more
than one TP is active at once, the total number of conversations cannot exceed 64.

Translating service TP names to ASCII for WIN.INI
For service TPs on Host Integration Server 2000 or SNA Server clients running Windows version 3.x, a line must be added to the
WIN.INI file, specifying the TP name in ASCII. For more information, see Translating SNA Service TP Names to ASCII for WIN.INI.

Yielding to other components
Because Windows version 3.x is single-threaded, there is only one thread of execution. In the case where a function must wait
before completing a task, the only thread of execution could block to allow other tasks to proceed.

This means that while in a blocking call, the calling application's Window procedure can be called. To test if this is the case, the
extension WinAPPCIsBlocking is provided. Any attempt to make a second blocking call with one already outstanding will cause
the call to fail with the return code AP_THREAD_BLOCKING.

Windows APPC and CSV contain a default yield procedure for Windows version 3.x that can yield to other functions while waiting
for the first function to complete. The default is:

Besides the default yield procedure, Windows APPC provides WinAPPCSetBlockingHook to support applications that require
more complex message processing. This call allows a Windows APPC implementation to block APPC function calls by means of a
new function. It is used by Windows version 3.x applications to make blocking calls without blocking the rest of the system. To call
WinAPPCSetBlockingHook:

BOOL DefaultBlockingHook (void) {
 MSG msg:
 /* get the next message if any */
 if (PeekMessage (&msg,0,0,PM_NOREMOVE)) {
if (msg.message = = WM_QUIT)
 return FALSE; / / let app process WM_QUIT
PeekMessage (&msg,0,0,PM_REMOVE) ;
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
 }
 /*TRUE if no WM_QUIT received */
 return TRUE;
}

WinAPPCUnhookBlockingHook removes any previous blocking hook that has been installed and reinstalls the default blocking
mechanism. To call WinAPPCUnhookBlockingHook:

MS-DOS Considerations
This topic summarizes information about developing TPs for the Microsoft® MS-DOS® system.

AS/400 PC Support Router API
MS-DOS support for Windows APPC is handled in one of two ways:

The call-level interface through the DOSACS.LIB library provided with the Host Integration Server 2000 or SNA Server
Software Development Kit
The software interrupt PC Support Router API

For additional information on the PC Support Router API, see the IBM PC Support/400 Application Program Interface Reference,
part number SC41-8254.

CSV restrictions when SnaBase is not loaded
If your application uses the Windows-based client or an MS-DOS-based client supplied with Host Integration Server 2000 or
SNA Server, and SnaBase has not been loaded, only the following verbs are available:

GET_CP_CONVERT_TABLE

CONVERT

Under these circumstances, CONVERT cannot use a type G conversion table. Attempting to use a type G conversion table
causes the system to return the SV_TABLE_ERROR primary return code.

Attempting to issue COPY_TRACE_TO_FILE, DEFINE_TRACE, LOG_MESSAGE, or TRANSFER_MS_DATA causes the system to
return the SV_COMM_SUBSYSTEM_NOT_LOADED primary return code.

Limits
For the MS-DOS system, only one outstanding CSV verb is allowed per process. Only one outstanding verb per process can be
synchronous.

Using APPC, the maximum number of simultaneous conversations per process is 16. Each process supports up to four
simultaneous TPs.

Link library
The link library for APPC is DOSACS.LIB.

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or WORD (2-byte) boundaries, whichever is smaller. As a result, DWORDs and WORDs
are aligned on WORD boundaries and BYTEs are aligned on BYTE boundaries. For portability to Win32, VCBs should be
accessed using the structures provided since the alignment of structure members differs.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers producing 16-bit
code. For compatibility with the supplied LUA libraries, make sure to use an equivalent structure and union member packing
option when using other C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft
compilers.

Partner TPs
Host Integration Server 2000 or SNA Server invokable TPs cannot be run on MS-DOS-based clients. No support is provided for
autostarting MS-DOS partner TPs. The call-level interface contains the same syntax as that of OS/2.

RECEIVE_AND_POST and MC_RECEIVE_AND_POST

These verbs are not available with MS-DOS.

FARPROC WINAPI WinAPPCSetBlockingHook (FARPROC 1pBlockFunc)

BOOL WINAPI WinAPPCUnhookBlockingHook (void)

Simultaneous conversation
In an MS-DOS environment, a TP can participate in as many as 16 conversations simultaneously.

SnaBase
When running a TP on a Host Integration Server 2000 or SNA Server MS-DOS-based client, you must use SnaBase, which
supports APPC. If you attempt to use something other than SnaBase, your TP will not run.

OS/2 Considerations
This topic summarizes information about developing TPs for the OS/2 system.

Critical sections
Exercise great caution when using critical sections, which are the parts of a program that must run without interruption. A TP
must not issue an APPC verb within a critical section.

Data segments
Data is sent from and received in data buffers established by the TP. A data buffer must reside on an unnamed shared data
segment and it must fit entirely within the data segment. Many data buffers can reside on the same data segment.

To allocate a data segment, use the DosAllocSeg function with Flags equal to 1.

To improve efficiency, a TP can reuse the same data segment each time it issues a verb requiring a data buffer. If necessary, the
program can allocate a segment of up to 64K and then partition the segment into data buffers.

Limits
For the OS/2 system, only one outstanding CSV verb is allowed per process. Only one outstanding verb per process can be
synchronous.

Using APPC, the maximum number of simultaneous conversations per process is 64. Each process supports up to 64
simultaneous TPs.

Load-time linking
For a TP to be dynamically linked to APPC at load time, you must do one of the following at link time:

Insert the following IMPORTS statement in the definition (.DEF) file used to link the TP:

Link the TP to APPC.LIB, which contains the entry point linkage information for various APIs, including APPC.

Multiple processes
Multiple processes cannot have the same TP identifier (tp_id). Only the process that issues TP_STARTED or RECEIVE_ALLOCATE
can use the tp_id returned by the verb. Another process that needs to use APPC must issue TP_STARTED or
RECEIVE_ALLOCATE to obtain its own tp_id.

Two or more instances of the same TP can be run as different processes, but each will be assigned a different tp_id.

One process can contain many TPs, each with its own tp_id. In this case, you may want to create a separate thread for each TP
to avoid the possibility of a deadlock. (A deadlock occurs when an APPC verb that is hung blocks the execution of verbs in other
conversations and TPs.)

A process containing many TPs can issue two or more verbs simultaneously, provided that each verb is for a different TP
(specifies a different tp_id).

Multiple threads
A TP can have multiple threads that issue verbs. Windows APPC makes provisions for multithreaded processes. A process
contains one or more threads of execution. All references to threads refer to actual threads in the multithreaded OS/2
environment.

With the exception of RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, and MC_RECEIVE_AND_WAIT, only
one conversation verb can be outstanding at a time on any conversation; however, other verbs can be issued for other
conversations. This guideline also applies to TP verbs and TPs. Although multiple TP verbs can be issued, only one TP verb can
be outstanding at a time on a TP. This applies to both multithreaded applications and single-threaded applications that use
asynchronous calls.

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned

IMPORTS APPC.APPC

on either the size of the member type or WORD (2-byte) boundaries, whichever is smaller. As a result, DWORDs and WORDs
are aligned on WORD boundaries and BYTEs are aligned on BYTE boundaries. For portability to Win32, VCBs should be
accessed using the structures provided since the alignment of structure members differs.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers producing 16-bit
code. For compatibility with the supplied LUA libraries, make sure to use an equivalent structure and union member packing
option when using other C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft
compilers.

Run-time linking
For a TP to be dynamically linked to APPC at run time, the TP must issue the following calls:

DosLoadModule to load APPC.DLL, the DLL for APPC.
DosGetProcAddr to specify APPC as the desired entry point to the DLL.

Unlinking (the DosFreeModule call) is not supported.

Simultaneous conversations
A TP can simultaneously participate in as many as 64 conversations for each OS/2 process.

SNA Server or Host Integration Server CSVs
Applications running on Host Integration Server 2000 or SNA Server using common service verbs (CSVs) are compatible with
the common services programming interface provided by IBM ES for OS/2 version 1.0, with the following exceptions:

VCBs are not packed. As a result, DWORDs and WORDs are on WORD boundaries, and BYTEs are on BYTE boundaries.
This means, for example, that there is not a 2-byte gap between the primary and secondary return codes. VCBs should be
accessed using the structures provided, and compiler options that change this packing method should be avoided.
Trace information for products is stored in trace files, not in a storage buffer. With the Host Integration Server 2000 or
SNA Server implementation of COPY_TRACE_TO_FILE_sna_COPY_TRACE_TO_FILE_appc, the trace information in these
files is copied to a single trace file.
The additional tracing features of DEFINE_TRACE_sna_DEFINE_TRACE_appc are not applicable because of differences
between the architecture of the Host Integration Server 2000 and SNA Server products and the architecture of IBM
Communications Manager. The tracing features provided in IBM OS/2 ES version 1.0 include event tracing, automatic
tracing, and tracing support for the following:
X.25 API verbs, frame data, and data link control (DLC) data
Twinaxial data
With the Host Integration Server 2000 or SNA Server implementation of GET_CP_CONVERT_TABLE, user-defined code
pages are applicable only in an OS/2 environment. These code pages are supported for only the Windows NT, Windows
95, and OS/2 systems because of the additional memory occupancy in the MS-DOS and Windows environments. The new
user-defined code pages are explained in the description of the verb.
With the Host Integration Server 2000 and SNA Server implementation of TRANSFER_MS_DATA, support for the
PD_STATS subvector type is retained.
DEFINE_DUMP and SET_USER_LOG_QUEUE, provided in IBM OS/2 ES version 1.0, are not applicable because of
differences between the architecture of Host Integration Server 2000 and SNA Server and the architecture of IBM
Communications Manager. If either verb is called, INVALID_VERB is returned.

Stack size
The recommended stack size for a TP is at least 3000 bytes.

When executing a verb, APPC uses the calling TP's stack. The combination of OS/2 and APPC requires 2560 bytes of stack space,
and the TP requires additional stack space for its variables.

Translating service TP names to ASCII for SNA.INI
For service TPs on Host Integration Server 2000 or SNA Server clients running OS/2, a line must be added to the SNA.INI file,
specifying the TP name in ASCII. For more information, see Translating SNA Service TP Names to ASCII for SNA.INI.

VCB segment
The segment containing the VCB must be a writable segment.

Microsoft Host Integration Server 2000

About Transaction Programs
A processing task accomplished by programs using APPC is called a transaction. Consequently, programs that use APPC are
called transaction programs, or TPs. These programs communicate as peers, on an equal (rather than hierarchical) basis. The TPs
use APPC verbs to exchange status information and application data. Each TP uses APPC verbs to supply parameters to APPC,
which performs the desired function and returns parameters to the TP.

TPs distributed across a local or wide area network perform distributed transaction processing.

This section describes how to write TPs and how to configure the systems on which TPs run. The topics in this section cover the
following general areas:

Understanding fundamental concepts related to TPs
Designing and coding TPs
Configuring registry and environment variables for invokable TPs
Configuring Microsoft® Host Integration Server 2000 or Microsoft SNA Server 4.0 to work with your TPs
Sync Point Level 2 support

This section contains:

Communication Between TPs
Designing and Coding TPs
Configuring Invokable TPs
Configuring TPs on Host Integration Server and SNA Server
Arranging TPs Within an SNA Network
Sync Point Level 2 Support in Host Integration Server and SNA Server

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Communication Between TPs
Various hardware and software elements in the SNA environment are required for two TPs to communicate with each other. The
following figure shows several fundamental elements.

Each TP is associated with a logical unit (LU) of type 6.2. The LU allows the TP to access the network. Several TPs can be associated
with the same LU.

A partner TP can invoke another TP which, in turn, invokes another TP, and so on. In the following figure, TP A invokes TP B and TP
B invokes TP C.

This section contains:

Fundamental Terms for TPs and LUs
Sample TPs Illustrating Fundamental Concepts
Configuring and Controlling TPs
Creating TPs and Their Supporting Configuration

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Fundamental Terms for TPs and LUs
The following terms describe some fundamental characteristics of TPs communicating through LUs:

asynchronous verb
An APPC verb for which the initial function call returns immediately, so that the normal operation of the program is not blocked
while processing of the verb completes. For more information, see Receiving Data Asynchronously.

basic conversation
A type of conversation more complex than a mapped conversation and generally used by service TPs (SNA-based programs
that provide services to other programs). For more information, see Basic and Mapped Conversations Compared.

conversation
The interaction between TPs carrying out a specific task. Each conversation requires an LU-LU session. A TP can be involved in
several conversations simultaneously, as shown with TP B in Communication Between TPs.

invokable TP
A TP that can be invoked by another TP. Invokable TPs are usually server-type applications; that is, they work in the same
general way that an application such as CICS works. Parameters for an invokable TP are configured through registry or
environment variables.

There are several types of invokable TPs:

operator-started invokable TP

A TP that is started manually in preparation for being invoked.

autostarted invokable TP

A TP that is automatically started by APPC when invoked.

queued TP

A TP that, when invoked multiple times, loads once and then queues up subsequent requests to be dealt with one at a time. All
operator-started TPs and some autostarted TPs are queued.

nonqueued TP

A TP loaded multiple times, once for every time it is invoked. Some autostarted TPs are nonqueued but no operator-started TPs
are nonqueued.

For more information, see Invokable TPs.

invoking TP
A TP that can invoke (that is, initiate a conversation with) other TPs. Invoking TPs are usually client-type applications; that is, they
work in the same general way that an emulator works. For more information, see Invoking TPs.

local LU and local TP
An LU and TP working together, when viewed as the "home base" for a particular conversation. From this viewpoint, some other
LU and TP are seen as the "partner" or "remote" LU and TP.

LU alias
The string that identifies an LU to a TP. The alias can be up to eight characters long.

LU-LU session
The communication between two LUs over a specific connection for a specific amount of time. An LU-LU session is needed for
two TPs to interact. One session can be used serially by many pairs of TPs.

An LU 6.2 can have multiple sessions (two or more concurrent sessions with different partner LUs) and parallel sessions (two or
more concurrent sessions with the same partner LU).

LUs as well as LU-LU pairs and modes are configured using the SNA Manager on Host Integration Server 2000 and configured
using SNA Explorer on SNA Server 4.0.

mapped conversation
A type of conversation simpler than a basic conversation and generally used by application TPs (programs that accomplish
tasks for end users). The characters MC_ at the beginning of a verb stand for mapped conversation. For more information, see
Basic and Mapped Conversations Compared.

partner LU and partner TP, or remote LU and remote TP
An LU and TP working together, when viewed as being at the far end of a particular conversation.

synchronous verb
An APPC verb that blocks further program operations until the processing of the verb is complete.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample TPs Illustrating Fundamental Concepts
A set of sample TPs is provided on the Host Integration Server and on the SNA Server CD-ROM in the \SDK\SAMPLES directory.
Included with the sample code in the \SDK\SAMPLES\SNA\TPSETUP directory on the Host Integration Server CD-ROM is
TPSETUP, a program that simplifies the setting of registry or environment variables needed by autostarted invokable TPs. Without
an interface like that provided by TPSETUP, configuring such variables can be complicated and error-prone. Therefore, it is
recommended that you use code like TPSETUP in installation programs for autostarted invokable TPs.

The source code for TPSETUP (INSTALL.C) can be compiled to work in the Microsoft Windows® 2000, Windows NT®, Windows
98, Windows 95, or Windows version 3.x environment.

For information about TPSETUP and about the sample TPs, see Sample APPC TPs in the SDK.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring and Controlling TPs
The following table shows how the characteristics of the TPs and selection of the LUs for a conversation are controlled.

Characteristic How controlled
Type of verb: synchronous
or asynchronous

Written into the code. Synchronous verbs use blocking calls; asynchronous verbs avoid blocking calls.
See Receiving Data Asynchronously and WinAsyncAPPC.

Type of conversation:
basic or mapped

Written into the code. The MC_ prefix is used on verbs in mapped conversations and omitted on verbs
in basic conversations. For two TPs to communicate successfully, both must use the same type of conv
ersation, basic or mapped. See Basic and Mapped Conversations Compared.

Type of TP:
invoking or invokable

Written into the code. Invoking TPs start with TP_STARTED, which identifies the invoking TP, and
ALLOCATE or MC_ALLOCATE, which identifies the requested invokable TP. Invokable TPs start with
RECEIVE_ALLOCATE, which identifies the invokable TP. See Invoking TPs and Invokable TPs.

The local LU alias to be us
ed by an invoking TP

Three options:

Written into the code in TP_STARTED.
Configured (in Host Integration Server Manager or SNA Explorer) as the default local APPC LU f
or the user who starts the invoking TP.
Configured as a member of the default outgoing local APPC LU pool using the SNA Manager on
Host Integration Server 2000 and using SNA Explorer on SNA Server 4.0

See Configuring Invoking TPs on Host Integration Server and SNA Server.

The invokable TP requeste
d by an invoking TP

Written into the ALLOCATE or MC_ALLOCATE request in the invoking TP.

The LU alias to be used by
an invokable TP

Two options:

Written into the invoking TP (not the invokable TP), in ALLOCATE or MC_ALLOCATE.
Configured as the default remote APPC LU for the user who starts the invoking TP.

See Configuring Invoking TPs on Host Integration Server and SNA Server and
Matching Invoking and Invokable TPs.

Type of autostarted invoka
ble TP: queued or nonque
ued

Configured with registry or environment variables. See Configuring Invokable TPs.

Local LU and remote LU al
iases

Configured using SNA Manager on Host Integration Server 2000 and configured using SNA Explorer
on SNA Server 4.0. For information, see the Microsoft Host Integration Server 2000 online books.

The pairing of local and re
mote LUs, and the mode u
sed for each LU-LU pair

Configured using SNA Manager on Host Integration Server 2000 and configured using SNA Explorer
on SNA Server 4.0. For information, see the Microsoft Host Integration Server 2000 online books.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Creating TPs and Their Supporting Configuration
The following procedure describes how to create TPs and set up a supporting configuration.

To create TPs and set up a supporting configuration

1. Write, compile, and link each TP.
2. Place each TP on an appropriate computer.

For TPs that you will start many times or that will be started by a user, arrange for the TP to be started easily. That is, for
graphical interfaces, create a program icon for starting the TP; for non-graphical interfaces, make sure the TP is in the path.

3. On one or more servers running Host Integration Server or SNA Server, configure LUs, modes, and LU-LU pairs for use by
the TPs.

For information about how to set up LU-LU pairs to support TPs, see Using Invoking and Invokable TPs and the Microsoft
Host Integration Server 2000 online books.

4. Set any registry or environment variables needed for the invokable TP.

For autostarted invokable TPs, it is recommended that you use the sample TP configuration program, TPSETUP, for this step.
When you write an installation program for autostarted invokable TPs, it is recommended that you include code similar to
TPSETUP.

For information about registry or environment variables, see Configuring Invokable TPs. For information about TPSETUP,
see Sample APPC TPs in the SDK.

5. If the invokable TP is operator-started, start it, or arrange for it to be started when the computer is restarted and then restart
the computer.

If the invokable TP is autostarted, Host Integration Server 2000 will start it when needed.

6. Start the invoking TP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Designing and Coding TPs
The following topics provide background information about designing and coding TPs.

This section contains:

Conversation States
Confirmation Processing
Receiving Data Asynchronously
Conversation Security
Basic and Mapped Conversations Compared
Using Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Conversation States
The state of the conversation (as viewed by a particular TP) governs which APPC verbs can be issued by the TP at a particular time.
For example, a TP cannot issue MC_SEND_DATA if the conversation is not in SEND state for that TP.

The state of a conversation depends on the TP from which it is viewed. A local TP can view a conversation as being in SEND state
while the partner TP views the conversation as being in RECEIVE state. A particular TP can be in several conversations, each of
which is in a different state.

The possible conversation states are summarized here.

CONFIRM
The TP has received a request for confirmation of receipt of data; it must respond positively or send error information to the
partner TP.

CONFIRM_DEALLOCATE
The TP has received a request for confirmation; it must respond positively or send error information. If the TP responds
positively, the conversation is automatically deallocated.

CONFIRM_SEND
The TP has received a request for confirmation; it must respond positively or send error information. After responding, the TP
can begin to send data.

PENDING_POST
The TP is receiving data asynchronously. The TP can perform other processing not related to this conversation.

RECEIVE
The TP can receive application data and status information from the partner TP. When the conversation is in RECEIVE state, the
TP can also send error information and request permission to send data.

RESET
The conversation has not started or has been terminated.

SEND
The TP can send data to the partner TP and request confirmation. When the conversation is in SEND state, the TP can also begin
to receive data, which changes the state to RECEIVE.

SEND_PENDING
The TP issued a receive verb and the what_rcvd parameter returned by that verb indicated both data received and a status
indication of SEND. This only affects the use of the err_dir parameter for SEND_ERROR and
MC_SEND_ERROR_sna_MC_SEND_ERROR_appc. Otherwise, the state is the same as the SEND state.

This section contains:

State Checks
Changing Conversation States

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

State Checks
A state check occurs when a TP issues an APPC verb and the conversation is not in the appropriate state. For example, a state
check occurs if a TP issues MC_SEND_DATA_sna_MC_SEND_DATA_appc while the conversation is in RECEIVE state. When a state
check occurs, APPC does not execute the verb; it returns state check information through primary and secondary return codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Changing Conversation States
A change in the conversation state can result from:

A verb issued by the local TP.
A verb issued by the partner TP.
An error condition.

The following example shows how APPC verbs can change the state of the conversation from SEND to RECEIVE and from RECEIVE
to SEND.

Any TP can send or receive data, regardless of whether it is the invoking TP (the TP that started the conversation) or
the invokable TP (the TP that responded to a request to start a conversation).

This example shows how APPC verbs can change the conversation state. In this table, each conversation state appears in bold and
precedes the APPC verbs that are used while in that state.

Issued by the invoking TP Issued by the invokable TP
TP_STARTED
Conversation state: RESET
MC_ALLOCATE
(synclevel=AP_CONFIRM_SYNC_LEVL)
Conversation state: SEND
MC_SEND_DATA
MC_PREPARE_TO_RECEIVE
(ptr_type=AP_SYNC_LEVEL)
 Conversation state: RESET
 RECEIVE_ALLOCATE
 Conversation state: RECEIVE
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_OK)
 (what_rcvd=AP_DATA_COMPLETE)
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_OK)
 (what_rcvd=AP_CONFIRM_SEND)
 Conversation state: CONFIRM_SEND
 MC_CONFIRMED
 Conversation state: SEND
 MC_SEND_DATA
 MC_CONFIRM
Conversation state: RECEIVE
MC_RECEIVE_AND_WAIT
(primary_rc=AP_OK)
(what_rcvd=AP_DATA_COMPLETE)
MC_RECEIVE_AND_WAIT
(primary_rc=AP_OK)
(what_rcvd=AP_CONFIRM_WHAT_RECEIVED)
Conversation state: CONFIRM
MC_REQUEST_TO_SEND
MC_CONFIRMED
 (rts_rcvd=AP_YES)
 MC_PREPARE_TO_RECEIVE
 (ptr_type=AP_SYNC_LEVEL)
Conversation state: RECEIVE
MC_RECEIVE_AND_WAIT
(primary_rc=AP_OK)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

(what_rcvd=AP_CONFIRM_SEND)
Conversation state: CONFIRM_SEND
MC_CONFIRMED
Conversation state: SEND
MC_SEND_DATA
MC_DEALLOCATE
(dealloc_type=AP_SYNC_LEVEL)
 Conversation state: RECEIVE
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_OK)
 (what_rcvd=AP_DATA_COMPLETE)
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_OK)
 (what_rcvd=AP_CONFIRM_DEALLOCATE)
 Conversation state: CONFIRM_DEALLOCATE
 MC_CONFIRMED
Conversation state: RESET Conversation state: RESET
TP_ENDED TP_ENDED

Initial States
Before the conversation is allocated, the state is RESET for both TPs.

In the example, after the conversation is allocated, the initial state is SEND for the invoking TP and RECEIVE for the invokable TP.

Changing to RECEIVE State
MC_PREPARE_TO_RECEIVE allows a TP to change the conversation from SEND to RECEIVE state. This verb:

Flushes the local LU's send buffer.
Sends the AP_CONFIRM_SEND indicator to the partner TP through the what_rcvd parameter of a receive verb. This indicator
tells the partner TP that an MC_CONFIRMED response is expected before the partner TP can begin to send data.

Confirmation processing is performed when the following conditions are true:

The ptr_type parameter is set to AP_SYNC_LEVEL.
The synchronization level of the conversation is set to AP_CONFIRM_SYNC_LEVEL.

For more information about confirmation processing, see Confirmation Processing.

Issuing MC_RECEIVE_AND_WAIT while the conversation is in SEND state flushes the LU's send buffer and changes the
conversation state to RECEIVE. Changing the conversation state in this manner does not support confirmation
processing.

Changing to SEND State
MC_REQUEST_TO_SEND informs the partner TP (for which the conversation is in SEND state) that the local TP (for which the
conversation is in RECEIVE state) wants to send data. This request is communicated to the partner TP through the rts_rcvd
parameter of MC_CONFIRM. (The rts_rcvd parameter is also returned to MC_SEND_DATA and other verbs.)

When the partner TP issues MC_PREPARE_TO_RECEIVE, the conversation state changes to RECEIVE for the partner TP, making it
possible for the local TP to send data.

Issuing MC_REQUEST_TO_SEND does not change the state of the conversation. Upon receiving a request to send, the
partner TP is not required to change the conversation state; it can ignore the request.

Microsoft Host Integration Server 2000

Confirmation Processing
The sequence of events for confirmation processing is as follows:

1. Establish the synchronization level.
2. Send a confirmation request.
3. Receive data and confirmation request.
4. Respond to the confirmation request.
5. Deallocate the conversation.

Using confirmation processing, a TP sends a confirmation request with the data; the partner TP confirms receipt of the data or
indicates that an error occurred. Each time the two TPs exchange a confirmation request and response, they are synchronized.

Although the example in this section does not show this, any TP can send or receive data, regardless of whether the TP
is the invoking TP or the invokable TP.

The following example illustrates confirmation processing.

Issued by the invoking TP Issued by the invokable TP
TP_STARTED
MC_ALLOCATE
(synclevel=AP_CONFIRM_SYNC_LEVEL)
MC_SEND_DATA
(type=AP_SEND_DATA_CONFIRM)
 RECEIVE_ALLOCATE
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_OK)
 (rtn_status=AP_YES)
 (what_rcvd=

AP_DATA_COMPLETE_CONFIRM)
 MC_CONFIRMED
MC_SEND_DATA
(type=AP_SEND_DATA_DEALLOC_SYNC_LEVEL)
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_OK)
 (rtn_status=AP_YES)
 (what_rcvd=

AP_DATA_COMPLETE_CONFIRM_
DEALLOCATE)

 MC_CONFIRMED
TP_ENDED TP_ENDED

Establishing the Synchronization Level
The synclevel parameter of MC_ALLOCATE determines the synchronization level of the conversation. There are three possible
synchronization levels:

AP_NONE, under which confirmation processing does not occur.
AP_CONFIRM_SYNC_LEVEL, under which the TPs can request confirmation of receipt of data and respond to requests for
confirmation of data.
AP_SYNCPT, under which the TPs operate under Sync Point Level 2 support for confirmation of receipt of data.

Sending a Confirmation Request
MC_SEND_DATA with type AP_SEND_DATA_CONFIRM has two effects:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

It flushes the local LU's send buffer and sends any data contained in the buffer to the partner TP.
It sends a confirmation request that the partner TP receives through the what_rcvd parameter of a receive verb.

After issuing MC_SEND_DATA, the local TP waits for confirmation from the partner TP.

Receiving Data and Confirmation Request
The what_rcvd parameter of MC_RECEIVE_AND_WAIT indicates:

Status of the data received: complete or incomplete.
Future processing expected of the local TP.

In the example, what_rcvd is AP_DATA_COMPLETE_CONFIRM, indicating that the status is complete and a confirmation is
requested.

Responding to a Confirmation Request
The partner TP issues MC_CONFIRMED to confirm receipt of data. This frees the local TP to resume processing.

Deallocating the Conversation
MC_SEND_DATA sends a confirmation request with the data when all of the following conditions are true:

The conversation's synchronization level (established by the synclevel parameter of MC_ALLOCATE) is
AP_CONFIRM_SYNC_LEVEL.
The type parameter of MC_SEND_DATA is set to AP_SEND_DATA_DEALLOC_SYNC_LEVEL.
The what_rcvd parameter of the final MC_RECEIVE_AND_WAIT is AP_DATA_COMPLETE_CONFIRM_DEALLOCATE, indicating
that a confirmation of receipt of data is required before APPC will deallocate the conversation. The local TP waits for this
confirmation until the partner TP issues MC_CONFIRMED.

Microsoft Host Integration Server 2000

Receiving Data Asynchronously
When using the Windows 2000, Windows NT, Windows 98, Windows 95, Windows version 3.x, and OS/2 operating systems, a TP
can receive data asynchronously, without regard to other events occurring within the TP. The following table shows the methods
by which a TP can receive data asynchronously. The table also indicates how asynchronous methods can be applied to actions
other than receiving data.

Operating system Method
Windows 2000, Windo
ws NT, Windows 98, Wi
ndows 95, or Windows
3.x

Through a Windows message:
Issue RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT with WinAsyncAPPC; the application is notifi
ed of completion through a PostMessage to the defined window handle.

This method is not restricted to RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT, but can be applied to
any APPC verb.

Windows 2000, Windo
ws NT, Windows 98, or
Windows 95

Through a Win32® event:
Issue RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT with WinAsyncAPPCEx; the application is no
tified of completion through a Win32 event.

This method is not restricted to RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT, but can be applied to
any APPC verb.

Windows 2000, Windo
ws NT, Windows 98, Wi
ndows 95, or
OS/2

With RECEIVE_AND_POST or MC_RECEIVE_AND_POST:
Issue the RECEIVE_AND_POST or MC_RECEIVE_AND_POST verb. With OS/2, the application is notified
of completion through a semaphore. With Windows NT and Windows 95, the application is notified of co
mpletion through a Win32 event (the unsignaled event, not a semaphore, is passed in the sema member
).

The following list gives details about these methods of receiving data asynchronously. For complete information, see the verb
descriptions.

RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT with WinAsyncAPPC
This method is defined as part of Windows SNA. It allows an application to issue a verb and be notified through a PostMessage
when the action is complete. To retrieve the message number that will be posted to the window, call
RegisterWindowMessage with "WinAsyncAPPC" as the input string. Then issue RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT using the WinAsyncAPPC entry point.

RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT with WinAsyncAPPCEx
This method allows an application to be notified through a Win32 event. This is particularly useful when writing applications
that need to service multiple conversations simultaneously. The event must be in the nonsignaled state when passed to APPC,
and the handle must have EVENT_MODIFY_STATE access to the event.

RECEIVE_AND_POST or MC_RECEIVE_AND_POST
When using RECEIVE_AND_POST or MC_RECEIVE_AND_POST with Windows 2000, Windows NT, Window 98, or Windows
95, the application is notified through a Win32 event. The event must be in the nonsignaled state when passed to APPC, and the
handle must have EVENT_MODIFY_STATE access to the event.

When using RECEIVE_AND_POST or MC_RECEIVE_AND_POST with OS/2, the application is notified through a semaphore. Use
DosSemSet to set the semaphore; APPC will clear the semaphore when the TP finishes receiving data asynchronously.

While receiving data asynchronously, the TP performs tasks not related to this conversation; the TP cannot issue most APPC verbs
until notification is received. For information about the verbs that can be issued, see the descriptions of WinAsyncAPPC or
WinAsyncAPPCEx.

After a verb has completed asynchronously, check the primary_rc to find out whether the data was received without error.

If the initial call to issue the verb returns successfully, the application is guaranteed to be notified (by the applicable
method) when the verb completes, regardless of whether the verb is ultimately successful.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Conversation Security
You can use conversation security to require that the invoking TP provide a user identifier and password before APPC will allocate
a conversation with the invokable TP. If security is activated, the invoking TP must supply a combination of the user identifier and
password as parameters of ALLOCATE or MC_ALLOCATE. Conversation security is activated and configured through registry or
environment variables on the computer where the invokable TP is located.

With communication involving more than two TPs, the verification of a user identifier and password can be passed from one TP to
another. Suppose that TP A invokes TP B, which requires security information, and TP B in turn invokes TP C, which also requires
security information. Through ALLOCATE or MC_ALLOCATE, TP B can inform TP C that conversation security has already been
verified.

For information about the registry or environment variables affecting conversation security, see Configuring Invokable TPs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Basic and Mapped Conversations Compared
The following table offers some guidelines for choosing between basic and mapped conversations for your TPs. For definitions of
basic and mapped conversations, see Fundamental Terms for TPs and LUs.

Characte
ristic

Basic conversations Mapped conversations

Common
use

Generally used for service TPs. Generally used for application TPs.

Partnerin
g

Must be used to communicate with an existing TP that uses basic verbs. Must be used to communicate with an existin
g TP that uses mapped verbs.

Sending
and recei
ving met
hod

Before a TP can begin a send operation, it must convert data records into
logical records. The TP does this by adding a 2-byte prefix that indicates t
he length of the record. A TP can send several logical records at one time.

When a partner TP receives logical records, it must reconstruct them into
usable data records. For more information, see
Logical Records Used in Basic Conversations.

A TP sends data one record at a time. Neither
the sending TP nor the receiving TP needs to
convert data records between different forms
.

Abnorma
l terminat
ion

In the DEALLOCATE verb, a TP can indicate whether an error or ABEND (a
bnormal program termination) was caused by a TP or by a program usin
g the TP.

A TP can indicate an error or ABEND, but can
not tell whether a problem was caused by a T
P or by a program using a TP.

 A TP can indicate whether an ABEND was caused by a timeout or by a cri
tical error.

A TP cannot indicate the cause of an ABEND.

Error log
ging

For an error or ABEND, a TP can send an error message, in the form of a
general data stream (GDS) error log variable, to the local log and to the p
artner LU.

For an error or ABEND, a TP cannot send an e
rror message to the local log or to the partne
r LU.

This section contains:

Logical Records Used in Basic Conversations
An Example of a Mapped Conversation

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Logical Records Used in Basic Conversations
Logical records are sent and received in basic conversations only.

A TP can send or receive multiple logical records with a single SEND_DATA or receive verb. The receive verbs are
RECEIVE_AND_POST (Windows 2000, Windows NT, Windows 98, Windows 95, and OS/2), RECEIVE_IMMEDIATE, and
RECEIVE_AND_WAIT. A TP can also send or receive a logical record in successive portions: beginning, middle, and end.

A logical record is made up of:

A 2-byte record-length (LL) field.
A data field that can range in length from 0 bytes through 32765 bytes.

The LL field contains a hexadecimal value that is the length of the data field plus two bytes (for the LL field). For example, if a
record contains 228 bytes of application data, the logical record length is 230. The LL field is 0x00E6, the hexadecimal equivalent
of 230. If the length of the data field is 0, the value contained in the LL field is 0x0002.

Logical records are sent from or received in a data buffer established by the TP. In the data buffer, the LL field must not be in Intel
byte-swapped format. For example, a length of 230 must be 0x00E6, not 0xE600.

The LL field cannot be 0x0000 or 0x0001, which allow less than the two bytes required for the LL field itself. The LL field also
cannot be greater than or equal to 0x8000, which is equivalent to decimal 32768 and therefore allows for a data field greater than
32765 or an LL field greater than 2.

Setting the most significant bit of the LL field to 1 indicates that the information contained in the current logical record is
continued in the next logical record.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

An Example of a Mapped Conversation
For background information about mapped conversations, see Basic and Mapped Conversations Compared.

The following example of a mapped conversation shows the APPC verbs used to start a conversation, exchange data, and end the
conversation. APPC verb parameters are in parentheses.

Issued by the invoking TP Issued by the invokable TP
TP_STARTED
MC_ALLOCATE
MC_SEND_DATA
MC_DEALLOCATE
TP_ENDED RECEIVE_ALLOCATE
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_OK)
 (rtn_status=AP_NO)
 (what_rcvd=AP_DATA_COMPLETE)
 MC_RECEIVE_AND_WAIT
 (primary_rc=AP_DEALLOC_NORM)
 TP_ENDED

The following paragraphs describe the verbs that are used in a mapped conversation.

Verbs for Starting a Mapped Conversation
To start a mapped conversation, the invoking TP issues the following verbs:

TP_STARTED, which notifies APPC that the local TP is beginning a conversation.
MC_ALLOCATE, which requests that APPC establish a conversation between the local TP and the partner TP.

The invokable TP issues RECEIVE_ALLOCATE, which informs APPC that it is ready to begin a conversation with the invoking TP.

Verbs for Sending Data in a Mapped Conversation
MC_SEND_DATA puts one data record (a record containing application data to be transmitted) in the send buffer of the local LU.
Data transmission to the partner TP does not happen until one of the following events occurs:

The send buffer fills up.
The sending TP issues a verb that forces APPC to flush the buffer and send data to the partner TP.

In the preceding example, the send buffer contains both the data record and the MC_ALLOCATE request (which precedes the data
record). Therefore, in the example, MC_DEALLOCATE flushes the buffer, sending the MC_ALLOCATE request and data record to
the partner TP. Other verbs that flush the buffer are MC_CONFIRM and MC_FLUSH.

Verbs for Receiving Data in a Mapped Conversation
The MC_RECEIVE_AND_WAIT verb allows a TP to receive a data record or status information. If no data is currently available, the
TP waits for data to arrive. For Windows 2000, Windows NT, Windows 98, Windows 95, and Windows 3.x systems, issue
MC_RECEIVE_AND_WAIT in conjunction with WinAsyncAPPC rather than the blocking version of this call.

In the example, the receiving TP issues MC_RECEIVE_AND_WAIT twice. The first time, it issues the verb to receive data. When it
finishes receiving the complete data record (what_rcvd is AP_DATA_COMPLETE), it issues MC_RECEIVE_AND_WAIT again to
receive a return code. The return code AP_DEALLOC_NORMAL indicates that the conversation has been deallocated.

MC_RECEIVE_IMMEDIATE performs the same function as MC_RECEIVE_AND_WAIT, except that it does not wait if
data is not currently available from the partner TP. Instead, it returns a no-data-available response to the calling TP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Verbs for Ending a Mapped Conversation
To end a mapped conversation, one of the TPs issues MC_DEALLOCATE, which causes APPC to deallocate the conversation
between the two TPs.

After the conversation has been deallocated, both TPs issue TP_ENDED.

A TP can participate in multiple conversations simultaneously. In this case, the TP issues TP_ENDED after all
conversations have been deallocated.

Microsoft Host Integration Server 2000

Using Invoking and Invokable TPs
There are two kinds of TPs: TPs that can invoke (that is, initiate a conversation with) other TPs, and TPs that can be invoked. A TP
that can invoke another TP is called an invoking TP, and a TP that can be invoked is called an invokable TP.

The following topics describe how:

Invoking TPs request invokable TPs.
Invokable TPs identify themselves to Host Integration Server or SNA Server in preparation for being invoked.
An invokable TP is matched to an invoking TP's request.

For information about how to configure LUs to support TPs, see Configuring TPs on Host Integration Server and SNA Server and
the Microsoft Host Integration Server 2000 online books.

This section contains:

Invoking TPs
Invoking TPs and Contention
Invokable TPs
Subcategories for Invokable TPs
Matching Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Invoking TPs
An invoking TP can be located on any system on the SNA network. An invoking TP identifies itself by issuing TP_STARTED, which
specifies the name of the invoking TP and can specify the LU alias that the TP uses. If the LU alias is not specified in TP_STARTED,
Host Integration Server or SNA Server must be configured to supply it through one of two types of default local LU; otherwise,
TP_STARTED will fail. For more information, see Configuring Invoking TPs on Host Integration Server and SNA Server.

Next, the invoking TP initiates the invoking process by issuing ALLOCATE or MC_ALLOCATE, in which it specifies the name of the
invokable TP, and can also specify the partner LU alias (the LU alias to be used by the invokable TP). If the partner LU is not
specified in ALLOCATE or MC_ALLOCATE, Host Integration Server 2000 must be configured to supply one through the default
remote APPC LU assigned to the user who started the invoking TP; otherwise, ALLOCATE or MC_ALLOCATE will fail. For more
information, see Configuring Invoking TPs on Host Integration Server and SNA Server.

After a TP successfully issues an ALLOCATE or MC_ALLOCATE verb, an allocation request flows. For more information about what
happens after an invoking TP requests an invokable TP, see Matching Invoking and Invokable TPs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Invoking TPs and Contention
The following information applies only to cases where LUs are communicating in complex ways (such as chains of LUs) over
multiple sessions. In such cases, two LUs may attempt to allocate a conversation on the same session at the same time. If this
happens, one LU must win (the contention winner) and one must lose (the contention loser). The contention-winner LU and the
contention-loser LU are determined for each session when the session is established. During that particular session, the
contention-loser LU must receive permission from the contention-winner LU before allocating a conversation. In contrast, the
contention-winner LU on that session allocates a conversation as needed.

Note that when two LUs are communicating over multiple sessions, one LU can be the contention winner for some of the
sessions, and the other LU the contention winner for others.

An invoking TP will operate most efficiently if the number of concurrent ALLOCATE or MC_ALLOCATE requests that the TP issues
is matched by the number of sessions on which the local LU is the contention winner. The choice of contention winner is
controlled through the modes configured at the two ends of the communication. The mode is configured using SNA Manager on
Host Integration Server 2000 and configured using SNA Explorer on SNA Server 4.0. A mode must be configured to work with
the mode on the remote system for communication to begin between two LUs. For more information about modes, see the
Microsoft Host Integration Server 2000 online books.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Invokable TPs
An invokable TP is a TP that can be invoked by another TP. Invokable TPs are written or configured through registry or
environment variables to supply their names to Host Integration Server 2000 or SNA Server as a notification that they are
available for incoming requests. Invokable TPs can be run on any Host Integration Server 2000 or SNA Server client or server
running Windows 2000, Windows NT, Windows 98, Windows 95, Windows 3.x, or OS/2.

Invokable TPs cannot be run on Microsoft MS-DOS®-based clients.

There are two types of invokable TPs:

Operator-started invokable TPs
An operator-started invokable TP must be started by an operator before the TP can be invoked. When the operator-started
invokable TP is started, it notifies Host Integration Server 2000 or SNA Server of its availability by issuing a RECEIVE_ALLOCATE
verb. The RECEIVE_ALLOCATE causes the name of the invokable TP along with the alias of an associated LU if one has been
configured through a registry or environment variable to be communicated to all the servers running Host Integration Server
2000 or SNA Server in the SNA domain.

Autostarted invokable TPs
An autostarted invokable TP can be started by Host Integration Server 2000 or SNA Server when needed. The TP must be
registered through registry entries or environment variables on its local system, so that it can be identified to the SnaBase
component of the Host Integration Server 2000 or SNA Server client software. The registered information defines the TP as
autostarted and must specify the TP name. The registered information can also specify the local LU alias that the invokable TP
will use.

The recommended method for setting registry or environment variables for autostarted invokable TPs is to use the sample TP
configuration program, TPSETUP, or similar code written into your own installation program. For more information about
registry or environment variables for invokable TPs, see Configuring Invokable TPs. For information about TPSETUP, see
Sample APPC TPs in the SDK.

If no local LU alias is registered with autostarted TPs, the resulting Host Integration Server 2000 or SNA Server configuration
can be more flexible in responding to invoking requests. For more information about such flexible configurations, see
TP Name Not Unique; Local LU Alias Unspecified.

After an autostarted invokable TP is started by Host Integration Server 2000, the TP issues RECEIVE_ALLOCATE just as an
operator-started TP does. RECEIVE_ALLOCATE must provide the TP name that was registered for the TP.

Autostarted TPs must be configured through registry or environment variables to be either queued or nonqueued. All operator-
started TPs act as queued TPs.

Queued TPs
If an autostarted TP is configured as queued, or if the TP is operator-started, incoming allocation requests are queued and then
sent only when the invokable TP issues RECEIVE_ALLOCATE. For autostarted invokable TPs, if a copy of the TP is not yet
running, one is started when an incoming allocation request specifies that TP.

For Windows 2000 and Windows NT, only one copy of a service can be running at any given time; this means that
all autostarted TPs that run as services under Windows 2000 or Windows NT must be queued. To write an
autostarted TP so it will run under Windows 2000 or Windows NT as a service and also run in a nonqueued way,
write a multithreaded program with a RECEIVE_ALLOCATE always outstanding.

Nonqueued TPs
If an autostarted TP is configured as nonqueued, a new copy will be started every time an ALLOCATE or MC_ALLOCATE is
received for the TP. Nonqueued TPs should process the conversation they have been allocated and then exit, since they will not
receive any additional ALLOCATE or MC_ALLOCATE requests.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Subcategories for Invokable TPs
The following figure shows subcategories for invokable TPs.

The concept of a TP "running as a service" or "running as an application" is distinct from a service TP or an application TP. Service
TP and application TP are SNA terms that describe how a TP is used: either as a supportive service program for other APPC
programs, or directly by a user, as an application. For detailed information about services and applications on Windows 2000 and
Windows NT, see the Microsoft Developer Network (MSDN®) Platform Software Development Kit.

To write an autostarted TP so it will run under Windows 2000 or Windows NT as a service and also run in a nonqueued way, write
a multithreaded program with a RECEIVE_ALLOCATE always outstanding. See Invokable TPs.

To run an autostarted TP as an application under Windows NT, make sure the TPSTART program is always started before the TP.
See Sample APPC TPs in the SDK.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Matching Invoking and Invokable TPs
Each computer running Host Integration Server 2000 or SNA Server maintains a list of available invokable TP names and any LU
aliases to be associated with the TP names. This information is obtained as follows:

For autostarted invokable TPs, registry or environment variables identify a TP name containing a maximum of eight
characters, and can specify an associated LU. This information is sent from the client to the server that sponsors the client. A
client learns about the domain through a sponsor connection to a server; clients must establish the sponsor connection
before proceeding with any other tasks.
For operator-started invokable TPs, a TP name (with a maximum of 64 characters) is specified with the RECEIVE_ALLOCATE
verb. The TP name is truncated to eight characters and sent from the client to the server that sponsors the client, along with
the alias of an associated LU if one has been configured through a registry or environment variable.

If you want a TP name to be unique, it is recommended that you limit the name to eight characters or fewer, or
make the name unique within the first eight characters. This is because the preliminary routing of allocation
requests is carried out using the first eight characters. Although further matching is later carried out between the
full TP names specified in ALLOCATE or MC_ALLOCATE and RECEIVE_ALLOCATE, it is inefficient to allow the
preliminary routing to succeed when in some cases the later matching will fail.

The next step in the matching of invoking and invokable TPs is that the invoking TP issues the ALLOCATE or MC_ALLOCATE verb.
After an invoking TP in an Host Integration Server or SNA Server domain successfully issues this verb, an allocation request flows
to the partner LU specified in the ALLOCATE or MC_ALLOCATE verb, stating the name of the invokable TP that has been
requested.

When an allocation request arrives, the SNA server compares the requested invokable TP name and LU alias to the list of available
invokable TPs (which can include associated LU aliases). The comparison can be modified by registry variables, but by default is
carried out as follows:

Although the TP name requested in the ALLOCATE or MC_ALLOCATE verb can be as long as 64 characters, any name
received through a registry or environment variable is limited to eight characters or less. Therefore, only the first eight
characters of TP names are used in comparisons.
The comparison is carried out first on both the TP name and the LU alias. An invokable TP for which there is a match on
both TP name and LU alias will be chosen ahead of a TP for which no LU alias has been configured through a registry or
environment variable. A TP for which no LU alias has been configured can be matched with any request that specifies that
TP name, since there cannot be a mismatch based on LU alias.
The comparison of requested and available TP names is carried out in a specific order:

1. Host Integration Server or SNA Server first checks for operator-started invokable TPs on the local system (the local
computer running Host Integration Server 2000 or SNA Server).

2. If no match is found, Host Integration Server or SNA Server checks for autostarted invokable TPs on the local system
(the local computer running Host Integration Server 2000 or SNA Server).

3. If no match is found, Host Integration Server or SNA Server checks for operator-started invokable TPs on other Host
Integration Server 2000 or SNA Server clients or servers.

4. If no match is found, Host Integration Server or SNA Server checks for autostarted invokable TPs on other Host
Integration Server or SNA Server clients or servers.

This comparison can be modified somewhat by registry entries for the SnaServr service. The entries are called
DloadMatchTPOnly and DloadMatchLocalFirst, and are described in the Microsoft Host Integration Server 2000 Reference
online book.

If a match is found, the Host Integration Server or SNA Server signals the system containing the requested TP to connect to that
server running Host Integration Server 2000 or SNA Server. If no match is found, Host Integration Server or SNA Server rejects
the incoming request.

For suggestions about specific ways to handle TP names and LU aliases, see Arranging TPs Within an SNA Network.

Because of the way APPC works, an allocation request will not flow until local data buffers are full, or a confirm or
flush verb is issued. This can mean that the allocation request does not flow until some time after the ALLOCATE or
MC_ALLOCATE verb is issued. Therefore, any allocation failure caused by the rejection of the allocation request at the
partner LU will be observed as the failure of a later verb with one of the allocation failure return codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Invokable TPs
The following topics discuss how to configure invokable TPs for the various Microsoft Host Integration Server 2000 or Microsoft
SNA Server client types.

This section contains:

Clients Running Windows 2000 or Windows NT
Clients Running Windows 98 or Windows 95
Clients Running Windows Version 3.x
Clients Running OS/2
Clients Running MS-DOS

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running Windows 2000 or Windows NT
On clients running Windows 2000 or Windows NT, invokable TPs are configured through the Windows 2000 or Windows NT
registry.

With Windows 2000 or Windows NT, the recommended method for setting registry variables for autostarted
invokable TPs is to use the sample TP configuration program, TPSETUP. Compile INSTALL.C, the source code for
TPSETUP, for the Windows NT environment. When you write an installation program for autostarted invokable TPs, it
is recommended that you add code similar to TPSETUP to the installation program. For information about TPSETUP,
see Sample APPC TPs in the SDK.

For clients running Windows 2000 or Windows NT, it is recommended that autostarted invokable TPs be written as Windows
2000 or Windows NT services. Be sure to include code like that in TPSETUP in the program that installs your TPs. Among other
things, TPSETUP shows how to use the CreateService function when installing a TP. For important information about how
services work under Windows 2000 and Windows NT, see the Microsoft Developer Network (MSDN) Platform Software
Development Kit for Windows 2000 and Windows NT.

The following table lists the registry entries used for the types of invokable TPs that can be run on Windows-2000 or Windows NT
clients:

Type of TP Location in
registry

Possible registry entries

Autostarted invokable TP running as a service
on a Windows 2000 or Windows NT client

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
TPName

(and subkey
s)

Registry entries created by the CreateService call, including entries t
hat specify the path, display name, and other characteristics of the ser
vice.

—plus—

Linkage
OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters
SNAServiceType:REG_DWORD:0x5
LocalLU:REG_SZ:LUalias
Parameters:REG_SZ:ParameterList
Timeout:REG_DWORD:number
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }2

Username1:REG_SZ:Password12
...
UsernameX:REG_SZ:PasswordX2

Autostarted invokable TP running as an applic
ation1 on a Windows 2000 or Windows NT cli
ent

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
SnaBase
Parameters
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 }
PathName:REG_EXPAND_SZ:path
LocalLU:REG_SZ:LUalias
Parameters:REG_SZ:ParameterList
TimeOut:REG_DWORD:number
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }2

Username1:REG_SZ:Password12
...
UsernameX:REG_SZ:PasswordX2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Operator-started invokable TP running as a se
rvice on a Windows 2000 or Windows NT clie
nt

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
TPName

(and subkey
s)

Registry entries created by the CreateService call, including entries t
hat specify the path, display name, and other characteristics of the ser
vice.

—plus—

Linkage
OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters
SNAServiceType:REG_DWORD:0x1A
LocalLU:REG_SZ:LUalias
Timeout:REG_DWORD:number
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }2

Username1:REG_SZ:Password12
...
UsernameX:REG_SZ:PasswordX2

Operator-started invokable TP on a Windows
2000 or Windows NT client

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
SnaBase
Parameters
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:0x1A
LocalLU:REG_SZ:LUalias
TimeOut:REG_DWORD:number
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }2

Username1:REG_SZ:Password12
...
UsernameX:REG_SZ:PasswordX2

Notes

1 Before an autostarted TP can be started as an application on a Windows 2000 or Windows NT client, the TPSTART program
must be started. For more information, see Sample APPC TPs in the SDK.

2 AlreadyVerified and Username/Password entries are used only if ConversationSecurity is set to YES.

This section contains:

Registry Entries for Clients Running Windows 2000 or Windows NT
Example of Windows 2000 or Windows NT Registry Entries for an Invokable TP

Microsoft Host Integration Server 2000

Registry Entries for Clients Running Windows 2000 or Windows
NT
The following list gives details about registry entries for clients running Windows 2000 or Windows NT. For each TP type, the
applicable variables and their locations are shown in Clients Running Windows 2000 or Windows NT.

Registry Entries for TPName on Clients Running Windows 2000
or Windows NT
TPName:REG_MULTI_SZ

The name of the transaction program (TP) that is executed. A TP name is up to 64 ASCII characters in length and cannot contain
spaces or nulls.

SNA service TPs are a special set of TPs defined by the SNA protocols. Each service TP is a specially-defined function with a
special name. An SNA service TP name is represented by up to four EBCDIC bytes; the first byte is a hexadecimal number in the
range 0x00 to 0x3F, and the remaining bytes are EBCDIC characters. The first byte defines the function class of the TP. Therefore,
to convert a service TP name to an ASCII TP name form, convert the first byte as shown in the following table, and convert the
EBCDIC values to ASCII letter equivalents.

First byte of TP name (hexadecimal number) ASCII character equivalent for WIN.INI
0x07 DDM
0x20 DIA
0x21 SNAD
0x24 FS
0x30 PO
All others UN

For example, an EBCDIC service TP name of 0x21 0xD7 0xD7 is equivalent to a TP name of SNADPP (0x21 converts to SNAD
and each 0xD7 converts to P).

Registry Entries for the TPName Subtree on Clients Running
Windows 2000 or Windows NT
OtherDependencies:REG_MULTI_SZ:SnaBase

For a TP running as a service, ensures that the SnaBase service will be started before the TP is started. This entry belongs under
the Linkage subkey.

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 | 0x1A }
Indicates the type of TP. Use a value of 0x5 for an autostarted queued TP, 0x6 for an autostarted nonqueued TP, and 0x1A for an
operator-started TP.

Note that the value for an autostarted TP running as a service must be 0x5, because these TPs are always queued, as described
in Invokable TPs.

PathName:REG_SZ:path
For an autostarted TP running as an application, specifies the path and file name of the TP. The data type of REG_EXPAND_SZ
means that the path can contain an expandable data string; for example, %SystemRoot% represents the directory containing the
Windows NT system files. Note that for a TP running as a service, an equivalent entry is inserted by the CreateService call; no
additional path entry is needed.

LocalLU:REG_SZ:LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters:REG_SZ:ParameterList
Lists parameters to be used by the TP. Separate parameters with spaces.

Timeout:REG_DWORD:number
Specifies the time, in milliseconds, that a RECEIVE_ALLOCATE will wait before timing out. Specify number in decimal; the
registry editor converts this to hexadecimal before displaying it. The default is infinity (no limit).

ConversationSecurity:REG_SZ:{ YES | NO }

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Indicates whether this TP supports conversation security. The default is NO.
AlreadyVerified:REG_SZ:{ YES | NO }

Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO. The default value is NO.

For a diagram of three TPs in a conversation, where the third TP can be invoked with a password that is already verified by the
second TP, see Communication Between TPs. The following table shows the requirements for using password verification in a
chain of TPs.

First TP
(invoking TP)

Second TP (invokable TP that confirms pa
ssword and then invokes another TP)

Third and subsequent TPs (invokabl
e TPs that invoke other TPs)

Does not need registry or environment
variables.

ConversationSecurity setting must be YES. ConversationSecurity setting must be
YES.

Does not need registry or environment
variables.

AlreadyVerified setting can be YES or NO. AlreadyVerified setting must be YES.

ALLOCATE or MC_ALLOCATE in this TP
has a security parameter of AP_PGM; a
s a result, the TP passes along the user_
id and pwd values supplied in ALLOCA
TE or MC_ALLOCATE.

ALLOCATE or MC_ALLOCATE in this TP has a
security parameter of AP_SAME; as a result, a
fter confirming the user identifier and passwo
rd, the TP passes along the user identifier and
an already-verified flag.

ALLOCATE or MC_ALLOCATE in this T
P has a security parameter of AP_SAM
E; as a result, the TP passes along the us
er identifier as received, along with the
already-verified flag.

If you set AlreadyVerified to NO, this TP cannot join in a chain of conversations where password verification is already done.
The exception to this is when ConversationSecurity is set to NO, in which case the TP could be the final TP in such a chain,
since it performs no checking.

If you are configuring a TP that sometimes needs to confirm a password and sometimes accepts an already-verified flag, set
AlreadyVerified to YES and configure the UsernameX variable appropriately. In this case, whenever the TP is invoked without
the already-verified flag set, AlreadyVerified is ignored; verification is attempted with the user identifier and password
configured for the TP.

If you want to have a chain of conversations where the user identifier and password are reverified at every step, carry out the
following. For all the TPs, set ConversationSecurity to YES, and in each ALLOCATE or MC_ALLOCATE issued, set the security
parameter to AP_PGM and the pwd and user_id parameters to valid combinations.

If you set AlreadyVerified to YES, make sure that ConversationSecurity is also set to YES.

Username1:REG_SZ:Password1
...
UsernameX:REG_SZ:PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can each be as many as 10 characters. Both parameters are case-sensitive.

This variable is ignored if conversation security is not activated or if the password has already been verified, as described for the
AlreadyVerified entry.

Microsoft Host Integration Server 2000

Example of Windows 2000 or Windows NT Registry Entries for
an Invokable TP
For an autostarted invokable TP called BounceTP and running as a service, the following registry entries might be added to a
Windows 2000 or Windows NT-based client. The entries would be added to HKEY_LOCAL_MACHINE\ SYSTEM\
CurrentControlSet\ Services\ SnaBase, under the subkeys shown in bold type.

In the following list, the parameters listed directly under the BounceTP key (such as DisplayName and
ErrorControl) are service parameters created when TPSETUP or similar code is run to install the TP. These parameters
should be created by TPSETUP or similar code; they should not be set manually. For more information about TPSETUP,
see Sample APPC TPs in the SDK.

BounceTP
DisplayName:REG_SZ:BounceTP
ErrorControl:REG_DWORD:0x1
ImagePath:REG_EXPAND_SZ:c:\sna\system\bouncetp.exe
ObjectName:REG_SZ:LocalSystem
Start:REG_DWORD:0x3
Type:REG_DWORD:0x10

Linkage

OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters

SNAServiceType:REG_DWORD:0x5
LocalLU:REG_SZ:JohnDoe
Parameters:REG_SZ:Arg1 Arg2 Arg3
Timeout:REG_DWORD:0x100
ConversationSecurity:REG_SZ:yes
AlreadyVerified:REG_SZ:no
JohnDoe:REG_SZ:SecretPassword

Security

Security:REG_BINARY:

For an autostarted invokable TP called BounceTP running as an application, the following registry entries might be added to a
Windows NT-based client. The entries would be added to HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\SnaBase\Parameters\Tps, under the subkeys shown in bold type.

In the following list, the parameters listed under the BounceTP key (such as PathName and ConversationSecurity)
are parameters created when TPSETUP or similar code is run to install the TP. These parameters should be created by
TPSETUP or similar code; they should not be set manually. For more information about TPSETUP, see
Sample APPC TPs in the SDK.

BounceTP
Parameters

SNAServiceType:REG_DWORD:0x5
PathName:REG_SZ:C:\sna\system\bouncetp.exe
LocalLU:REG_SZ:JohnDoe
Parameters:REG_SZ:Arg1 Arg2 Arg3
Timeout:REG_DWORD:0x100
ConversationSecurity:REG_SZ:yes
AlreadyVerified:REG_SZ:no
JohnDoe:REG_SZ:SecretPassword

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running Windows 98 or Windows 95
On clients running Windows 98 or Windows 95, invokable TPs are configured through the Windows 98 or Windows 95 registry.

On Windows 98 or Windows 95, the recommended method for setting registry variables for autostarted invokable
TPs is to use the sample TP configuration program, TPSETUP. Compile the source code for TPSETUP (INSTALL.C,), for
the Windows 98 or Windows 95 environment. When you write an installation program for autostarted invokable TPs,
it is recommended that you add code similar to TPSETUP to the installation program. For information about TPSETUP,
see Sample APPC TPs in the SDK.

The following table lists the registry entries used for the types of invokable TPs that can be run on Windows 98 or Windows 95
clients:

Type of TP Location in registr
y

Possible registry entries

Autostarted invokable TP running as an application on a Windows 98 or
Windows 95 client

HKEY_LOCAL_MAC
HINE
SYSTEM
SOFTWARE
Microsoft
SnaBase
Parameters
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:{ 0
x5 | 0x6 }
PathName:REG_EXPAND_SZ:path
LocalLU:REG_SZ:LUalias
Parameters:REG_SZ:ParameterList
TimeOut:REG_DWORD:number
ConversationSecurity:REG_SZ:{ Y
ES | NO }
AlreadyVerified:REG_SZ:{ YES | N
O }
Username1:REG_SZ:Password1
...
UsernameX:REG_SZ:PasswordX

Operator-started invokable TP on a Windows 98 or Windows 95 client HKEY_LOCAL_MAC
HINE
SYSTEM
SOFTWARE
Microsoft
SnaBase
Parameters
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:0x
1A
LocalLU:REG_SZ:LUalias
TimeOut:REG_DWORD:number
ConversationSecurity:REG_SZ:{ Y
ES | NO }
AlreadyVerified:REG_SZ:{ YES | N
O }
Username1:REG_SZ:Password1
...
UsernameX:REG_SZ:PasswordX1

Note

1 AlredyVerified and Username/Password entries are used only if ConversationSecurity is set to YES.

This section contains:

Registry Entries for Clients Running Windows 98 or Windows 95
Example of Windows 98 or Windows 95 Registry Entries for an Invokable TP

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Entries for Clients Running Windows 98 or Windows
95
The following list gives details about registry entries for clients running Windows 98 or Windows 95. For each TP type, the
applicable variables and their locations are shown in Clients Running Windows 98 or Windows 95.

Registry Entries for TPName on Clients Running Windows 98 or
Windows 95
TPName:REG_MULTI_SZ

The name of the transaction program (TP) that is executed. A TP name is up to 64 ASCII characters in length and cannot contain
spaces or nulls.

SNA service TPs are a special set of TPs defined by the SNA protocols. Each service TP is a specially-defined function with a
special name. An SNA service TP name is represented by up to four EBCDIC bytes; the first byte is a hexadecimal number in the
range 0x00 to 0x3F, and the remaining bytes are EBCDIC characters. The first byte defines the function class of the TP. Therefore,
to convert a service TP name to an ASCII TP name form, convert the first byte as shown in the following table, and convert the
EBCDIC values to ASCII letter equivalents.

First byte of TP name (hexadecimal number) ASCII character equivalent for WIN.INI
0x07 DDM
0x20 DIA
0x21 SNAD
0x24 FS
0x30 PO
All others UN

For example, an EBCDIC service TP name of 0x21 0xD7 0xD7 is equivalent to a TP name of SNADPP (0x21 converts to SNAD
and each 0xD7 converts to P).

Registry Entries for the TPName Subtree on Clients Running
Windows 95
SNAServiceType:REG_DWORD:{ 0x5 | 0x6 | 0x1A }

Indicates the type of TP. Use a value of 0x5 for an autostarted queued TP, 0x6 for an autostarted nonqueued TP, and 0x1A for an
operator-started TP.

PathName:REG_SZ:path
For an autostarted TP running as an application, specifies the path and file name of the TP. The data type of REG_EXPAND_SZ
means that the path can contain an expandable data string; for example, %SystemRoot% represents the directory containing the
Windows 95 system files.

LocalLU:REG_SZ:LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters:REG_SZ:ParameterList
Lists parameters to be used by the TP. Separate parameters with spaces.

Timeout:REG_DWORD:number
Specifies the time, in milliseconds, that a RECEIVE_ALLOCATE will wait before timing out. Specify number in decimal; the
registry editor converts this to hexadecimal before displaying it. The default is infinity (no limit).

ConversationSecurity:REG_SZ:{ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified:REG_SZ:{ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO. The default value is NO.

For a diagram of three TPs in a conversation, where the third TP can be invoked with a password that is already verified by the
second TP, see Communication Between TPs. The following table shows the requirements for using password verification in a
chain of TPs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

First TP
(invoking TP)

Second TP (invokable TP that confirms pa
ssword and then invokes another TP)

Third and subsequent TPs (invokabl
e TPs that invoke other TPs)

Does not need registry or environment
variables.

ConversationSecurity setting must be YES. ConversationSecurity setting must be
YES.

Does not need registry or environment
variables.

AlreadyVerified setting can be YES or NO. AlreadyVerified setting must be YES.

ALLOCATE or MC_ALLOCATE in this TP
has a security parameter of AP_PGM; a
s a result, the TP passes along the user_
id and pwd values supplied in ALLOCA
TE or MC_ALLOCATE.

ALLOCATE or MC_ALLOCATE in this TP has a
security parameter of AP_SAME; as a result, a
fter confirming the user identifier and passwo
rd, the TP passes along the user identifier and
an already-verified flag.

ALLOCATE or MC_ALLOCATE in this T
P has a security parameter of AP_SAM
E; as a result, the TP passes along the us
er identifier as received, along with the
already-verified flag.

If you set AlreadyVerified to NO, this TP cannot join in a chain of conversations where password verification is already done.
The exception to this is when ConversationSecurity is set to NO, in which case the TP could be the final TP in such a chain,
since it performs no checking.

If you are configuring a TP that sometimes needs to confirm a password and sometimes accepts an already-verified flag, set
AlreadyVerified to YES and configure the UsernameX variable appropriately. In this case, whenever the TP is invoked without
the already-verified flag set, AlreadyVerified is ignored; verification is attempted with the user identifier and password
configured for the TP.

If you want to have a chain of conversations where the user identifier and password are reverified at every step, carry out the
following. For all the TPs, set ConversationSecurity to YES, and in each ALLOCATE or MC_ALLOCATE issued, set the security
parameter to AP_PGM and the pwd and user_id parameters to valid combinations.

If you set AlreadyVerified to YES, make sure that ConversationSecurity is also set to YES.

Username1:REG_SZ:Password1
...
UsernameX:REG_SZ:PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can each be as many as 10 characters. Both parameters are case-sensitive.

This variable is ignored if conversation security is not activated or if the password has already been verified, as described for the
AlreadyVerified entry.

Microsoft Host Integration Server 2000

Example of Windows 98 or Windows 95 Registry Entries for an
Invokable TP
For an autostarted invokable TP called BounceTP and running as an application, the following registry entries might be added to
a Windows 98 or Windows 95 client. The entries would be added to HKEY_LOCAL_MACHINE\ SYSTEM\ SOFTWARE\
Microsoft\ SnaBase\ Parameters\ TPs, under the subkeys shown in bold type.

In the following list, the parameters listed directly under the BounceTP Parameters key (such as DPathName and
AlreadyVerified) are parameters created when TPSETUP or similar code is run to install the TP. These parameters
should be created by TPSETUP or similar code; they should not be set manually. For more information about TPSETUP,
see Sample APPC TPs in the SDK.

BounceTP
Parameters

SNAServiceType:REG_DWORD:0x5
PathName:REG_SZ:C:\sna\system\bouncetp.exe
LocalLU:REG_SZ:JohnDoe
Parameters:REG_SZ:Arg1 Arg2 Arg3
Timeout:REG_DWORD:0x100
ConversationSecurity:REG_SZ:yes
AlreadyVerified:REG_SZ:no
JohnDoe:REG_SZ:SecretPassword

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running Windows Version 3.x
On clients running Windows version 3.x, invokable TPs are configured through entries in the WIN.INI file.

With Windows version 3.x, the recommended method for setting environment variables for autostarted invokable TPs
is to use the sample TP configuration program, TPSETUP. Compile the source code for TPSETUP (INSTALL.C) for the
Windows version 3.x environment. When you write an installation program for autostarted invokable TPs, it is
recommended that you add code similar to TPSETUP to the installation program. For information about TPSETUP, see
Sample APPC TPs in the SDK.

The following table lists the section headings and environment variables used in the WIN.IN file for invokable TPs on clients
running Windows version 3.x:

Type of TP Section in WIN.INI listing TP
names only

Section and possible environment varia
bles defining TP

Autostarted invokable TP on a client running Wind
ows version 3.x

[SNAServerAutoTPs]
TPName1=SectionName1
...
TPNameX=SectionNameX

[SectionName1]
PathName=path
LocalLU=LUalias
Parameters=ParameterList
TimeOut=number
Queued={ YES | NO }
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }1

Username1=Password11
...
UsernameX=PasswordX1

Operator-started invokable TP on a client running
Windows version 3.x

[SNAServerAutoTPs]
TPNameN=SectionNameN
...
TPNameX=SectionNameX

[SectionNameN]
LocalLU=LUalias
TimeOut=number
Queued=OPERATOR
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }1

Username1=Password11
...
UsernameX=PasswordX1

Note

1 AlreadyVerified and Username/Password lines are used only if ConversationSecurity is set to YES.

This section contains:

Environment Variables for Clients Running Windows Version 3.x
Translating SNA Service TP Names to ASCII for WIN.INI
Example of WIN.INI Lines for an Invokable TP

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Environment Variables for Clients Running Windows Version
3.x
The following list shows the correct form for the sections and entries to add to the WIN.INI file for autostarted invokable TPs on a
client running Windows version 3.x. The section headings are shown enclosed in square brackets; include the brackets when
adding the section to the WIN.INI file.

For each TP type, the applicable variables and their locations are shown in Clients Running Windows Version 3.x.

[SNAServerAutoTPs]
TPNameX=SectionNameX

For all TPs. Associates TPnameX with SectionNameX. Additional lines can follow TPNameX=SectionNameX, each one using the
same syntax to name a different TP and the section containing the information for that TP.

[SectionName]
Forms a section heading for entries applying to one TP. SectionName must match a section name listed under
[SNAServerAutoTPs].

PathName=path
Specifies the full path and file name of the executable file. The default is TPNAME.EXE.

LocalLU=LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters=ParameterList
Lists strings to be passed as command-line parameters for the TP. Separate parameters with spaces. The default is no
parameters.

Timeout=number
Specifies the time in milliseconds that a RECEIVE_ALLOCATE will wait before timing out. The default is infinity (no limit).

Queued={ YES | NO }
Queued=OPERATOR

Specifies the type of TP: YES for an autostarted queued TP, NO for an autostarted nonqueued TP, or OPERATOR for an operator-
started TP (which must always be queued). The default is YES.

ConversationSecurity={ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified={ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO.

For detailed information about the AlreadyVerified variable, see its description under
Registry Entries for Clients Running Windows 2000 or Windows NT.

The default is NO.

Username1=Password1
...
UsernameX=PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can have as many as 10 characters each. Both parameters are case-sensitive. This variable is ignored if conversation security is
not activated or if the password has already been verified, as described for the AlreadyVerified entry.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Translating SNA Service TP Names to ASCII for WIN.INI
For SNA service TPs on Host Integration Server 2000 or SNA Server clients running Windows version 3.x, the line naming the TP
in the WIN.INI file must specify the TP name in ASCII. The following paragraphs tell how to convert a TP name to this form. The
line should be placed in the [SNAServerAutoTPs] section of the file, as shown in Clients Running Windows Version 3.x.

An SNA service TP name is normally up to four bytes in length; the first byte is a hexadecimal number in the range 0x00 to 0x3F,
and the remaining bytes are EBCDIC characters. The first byte defines the function class of the TP. Therefore, to convert a service
TP name to an ASCII form, convert the first byte as shown in the following table, and convert the EBCDIC values to ASCII letter
equivalents.

First byte of TP name (hexadecimal number) ASCII character equivalent for WIN.INI
0x07 DDM
0x20 DIA
0x21 SNAD
0x24 FS
0x30 PO
All others UN

For example, a service TP name of 0x21 0xD7 0xD7 is equivalent to SNADPP (0x21 converts to SNAD and each 0xD7 converts to
P).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Example of WIN.INI Lines for an Invokable TP
For autostarted invokable TPs called BounceTP and TestTP on a client running Windows version 3.x, the following WIN.INI lines
might be added:

[SNAServerAutoTPs]
BounceTP=bnceprms
TestTP=testprms

[bnceprms]
PathName=c:\sna\wbounce.exe
LocalLU=Eric
Parameters=/t
timeout=60000
queued=yes

[testprms]
PathName=c:\sna\testtp.exe
LocalLU=LU1
Parameters=/v
timeout=60000
queued=no

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running OS/2
On OS/2-based clients, invokable TPs are configured through entries in the SNA.INI file. The following table lists the section
headings and environment variables used:

Type of TP Section in SNA.INI listing TP na
mes only

Section and possible environment variables
defining TP

Autostarted invokable TP on a client runnin
g OS/2

[SNAServerAutoTPs]
TPName1=SectionName1
...
TPNameX=SectionNameX

[SectionName1]
PathName=path
LocalLU=LUalias
Parameters=ParameterList
TimeOut=number
Queued={ YES | NO }
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }1

Username1=Password11
...
UsernameX=PasswordX1

Environment=VariableList
NewScreenGroup={ 1 | 0 }
IconFile=path
SessionType=number
PgmControl=number
InitXPos=number
InitYPos=number
InitXSize=number
InitYSize=number

Operator-started invokable TP on a client ru
nning OS/2

[SNAServerAutoTPs]
TPNameN=SectionNameN
...
TPNameX=SectionNameX

[SectionNameN]
LocalLU=LUalias
TimeOut=number
Queued=OPERATOR
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }1

Username1=Password11
...
UsernameX=PasswordX

Note

1 AlreadyVerified and Username/Password lines are used only if ConversationSecurity is set to YES.

This section contains:

Environment Variables for OS/2-Based Clients
Translating SNA Service TP Names to ASCII for SNA.INI

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Environment Variables for OS/2-Based Clients
The following list shows the correct form for the sections and entries to add to the SNA.INI file (located in the root Host
Integration Server 2000 directory) for autostarted invokable TPs on an OS/2-based client. The section headings are shown
enclosed in square brackets; include the brackets when adding the section to the SNA.INI file.

For each TP type, the applicable variables and their locations are shown in Clients Running OS/2.

[SNAServerAutoTPs]
TPNameX=SectionNameX

For all TPs. Associates TPnameX with SectionNameX. Additional lines can follow TPNameX=SectionNameX, each one using the
same syntax to name a different TP and the section containing the information for that TP.

[SectionName]
Forms a section heading for entries applying to one TP; SectionName must match a section name listed under
[SNAServerAutoTPs].

PathName=path
Specifies the full path and file name of the executable file. The default is TPNAME.EXE.

LocalLU=LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters=ParameterList
Lists strings to be passed as command line parameters for the TP. Separate parameters with spaces. The default is no
parameters.

Timeout=number
Specifies the time in milliseconds that a RECEIVE_ALLOCATE will wait before timing out. The default is infinity (no limit).

Queued={ YES | NO }
Queued=OPERATOR

Specifies the type of TP: YES for an autostarted queued TP, NO for an autostarted nonqueued TP, or OPERATOR for an operator-
started TP (which must always be queued). The default is YES.

ConversationSecurity={ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified={ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO.

For detailed information about the AlreadyVerified variable, see its description under
Registry Entries for Clients Running Windows 2000 or Windows NT.

The default is NO.

Username1=Password11
...
UsernameX=PasswordX1

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can have as many as 10 characters each. Both parameters are case-sensitive. This variable is ignored if conversation security is
not activated or if the password has already been verified, as described for the AlreadyVerified entry.

Environment=VariableList
For an autostarted TP, lists the variables to be set in the TP's environment. Separate multiple variables with spaces.

NewScreenGroup={ 1 | 0 }
For an autostarted TP, specifies 1 to indicate that the TP runs in the foreground, or 0 to indicate that the TP runs in the
background. The default is 1 (foreground).

IconFile=path
For an autostarted TP, specifies the full path and file name of the icon file. The default is no icon file.

SessionType=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 0.

PgmControl=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 32768.

InitXPos=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 80.

InitYPos=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 80.

InitXSize=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 470.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

InitYSize=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 330.

SessionType, PgmControl, InitXPos, InitYPos, InitXSize, and InitYSize are filled directly into the STARTDATA
structure passed to the OS/2 DosStartSession call for the new session.

Microsoft Host Integration Server 2000

Translating SNA Service TP Names to ASCII for SNA.INI
For SNA service TPs on Host Integration Server 2000 or SNA Server clients running OS/2, the line naming the TP in the SNA.INI
file must specify the TP name in ASCII. The following paragraphs tell how to convert a TP name to this form. The line should be
placed in the [SNAServerAutoTPs] section of the file, as shown in Clients Running OS/2.

An SNA service TP name is normally up to four bytes in length; the first byte is a hexadecimal number in the range 0x00 to 0x3F,
and the remaining bytes are EBCDIC characters. The first byte defines the function class of the TP. Therefore, to convert a service
TP name to an ASCII form, convert the first byte as shown in the following table, and convert the EBCDIC values to ASCII letter
equivalents.

First byte of TP name (hexadecimal number) ASCII character equivalent for SNA.INI
0x07 DDM
0x20 DIA
0x21 SNAD
0x24 FS
0x30 PO
All others UN

For example, a service TP name of 0x21 0xD7 0xD7 is equivalent to SNADPP (0x21 converts to SNAD and each 0xD7 converts to
P).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running MS-DOS
Host Integration Server 2000 and SNA Server do not support invokable TPs on MS-DOS–based clients.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring TPs on Host Integration Server and SNA Server
The following topics describe how configuration of invoking and invokable TPs works on Microsoft Host Integration Server 2000
and Microsoft SNA Server 4.0.

This section contains:

Configuring Invoking TPs on Host Integration Server and SNA Server
Configuring Invokable TPs on Host Integration Server and SNA Server

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Invoking TPs on Host Integration Server and SNA
Server
For a server running Host Integration Server 2000 or SNA Server to support the beginning of the invoking process (that is, to
accept the TP_STARTED and ALLOCATE or MC_ALLOCATE verbs issued by an invoking TP), the following parameters must be
configured correctly:

1. If the invoking TP specifies in TP_STARTED the LU alias that it uses, that LU alias must match a local APPC LU alias on the
supporting server running Host Integration Server or SNA Server. If the invoking TP leaves the LU alias blank in
TP_STARTED, one of two methods for designating a default LU must be carried out on the supporting server running Host
Integration Server or SNA Server:

Assign a default local APPC LU to the user or group that starts the invoking TP (that is, the user or group logged on at the
system from which TP_STARTED is issued).

—or—

2. Designate one or more LUs as members of the default outgoing local APPC LU pool. The SNA server first attempts to
determine the default local APPC LU of the user who started the TP, then attempts to assign an available LU from the default
outgoing local APPC LU pool; if these attempts fail, the SNA server rejects the request.

In most situations, the supporting SNA server must contain an appropriate connection to another system (host or
peer). Sometimes, for testing purposes, the server running Host Integration Server 2000 or SNA Server contains two
local LUs paired together (for invoking and invokable TPs that are in the same domain); in this situation, a connection
to a host or peer is not necessary.
If the invoking TP specifies in ALLOCATE or MC_ALLOCATE the partner LU alias, that LU alias must match an LU alias
that is paired with the local LU alias specified in TP_STARTED. If the partner LU alias is left unspecified in ALLOCATE or
MC_ALLOCATE, a default remote APPC LU must be assigned to the user who started the invoking TP. The default
remote APPC LU is configuring using SNA Manager on Host Integration Server 2000 and configured using SNA
Explorer on SNA Server 4.0. If the default remote APPC LU is used, it must be paired with the local LU that will be used.
Otherwise, ALLOCATE or MC_ALLOCATE fails.

The preceding parameters support the beginning of the invoking process. For the invoking process to successfully complete,
additional parameters must be configured as described in Configuring Invokable TPs on Host Integration Server and SNA Server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Invokable TPs on Host Integration Server and SNA
Server
For a computer running Host Integration Server 2000 or SNA Server to receive allocation requests from an invoking TP on
another system and route those requests to an invokable TP, certain parameters must be configured correctly:

The Host Integration Server or SNA Server must have a connection to the system from which the invoking TP's request is
sent.
The Host Integration Server or SNA Server must have a remote LU capable of receiving the incoming request. This remote
LU can be configured either explicitly or implicitly.

When configured explicitly, there is an explicit match between a remote LU alias on the Host Integration Server or SNA
Server and the alias of the LU that conveys the invoking TP's request.

When configured implicitly, an implicit incoming remote LU (with its implicit incoming mode) is used. This means that
several items must work together. First, the LU alias specified in the incoming request (the LU alias requested for the
invokable TP) must match a local LU alias on the Host Integration Server or SNA Server receiving the request. Second, the
local LU on the Host Integration Server 2000 server must have an implicit incoming remote LU assigned to it. The properties
of the implicit incoming remote LU will be used for that LU-LU session. For more details about how an implicit incoming
remote LU works, see the Microsoft Host Integration Server 2000 online books.

Appropriate local LUs must be defined in the Host Integration Server or SNA Server configuration. For descriptions of
several ways to set up these local LUs, see Arranging TPs Within an SNA Network.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Arranging TPs Within an SNA Network
If your installation of Microsoft Host Integration Server or Microsoft SNA Server contains multiple systems (multiple clients
and/or multiple SNA servers), you can place a given invokable TP on more than one system. When an invoking request is received
in such an installation, there can be a choice of systems on which to run the invokable TP. You can maintain specific control over
this choice; alternatively, by following the instructions in TP Name Not Unique; Local LU Alias Unspecified, you can allow Host
Integration Server or SNA Server to make the choice randomly to distribute the load.

You can maintain specific control over the choice of system by setting up invokable TPs with unique names, or by setting up each
invokable TP to run only with a specific, unique LU alias. With this arrangement, the information provided by the invoking TP (in
the ALLOCATE or MC_ALLOCATE verb) specifies the system on which the invokable TP should run.

You can allow Host Integration Server or SNA Server to make the system choice randomly by setting the DloadMatchLocalFirst
registry entry to NO and using invokable TPs that leave the local LU alias unspecified. Then, when an incoming request is received,
it is routed randomly, rather than preferentially to the local Host Integration Server or SNA Server; in addition, no matter what LU
alias is requested for the invokable TP, there cannot be a mismatch. Host Integration Server or SNA Server starts one instance of
the requested TP, choosing randomly among the available systems.

The following topics describe some of the possible arrangements that can be made for running TPs.

This section contains:

TP Name Unique for Each TP
TP Name Not Unique; Local LU Alias Unique
TP Name Not Unique; Local LU Alias Unspecified
Troubleshooting for Invokable TPs
Simplifying APPC Configuration

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TP Name Unique for Each TP
One way to specify the intended system where the invokable TP will run is to use a unique TP name for each invokable TP. In this
arrangement, the invoking TP identifies the intended invokable TP (and system) simply by naming the TP. This makes it
unnecessary for an invokable TP to specify any LU alias in registry or environment variables.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TP Name Not Unique; Local LU Alias Unique
Another way to specify the intended system where the invokable TP will run is to give the same name to multiple invokable TPs,
but associate each TP with a unique local LU alias. To do this, configure each invokable TP (through registry or environment
variables) to use a unique local LU alias. Then set up the invoking TPs so that each one is routed not only to the correct TP name
but also to the correct partner LU alias for the intended invokable TP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TP Name Not Unique; Local LU Alias Unspecified
If it does not matter on which system an invokable TP runs, use the same name for multiple invokable TPs and do not specify an
LU alias in the registry or environment variables for the TPs. In this situation, there are no associated LU aliases in the list of
available invokable TP names on a SNA server. Thus, a request received from an invoking TP cannot cause a mismatch on the LU
alias, and will match according to the TP name.

In this situation, if you set the DloadMatchLocalFirst registry entry to NO, Host Integration Server OR SNA Server randomly routes
the request to one of the available TPs. This spreads the processing load among multiple systems and provides hot backup (the
ability to take systems online and offline without disrupting service).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Troubleshooting for Invokable TPs
If there are difficulties with starting an invokable TP, there may be a mismatch between the information for the invokable TP, the
invoking TP, and/or LUs in the Host Integration Server or SNA Server configuration. That is, there may be a mismatch between the
parameters for RECEIVE_ALLOCATE, TP_STARTED, ALLOCATE, or MC_ALLOCATE and/or LU aliases specified in server
configuration. LU aliases are configured using SNA Manager on Host Integration Server 2000 and configured using SNA Explorer
on SNA Server 4.0. For details about how to specify LU aliases see the Microsoft Host Integration Server 2000 onine books.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Simplifying APPC Configuration
There are several features in Host Integration Server 2000 and SNA Server that can simplify configuration for APPC:

The implicit incoming remote LU and the implicit incoming mode, which allow Host Integration Server or SNA Server to
accept requests that arrive by unrecognized remote LUs and modes.
The default local APPC LU and the default remote APPC LU, which allow LU aliases to be associated with user or group
names, simplifying the routing of incoming requests and the configuration of client systems.
The default outgoing local APPC LU pool, which allows LUs to be allocated dynamically to any invoking TP that does not
specify a local LU.
Automatic partnering, which automatically creates LU-LU pairs and assigns modes to the pairs.

For more information about these features, see the Microsoft Host Integration Server online books.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Level 2 Support in Host Integration Server and SNA
Server
The following topics describe additions to Microsoft Host Integration Server 2000 and Microsoft SNA Server 4.0 that enable Sync
Point Level 2 support to the LU 6.2 protocol stack.

This section assumes familiarity with the existing Host Integration Server or SNA Server APPC basic and mapped conversation
interfaces. It does not attempt to explain the SNA formats and protocols for implementing Sync Point protocols, which are
described in SNA LU6.2 Reference: Peer Protocols published by IBM (Document SC31-6808-1).

This section contains:

Sync Point Functional Overview
Sync Point Support Architecture
Sync Point Session Support
Starting Local Sync Point TPs
Sync Point Conversation Activation
Sync Point Level 2 Confirm Support
Sync Point Backout Support
LUWID, Conversation Correlators, and Session Identifiers
Configuration Changes for Sync Point Support
Accepting Incoming Attaches
Sync Point Examples

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Functional Overview
The Sync Point support additions to Host Integration Server 2000 and SNA Server 4.0 allow vendors to provide Sync Point
services over LU 6.2 conversations provided by the LU 6.2 protocol stack in Host Integration Server or SNA Server 4.0. These
additions do not implement the architected Sync Point components and TPs necessary for a complete Sync Point implementation.
In particular, the following Sync Point components are not implemented, and must be provided by the vendor.

Sync Point Services (SPS)
Conversation-Protected Resource Manager (C-PRM)
Resynchronization TP

These vendor-supplied components and applications are expected to implement the SYNCPT and BACKOUT verbs used for Sync
Point services. The SYNCPT verb is used to synchronize transactions. The BACKOUT verb is used to back out of a transaction.

SPS, C-PRM, and the Resynchronization TP are specific components of the SNA Sync Point architecture described in SNA LU6.2
Reference: Peer Protocols published by IBM.

Host Integration Server 2000 and SNA Server 4.0 have been modified to add the features necessary to support these
components, namely:

Additions to the existing APPC API to support implementation of Sync Point verbs.
Accounting support for Sync Point protocols.
Modifications to invokable TP initiation.

Changes to the APPC basic and mapped conversation APPC APIs are made so as to ensure backward compatibility with existing
APPC applications that adhere strictly to the API.

Applications must zero all reserved verb control block (VCB) members before issuing an APPC verb. If this is not done,
the application may inadvertently invoke one of the new APPC features.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Support Architecture
The Sync Point support provided by Host Integration Server 2000 and SNA Server 4.0 assumes a particular implementation
architecture by the vendor, as follows:

The vendor provides a communication interface to its own clients requiring Sync Point Services (SPS).
The vendor API maps its communication and Sync Point requests to the Host Integration Server or SNA Server APPC API.
The vendor provides a single Microsoft® Windows 2000 or Microsoft® Windows NT® process, the Transaction Monitor,
that is responsible for:

Issuing all APPC verbs.
Implementing the architected Resynchronization TP.
Implementing the architected Conversation-Protected Resource Manager (C-PRM) component of the LU.
Implementing the architected SPS component of the LU.

The Transaction Monitor must reside on the same computer as the Host Integration Server or SNA Server containing the
LUs for which it is providing Sync Point services. Both incoming and outgoing Sync Point conversations for this Transaction
Monitor will be routed through this Host Integration Server 2000 server only.

Detailed descriptions of the three architected Sync Point components can be found in SNA LU6.2 Reference: Peer Protocols
published by IBM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Session Support
This section discusses support for Sync Point session activation and deactivation in Host Integration Server 2000 and SNA Server
4.0.

This section contains:

Sync Point Session Activation
Sync Point Session Deactivation

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Session Activation
If Host Integration Server 2000 or SNA Server 4.0 are to support Sync Point conversations, this must be specified at session
activation time. The configuration of Host Integration Server 2000 and SNA Server 4.0 is modified to allow the system
administrator to specify which (if any) local LUs will be used for Sync Point conversations.

The Local LU Configuration property page on Host Integration Server or SNA Server contains a new check box. When checked, it
indicates that the local LU can participate in Sync Point sessions. Host Integration Server or SNA Server uses this option to
determine the parameters it sends on BIND requests and responses.

When Host Integration Server or SNA Server initiates an LU 6.2 session on an LU designated as supporting Sync Point, it sets the
synchronization level on BIND requests to indicate that the session can support Sync Point and Backout. If the partner LU also
supports Sync Point and Backout, the session is available for conversations requiring Sync Point support. If the partner LU does
not support Sync Point, the session will not be used for Sync Point conversations.

Similarly, if the local LU is configured for Sync Point and the partner LU's BIND request indicates that it supports Sync Point, Host
Integration Server or SNA Server sends BIND responses specifying that Sync Point is supported. In this case, the session can be
used for Sync Point conversations.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Session Deactivation
A Sync Point implementation needs to determine whether it has lost connectivity to a partner when establishing Sync Point
conversations so that it can know whether or not to resynchronize. To obtain this information, Host Integration Server and SNA
Server provide a new APPC verb, GET_LU_STATUS that reports the status of a particular remote LU. The information returned by
this verb is as follows:

Current number of active LU 6.2 sessions between the remote LU and the TP's local LU.
Whether or not the number of active sessions dropped to zero at any time since this verb was last issued for the remote LU.

Note that the zero sessions indicator is reset to AP_NO each time the verb is issued by any process. It is therefore imperative that
only one process issues this verb; otherwise information may be lost.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Starting Local Sync Point TPs
Local TPs are created by issuing the TP_STARTED verb to Host Integration Server or SNA Server. The TP_STARTED verb has been
modified by adding the new VCB member syncpoint_rqd to allow a TP to specify that it requires Sync Point services.

By setting syncpoint_rqd to AP_YES, a TP indicates that it requires Sync Point services from Host Integration Server or SNA Server
4.0. A value of AP_NO (the default) indicates that Sync Point services are not required.

Since this member cannot be incorporated within the existing TP_STARTED VCB, the TP must use a larger VCB structure. To
indicate that the VCB is longer than usual, the opext member of the VCB must be combined using OR with the value
AP_EXTD_VCB before calling APPC.

If the TP is started on a server running SNA Server earlier than version 3.0 with the opext member of the VCB set for Sync Point
support, the TP_STARTED verb will fail with a primary return code of AP_INVALID_OPCODE.

Conversations started by TPs requiring Sync Point support will be routed only by the Host Integration Server or SNA Server
software running on the same computer. They will not be routed to other LAN-attached servers.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Conversation Activation
This section discusses support for Sync Point conversation activation in Host Integration Server and SNA Server 4.0.

This section contains:

Locally Initiated Conversations
Remotely Initiated Conversations
Already Verified Support
Presentation Header Support in Data Transfers
User Control Data
Implied Forget

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Locally Initiated Conversations
Conversations are initiated locally by issuing an ALLOCATE or MC_ALLOCATE verb. The ALLOCATE and MC_ALLOCATE verbs are
modified to support additional parameters required by Sync Point support. The supplied synclevel parameter of the ALLOCATE
and MC_ALLOCATE verbs can take on a value of AP_SYNCPT, which specifies that the conversation requested is a Sync Point
conversation.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Remotely Initiated Conversations
Applications wishing to receive remotely initiated conversations (incoming Attaches) issue a RECEIVE_ALLOCATE verb. To
accommodate Sync Point support, the RECEIVE_ALLOCATE verb is modified in a number of ways as follows:

The returned sync_level parameter of the RECEIVE_ALLOCATE verb can take on a value of AP_SYNCPT, specifying that the
conversation is a Sync Point conversation. The value of the sync_level parameter can also be determined by issuing a
GET_ATTRIBUTES verb on the new conversation.
Support is added for the receipt of program initiation parameters (PIP) data by a new parameter to the RECEIVE_ALLOCATE
verb:

The pip_incoming parameter is set by the application to indicate whether it is willing to accept incoming PIP data, and is
returned by Host Integration Server or SNA Server to indicate whether PIP data is available to be received. If the application
does not wish to receive PIP data, this member should be set to AP_NO, the default, before issuing the RECEIVE_ALLOCATE
verb. If it is willing to accept PIP data, this member should be set to AP_YES. On completion of the RECEIVE_ALLOCATE
verb, this member will be set to AP_YES if PIP data is available to be received by the application and to AP_NO otherwise.

If PIP data is available, the application can receive it by issuing one of the verbs for receiving data on completion of the
RECEIVE_ALLOCATE verb. For basic conversations, these receive verbs include RECEIVE_AND_POST, RECEIVE_AND_WAIT,
and RECEIVE_IMMEDIATE. On basic conversations the PIP data will be returned inclusive of the general data stream (GDS)
header for PIP data (GDS identifier 0x12F5). For mapped conversations, these receive verbs include
MC_RECEIVE_AND_POST, MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE. On mapped conversations, Host
Integration Server 2000 removes the 4-byte GDS header, and returns the PIP data only.
For basic conversations, if the application issues a SEND_ERROR, DEALLOCATE, or TP_ENDED verb before the PIP data is
received, the PIP data will be discarded. For mapped conversations, if the application issues an MC_SEND_ERROR,
MC_DEALLOCATE, or TP_ENDED verb before the PIP data is received, the PIP data will be discarded.
If PIP data is received for a TP that cannot or does not want to receive it, the conversation is rejected with a primary return
code of AP_ALLOCATION_ERROR, and a secondary return code of AP_PIP_NOT_ALLOWED.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Already Verified Support
In an implementation where a Host Integration Server or SNA Server application acts as a gateway between an SNA network and
a non-SNA network, it is possible that non-Host Integration Server or SNA Server clients of the gateway may require Sync Point
Level 2 conversation security. Since the originating client will have validated the relevant user identifier and password, the
gateway application should specify conversation security of AP_SAME when starting a conversation on behalf of the client. In this
case, however, Host Integration Server and SNA Server assume that the user identifier to be used has previously been received on
an Attach targeted at the TP. In the case of a non-Host Integration Server or SNA Server client this is not the case.

To allow such a gateway to support Sync Point Level 2 conversation security, Host Integration Server and SNA Server provide a
new verb, SET_TP_PROPERTIES that allows the gateway application to set the user identifier for the TP before allocating a
conversation with security of AP_SAME. This verb will normally be issued once, immediately after TP_STARTED, to set the user
identifier for all the TP's conversations.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Presentation Header Support in Data Transfers
For basic conversations, Sync Point commands are sent by means of presentation headers (PS) across LU 6.2 conversations using
the SEND_DATA or MC_SEND_DATA verb. All presentation headers contain length fields that specify a length of 1, which is usually
illegal. To support Sync Point conversations, the following modifications are made to the Host Integration Server or SNA Server
presentation services component:

On basic conversations with a synclevel of AP_SYNCPT, data transferred specifying a general data stream (GDS) variable
length of 1 will not be rejected. If the synclevel is not AP_SYNCPT, they will be rejected as before.
On mapped conversations, PS headers will not be wrapped as mapped conversation application data logical records (with
GDS identifier 0x12FF) when they are sent, or have the GDS header stripped off when they are received.
On mapped conversations, it is the responsibility of the application to provide the compete PS header including the length
field. Similarly, the length field will be included in PS header data returned by receive verbs.

To achieve the latter the MC_SEND_DATA verb and the receive verbs (MC_RECEIVE_AND_POST, MC_RECEIVE_AND_WAIT, and
MC_RECEIVE_IMMEDIATE) require modifications as follows:

A new parameter, data_type, is added to the MC_SEND_DATA verb. When this is set to AP_APPLICATION (the default,
0x00), the data is sent as application data (GDS identifier 0x12FF) as usual. When it is set to AP_PS_HEADER, the data is sent
as described above.
The following two new values are added for the what_rcvd member of the receive verbs to specify that the received data is a
PS header:

AP_PS_HEADER_COMPLETE

AP_PS_HEADER_INCOMPLETE

If an application issues a receive verb with rtn_status set to AP_YES, Host Integration Server or SNA Server will return
status in combination with AP_PS_HEADER_COMPLETE, with the exception of AP_DEALLOCATE_NORMAL and
AP_CONFIRM_DEALLOCATE. This is to prevent the conversation being prematurely disconnected from the LU 6.2 session
when a COMMIT PS header arrives with the end of conversation indication.

It is the responsibility of the vendor-supplied Sync Point support component to convert these PS headers into the appropriate
Sync Point return codes (for example, TAKE_SYNCPT).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

User Control Data
For mapped conversations, the MC_SEND_DATA verb and the receive verbs (MC_RECEIVE_AND_POST, MC_RECEIVE_AND_WAIT,
and MC_RECEIVE_IMMEDIATE) are modified to allow applications to send and receive data in user control data general data
stream (GDS) variables instead of the regular application data GDS variables. The MC_SEND_DATA verb is modified as follows:

A new parameter, data_type, is added. When data_type is set to AP_USER_CONTROL_DATA, the data is sent as user
control data (GDS identifier 0x12F2). When it is set to AP_APPLICATION (the default), the data is sent as application data
(GDS identifier 0x12FF). Note that the APPC library automatically creates the GDS header on behalf of the application for
both AP_APPLICATION and AP_USER_CONTROL_DATA data records.
The mapped conversation receive verbs are modified to allow applications to receive user control data by adding two new
values for the what_rcvd parameter, as follows:

AP_USER_CONTROL_DATA_COMPLETE

AP_USER_CONTROL_DATA_INCOMPLETE

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Implied Forget
LU 6.2 Sync Point sessions can use an optimization of the architected message flows known as implied forget. When the protocol
specifies that a FORGET presentation header (PS) is required, the next data flow on the session implies that a FORGET has been
received, even though it has not. In the normal situation, the TP is aware of the next data flow when data is received or sent on
one of its Sync Point conversations.

However it is possible that the last message that flows is caused by the conversation being deallocated. In this case, the TP is
unaware when the next data flow on the session occurs. To provide the TP with this notification, the DEALLOCATE and
MC_DEALLOCATE verbs are modified to allow the TP to register a callback function which will be called:

On the first normal flow transmission (request or response) over the session used by the conversation.
If the session is unbound before any other data flows.
If the session is terminated abnormally due to a data link control (DLC) outage.

The callback procedure can take any name because the address of the procedure is passed into the APPC DLL.

Note that the DEALLOCATE and MC_DEALLOCATE verbs will probably complete before the callback routine is called. The
conversation is considered to be in RESET state and no further verbs can be issued using the conversation identifier. If the
application issues a TP_ENDED verb before the next data flow on the session, the callback routine will not be invoked.

The DEALLOCATE and MC_DEALLOCATE verbs are modified as follows to support implied forget:

A new member, callback, is added to allow the TP to specify the address of the function to call on the next data flow on the
session being used by the conversation being deallocated. If this member is NULL, no notification will be provided. A vendor
would normally supply this callback function.
The DEALLOCATE and MC_DEALLOCATE verbs also contain a correlator member which is returned as one of the parameters
when the callback function is invoked. The application can use this parameter in any way (for example, as a pointer to a
control block within the application).

Host Integration Server and SNA Server allow TPs to deallocate conversations immediately after sending data by specifying the
type member in the SEND_DATA and MC_SEND_DATA verbs as AP_SEND_DATA_DEALLOC_FLUSH,
AP_SEND_DATA_DEALLOC_SYNC_LEVEL, AP_SEND_DATA_DEALLOC_ABEND, and AP_SEND_DATA_DEALLOC_CONFIRM.
However, the SEND_DATA and MC_SEND_DATA verbs do not contain the implied forget callback function. TPs wishing to
receive implied forget notification must issue a DEALLOCATE or MC_DEALLOCATE verb explicitly.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Level 2 Confirm Support
The current APPC implementation in Host Integration Server and SNA Server supports conversations with synclevel of
AP_NONE, AP_CONFIRM_SYNC_LEVEL, or AP_SYNCPT. The DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, and
MC_PREPARE_TO_RECEIVE verbs specify a type member indicating the synchronization level required. This parameter is
interpreted as follows:

Allocated syn
clevel

Type spec
ified

Action performed

AP_NONE AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.
AP_NONE AP_SYNCL

EVEL
Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_SYNCPT AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.
AP_SYNCPT or
AP_CONFIRM_
SYNC_LEVEL

AP_CONFI
RM_TYPE

Action of CONFIRM or MC_CONFIRM verb before deallocation or change of direction.

AP_SYNCPT AP_SYNCL
EVEL

It is assumed that a Sync Point implementation built using the APPC API in Host Integration Server or
SNA Server implements the defer states appropriately. See the note below.

With an allocated synclevel of AP_SYNCPT and a specified type of AP_SYNCLEVEL, it is assumed that a vendor-
supplied Sync Point component implements the defer states appropriately. A vendor-supplied Sync Point system
must:

Intercept DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, and MC_PREPARE_TO_RECEIVE verbs on Sync Point
Level 2 conversations when type AP_SYNCLEVEL is specified for synclevel.
Maintain the defer state until one of the verbs valid in that state completes.
On completion of the verb, issue the original DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, or
MC_PREPARE_TO_RECEIVE verb to Host Integration Server 2000.

Host Integration Server and SNA Server do not implement the defer states directly. In particular, when a DEALLOCATE,
MC_DEALLOCATE, PREPARE_TO_RECEIVE, or MC_PREPARE_TO_RECEIVE verb is received with a type specified as
AP_SYNCLEVEL on a Sync Point conversation, this is treats as if the conversation has a synclevel of AP_NONE.

So that Sync Point Level 2 conversations can use confirm type synchronization, the DEALLOCATE, MC_DEALLOCATE,
PREPARE_TO_RECEIVE, and MC_PREPARE_TO_RECEIVE verbs are modified to support a type member of AP_CONFIRM_TYPE.

Versions of SNA Server prior to SNA Server 3.0 support conversations with synclevel of AP_NONE or AP_CONFIRM_SYNC_LEVEL.
The DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, and MC_PREPARE_TO_RECEIVE verbs specify a type member
indicating the synchronization level required. This parameter is interpreted as follows:

Allocated synclevel Type specifie
d

Action performed

AP_NONE AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.
AP_NONE AP_SYNCLEVEL Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.
AP_CONFIRM_SYNC_LEVE
L

AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_CONFIRM_SYNC_LEVE
L

AP_SYNCLEVEL Action of CONFIRM or MC_CONFIRM verb before deallocation or change of directio
n.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Backout Support
This section describes backout support for Sync Point conversations.

This section contains:

Additional Sync Point Return Codes
Sending Backout on Sync Point Conversations

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Additional Sync Point Return Codes
When a remote TP issues a BACKOUT verb, the backout is reported to the local TP as a new primary return code value,
AP_BACKED_OUT, on the next (current) verb issued. The local TP is provided access to the sense code information contained in the
Backout FMH-7 by setting the secondary_rc field as follows:

AP_BO_NO_RESYNC for sense code 0x08240000
AP_BO_RESYNC for sense code 0x08240001

This new return code will only be supplied on conversations with synclevel AP_SYNCPT, and therefore will not be presented to
existing applications.

The verbs on which this new return code can be returned are:

CONFIRM

MC_CONFIRM

MC_PREPARE_TO_RECEIVE

MC_RECEIVE_AND_POST

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_SEND_DATA

MC_SEND_ERROR

PREPARE_TO_RECEIVE

RECEIVE_AND_POST

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

SEND_DATA

SEND_ERROR

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending Backout on Sync Point Conversations
To send a Backout, an FMH-7 containing a sense code of 0x08240000 or 0x08240001 is sent on the session. This is done using
the SEND_ERROR or MC_SEND_ERROR verb. To allow Host Integration Server 2000 to send the appropriate sense data, the
SEND_ERROR and MC_SEND_ERROR verbs are modified as follows:

A new field, err_type, is added to allow the TP to specify the type of error. The default is AP_PROG (0x00), which means
existing TPs will continue to work unmodified.
The err_type field in both verbs can take one of two new values, specifying the sense codes to be generated by Host
Integration Server 2000:

AP_BACKOUT_NO_RESYNC for sense code 0x08240000

AP_BACKOUT_RESYNC for sense code 0x08240001

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUWID, Conversation Correlators, and Session Identifiers
The logical unit-of-work identifier (LUWID), conversation correlators, and session identifiers are important for all Sync Point
operations and accounting purposes. The following sections describe how Host Integration Server and SNA Server 4.0 provide
access to these components and, where appropriate, facilities to modify this information.

This section contains:

Generating and Setting LUWIDs
Extracting LUWIDs
Session Identifiers

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Generating and Setting LUWIDs
The LUWID is used to identify conversations that are part of a single Sync Point transaction. All conversations with the same
LUWID are committed (or backed out) at the same time.

Host Integration Server and SNA Server assign two LUWIDs to a transaction program when the TP is started. For locally started
TP's, this is when the TP_STARTED verb is issued. (In previous versions of SNA Server 2.x only one LUWID was assigned.) The first
LUWID is the TP's protected LUWID. It is used by Host Integration Server 2000 as the LUWID for all synclevel AP_SYNCPT
conversations allocated by the TP. When the TP issues an ALLOCATE or MC_ALLOCATE verb with a synclevel of AP_SYNCPT, Host
Integration Server and SNA Server generate an Attach containing the TP's current protected LUWID.

The second LUWID is the TP's unprotected LUWID. It is used on all conversations allocated by the TP with a synclevel other than
AP_SYNCPT.

For remotely initiated TPs, the incoming Attach may contain an LUWID for the TP—it is mandatory if the conversation has a
synclevel of AP_SYNCPT. For Sync Point conversations, Host Integration Server and SNA Server save the LUWID as the TP's
protected LUWID and generate a new unprotected LUWID for it. For conversations with a synclevel other than Sync Point
(AP_SYNCPT), Host Integration Server and SNA Server save the LUWID as the TP's unprotected LUWID and generate a new
protected LUWID.

Host Integration Server and SNA Server generate LUWIDs by concatenating the following:

The fully qualified name of the local LU, preceded by a single byte indicating its length (exclusive of the length byte).
A 6-byte LUW instance number, generated from the current date and time (modified to ensure uniqueness if necessary).
A 2-byte LUW sequence number, initialized to 1.

If the fully qualified LU name component of the LUWID is not 17 bytes long, Host Integration Server and SNA Server do not add
any padding between it and the LUW instance number. The application can determine the length of the LUWID, and the offsets
within it of the LUW instance number and LUW sequence number, by examining the first byte of the LUWID, which indicates the
length of the fully qualified LU name.

When Host Integration Server and SNA Server generate both a protected and an unprotected LUWID for a TP, the unprotected
LUWID is created by incrementing the protected LUWID's instance number.

The protected LUWID needs to be changed by a TP for one of four reasons:

When a transaction is backed out or committed, the LUWID sequence number must be incremented.
If the transaction tree is split, a new LUWID must be generated for the TP.
If the application uses multiple logical TPs to implement a transaction, each TP must have the same LUWID (different from
that assigned by Host Integration Server or SNA Server).
If the application is acting as a gateway from a non-SNA environment and LUWIDs are received by a means other than an
Attach.

To allow a TP to set or generate new LUWIDs, a new verb, SET_TP_PROPERTIES, is provided by the APPC API. This verb allows the
TP to either set its LUWIDs to an existing value, by providing the LUWIDs, or generate new ones and use them from then on.
When a new LUWID is generated by Host Integration Server or SNA Server, it is guaranteed to be unique.

Note that it is the responsibility of the application (the Sync Point system component) to transmit the new LUWID PS header to
the partner Sync Point system when the protected LUWID is changed. Similarly, when a new LUWID PS header is received, the
application must inform the LU by issuing SET_TP_PROPERTIES.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extracting LUWIDs
Both LUWIDs for a particular TP can be determined by issuing the GET_TP_PROPERTIES verb. The GET_TP_PROPERTIES verb
returns the TP's unprotected LUWID in the luw_id field.

If the TP needs to access the protected LUWID, it must combine the opext member of the VCB with the value AP_EXTD_VCB using
OR before issuing the verb. The protected LUWID will then be returned in the prot_luw_id field. If the opext field does not contain
the AP_EXTD_VCB bit, the verb control block is presumed to end immediately before the prot_luw_id field.

The LUWID for a particular conversation can be determined by issuing a GET_ATTRIBUTES or MC_GET_ATTRIBUTES verb on the
conversation. These verbs are modified as follows:

A new field, luw_id, is added in which the LUWID is returned. The LUWID returned is the protected one if the conversation
was allocated with synclevel field of the ALLOCATE or MC_ALLOCATE verb set to Sync Point (AP_SYNCPT); otherwise it is
the unprotected one.
Since the luw_id field cannot be incorporated within the existing verb control blocks, the TP must use a larger VCB structure.
To indicate that the VCB is longer than usual, the opext field of the VCB must be combined with the value AP_EXTD_VCB
using OR before calling APPC.
The sync_level field of the GET_ATTRIBUTES or MC_GET_ATTRIBUTES verb can take an additional value, AP_SYNCPT, when
the conversation was allocated with the synclevel field of the ALLOCATE or MC_ALLOCATE verb of Sync Point (AP_SYNCPT).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Session Identifiers
Host Integration Server and SNA Server maintain a unique identification for every LU 6.2 session it has with a remote LU. This 8-
byte identifier is generated by Host Integration Server or SNA Server every time it starts a new session (or is received by Host
Integration Server or SNA Server when a session is initiated remotely). The Sync Point resynchronization protocols require
knowledge of the session identifier.

To provide this, the MC_GET_ATTRIBUTES and the GET_ATTRIBUTES verbs have been modified to return the session identifier of
the session over which a particular conversation is allocated. The MC_GET_ATTRIBUTES and GET_ATTRIBUTES verbs can be used
to retrieve this sess_id field of the VCB if the opext field of the VCB is combined with the value AP_EXTD_VCB using OR before
calling APPC.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuration Changes for Sync Point Support
A new check box is added to the Local LU Configuration dialog box. When checked, this indicates that the local LU is able to
participate in synclevel Sync Point sessions. Host Integration Server and SNA Server use this option to determine the synclevel
BIND parameters it sends on BIND requests and responses.

This field is added to the Host Integration Server and SNA Server configuration file in a field that is no longer used by Host
Integration Server or SNA Server. Existing configurations from earlier versions of SNA Server will therefore continue to work
unmodified.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Accepting Incoming Attaches
The Sync Point support in Host Integration Server and SNA Server is intended for use only by gateway applications that
implement the architected SNA Sync Point components, including Conversation-Protected Resource Manager (C-PRM). In a Sync
Point implementation, it is necessary for C-PRM to be aware of all protected conversations, both locally initiated and remotely
initiated. This can be achieved in Host Integration Server or SNA Server by C-PRM intercepting the conversation allocation and
deallocation verbs and issuing them on behalf of the transaction program (TP). Note that since Host Integration Server and SNA
Server do not allow TP or conversation identifiers to be shared across processes, this also means that the process containing C-
PRM must also intercept all APPC verbs issued by the client TPs.

For locally initiated TPs, this is straightforward. However for incoming Attaches, the situation is made more complex by the
requirement that the RECEIVE_ALLOCATE verb specify the name of the TP to be matched with the Attach.

In some implementations, this will not be an issue, as the gateway will be aware of the names of all the transactions passing
through it. To support this situation, the RECEIVE_ALLOCATE verb has been enhanced as described in the following topic to permit
the gateway to indicate that it can accept Sync Point conversations.

In other implementations, the gateway does not know the names of the transactions passing through it. This is particularly so
when the gateway is providing a conversion between SNA and another communications protocol. In this case, Host Integration
Server and SNA Server allow the gateway process to register itself as a Sync Point Attach Service, indicating that it is willing to
accept incoming Attaches for any Sync Point conversation. In this case, the gateway must be implemented as a
Sync Point Attach Manager.

This section contains:

Sync Point Knows Transaction Names
Sync Point Attach Manager
Rejecting Remotely Initiated Conversations

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Knows Transaction Names
A Sync Point implementation that knows the names of all the transactions that can be supported (for example, through
configuration of the gateway) may accept incoming Sync Point conversations by issuing a RECEIVE_ALLOCATE verb specifying the
name of the transaction and indicating that it is willing to accept Sync Point conversations.

The RECEIVE_ALLOCATE verb was modified to allow a TP to specify that it can accept Sync Point conversations by adding a new
syncpoint_rqd field to the VCB. When this field is set to AP_YES it indicates that the transaction program can accept Sync Point
conversations from Host Integration Server or SNA Server. When this field is set to AP_NO (the default), it indicates that Sync
Point conversations are not supported.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Attach Manager
Instead of issuing separate RECEIVE_ALLOCATE verbs for each possible transaction name, a Sync Point implementation may
instead register as the Sync Point Attach Manager for Host Integration Server or SNA Server. It does so by issuing a
RECEIVE_ALLOCATE verb specifying a TP name consisting of all 0x00s.

When a Sync Point Attach Manager is registered, the following changes are effected in server's incoming Attach support on Host
Integration Server or SNA Server:

When an Attach message arrives for any TP name on a conversation with the syncpoint_rqd field of the VCB set to AP_YES,
Host Integration Server 2000 matches it with the application that issued the special RECEIVE_ALLOCATE verb registering
itself as the Sync Point Attach Manager.
Any Attach message arriving for the Resynchronization TP (0x06F2) will automatically be routed to the Sync Point Attach
Manager.
If no RECEIVE_ALLOCATE has been issued for the Sync Point Attach Manager, or for the specific TP name, Host Integration
Server or SNA Server will queue the Attach for a configured period of time. If no RECEIVE_ALLOCATE is issued in that time,
the Attach will be rejected with a return code of TP_NOT_AVAILABLE_RETRY.
If a RECEIVE_ALLOCATE is matched with the Attach message, the verb is returned to the TP with the tp_name field of the
VCB set to the TP name contained in the Attach message.

Applications using this feature must adhere to two restrictions:

All verbs issued on conversations started in this manner must be issued by the same process, as Host Integration Server or
SNA Server cannot pass tp_ids between processes.
Only a single process may register as the Sync Point Attach Manager on any server running Host Integration Server 2000 or
SNA Server. If a second process attempts to register, its RECEIVE_ALLOCATE verb will return immediately with the primary
return code set to AP_SYNCPOINT_MANAGER_ACTIVE.

Sync Point Attach Manager applications must reside on a Host Integration Server 2000 server. They may not be distributed across
Host Integration Server or SNA Server clients. This restriction is imposed to ensure that only a single instance of Sync Point
Services (SPS) and Conversation-Protected Resource Manager (C-PRM) exists for each LU on the Host Integration Server or SNA
Server (which might not be the case if Sync Point Attach Managers were visible from multiple servers in the Host Integration
Server or SNA Server domain).

The structure of the RECEIVE_ALLOCATE verb control block does not require modification to support this function.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Rejecting Remotely Initiated Conversations
In an environment where a Sync Point Attach Manager is receiving all Attach messages as described above, it may be necessary
for it to reject an Attach for a particular TP name, either because the TP name is not valid or because there is another problem
with the received Attach message. To enable the application to generate the correct return code at the initiating TP, the
DEALLOCATE and MC_DEALLOCATE verbs are enhanced with new deallocate_type field values in the VCB that allow the
application to specify the return code to be sent to the initiating TP. The new values for deallocate_type are:

AP_TP_NOT_AVAIL_RETRY

AP_TP_NOT_AVAIL_NO_RETRY

AP_TPN_NOT_RECOGNIZED

AP_PIP_DATA_NOT_ALLOWED

AP_PIP_DATA_INCORRECT

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sync Point Examples
This section contains example verb sequences for implementing the architected Sync Point verbs using the Sync Point facilities
provided by Host Integration Server and SNA Server 4.0.

In the following figures, TP is the transaction program that requires Sync Point services. Vendor API is the vendor-supplied APPC
API. This component provides the SPS and C-PRM components and a mapping between the vendor's APPC syntax and that of
Host Integration Server or SNA Server. APPC API is the Host Integration Server or SNA Server APPC basic and mapped
conversation interface.

This section contains:

SYNCPT Verb Issued Locally
SYNCPT Verb Issued Remotely
BACKOUT Verb Issued Locally
BACKOUT Verb Issued Remotely

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SYNCPT Verb Issued Locally

Notes

1. The transaction program issues a SEND_DATA or MC_SEND_DATA verb depending on whether a basic or mapped
conversation is being used.

2. The SEND_DATA or MC_SEND_DATA VCB is passed transparently through the vendor API to Host Integration Server 2000.
When the verb completes, the return code from Host Integration Server 2000 is returned to the transaction program.

3. The transaction program issues a SYNCPT verb to the vendor API.
4. The vendor API creates a PREPARE PS header and transmits it by issuing a SEND_DATA or MC_SEND_DATA verb. For a

mapped conversation, the data_type field of the MC_SEND_DATA VCB must be set to AP_PS_HEADER.
5. On completion of the SEND_DATA or MC_SEND_DATA verb, the vendor API issues a RECEIVE_AND_WAIT or

MC_RECEIVE_AND_WAIT verb.
6. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with the what_rcvd field of the VCB with a value of

AP_PS_HEADER. The data buffer is filled with the received REQUEST_COMMIT PS header.
7. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued to get send direction. Note that the vendor API can

combine these two verbs into a single request by setting the rtn_status field of the VCB to AP_YES in order to receive status
with data on the first RECEIVE_AND_WAIT. or MC_RECEIVE_AND_WAIT.

8. A COMMITTED PS header is then transmitted using a SEND_DATA or MC_SEND_DATA verb.
9. The Vendor API issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb to receive the FORGET PS header from the

remote TP.
10. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued with the what_rcvd field of the VCB set to AP_SEND

to get send direction (again the rtn_status RECEIVE_AND_WAIT field of the VCB can be set to AP_YES to combine these two
verbs).

11. When send indication is received, the vendor API returns the SYNCPT verb to the local transaction program with an OK
return code.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SYNCPT Verb Issued Remotely

Notes

1. The local TP issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb (depending on whether a basic or mapped
conversation is being used) to receive data from the remote transaction program. The vendor API passes the verb
transparently to Host Integration Server or SNA Server.

2. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with what_rcvd = AP_PS_HEADER. The data
buffer contains a PREPARE PS header.

3. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued by the vendor API to receive the send indication
from the remote TP.

4. The vendor API returns the transaction program's RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb with the what_rcvd
field of the VCB set to TAKE_SYNCPT.

5. The transaction program issues a SYNCPT verb.
6. The vendor API generates a REQUEST_COMMIT PS header and transmits it using a SEND_DATA or MC_SEND_DATA verb. If

the conversation is mapped, the MC_SEND_DATA verb is issued with the data_type field of the VCB set to AP_PS_HEADER.
7. The vendor API then issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb to give the remote TP direction to send.
8. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with the what_rcvd field of the VCB set to

AP_PS_HEADER. The data buffer contains a COMMITTED PS header.
9. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued to get permission to send.

10. A FORGET PS header is prepared and sent to the remote transaction program.
11. The FORGET is flushed and direction given to the remote transaction program by issuing a PREPARE_TO_RECEIVE or

MC_PREPARE_TO_RECEIVE with the ptr_type field of the VCB set to AP_FLUSH.
12. When the PREPARE_TO_RECEIVE or MC_PREPARE_TO_RECEIVE verb completes, the vendor API returns the SYNCPT verb to

the local transaction program.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

BACKOUT Verb Issued Locally

Notes

1. The local transaction program issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb (depending on whether a
basic or mapped conversation is being used) to receive data from the remote transaction program. The vendor API passes
the verb transparently to Host Integration Server or SNA Server.

2. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with the what_rcvd field of the VCB set to
AP_PS_HEADER. The data buffer contains a PREPARE PS header.

3. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued by the vendor API to receive the send indication
from the remote TP.

4. The vendor API returns the transaction program's RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb with the what_rcvd
field of the VCB set to TAKE_SYNCPT.

5. The transaction program issues a BACKOUT verb to back out the transaction.
6. The vendor API generates a SEND_ERROR or MC_SEND_ERROR verb of type BACKOUT_RESYNC to send the Backout sense

code 0x08240001.
7. The vendor API then issues a CONFIRM or MC_CONFIRM verb to flush the SEND_ERROR or MC_SEND_ERROR verb and

request a response from the remote transaction program.
8. The CONFIRM or MC_CONFIRM verb completes when the remote transaction program issues a CONFIRMED or

MC_CONFIRMED verb. The vendor API then returns the BACKOUT verb to the local transaction program.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

BACKOUT Verb Issued Remotely

Notes

1. The transaction program issues a SEND_DATA or MC_SEND_DATA verb depending on whether a basic or mapped
conversation is being used.

2. The SEND_DATA or MC_SEND_DATA VCB is passed transparently through the vendor API to Host Integration Server or
SNA Server. When the verb completes the return code from Host Integration Server or SNA Server is returned to the
transaction program.

3. The transaction program issues a SYNCPT verb to the vendor API.
4. The vendor API creates a PREPARE PS header and transmits it by issuing a SEND_DATA or MC_SEND_DATA verb. For a

mapped conversation, the data_type field of the MC_SEND_DATA VCB must be set to AP_PS_HEADER.
5. On completion of the SEND_DATA or MC_SEND_DATA verb, the vendor API issues a RECEIVE_AND_WAIT or

MC_RECEIVE_AND_WAIT verb.
6. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb returns with a return code of AP_BACKED_OUT, indicating that

the remote transaction program issued a BACKOUT verb.
7. The vendor API issues another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb to receive the Confirm indication.
8. When the verb completes with the what_rcvd field of the VCB set to AP_CONFIRM, the vendor API issues a CONFIRMED or

MC_CONFIRMED verb to acknowledge the BACKOUT verb.
9. The SYNCPT verb is returned to the transaction program with a BACKED_OUT return code when the CONFIRMED or

MC_CONFIRMED verb completes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Windows CSV Overview
Common service verbs (CSVs) are a set of programming functions provided by Microsoft® Host Integration Server 2000 and
Microsoft® SNA Server. The CSVs provide convert, log, trace, and transfer services to applications.

The CSVs and information presented in this guide represent an evolving CSV API that is composed of IBM Extended Services for
OS/2 version 1.0 and a set of Windows extensions that allow for registering and deregistering the application and that provide an
asynchronous entry point for TRANSFER_MS_DATA.

This section describes the verbs available to you and explains how to use them with your applications. A detailed description of
each verb is provided in the reference portion of the SDK.

The CSVs are as follows:

CONVERT
Converts a character string from ASCII to EBCDIC or from EBCDIC to ASCII.

COPY_TRACE_TO_FILE
Concatenates the contents of the individual application programming interface (API)/link service trace files to form a single
trace file.

DEFINE_TRACE
Enables or disables tracing for specific APIs.

GET_CP_CONVERT_TABLE
Creates and returns a 256-byte conversion table to translate character strings from a source code page to a target code page.

LOG_MESSAGE
For OS/2 only, takes a message from a message file, adds specified data to it, and records the message in the error log file. This
verb optionally displays the message on the user’s screen.

TRANSFER_MS_DATA
Builds a Systems Network Architecture (SNA) request unit (RU) containing Network Management Vector Transport (NMVT)
data. The verb can send the NMVT data to NetView for centralized problem diagnosis and resolution. The data is optionally
logged in the event log for Microsoft® Windows 2000, Windows NT®, Windows® 98, Windows® 95, Windows® version 3.x,
or MS-DOS®, and in the local audit log file for OS/2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Integration Server and SNA Server Asynchronous Support
Asynchronous call completion returns the initial call immediately so the application can continue with other processes. An
application that issues a call and does not regain control until the operation completes is not able to perform any other
operations. This type of operation, referred to as blocking, is not suited to a server application designed to handle multiple
requests from many clients.

Through RegisterWindowsMessage with “WinAsyncCSV” as the string, you pass a window handle by which you will be notified
of call completion. You then make your call and when it completes, a message is posted to the window handle that you passed,
notifying you that the call is complete.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Before Using Windows CSV
The following Windows extensions are of particular importance and should be reviewed before using Windows CSV:

WinAsyncCSV
Provides an asynchronous entry point for TRANSFER_MS_DATA only. If used for any other verb, the behavior will be
synchronous. Use this extension instead of the blocking version of the verb if you run your application under Microsoft®
Windows® version 3.x.

When the asynchronous operation is complete, the application’s window hWnd receives the message returned by
RegisterWindowMessage with “WinAsyncCSV” as the input string. The wParam argument contains the asynchronous task
handle returned by the original function call. The lParam argument contains the original verb control block (VCB) pointer and
can be dereferenced to determine the final return code.

If the function returns successfully, a “WinAsyncCSV” message is posted to the application when the operation completes or the
conversation is canceled.

WinCSVCleanup
Terminates and deregisters an application from a Windows CSV implementation.

An application must call this function to deregister itself from the Windows CSV implementation.

WinCSVStartup
Allows an application to specify the version of Windows CSV required and to retrieve details of the specific CSV
implementation.

An application must call this function to register itself with a Windows CSV implementation before issuing any
further Windows CSV calls.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Creating Specific NetView User Alerts
You can create NetView user alerts for users to send. Users identify the alerts by number; each number corresponds to a specific
collection of information or requests that the user wants to send via NetView to a host operator.

Host Integration Server and SNA Server leave blank fields for the user alert information in the structure that is returned from the
sepdcrec function. To create specific user alerts, create appropriate data structures and call the TRANSFER_MS_DATA verb to send
the user alert to NetView.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using CSVs in C Programs
CSVs are available to applications written in Microsoft C version 5.1 or later. A program written in C calls CSVs through the
external function WINCSV.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Programs
A collection of sample programs is delivered with the Host Integration Server Software Development Kit and the SNA Server
Software Development Kit in the \SDK\SAMPLES directory on the SNA Server CD. For more information, see
Sample APPC TPs in the SDK.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CSV Verb Control Block
The only parameter passed to the WINCSV function is the address of a VCB. The VCB is a structure made up of variables that
identify the verb to be executed, supply information to be used by the verb, and contain information returned by the verb when
execution is complete. Each verb has its own VCB structure, which is declared in the file WINCSV.H.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Bit Ordering
Bit 0 refers to the high-order bit in a byte or word. To set bit 0 on in a byte, use the bitwise OR operation (=) with a value of 128.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WINCSV Definition
The prototype definition of the WINCSV function is as follows:

The VCB address parameter, a 32-bit pointer, is declared as a long integer and requires casting from a pointer to a long integer.

extern void WINAPI WINCSV (LPCSV);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WINCSV.H File
Use the #include command to include the WINCSV.H file in any application that issues CSVs.

The WINCSV.H file, which is included with the Host Integration Server and SNA Server Software Development Kits, contains:

The CSV function prototype.
The structure declarations for the CSV VCBs.
The #define statements that substitute meaningful symbolic constants for hexadecimal values supplied to and returned by
CSVs.

If a #define statement pertains to a hexadecimal value that is longer than one byte, a comment shows how the hexadecimal value
is stored in memory.

When setting or testing CSV parameters, use the symbolic constants defined by the WINCSV.H file. When examining trace files or
the contents of memory, use the hexadecimal values.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Issuing a CSV
The procedure for issuing a CSV is shown in the following sample code that uses CONVERT.

To issue a CSV

1. Create a structure variable from the VCB structure that applies to the verb to be issued.

The VCB structures are declared in the WINCSV.H file; one of these structures is named CONVERT.

2. Clear (set to zero) the variables within the structure.

This procedure is not required. However, it helps in debugging and reading the contents of memory. It also eliminates the
possibility that future versions of a verb are sensitive to fields that are ignored in the current version.

3. Assign values to the required VCB variables.

The values SV_CONVERT, SV_ASCII_TO_EBCDIC, and SV_AE are symbolic constants representing integers. These constants
are defined in the WINCSV.H file.

The character array TPSTART_NAME contains an ASCII string to be converted to EBCDIC and placed in the character array
TPSTART.TP_NAME.

4. Invoke the verb. The only parameter is a pointer to the address of the structure containing the VCB for the verb.

You can also use the following statement:

5. Use the values returned by the verb.

#include <wincsv.h>
 .
 .
struct convert conv_block;

memset(conv_block, '\0', sizeof(conv_block));

conv_block.opcode = SV_CONVERT;
conv_block.direction = SV_ASCII_TO_EBCDIC;
conv_block.char_set = SV_AE;
conv_block.len = sizeof(tpstart_name);
conv_block.source = (LPBYTE) tpstart_name;
conv_block.target = (LPBYTE) tpstart.tp_name;

ACSSVC((LONG) &conv_block);

ACSSVC_C((LONG) &conv_block);

if(conv_block.primary_rc == SV_OK) {
/* other statements */
 .
 .
 .

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for APPC Automatic Logon
This section describes the support for automatic logon for APPC applications available in Microsoft® Host Integration Server
2000 and Microsoft® SNA Server version 3.0 with Service Pack 1 or higher. This feature requires specific configuration by the
network administrator: For more information on configuring this feature, see the SNA Server online documentation.

The APPC application must be invoked on the LAN side from a client of Host Integration Server or SNA Server. The client must be
logged into a Windows 2000 or Windows NT® domain, but the client can be running on any operating system supported by the
Host Integration Server or SNA Server APPC APIs.

The client application is coded to use "program" level security, with a special hard-coded APPC user name MS$SAME and
password MS$SAME. When this session allocation flows from client to Host Integration Server or SNA Server, the server looks up
the host account and password corresponding to the Windows 2000 or Windows NT account under which the client is logged in,
and substitutes the host account information into the APPC attach message it sends to the host.

To use this feature for an APPC application, the user_id and pwd fields in the ALLOCATE or MC_ALLOCATE verbs must be hard-
coded to this special string and security must be set to AP_PGM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

APPC Reference
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about the verbs, extensions,
and return codes that make up the APPC programming interface.

This section contains:

APPC Management Verbs
APPC TP Verbs
APPC Conversation Verbs
APPC Extensions for the Windows Environment
Host Integration Server 2000 Enhancements to the Windows Environment
Common Service Verbs
CSV Extensions for the Windows Environment
Common APPC Return Codes
Common CSV Return Codes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

APPC Management Verbs
This section describes the APPC management verbs:

ACTIVATE_SESSION

CNOS

DEACTIVATE_SESSION

DISPLAY

The management verbs allow you to establish APPC LU 6.2 session limits, obtain configuration information and current operating
values for the SNA node, and activate or deactivate sessions. The description of each verb provides:

A definition of the verb.
The structure defining the VCB used by the verb. The structure is contained in the WINAPPC.H file. The length of each VCB
field is in bytes. Fields beginning with reserv (for example, reserv2) are reserved.
The parameters (VCB fields) supplied to and returned by APPC. A description of each parameter is provided, along with its
possible values and other information.
The conversation state(s) in which the verb can be issued.
The state(s) to which the conversation can change upon return from the verb. Conditions that do not cause a state change
are not noted. For example, parameter checks and state checks do not cause a state change.
Additional information describing the verb.

Most parameters supplied to and returned by APPC are hexadecimal values. To simplify coding, these values are represented by
meaningful symbolic constants, which are established by #define statements in the WINAPPC.H header file. For example, the
opcode (operation code) member of the mc_send_data structure used by the MC_SEND_DATA verb is the hexadecimal value
represented by the symbolic constant AP_M_SEND_DATA. Use only the symbolic constants when writing TPs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ACTIVATE_SESSION
The ACTIVATE_SESSION verb requests Host Integration Server or SNA Server to activate a session between the local LU and a
specified partner LU, using a specified mode. This verb completes either when the specified session has become active or when it
has failed.

The following structure describes the verb control block used by the ACTIVATE_SESSION verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_ACTIVATE_SESSION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3
A reserved field.

lu_alias
Supplied parameter. Provides the 8-byte ASCII name used locally for the LU. If the default local LU is to be used, fill this
parameter with spaces.

plu_alias
Supplied parameter. Provides the 8-byte ASCII name used locally for the partner LU. If the default remote LU is to be used, fill
this parameter with spaces. If the partner LU is to be specified with the fqplu_name parameter, fill this parameter with binary
zeros.

mode_name
Supplied parameter. Specifies the EBCDIC (type A) mode name.

fqplu_name
Supplied parameter. Provides the partner LU name in EBCDIC (type A) when no plu_alias name is defined at the local node and
the partner LU is located at a different node. This parameter is ignored if plu_alias is specified.

polarity
Supplied parameter. Specifies the polarity for the session. The possible values are AP_POL_EITHER, AP_POL_FIRST_SPEAKER,
and AP_POL_BIDDER.

If AP_POL_EITHER is set, ACTIVATE_SESSION activates a first speaker session if available, otherwise a bidder session is activated.

If AP_POL_FIRST_SPEAKER is set, ACTIVATE_SESSION only succeeds if a session of the requested polarity is available.

If AP_POL_BIDDER is set, ACTIVATE_SESSION only succeeds if a session of the requested polarity is available.

typedef struct activate_session {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char fqplu_name[17];
 unsigned char polarity;
 unsigned char session_id[8];
 unsigned long conv_group_id;
 unsigned char reserv4[1];
 unsigned char type;
 HANDLE deactivation_event;
 unsigned short* p_deactivation_status;
 unsigned char reserv5[10];
} ACTIVATE_SESSION;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

session_id
Returned parameter. Provides the 8-byte identifier of the activate session.

conv_group_id
Returned parameter. Provides the conversation group identifier. This parameter can be specified on ALLOCATE and
MC_ALLOCATE verbs to start conversations on this particular session.

reserv4
A reserved field.

type
Supplied parameter. Specifies the type of activation. Possible values are AP_ACT_ACTIVE and AP_ACT_PASSIVE.

If AP_ACT_ACTIVE is specified, then Host Integration Server or SNA Server will attempt to start the required session (by sending
the BIND or INIT-SELF).

If AP_ACT_PASSIVE is specified, then Host Integration Server or SNA Server will not attempt to start the session and the verb
will complete when the partner has started the session.

deactivation_event
Supplied parameter. Provides an event handle that APPC is to signal when the session is deactivated. The event handle should
be obtained by calling either the CreateEvent or OpenEvent Win32® function.

p_deactivation_status
Returned parameter. A pointer to a value that is set when the deactivation event is signaled to provide completion status. The
following values can be returned.
AP_SESSION_DEACTIVATED
AP_COMM_SUBSYSTEM_ABENDED

reserv5
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully. The secondary return code indicates the polarity of the established session.
The following values can be returned.

AP_POL_FIRST_SPEAKER

AP_POL_BIDDER

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_INVALID_LU_ALIAS

Secondary return code; APPC cannot find the specified lu_alias among those defined.

AP_INVALID_PLU_ALIAS

Secondary return code; APPC did not recognize the specified plu_alias.

AP_INVALID_MODE_NAME

Secondary return code; APPC did not recognize the specified mode_name.

AP_INVALID_FQPLU_NAME

Secondary return code; APPC did not recognize the specified fqplu_name.

AP_INVALID_POLARITY

Secondary return code; APPC did not recognize the specified polarity.

AP_INVALID_TYPE

Secondary return code; APPC did not recognize the specified type.

AP_ACTIVATION_FAIL_NO_RETRY
Primary return code; the session could not be activated because of a condition that requires action (such as a configuration
mismatch or a session protocol error).

AP_ACTIVATION_FAIL_RETRY
Primary return code; the session could not be activated because of a temporary condition (such as a link failure).

AP_SESSION_LIMITS_EXCEEDED
Primary return code; the session could not be activated because the session limits have been exceeded.

AP_SESSION_LIMITS_CLOSED
Primary return code; the session could not be activated because the session limits are closed (i.e. zero).

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions occurred:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (local area network error occurred).
The SnaBase at the TP's computer encountered an ABEND.
The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

Remarks

This verb is supported using APPC only on Windows 2000, Windows NT, Windows 98, and Windows 95.

This verb supports both active and passive activation.

The active form of this verb results in Host Integration Server or SNA Server trying to initiate the session (by sending a BIND for
independent LUs or an INIT-SELF for dependent LUs). The active form of this verb will also result in the following behavior.

If the connection to the partner LU is inactive and is configured as on-demand, the Node will attempt to start the connection.
If dynamic partnering is being used, the Node will set up the LU-LU/MODE partnership.
If CNOS has not run, the Node will start CNOS (but will not change any of the session limits).

The passive form does not attempt to start the session, but completes when the LU is started by a BIND from its partner LU. For
independent LUs, multiple passive ACTIVATE_SESSION verbs can be queued up for the same LU-LU/MODE, and complete in turn
as new sessions are started.

This verb also includes a deactivation event, which is posted when the session is deactivated by any method other than a
DEACTIVATE_SESSION verb (for example, an unsolicited UNBIND from its partner LU results in this event being posted).

Microsoft Host Integration Server 2000

CNOS
The CNOS (Change Number of Sessions) verb establishes APPC LU 6.2 session limits.

The following structure describes the verb control block used by the CNOS verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_CNOS.

reserv2
A reserved field.›

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

key
Supplied parameter. Specifies either the master or service key in ASCII, if the keylock feature has been secured.

lu_alias
Supplied parameter. Provides the 8-byte ASCII name used locally for the LU.

plu_alias
Supplied parameter. Provides the 8-byte ASCII name used locally for the partner LU.

fqplu_name
Supplied parameter. Provides the partner LU name in EBCDIC (type A) when no plu_alias name is defined at the local node and
the partner LU is located at a different node.

mode_name
Supplied parameter. Specifies the EBCDIC (type A) mode name to be used when the value of mode_name_select is AP_ONE.

mode_name_select
Supplied parameter. Specifies the mode name select for which your program is setting or resetting the session limits and
contention-winner polarities. Allowed values are AP_ALL or AP_ONE.

set_negotiable
Supplied parameter. Specifies whether APPC is to change the current setting for the maximum negotiable session limit. Allowed
values are AP_YES and AP_NO.

reserv4
A 6-bit reserved field.

typedef struct cnos {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char key[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char fqplu_name[17];
 unsigned char reserv3;
 unsigned char mode_name[8];
 unsigned int mode_name_select:1;
 unsigned int set_negotiable:1;
 unsigned int reserv4:6;
 unsigned int reserv5:8;
 unsigned short plu_mode_sess_lim;
 unsigned short min_conwinners_source;
 unsigned short min_conwinners_target;
 unsigned short auto_act;
 unsigned int drain_target:1;
 unsigned int drain_source:1;
 unsigned int responsible:1;
 unsigned int reserv6:5;
 unsigned int reserv7:8;
} CNOS;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

reserv5
An 8-bit reserved field.›

plu_mode_sess_lim
Supplied parameter. Specifies the session limit when the value for set_negotiable is YES. Allowed values are 0 to 32767.

min_conwinners_source
Supplied parameter. Specifies the number of sessions of which the LU is guaranteed to be the contention winner. Allowed
values are 0 to 32767.

min_conwinners_target
Supplied parameter. Specifies the minimum number of sessions of which the target LU is guaranteed to be the contention
winner. Allowed values are 0 to 32767.

auto_act
Supplied parameter. Specifies the number of the local LU’s contention-winner sessions for APPC to activate automatically.
Allowed values are 0 to 32767. See the Remarks section of this topic before using this parameter.

drain_target
Supplied parameter. Specifies whether the target LU can drain its waiting (outbound) allocation requests. Allowed values are
AP_YES and AP_NO.

drain_source
Supplied parameter. Specifies whether the source LU can drain its waiting (outbound) allocation requests. Allowed values are
AP_YES and AP_NO.

responsible
Supplied parameter. Specifies which LU is responsible for deactivating the sessions as a result of resetting the session limit for
parallel-session connections. Allowed values are AP_SOURCE and AP_TARGET.

reserv6
A 5-bit reserved field.

reserv7
An 8-bit reserved field.›

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_CNOS_ACCEPTED

Secondary return code; APPC accepts the session limits and responsibility as specified.

AP_CNOS_NEGOTIATED

Secondary return code; APPC accepts the session limits and responsibility as negotiable by the partner LU. Values that can be
negotiated are:

plu_mode_session_limit

min_conwinners_source

min_conwinners_target

responsible

drain_target

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE or MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CNOS_LOCAL_RACE_REJECT
Primary return code; APPC is currently processing a CNOS verb issued by a local LU.

AP_CNOS_PARTNER_LU_REJECT

Primary return code; the partner LU rejected a CNOS request from the local LU.

AP_CNOS_MODE_CLOSED

Secondary return code; the local LU cannot negotiate a nonzero session limit because the local maximum session limit at the
partner LU is zero.

AP_CNOS_MODE_NAME_REJECT

Secondary return code; the partner LU does not recognize the specified mode name.

AP_CNOS_COMMAND_RACE_REJECT

Secondary return code; the local LU is currently processing a CNOS verb issued by the partner LU.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a local area network error).
The SnaBase at the TP’s computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE or MC_ALLOCATE, it can indicate that no communications subsystem could be
found to support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that
can satisfy the ALLOCATE or MC_ALLOCATE request.

When ALLOCATE or MC_ALLOCATE produces this return code for an Host Integration Server or SNA Server system, there are
two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_KEY
Primary return code; the supplied key was incorrect.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_ALL_MODE_MUST_RESET

Secondary return code; APPC does not permit a nonzero session limit when the mode_name_select parameter indicates
AP_ALL.

AP_AUTOACT_EXCEEDS_SESSLIM

Secondary return code; on the CNOS verb, the value for auto_act is greater than the value for plu_mode_sess_lim.

AP_BAD_LU_ALIAS

Secondary return code; APPC cannot find the specified lu_alias among those defined.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied plu_alias.

AP_BAD_SNASVCMG_LIMITS

Secondary return code; your program specified invalid settings for plu_mode_sess_lim, min_conwinners_source, or
min_conwinners_target when mode_name was supplied.

AP_CHANGE_SRC_DRAINS

Secondary return code; APPC does not permit mode_name_select (ONE) and drain_source (YES) when drain_source (NO) is
currently in effect for the specified mode.

AP_CNOS_IMPLICIT_PARALLEL

Secondary return code; APPC does not permit a program to change the session limit for a mode other than the SNASVCMG
mode for the implicit partner template when the template specifies parallel sessions. (The term “template” is used because
many of the actual values are yet to be filled in.)

AP_CPSVCMG_MODE_NOT_ALLOWED

Secondary return code; the mode named CPSVCMG cannot be specified as the mode_name on the deactivate session verb.

AP_EXCEEDS_MAX_ALLOWED

Secondary return code; your program issued a CNOS verb, specifying a plu_mode_sess_lim number and set_negotiable
(AP_NO).

AP_MIN_GT_TOTAL

Secondary return code; the sum of min_conwinners_source and min_conwinners_target specifies a number greater than
plu_mode_sess_lim.

AP_MODE_CLOSED

Secondary return code; the local LU cannot negotiate a nonzero session limit because the local maximum session limit at the
partner LU is zero.

AP_RESET_SNA_DRAINS

Secondary return code; SNASVCMG does not support the drain parameter values.

AP_SINGLE_NOT_SRC_RESP

Secondary return code; for a single-session CNOS verb, APPC permits only the local (source) LU to be responsible for
deactivating sessions.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CANT_RAISE_LIMITS

Secondary return code; APPC does not permit setting session limits to a nonzero value unless the limits currently are zero.

AP_LU_DETACHED

Secondary return code; a command has reset the definition of the local LU before CNOS tried to specify the LU.

AP_SNASVCMG_RESET_NOT_ALLOWED

Secondary return code; your local program attempted to issue the CNOS verb for the mode named SNASVCMG, specifying a
session limit of zero.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC verb from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

CNOS identifies an LU by alias alone. If the same local LU alias is used multiple times in a domain (for backup or other purposes)
and that LU alias is specified through CNOS, the verb can flow to a different LU than the one intended.

If CNOS is not issued to set the mode session limit before a program issues its first APPC ALLOCATE, MC_ALLOCATE,
SEND_CONVERSATION, or MC_SEND_CONVERSATION, or Common Programming Interface for Communications (CPI-C)

Allocate call for a given partner LU and mode, APPC will internally generate a session limit using the value from the mode
definition.

When setting the limits for a parallel-session connection, the two LUs negotiate the mode session limits, drain settings, and
responsibility values. APPC updates these parameters in CNOS to reflect the settings agreed to by both LUs during negotiation.
Your program can issue DISPLAY to obtain the negotiated values for the mode session limit.

No CNOS negotiation occurs when setting the limits for a single session (that is, the two LUs do not negotiate drain settings or
responsibility values). Therefore, coordinate the mode definition parameter settings between partner LUs using a single-session
connection by defining a single session mode at each node.

As part of setting up the initial limits, CNOS also sets the guaranteed (that is, the minimum) number of contention-winner and
contention-loser sessions and sets the automatic activation count for the source LU’s contention-winner sessions. The action of
CNOS normally affects only the group of sessions with the specified mode name between the source LU and the target LU.
Alternatively, one CNOS can reset the session limits of all modes for a partner LU.

APPC enforces the new mode session limit and the contention-winner polarities until one side or the other changes them by
issuing a subsequent CNOS verb. The CNOS transaction is invisible at the target LU’s API, regardless of which LU is the target.
The results of the CNOS transaction can be obtained using DISPLAY.

Microsoft Host Integration Server 2000

Setting a Session Limit to Zero
After CNOS raises the session limit above zero, it can reset the limit to zero only. It cannot set the session limit to a value that is
not zero, and it cannot redistribute the number of sessions allocated as the contention winners and losers. Therefore, your
program cannot change the mode session limits if the two LUs have already set the limits to a nonzero value, regardless of which
LU initiated the CNOS transaction.

A program can change the session limits from a nonzero value, as long as the program first changes the session limit to zero. For
example, if the session limit is 8, a program can change it to 6 by first issuing CNOS and changing the session limit to zero, and
then issuing CNOS again and setting the session limit to 6.

APPC can activate one or more LU-LU sessions with the specified mode name as a result of initializing the session limit. You
cannot use CNOS to activate sessions between two LUs on the same server. APPC deactivates all LU-LU sessions for the specified
mode name (or for all mode names for a partner LU) as a result of resetting the session limit to zero. APPC deactivates each
session as it becomes free and does not interrupt active conversations.

A separate value, the maximum negotiable session limit, is used in CNOS negotiations. If the set_negotiable value is AP_YES, the
mode session limit value given in this CNOS verb also sets the maximum negotiable session limit.

The lu_alias and plu_alias parameters are 8-byte ASCII character strings. If the name is fewer than eight bytes, it must be padded
on the right with ASCII spaces.

You can specify the SNA-defined mode name SNASVCMG for mode_name. Use this mode only in a CNOS transaction when the
source LU and the target LU use parallel user sessions. However, when resetting the session limits to zero for the SNASVCMG PU
2.1 node, the session limits of all other modes between the two LUs must be reset first. The PU 2.1 mode name is a type A EBCDIC
character string. A mode name consisting of all spaces is supported. The SNA-defined mode name CPSVCMG is not allowed.

When specifying plu_mode_sess_lim, if the mode session limit is currently greater than zero, the value of this parameter must
be zero. CNOS can raise the limit above zero, but the next CNOS must set the value to zero. A single CNOS cannot change the
mode session limit from one nonzero number to another.

When raising the mode session limit above zero for a parallel-session connection, the target LU can negotiate its parameter to a
value greater than zero and less than the specified session limit. The specified or negotiated limit then becomes the new mode
session limit and is returned in this field.

The value specified for this parameter must be greater than or equal to the sum of the values specified in the CNOS
min_conwinners_source and min_conwinners_target parameters.

Do not reset the SNASVCMG session limit to zero until all other mode session limits between the two LUs are reset to zero and
the count of active sessions for all modes (except SNASVCMG) for the partner LU is zero.

The mode session limit should be large enough to accommodate all active conversations in the mode for all TPs.

For min_conwinners_source and min_conwinners_target, the sum of both parameters cannot exceed the mode session limit.
For single-session connections, these parameters specify the desired contention-winner sessions for the target and source LUs.
For the SNASVCMG mode name (with a mode session limit of 2 or 1), the specified minimum number of contention-winner
sessions for the target LU must be 1. For the source LU, with a mode session limit of 2, the number must be 1; with a mode
session limit of 1, the number must be 0. APPC uses these parameters only when the mode session limit is set to a nonzero value.

APPC uses auto_act only when the mode session limit is set to a nonzero value. If the value is greater than the
min_conwinners_source value, APPC uses the new minimum number of contention winners for the source LU as the
autoactivation limit.

The auto_act parameter can conflict with the on-demand definition of a connection. Autoactivations by either peer
partner can re-establish sessions and connections, possibly resulting in a thrashing situation. Therefore, avoid
specifying autoactivation between peer PU 2.1 nodes using on-demand connections.

Whether an LU deactivates a session immediately after the current conversation or after all queued conversations are complete
depends on the drain_source and drain_target parameters.

If an LU is to drain its waiting (outbound) allocation requests, it continues to allocate conversations to active sessions. The
responsible LU deactivates a session only when the conversation allocated to the session is deallocated and no request is waiting
for allocation to any session with the specified mode name between the two LUs. The allocation of a waiting request takes
precedence over the deactivation of a session.

If an LU is not to drain its waiting (outbound) allocation requests, the responsible LU deactivates a session as soon as the
conversation allocated to the session is deallocated. If no conversation is allocated to the session, the responsible LU deactivates

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

the session immediately. However, this verb does not force deallocation of active conversations.

The responsible and mode_name_select parameters are interrelated as follows:

APPC ignores the responsible parameter for mode names for which the session limit is currently zero if this CNOS verb
specifies mode_name_select (AP_ALL).
If CNOS specifies mode_name_select (AP_ONE) with a mode session limit of zero, and the current session limit for that
mode name is already zero, the responsible parameter must specify the same LU (SOURCE or TARGET) that is currently
responsible for deactivating sessions. APPC uses this parameter only when CNOS specifies a mode session limit of zero.

For parallel-session connections, the drain_source and mode_name_select parameters are interrelated as follows:

If CNOS specifies mode_name_select (AP_ALL) and drain_source (AP_YES), APPC ignores drain_source for those mode
names for which the session limit is currently zero.
If CNOS specifies mode_name_select (AP_ALL) and drain_source (AP_NO), APPC accepts drain_source for all mode
names. APPC ends draining for any mode currently draining its requests.
If CNOS specifies mode_name_select (AP_ONE), and drain_source (AP_YES) is currently in effect, drain_source (AP_NO)
directs APPC to end the draining at the source LU for requests for the specified mode name.
If CNOS specifies mode_name_select (AP_ONE) and drain_source (AP_NO) is currently in effect, your program must
specify drain_source (AP_NO) again.

For parallel-session connections, the drain_target parameter and the mode_name_select parameter are interrelated as follows:

If CNOS specifies mode_name_select (AP_ALL) and drain_target (AP_YES), APPC ignores drain_target for the mode
names for which the session limit is currently zero.
If CNOS specifies mode_name_select (AP_ALL) and drain_target (AP_NO), APPC accepts drain_target for all mode
names, regardless of the current session limit. Any draining of waiting (outbound) allocation requests at the target LU is
ended.
If CNOS specifies mode_name_select (AP_ONE) and drain_target (AP_YES) is currently in effect, drain_target (AP_NO)
ends the target LU’s draining.
If CNOS specifies mode_name_select (AP_ONE) and drain_target (AP_YES), and drain_target (AP_NO) is currently in
effect, the target LU can either accept drain_target (AP_YES) or negotiate the parameter to AP_NO. After the target LU
accepts the drain_target (AP_YES) parameter, it can drain any remaining waiting (outbound) allocation requests.

Microsoft Host Integration Server 2000

DEACTIVATE_SESSION
The DEACTIVATE_SESSION verb requests Host Integration Server or SNA Server to deactivate a particular session between the
local LU and a specified partner LU, or all sessions on a particular mode.

The following structure describes the verb control block used by the DEACTIVATE_SESSION verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_DEACTIVATE_SESSION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3
A reserved field.

lu_alias
Supplied parameter. Provides the 8-byte ASCII name used locally for the LU.

session_id
Supplied parameter. Provides the 8-byte identifier of the session to deactivate (returned on the ACTIVATE_SESSION verb). If this
field is set to 8 binary zeros, Host Integration Server or SNA Server deactivates all sessions for the partner LU and mode.

plu_alias
Supplied parameter. Provides the 8-byte ASCII name used locally for the partner LU. If the default remote LU is to be used, fill
this parameter with spaces. If the partner LU is to be specified with the fqplu_name parameter, fill this parameter with binary
zeros.

mode_name
Supplied parameter. Specifies the EBCDIC (type A) mode name.

type
Supplied parameter. Specifies the type of deactivation. Possible values are:

AP_DEACT_CLEANUP

Deactivate the session immediately, without waiting for sessions to end.

AP_DEACT_NORMAL

Do not deactivate the session until all conversations using the session have ended.

sense_data
Returned parameter. Specifies the deactivation sense data for the session.

reserv4
A reserved field.

fqplu_name

typedef struct deactivate_session {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char lu_alias[8];
 unsigned char session_id[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char type;
 unsigned char reserv4[3];
 unsigned short sense_data;
 unsigned char fqplu_name[17];
 unsigned char reserv5[19];
} DEACTIVATE_SESSION;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Supplied parameter. Provides the partner LU name in EBCDIC (type A) when no plu_alias name is defined at the local node and
the partner LU is located at a different node. This parameter is ignored if plu_alias is specified.

reserv5
A reserved field.
Return Codes
AP_OK

Primary return code; the verb executed successfully. The secondary return code indicates the polarity of the established
session. The following values can be returned.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error, specified by one of the following secondary
return codes:

AP_INVALID_LU_ALIAS

Secondary return code; APPC cannot find the specified lu_alias among those defined.

AP_INVALID_PLU_ALIAS

Secondary return code; APPC did not recognize the specified plu_alias.

AP_INVALID_SESSION_ID

Secondary return code; APPC did not recognize the specified session_id.

AP_INVALID_MODE_NAME

Secondary return code; APPC did not recognize the specified mode_name.

AP_INVALID_FQPLU_NAME

Secondary return code; APPC did not recognize the specified fqplu_name.

AP_INVALID_TYPE

Secondary return code; APPC did not recognize the specified type.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions occurred:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a local area network error occurred).
The SnaBase at the TP's computer encountered an ABEND.
The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

Remarks
This verb is supported using APPC only on Windows 2000, Windows NT, Windows 98, and Windows 95.

Microsoft Host Integration Server 2000

DISPLAY
The DISPLAY verb returns configuration information and current operating values for the SNA node.

It is recommended that you use the GetAppcConfig Windows extension function to obtain system configuration information
relating to APPC LUs. Users of 5250 emulators, in particular, should use the GetAPPCConfig Windows extension.

 Note Because of the nature of client/server architecture, the implementation of the DISPLAY on Host Integration
Server 2000 and SNA Server contains important differences from the IBM Extended Services for OS/2 version 1.0
(IBM ES for OS/2 version 1.0) on which it was based. These differences are described in the following topics. For
information on configuring DISPLAY in Host Integration Server 2000 Manager, see the Microsoft Host Integration
Server 2000 online books.

 Note For applications that use the APPC DISPLAY verb in IBM ES for OS/2 version 1.0 compatibility mode and
that do not use the Host Integration Server or SNA Server extensions for enumerating all active servers and
connections, Host Integration Server and SNA Server will randomly choose a default DISPLAY connection, unless a
specific default DISPLAY connection has been configured in Host Integration Server Manager or SNA Explorer. This
connection is used as the basis for all DISPLAY requests. For information about specifying the default DISPLAY
connection, see the Microsoft Host Integration Server 2000 online books.

The following structure describes the verb control block used by the DISPLAY verb.

struct display {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned long init_sect_len;
 unsigned long buffer_len;
 unsigned char FAR * buffer_ptr;
 unsigned long num_sections;
 unsigned long display_len;
 unsigned long area_needed;
 unsigned char sna_global_info;
 unsigned char lu62_info;
 unsigned char am_info;
 unsigned char tp_info;
 unsigned char sess_info;
 unsigned char link_info;
 unsigned char lu_0_3_info;
 unsigned char gw_info;
 unsigned char x25_physical_link_info;
 unsigned char sys_def_info;
 unsigned char adapter_info;
 unsigned char lu_def_info;
 unsigned char plu_def_info;
 unsigned char mode_def_info;
 unsigned char link_def_info;
 unsigned char ms_info;
 struct sna_global_info_sect FAR * sna_global_info_ptr;
 struct lu62_info_sect FAR * lu62_info_ptr;
 struct am_info_sect FAR * am_info_ptr;
 struct tp_info_sect FAR * tp_info_ptr;
 struct sess_info_sect FAR * sess_info_ptr;
 struct link_info_sect FAR * link_info_ptr;
 struct lu_0_3_info_sect FAR * lu_0_3_info_ptr;
 struct gw_info_sect FAR * gw_info_ptr;
 struct x25_physical_link_info_sect FAR * x25_physical_link_info_ptr;
 struct sys_def_info_sect FAR * sys_def_info_ptr;
 struct adapter_info_sect FAR * adapter_info_ptr;
 struct lu_def_info_sect FAR * lu_def_info_ptr;
 struct plu_def_info_sect FAR * plu_def_info_ptr;
 struct mode_def_info_sect FAR * mode_def_info_ptr;
 struct link_def_info_sect FAR * link_def_info_ptr;
 struct ms_info_sect FAR * ms_info_ptr;
} DISPLAY;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_DISPLAY.

reserv2
A reserved field, this value must be set to NULL.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

init_sect_len
Supplied parameter. Specifies the number of bytes in the initial section of the VCB, up to the beginning of information pointers.
This parameter and the num_sections parameter must be set to specific values depending on the format being requested. See
the notes below for details.

buffer_len
Supplied parameter. Specifies the length (0 to 65535 bytes) of the passed display data buffer.

buffer_ptr
Supplied parameter. Provides the address of the display data buffer that will contain the requested information.

num_sections
Supplied parameter. Specifies the maximum number of information sections that can be returned by the verb. This parameter
and the init_sect_len parameter must be set to specific values depending on the format being requested. See the notes below
for details.

display_len
Returned parameter. Provides the total number of bytes used that are returned into the display data buffer.

area_needed
Returned parameter. Provides the total number of bytes needed for all of the displayed data.

sna_global_info
Supplied parameter. Specifies if global information is requested. Allowed values are AP_YES and AP_NO.

lu62_info
Supplied parameter. Specifies if information on all active LUs, their partners, and their modes is requested. Allowed values are
AP_YES and AP_NO.

am_info
Supplied parameter. Specifies if Attach Manager information on the defined TP is requested. Allowed values are AP_YES and
AP_NO.

 Note This option is not supported by Host Integration Server or SNA Server and this parameter must be set to
AP_NO.

tp_info
Supplied parameter. Specifies if information on the active TPs and any active conversations is requested. Allowed values are
AP_YES and AP_NO.

 Note This option is not supported by Host Integration Server or SNA Server and this parameter must be set to
AP_NO.

sess_info
Supplied parameter. Specifies if information on sessions is requested. Allowed values are AP_YES and AP_NO.

link_info
Supplied parameter. Specifies if information on the active SNA logical lines is requested. Allowed values are AP_YES and
AP_NO.

lu_0_3_info
Supplied parameter. Specifies if information on logical units type 0, 1, 2, and 3 is requested. Allowed values are AP_YES and
AP_NO.

gw_info
Supplied parameter. Specifies if information on the SNA gateway is requested. Allowed values are AP_YES and AP_NO.

x25_physical_link_info
Supplied parameter. Specifies if X.25 information is required. Allowed values are AP_YES and AP_NO.

 Note This option is not supported by Host Integration Server or SNA Server and this parameter must be set to
AP_NO.

sys_def_info
Supplied parameter. Specifies if information about the default LU, node names, and default parameters for inbound and
outbound implicit partners is requested. Allowed values are AP_YES and AP_NO.

adapter_info
Supplied parameter. Specifies if information about the configured communications adapters is requested. Allowed values are
AP_YES and AP_NO. This parameter must be set to AP_NO when NS/2 format is requested.

lu_def_info
Supplied parameter. Specifies if information about the defined LUs is requested. Allowed values are AP_YES and AP_NO.

plu_def_info
Supplied parameter. Specifies if information about the defined partner LUs is requested. Allowed values are AP_YES and
AP_NO.

mode_def_info
Supplied parameter. Specifies if information about the defined nodes is requested. Allowed values are AP_YES and AP_NO.

link_def_info
Supplied parameter. Specifies if information about the defined logical links is requested. Allowed values are AP_YES and
AP_NO.

ms_info
Supplied parameter. Specifies if information about management services is requested. Allowed values are AP_YES and AP_NO.
This parameter must be set to AP_NO when NS/2 format is requested.

sna_global_info_ptr
Returned parameter. Indicates the address of the beginning of SNA global information in the data buffer.

lu62_info_ptr
Returned parameter. Indicates the address of the beginning of LU 6.2 information in the data buffer.

am_info_ptr
Returned parameter. Indicates the address of the beginning of the Attach Manager information in the data buffer.

 Note This option is not supported by Host Integration Server or SNA Server.

tp_info_ptr
Returned parameter. Indicates the address of the beginning of TP information in the data buffer.

 Note This option is not supported by Host Integration Server or SNA Server.

sess_info_ptr
Returned parameter. Indicates the address of the beginning of session information in the data buffer.

link_info_ptr
Returned parameter. Indicates the address of the beginning of link information in the data buffer.

lu_0_3_info_ptr
Returned parameter. Indicates the address of the beginning of LU information in the data buffer.

gw_info_ptr
Returned parameter. Indicates the address of the beginning of gateway information in the data buffer.

x25_physical_link_info_ptr
Returned parameter. Indicates the address of the beginning of X.25 information in the data buffer.

 Note This option is not supported by Host Integration Server or SNA Server.

sys_def_info_ptr
Returned parameter. Indicates the address of the beginning of system default information in the data buffer.

adapter_info_ptr
Returned parameter. Indicates the address of the beginning of adapter information in the data buffer.

lu_def_info_ptr
Returned parameter. Indicates the address of the beginning of local LU definition information in the data buffer.

plu_def_info_ptr
Returned parameter. Indicates the address of the beginning of partner LU definition information in the data buffer.

mode_def_info_ptr
Returned parameter. Indicates the address of the beginning of mode definition information in the data buffer.

link_def_info_ptr
Returned parameter. Indicates the address of the beginning of link definition information in the data buffer.

ms_info_ptr
Returned parameter. Indicates the address of the beginning of management services information in the data buffer.

Return Codes

AP_OK

Primary return code; the verb executed successfully.
AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_DISPLAY_INVALID_CONSTANT

Secondary return code; the value supplied for NUM_SECTIONS or INIT_SEC_LEN is invalid.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_DISPLAY_INFO_EXCEEDS_LEN

Secondary return code; the returned DISPLAY information did not fit in the buffer.

AP_INVALID_DATA_SEGMENT

Secondary return code; the segment containing the data buffer is too small for the specified data length.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation has encountered an ABEND.
The connection between the TP and the node type 2.1 has been broken (a LAN error).
The SnaBase at the TP’s computer has encountered an ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

DISPLAY identifies an LU by alias alone. If the same local LU alias is used multiple times in a domain (for backup or other
purposes) and that LU alias is specified through DISPLAY, the verb can flow to a different LU than the one intended.

For the DISPLAY verb to return successfully, a specific connection must be defined in the Host Integration Server 2000 Manager
or SNA Explorer program Display Verb dialog box. IBM originally defined the DISPLAY verb with the IBM OS/2 Extended Edition
product which assumed a single connection. However, because Host Integration Server and SNA Server support multiple
connections, the specific connection associated with the DISPLAY verb must be configured.

The DISPLAY verb requires a user-supplied buffer for the return of system information. If the buffer is not large enough, APPC
returns the AP_DISPLAY_INFO_EXCEEDS_LEN return code, along with the size actually needed at the time of the request (in the
area_needed parameter). One possible strategy for the use of this verb follows:

If the buffer_len value is less than the area_needed value returned by APPC, and the required length is less than 64
kilobytes (K), then increase the size of the display buffer to equal or greater than the area_needed value.
If the area_needed value is greater than 64K, you can choose to request each information section individually. Or, you can
take the following steps:

1. Process the information sections with complete information, whose total number displayed equals the total actual
number.

2. Choose a subset of the information sections you requested that contains incomplete information, and reissue the verb
requesting those information sections.

3. Repeat steps 1 and 2 as needed.

 Note If an individual information section is greater than 64K, then you cannot get all of the requested
information from APPC.

The DISPLAY verb should not executed from different threads of the same process, since it is not thread-safe.

The DISPLAY verb returns AP_DISPLAY_INVALID_CONSTANT if the following values are not set for the supplied parameters for
init_sect_len and num_sections:

 NS/2 for
mat

IBM EE for
mat

NS/2 format (Windows 2000 and Windo
ws NT only

IBM EE format (Windows 2000 and Windo
ws NT only)

init_sect_l
en

50 44 52 48

num_secti
ons

16 9 16 9

The AP_DISPLAY_INVALID_CONSTANT is also returned when the following parameters are not set properly:

reserv2 must be set to NULL.
am_info must be set to AP_NO.
tp_info must be set to AP_NO.
adapter_info must be set to AP_NO if NS/2 format is requested.
ms_info must be set to AP_NO if NS/2 format is requested.

Microsoft Host Integration Server 2000

Host Integration Server and SNA Server Extensions
The Host Integration Server and SNA Server DISPLAY verb is compatible with the IBM ES for OS/2 version 1.0 DISPLAY verb.
However, since IBM ES for OS/2 version 1.0 is a single-server system and Host Integration Server and SNA Server support
multiple-server systems, the DISPLAY verb has been extended to allow the user to target a specific server running Host
Integration Server or SNA Server by which the DISPLAY verb will be processed.

To direct a DISPLAY verb at a particular server running Host Integration Server or SNA Server, place the ASCII string CSEXTNID,
followed by the computer name of the server running Host Integration Server or SNA Server at the start of the buffer pointed to
by buffer_ptr. The computer name is a 32-byte ASCII string and can be zero or padded with spaces.

Because the local node identifier is configured on a per-node basis for IBM ES for OS/2 version 1.0 and can be different for each
connection in Host Integration Server or SNA Server, Host Integration Server and SNA Server also allow you to specify an
optional connection name. This is an 8-byte ASCII string, which is placed after the 32-byte computer name. Again, the string can
be zero or padded with spaces. The following example illustrates the CSEXTNID extension:

If you do not specify a connection name, Host Integration Server and SNA Server return information about the first connection
configured for the Host Integration Server or SNA Server system.

If you do not specify a computer name, Host Integration Server and SNA Server will randomly choose a default DISPLAY
computer and connection, unless a specific default DISPLAY connection has been configured on the server. These parameters can
be configured with the Host Integration Server Manager or the Host Integration Server Administrator Client when using Host
Integration Server 2000 or with the SNA Explorer or SNA Manager Client on SNA Server. DISPLAY will behave as if you specified
the connection and the computer name of the server that owns the verb. For additional information about using default LUs, see
the Microsoft Host Integration Server 2000 online books.

Host Integration Server and SNA Server also allow you to use DISPLAY to return a list of active servers. To do so, place the string
CSEXTNIDCSLISTND in the DISPLAY buffer and set the supplied parameters sna_global_info, lu62_info, and so on, to AP_NO.
The information is returned in the DISPLAY buffer in the following format:

In the current version of Host Integration Server and SNA Server, node_name is always SNASERVR and box_name is the
computer name of the server.

csextnid computername 00000000000000000000 name

#activenodes - 2 bytes
 node_name 1 - 8 bytes
 box_name 1 - 32 bytes
 .
 node_name m
 box_name m

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Differences by Information Type
Differences in the implementation of the DISPLAY verb between the Host Integration Server or SNA Server and IBM ES for OS/2
are described in this section by information type. For each information type, there is a topic that describes:

The information defined by IBM ES for OS/2 version 1.0.
The information returned by Host Integration Server 2000 and SNA Server 4.0.

 Note Host Integration Server and SNA Server do not support all of the information types supported by IBM
ES for OS/2 version 1.0. If an information type is not listed in this section, it is not supported by Host Integration
Server or SNA Server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Global Information
SNA global information is defined or returned as described here.

Defined by IBM ES for OS/2 Version 1.0

Information on SNA global information is provided in the sna_global_info_sect structure as defined below.

Members

version
Communications Manager Extended Edition version number.

release
Communications Manager Extended Edition release number.

net_name
Network name, first part of fully qualified control program (CP) name, in EBCDIC (type A).

pu_name
PU name, second part of fully qualified CP name, in EBCDIC (type A).

node_id
Four-byte hexadecimal exchange identifier.

product_set_id
Computer product data.

alias_cp_name
Node name (local name for CP) in ASCII.

node_type
AP_NN, AP_EN, or AP_LEN.

cp_nau_addr
CP NAU address where 0 means not used (an independent LU). Other legal values are 1 to 254.

corr_serv_disk
Last four digits of corrective service disk number.

reserved
Reserved field.

appc_version
APPC version number.

appc_release
APPC release number.

appc_fixlevel
APPC fixlevel.

Returned by Host Integration Server and SNA Server

Information on SNA global information is provided in the sna_global_info_sect structure as defined below.

typedef struct sna_global_info_sect {
 unsigned char version;
 unsigned char release;
 unsigned char net_name[8];
 unsigned char pu_name[8];
 unsigned char node_id[4];
 type_product_set_id product_set_id;
 unsigned char alias_cp_name[8];
 unsigned char node_type;
 unsigned char cp_nau_addr;
 unsigned char corr_serv_disk;
 unsigned char reserved;
 unsigned char appc_version;
 unsigned char appc_release;
 unsigned char appc_fixlevel;
} SNA_GLOBAL_INFO_SECT;

typedef struct sna_global_info_sect {
 unsigned char version;
 unsigned char release;
 unsigned char net_name[8];

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Members

version
Major operating system (OS) version number.

release
Minor OS version number.

net_name
Node network name in EBCDIC (type A).

pu_name
PU name in EBCDIC (type A) associated with connection.

node_id
Node identifier to send.

product_set_id
Set to EBCDIC zeros.

alias_cp_name
Node name, local name for the control program (CP), in ASCII.

node_type
Set to AP_LEN.

cp_nau_addr
CP NAU address where 0 means not used (an independent LU). Other legal values are 1 to 254.

corr_serv_disk
Reserved field set to zero.

reserved
Reserved field set to zero.

appc_version
Host Integration Server or SNA Server major version number.

appc_release
Host Integration Server or SNA Server minor version number.

appc_fixlevel
Host Integration Server or SNA Server patchlevel.

Remarks

Host Integration Server and SNA Server return version and release as the major and minor OS version numbers from
GetVersion (for Windows 2000, Windows NT, Windows 98, Windows 95, or Windows version 3.x systems) or GetDosVersion
(for OS/2).

Because Host Integration Server 2000 and SNA Server have no information on the computer type, serial number, and
manufacturer, product_set_id is set to EBCDIC zeros.

Host Integration Server and SNA Server do not support APPN node types, so the node type is returned as 1 (an AP_LEN node),
and not 2 or 3 (AP_NN or AP_EN nodes), as defined by IBM ES for OS/2 version 1.0.

 unsigned char pu_name[8];
 unsigned char node_id[4];
 type_product_set_id product_set_id;
 unsigned char alias_cp_name[8];
 unsigned char node_type;
 unsigned char cp_nau_addr;
 unsigned char corr_serv_disk;
 unsigned char reserved;
 unsigned char appc_version;
 unsigned char appc_release;
 unsigned char appc_fixlevel;
} SNA_GLOBAL_INFO_SECT;

Microsoft Host Integration Server 2000

LU 6.2 Information
Information on LUs is provided in the lu62_info_sect structure as defined below.

Members

lu62_init_sect_len
Structure length.

num_lu62s
Number of configured LUs displayed.

total_lu62s
Total number of configured LUs.

For each configured LU, an lu62_overlay structure is provided as defined below.

Members

lu62_entry_len
Size of this LU entry.

lu62_overlay_len
This value contains sizeof(struct lu62_overlay)–sizeof(lu62_entry_len).

lu_name
LU name (EBCDIC type A).

lu_alias
LU alias (ASCII).

num_plus
Number of partner LUs.

fqlu_name
Fully qualified LU name (EBCDIC type A).

default_lu
For local LU group, an LU equal to the default_lu is used if none is specified. Legal values are AP_NO and AP_YES.

On Host Integration Server and SNA Server, there is no concept of a default local LU. Therefore, the default_lu flag, which is set
to AP_YES for the node in IBM ES for OS/2 version 1.0, is set to AP_NO for Host Integration Server and SNA Server.

lu_local_addr
NAU address, 0–254.

lu_sess_lim
Configured session limit, 0–255.

max_tps
Maximum number of TPs, 1–255.

lu_type

typedef struct lu62_info_sect {
 unsigned long lu62_init_sect_len;
 unsigned short num_lu62s;
 unsigned short total_lu62s;
} LU62_INFO_SECT;

typedef struct lu62_overlay {
 unsigned long lu62_entry_len;
 unsigned long lu62_overlay_len;
 unsigned char lu_name[8];
 unsigned char lu_alias[8];
 unsigned short num_plus;
 unsigned char fqlu_name[17];
 unsigned char default_lu;
 unsigned char reserv3;
 unsigned char lu_local_addr;
 unsigned short lu_sess_lim;
 unsigned char max_tps;
 unsigned char lu_type;
} LU62_OVERLAY;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Always LU type 6.2.

For each configured LU, a plu_62_overlay structure for the partner LU is provided as defined below.

Members

plu62_entry_len
Size of this partner LU entry.

plu62_overlay_len
This value contains sizeof(struct plu62_overlay)–sizeof(plu62_entry_len).

plu_alias
Partner LU alias (ASCII).

num_modes
Number of modes.

plu_un_name
Partner LU uninterpreted name (EBCDIC).

fqplu_name
Fully qualified partner LU name (EBCDIC type A).

reserv3
Reserved field set to zero.

plu_sess_lim
Partner LU session limit, 0–255.

dlc_name
DLC name (ASCII).

adapter_num
DLC adapter number.

dest_addr_len
Length of destination adapter address.

dest_addr
Destination adapter address.

par_sess_supp
Bit 15 of a bitfield specifying parallel sessions. Valid values are AP_NOT_SUPPORTED and AP_SUPPORTED.

reserv4
Bits 8–14 of a bitfield specifying a reserved field set to zero.

def_already_ver
Bit 7 of a bitfield specifying whether the configured already verified option is supported. Valid values are AP_NOT_SUPPORTED
and AP_SUPPORTED.

def_conv_sec

typedef struct plu62_overlay {
 unsigned long plu62_entry_len;
 unsigned long plu62_overlay_len;
 unsigned char plu_alias[8];
 unsigned short num_modes;
 unsigned char plu_un_name[8];
 unsigned char fqplu_name[17];
 unsigned char reserv3;
 unsigned char plu_sess_lim;
 unsigned char dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned int par_sess_supp:1;
 unsigned int reserv4:7;
 unsigned int def_already_ver:1;
 unsigned int def_conv_sec:1;
 unsigned int def_sess_sec:1;
 unsigned int reserv5:5;
 unsigned int act_already_ver:1;
 unsigned int act_conv_sec:1;
 unsigned int reserv6:6;
 unsigned int implicit_part:1;
 unsigned int reserv7:7;
} PLU62_OVERLAY;

Bit 6 of a bitfield specifying whether the configured conversation security option is supported. Valid values are
AP_NOT_SUPPORTED and AP_SUPPORTED.

def_sess_sec
Bit 5 of a bitfield specifying whether the configured session security option is supported. Valid values are AP_NOT_SUPPORTED
and AP_SUPPORTED.

reserv5
Bits 0–4 of a bitfield specifying a reserved field set to zero.

act_already_ver
Bit 15 of a bitfield specifying whether the active already verified option is supported. Valid values are AP_NOT_SUPPORTED and
AP_SUPPORTED.

act_conv_sec
Bit 14 of a bitfield specifying whether the active conversation security option is supported. Valid values are
AP_NOT_SUPPORTED and AP_SUPPORTED.

reserv6
Bits 8–13 of a bitfield specifying a reserved field set to zero.

implicit_part
Bit 7 of a bitfield specifying whether this is an implicit partner. Valid values are AP_NO and AP_YES.

For partner LU group, implicit_part indicates the partner LU group was configured as an implicit primary logical unit (PLU).

reserv7
Bits 0–6 of a bitfield specifying a reserved field set to zero.

Remarks

Host Integration Server and SNA Server return information on all the configured LU 6.2s in the system, including the implicit PLU
and all instances of implicit modes. IBM ES for OS/2 version 1.0 only returns information on those that are in use or have been in
use.

For partner LU group, implicit_part indicates the partner LU group was configured as an implicit primary logical unit (PLU).

For mode group, implicit_mode bitfield returned in the mode_overlay structure indicates the mode group was configured as an
implicit mode.

Microsoft Host Integration Server 2000

Session Information
Information on session information is provided in the sess_info_sect structure as defined below.

Members

sess_sect_len
The length of the initial session information section, including this parameter, up to the first session group. The length does not
include any previous information sections.

num_sessions
The number of session groups returned by the DISPLAY verb into your program's buffer. This is the number of times the
session group is repeated.

total_sessions
The total number of session groups. This number is the same as the number returned in the num_sessions member except
when APPC has more information about session groups than it can place in the supplied buffer, in which case this number is
larger.

For each session group, a sess_overlay structure for the session is provided as defined below.

Defined by IBM ES for OS/2 Version 1.0

Members

sess_entry_len
Size of this session group entry.

sess_id
The internal identifier of the session for which this information is displayed.

conv_id
The unique four-byte ID of the conversation currently using this session.

lu_alias
LU alias (ASCII).

typedef struct sess_info_sect {
 unsigned long sess_sect_len;
 unsigned short num_sessions;
 unsigned short total_sessions;
} SESS_INFO_SECT;

typedef struct sess_overlay {
 unsigned long sess_entry_len;
 unsigned long reserv3;
 unsigned char sess_id[8];
 unsigned long conv_id[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned short send_ru_size;
 unsigned short rcv_ru_size;
 unsigned short send_pacing_size;
 unsigned short rcv_pacing_size;
 unsigned char link_id[12];
 unsigned char daf;
 unsigned char oaf;
 unsigned char odai;
 unsigned char sess_type;
 unsigned char conn_type;
 unsigned char reserv4;
 FPCID_OVERLAY fpcid;
 unsigned char cgid[4];
 unsigned char fqlu_name[17];
 unsigned char fqplu_name[17];
 unsigned char pacing_type;
 unsigned char reserv5;
 } SESS_OVERLAY;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

plu_alias
Partner LU alias (ASCII).

mode_name
The name of the mode (EBCDIC).

send_ru_size
The maximum RU size used on this session and this mode_name for sending RUs.

rcv_ru_size
The maximum RU size used on this session and this mode_name for receiving RUs.

send_pacing_size
The size of the send pacing window on this session.

rcv_pacing_size
The size of the receive pacing window on this session.

link_id
Name of local logical link station.

daf
The destination address field for this session.

oaf
The origin address field for this session.

odai
The origin destination address indicator field for this session.

sess_type
The type of the session. The session type can be one of the following:

SSCP_PU_SESSION

This session is between a workstation physical unit and a host system services control point. This type of session exists if the
local node contains a dependent LU, or if the session has been solicited in order to send alerts to the host.

SSCP_LU_SESSION

This session is between a dependent LU and a host system services control point.

LU_LU _SESSION

This session is between two LUs.

conn_type
Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel sessions
to the same partner LU.

fq_pc_id
Fully qualified procedure correlation identifier of the session.

cgid
Unique identifier for the conversation group of the session.

fqlu_name
The fully-qualified LU name in EBCDIC (type A).

fqplu_name
The fully-qualified partner LU name in EBCDIC (type A).

pacing_type
The pacing type can be one of the following:

AP_FIXED

Fixed pacing.

AP_ADAPTIVE

Adaptive pacing.

Returned by Host Integration Server and SNA Server

Members

sess_entry_len
Size of this session group entry.

sess_id
The internal identifier of the session for which this information is displayed.

conv_id
The unique four-byte ID of the conversation currently using this session.

lu_alias
LU alias (ASCII).

plu_alias
Partner LU alias (ASCII).

mode_name
The name of the mode (EBCDIC).

mode_name
The name of the mode (EBCDIC).

send_ru_size
The maximum RU size used on this session and this mode_name for sending RUs.

rcv_ru_size
The maximum RU size used on this session and this mode_name for receiving RUs.

send_pacing_size
The size of the send pacing window on this session.

rcv_pacing_size
The size of the receive pacing window on this session.

link_id
Connection name.

daf
The destination address field for this session.

oaf
The origin address field for this session.

odai
The origin destination address indicator field for this session.

sess_type
The type of the session. The session type can be one of the following:

SSCP_PU_SESSION

This session is between a workstation physical unit and a host system services control point. This value is never returned by
Host Integration Server or SNA Server.

SSCP_LU_SESSION

This session is between a dependent LU and a host system services control point.

LU_LU _SESSION

This session is between two LUs.

conn_type
Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel sessions
to the same partner LU.

AP_BOTH_SESSION

fq_pc_id
Set to zero.

cgid
Set to zero.

type_of_pacing
The pacing type can be one of the following:

AP_FIXED

Fixed pacing.

AP_ADAPTIVE

Adaptive pacing. This value is never returned by Host Integration Server or SNA Server.

Microsoft Host Integration Server 2000

Active Link Information
Active link information is provided in the link_info_sect structure as defined below.

Members

link_init_sect_len
The length of the initial active link information section, including this parameter, up to the first link overlay group. The length
does not include any previous information sections.

num_links
The number of active links returned by the DISPLAY verb into your program's buffer. This is the number of times the link
overlay group is repeated.

total_sessions
The total number of active links. This number is the same as the number returned in the num_links member except when APPC
has more information about active links than it can place in the supplied buffer, in which case this number is larger.

For each active link, a link_overlay structure for the active link is provided as defined below.

Defined by IBM ES for OS/2 Version 1.0

Members

link_entry_len
Size of this link entry.

link_id
Local logical link station name (EBCDIC).

typedef struct link_info_sect {
 unsigned long link_init_sect_len;
 unsigned short num_links;
 unsigned short total_links;
} LINK_INFO_SECT;

typedef struct link_overlay {
 unsigned long link_entry_len;
 unsigned char link_id[12];
 unsigned long dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned char inbound_outbound;
 unsigned char state;
 unsigned char deact_link_flag;
 unsigned char reserv3;
 unsigned short num_sessions;
 unsigned short ru_size;
 unsigned short reserv4;
 unsigned char adj_fq_cp_name[17];
 unsigned char adj_node_type;
 unsigned char reserv5;
 unsigned char cp_cp_sess_spt;
 unsigned char conn_type;
 unsigned char ls_role;
 unsigned char line_type;
 unsigned char tg_number;
 unsigned long eff_capacity;
 unsigned char conn_cost;
 unsigned char byte_cost;
 unsigned char propagation_delay;
 unsigned char user_def_1;
 unsigned char user_def_2;
 unsigned char user_def_3;
 unsigned char security;
 unsigned char reserv6;
 } LINK_OVERLAY;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

dlc_name
Data link control (DLC) name set to one of the following:

ETHERAND

IBMTRNET

IBMPCNET

SDLC

TWINAX

X25DLC

adapter_num
Adapter number used by this link to connect to the adjacent node.

dest_addr_len
Length of the destination adapter address.

dest_addr
The destination adapter address.

inbound_outbound
state

The state of the link. The link state can be one of the following:

AP_CONALS_PND

The process to bring up the link has started but XID negotiation has not started.

AP_XID_PND

XID negotiation is in process.

AP_CONTACT_PND

XID negotiation has been completed but the final response from the DLC has not been received.

AP_CONTACTED

The link is fully functioning.

AP_DISC_PND

A request to disconnect the link has been issued to the DLC.

AP_DISC_RQ

The operator has requested that the link be disconnected.

deact_link_flag
Deactivate logical link.

num_sessions
Number of active sessions.

ru_size
RU size.

adj_fq_cp_name
Fully qualified cp_name in adjacent node.

adj_node_type
The adjacent node type (NN, EN, or LEN).

cp_cp_sess_spt
Specifies whether the link supports CP-CP sessions.

conn_type
Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel sessions
to the same partner LU.

AP_BOTH_SESSION

ls_role
Specifies the link station role.

line_type
The line type.

tg_number
Transmission group number.

effective_capacity
Highest bit rate transmission effective capacity supported.

conn_cost
Relative cost per connection time using this link.

byte_cost
Relative cost of transmitting a byte over link.

propagation_delay
Indicates amount of time for signal to travel length of link. Set to one of the following:

AP_PROP_DELAY_MINIMUM

AP_PROP_DELAY_LAN

AP_PROP_DELAY_TELEPHONE

AP_PROP_DELAY_PKT_SWITCHED_NET

AP_PROP_DELAY_SATELLITE

AP_PROP_DELAY_MAXIMUM

user_def_1
User-defined TG characteristics.

user_def_2
User-defined TG characteristics.

user_def_3
User-defined TG characteristics.

security
The security value for this link. Set to one of the following:

AP_SEC_NONSECURE

AP_SEC_PUBLIC_SWITCHED_NETWORK

AP_SEC_UNDERGROUND_CABLE

AP_SEC_SECURE_CONDUIT

AP_SEC_GUARDED_CONDUIT

AP_SEC_ENCRYPTED

AP_SEC_GUARDED_RADIATION

Returned by Host Integration Server or SNA Server

Members

link_entry_len
Size of this link entry.

link_id
Connection name.

dlc_name
DLC name set to one of the following:

IBMTRNET

SDLC

DFT

X25DLC

adapter_num
Adapter number used by this link to connect to the adjacent node. Always set to zero.

dest_addr_len
Length of the destination adapter address.

dest_addr
The destination adapter address.

inbound_outbound
state

The state of the link. The link state can be one of the following:

AP_CONALS_PND

The process to bring up the link has started but XID negotiation has not started.

AP_XID_PND

XID negotiation is in process.

AP_CONTACT_PND

XID negotiation has been completed but the final response from the DLC has not been received.

AP_CONTACTED

The link is fully functioning.

AP_DISC_PND

A request to disconnect the link has been issued to the DLC.

AP_DISC_RQ

The operator has requested that the link be disconnected.

deact_link_flag
Deactivate logical link.

num_sessions
Number of active sessions.

ru_size
RU size.

adj_fq_cp_name
Fully qualified cp_name in adjacent node. Always set to EBCDIC spaces.

adj_node_type
The adjacent node type. Always set to AP_LEN.

cp_cp_sess_spt
Specifies whether the link supports CP-CP sessions. Always set to AP_NO.

conn_type
Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel sessions
to the same partner LU.

ls_role
Specifies the link station role.

line_type
The line type.

tg_number
Transmission group number. Always set to zero.

effective_capacity
Highest bit rate transmission effective capacity supported. Always set to zero.

conn_cost
Relative cost per connection time using this link. Always set to zero.

byte_cost
Relative cost of transmitting a byte over link. Always set to zero.

propagation_delay
Indicates amount of time for signal to travel length of link. This parameter is always set to AP_PROP_DELAY_MAXIMUM.

user_def_1
User-defined TG characteristics. Always set to zero.

user_def_2
User-defined TG characteristics. Always set to zero.

user_def_3
User-defined TG characteristics. Always set to zero.

security
The security value for this link. Always set to AP_SEC_NONSECURE.

Microsoft Host Integration Server 2000

LU 0 to 3 Information
LU 0 to 3 information is provided in the lu_0_3_info_sect structure as defined below.

Members

lu_0_3_init_sect_len
The length of the initial LU 0 to 3 information section, including this parameter, up to the first link overlay group. The length
does not include any previous information sections.

num_links
The number of LU groups. This is the number of times the lu_0_3 overlay group is repeated.

For each configured LU, an lu_0_3_overlay structure for the LU is provided as defined below.

Defined by IBM ES for OS/2 Version 1.0

Members

lu_3_3_entry_len
Size of this LU entry.

access_type
The access type (AP_3270 or AP_LUA).

lu_type
The LU type (AP_LU0, AP_LU1, AP_LU2, or AP_LU3).

lu_daf
The network addressable unit of the LU for which the information is displayed.

lu_short_name
The one-byte LU short name (ASCII).

lu_long_name
The eight-byte ASCII LU long name.

session_id
The LU-LU session ID.

dlc_name
DLC name set to one of the following:

ETHERAND

IBMTRNET

IBMPCNET

SDLC

typedef struct lu_0_3_info_sect {
 unsigned long lu_0_3_init_sect_len;
 unsigned short num_lu_0_3s;
} LU_0_3_ INFO_SECT;

typedef struct lu_0_3_overlay {
 unsigned long lu_0_3_entry_len;
 unsigned char access_type;
 unsigned char lu_type;
 unsigned char lu_daf;
 unsigned char lu_short_name;
 unsigned char lu_long_name[8];
 unsigned char sess_id[8];
 unsigned long dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned char sscp_lu_sess_state;
 unsigned char lu_lu_sess_state;
 unsigned char link_id[12];
 } LU_0_3_OVERLAY;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

TWINAX

X25DLC

adapter_number
The DLC adapter number for host link.

dest_addr_len
Length of the destination adapter address.

dest_addr
The destination adapter address.

sscp_lu_sess_state
Specifies the state of the SSCP-LU session.

lu_lu_sess_state
Specifies the state of the LU-LU session. The state can be one of the following:

AP_NOT_BOUND

The LU-LU session is not bound.

AP_BOUND

The LU-LU session is bound.

AP_BINDING

The LU-LU session is in the process of binding.

AP_UNBINDING

The LU-LU session is in the process of unbinding.

link_id
Name of local logical link station being used.

Returned by Host Integration Server and SNA Server

Members

lu_3_3_entry_len
Size of this LU entry.

access_type
The access type (AP_3270 or AP_LUA).

lu_type
The LU type (AP_LU0, AP_LU1, AP_LU2, or AP_LU3).

lu_daf
The network addressable unit of the LU for which the information is displayed.

lu_short_name
The one-byte ASCII LU short name.

lu_long_name
The eight-byte ASCII LU long name.

session_id
The LU-LU session ID.

dlc_name
DLC name set to one of the following:

IBMTRNET

SDLC

TWINAX

X25DLC

adapter_number
The DLC adapter number for host link. Always set to zero.

dest_addr_len
Length of the destination adapter address.

dest_addr
The destination adapter address.

sscp_lu_sess_state

Specifies the state of the SSCP-LU session.
lu_lu_sess_state

Specifies the state of the LU-LU session. The state can be one of the following:

AP_NOT_BOUND

The LU-LU session is not bound.

AP_BOUND

The LU-LU session is bound.

AP_BINDING

The LU-LU session is in the process of binding.

AP_UNBINDING

The LU-LU session is in the process of unbinding.

link_id
Name of connection.

Microsoft Host Integration Server 2000

System Default Information
System default information is defined or returned as described here.

Defined by IBM ES for OS/2 Version 1.0

Members

default_mode_name
Mode name used for undefined mode name is sent or received.

default_local_lu_name
Alias or local default LU.

implicit_partner_lu_support
Indicates if implicit partner LU support is enabled.

maximum_held_alerts
Number of alerts that will be held by NS/2 if there is no active link to a focal point.

default_tp_conversation_security_rqd
Specifies if conversation security is used for default TPs.

maximum_mc_ll_send_size
Maximum length of a logical record used on a mapped conversation for sending data to either the inbound or outbound
implicit remote LU.

directory_for_inbound_attaches
Name of OS/2 directory used by Attach Manager.

default_tp_operation
Set to one of the following:

QUEUED_OPERATOR_STARTED

QUEUED_OPERATOR_PRELOADED

QUEUED_AM_STARTED

NONQUEUED_AM_STARTED

default_tp_program_type
Set to one of the following:

BACKGROUND

FULL_SCREEN

PRESENTATION_MANAGER

VIO_WINDOWABLE

Returned by Host Integration Server and SNA Server

Members

default_mode_name
Always set to NULL.

default_local_lu_name
Always set to spaces.

implicit_partner_lu_support
Always set to NO.

maximum_held_alerts
Always set to zero.

default_tp_conversation_security_rqd
Always set to NO.

maximum_mc_ll_send_size
Always set to 16384.

directory_for_inbound_attaches
Always returned * and indicates that the current path should be used.

default_tp_operation
Always set to QUEUED_AM_STARTED.

default_tp_program_type
Always set to FULL_SCREEN.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LU 6.2 Definition Information
There are no differences for this information type.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Partner Definition Information
Partner definition information is defined or returned as described here.

Defined by IBM ES for OS/2 Version 1.0

Members

maximum_mc_ll_send_size
Maximum length of a logical record used on a mapped conversation for sending data to the partner LU.

number_of_alternate_aliases
Specifies number of alternate aliases configured.

Returned by Host Integration Server and SNA Server

maximum_mc_ll_send_size
Always set to 16384.

number_of_alternate_aliases
Always set to zero.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Mode Definition Information
Mode definition information is defined or returned as described here.

Defined by IBM ES for OS/2 Version 1.0

Members

cos_name
Name of class of service.

Returned by Host Integration Server and SNA Server

Members

cos_name
Set to EBCDIC spaces.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Link Definition Information
Link definition information is provided in the link_def_info_sect structure as defined below.

Members

link_def_init_sect_len
The length of the initial link definition information section, including this parameter, up to the first link definition overlay group.
The length does not include any previous information sections.

num_link_def
The number of link definitions returned by the DISPLAY verb into your program's buffer. This is the number of times the link
definition overlay is repeated.

total_sessions
The total number of link definitions. This number is the same as the number returned in the num_link_def member except
when APPC has more information about link definitions than it can place in the supplied buffer, in which case this number is
larger.

For each link definition, a link_def_overlay structure for the link definition is provided as defined below.

Defined by IBM ES for OS/2 Version 1.0

Members

link_def_entry_len
Size of this link definition entry.

link_name
Local logical link station name (EBCDIC).

dlc_name
Data link control (DLC) name set to one of the following:

typedef struct link_def_info_sect {
 unsigned long link_def_init_sect_len;
 unsigned short num_link_def;
 unsigned short total_link_def;
} LINK_DEF_INFO_SECT;

typedef struct link_def_overlay {
 unsigned long link_def_entry_len;
 unsigned char link_name[8];
 unsigned char adj_fq_cp_name[17];
 unsigned char adj_node_type;
 unsigned long dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned char preferred_nn_server;
 unsigned char auto_act_link;
 unsigned char tg_number;
 unsigned char lim_res;
 unsigned char solicit_sscp_session;
 unsigned char initself;
 unsigned char bind_support;
 unsigned char ls_role;
 unsigned char line_type;
 unsigned long eff_capacity;
 unsigned char conn_cost;
 unsigned char byte_cost;
 unsigned char propagation_delay;
 unsigned char user_def_1;
 unsigned char user_def_2;
 unsigned char user_def_3;
 unsigned char security;
 unsigned char reserv;
 } LINK_OVERLAY;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

ETHERAND

IBMTRNET

IBMPCNET

SDLC

TWINAX

X25DLC

adj_fq_cp_name
Fully qualified cp_name in adjacent node.

adj_node_type
The adjacent node type (AP_ADJACENT_NN, AP_LEARN, or AP_LEN).

adapter_num
DLC adapter number used by this link.

dest_addr_len
Length of the destination adapter address.

dest_addr
The destination adapter address.

cp_cp_sess_spt
Specifies whether the link supports CP-CP sessions.

preferred_nn_server
Indicates if this is the preferred NN server.

auto_act_link
Indicates if the link should be automatically activated.

tg_number
Transmission group number.

lim_res
Indicates if this is a limited resource.

solicit_sscp_session
Indicates whether to solicit an SSCP session.

initself
Indicates if the node supports receiving INIT_SELF over this link.

bind_support
Indicates whether BIND support is available.

ls_role
Specifies the link station role.

line_type
The line type.

effective_capacity
Highest bit rate transmission effective capacity supported.

conn_cost
Relative cost per connection time using this link.

byte_cost
Relative cost of transmitting a byte over link.

propagation_delay
Indicates amount of time for signal to travel length of link. Set to one of the following:

AP_PROP_DELAY_MINIMUM

AP_PROP_DELAY_LAN

AP_PROP_DELAY_TELEPHONE

AP_PROP_DELAY_PKT_SWITCHED_NET

AP_PROP_DELAY_SATELLITE

AP_PROP_DELAY_MAXIMUM

user_def_1
User-defined TG characteristics.

user_def_2
User-defined TG characteristics.

user_def_3
User-defined TG characteristics.

security
The security value for this link. Set to one of the following:

AP_SEC_NONSECURE

AP_SEC_PUBLIC_SWITCHED_NETWORK

AP_SEC_UNDERGROUND_CABLE

AP_SEC_SECURE_CONDUIT

AP_SEC_GUARDED_CONDUIT

AP_SEC_ENCRYPTED

AP_SEC_GUARDED_RADIATION

Returned by Host Integration Server and SNA Server

Members

link_def_entry_len
Size of this link definition entry.

link_name
Local logical link station name (EBCDIC).

dlc_name
Data link control (DLC) name set to one of the following:

IBMTRNET

SDLC

DFT

X25DLC

adj_fq_cp_name
Fully qualified cp_name in adjacent node. Always set to EBCDIC spaces.

adj_node_type
The adjacent node type. Always set to AP_LEN.

adapter_num
DLC adapter number used by this link. Always set to zero.

dest_addr_len
Length of the destination adapter address.

dest_addr
The destination adapter address.

cp_cp_sess_spt
Specifies whether the link supports CP-CP sessions. Always set to AP_NO.

preferred_nn_server
Indicates if this is the preferred NN server.

auto_act_link
Indicates if the link should be automatically activated.

tg_number
Transmission group number. Always set to zero.

lim_res
Indicates if this is a limited resource.

solicit_sscp_session
Indicates whether to solicit an SSCP session.

initself
Indicates if the node supports receiving INIT_SELF over this link.

bind_support
Indicates whether BIND support is available.

ls_role
Specifies the link station role.

line_type
The line type.

effective_capacity
Highest bit rate transmission effective capacity supported. Always set to zero.

conn_cost
Relative cost per connection time using this link. Always set to zero.

byte_cost
Relative cost of transmitting a byte over link. Always set to zero.

propagation_delay

Indicates amount of time for signal to travel length of link. Set to one of the following: Always set to AP_PROP_DELAY_MAXIMUM.

user_def_1
User-defined TG characteristics. Always set to zero.

user_def_2
User-defined TG characteristics. Always set to zero.

user_def_3
User-defined TG characteristics. Always set to zero.

security
The security value for this link. Always set to AP_SEC_NONSECURE.

Microsoft Host Integration Server 2000

Management Services Information
Information on management services is provided in the ms_info_sect structure as defined below.

Members

ms_init_sect_len
The length of the initial MS information section, including this parameter, up to the first MS focal point group. The length does
not include any previous information sections.

held_mds_mu_alerts
The number of management service MDS alerts being held that will be sent to the management service alert focal point (FP)
when one becomes available.

held_nmvt_alerts
The number of management service NMVT alerts being held that will be sent to the management service alert focal point (FP)
when one becomes available.

num_fps
The number of management service focal points (MS FPs) for which the information listed under MS Focal Point Group is
returned. This is the number of times the information group is repeated.

total_fps
The total number of management service focal points for which APPC has information. This number is the same as the number
returned in the num_fps member except when APPC has more information about management service focal points than it can
place in the supplied buffer, in which case this number is larger.

num_ms_appls
The number of registered MS applications for which the information listed under Registered MS Application Group is returned.
This is the number of times the information group is repeated.

total_ms_appls
The total number of registered MS applications for which APPC has information. This number is the same as the number
returned in the num_ms_appls member except when APPC has more information about registered MS applications than it can
place in the supplied buffer, in which case this number is larger.

num_act_trans
The number of MS active transactions for which the information listed under MS Active Transaction Group is returned. This is
the number of times the information group is repeated.

total_act_trans
The number or MS active transactions for which APPC has information. This number is the same as the number returned in the
num_act_trans member except when APPC has more information about registered MS active transactions than it can place in
the supplied buffer, in which case this number is larger.

For each local and remore management service focal point group, an ms_fp_overlay structure for the focal point group is
provided as defined below.

typedef struct ms_info_sect {
 unsigned long ms_init_sect_len;
 unsigned char held_mds_mu_alerts;
 unsigned char held_nmvt_alerts;
 unsigned short num_fps;
 unsigned short total_fps;
 unsigned short num_ms_appls;
 unsigned short total_ms_appls;
 unsigned short num_act_trans;
 unsigned short total_act_trans;
} MS_INFO_SECT;

typedef struct ms_fp_overlay {
 unsigned long ms_fp_entry_len;
 unsigned char ms_appl_name[8];
 unsigned char ms_category[4];
 unsigned char fp_fq_cp_name[17];
 unsigned char bkup_appl_name[8];
 unsigned char bkup_fp_fq_cp_name[17];
 unsigned char reserv1;
 unsigned char fp_type;
 unsigned char fp_status;
 unsigned char fp_routing;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Members

ms_fp_entry_len
Size of this management service focal point information entry.

ms_appl_name
The management service application name of the current active focal point (EBCDIC).

ms_category
The management service category.

fp_fq_cp_name
The fully qualified control point name of the node on which the current (active) management service focal point is located
(EBCDIC). If the local node has no focal point, a value of all EBCDIC space characters (0x40) is returned.

bkup_appl_name
The management service application name of the backup focal point, if one is known (EBCDIC).

bkup_fp_fq_cp_name
The fully qualified control point name of the node on which the backup management service focal point is located, if one is
known (EBCDIC). If the local node has no backup focal point, a value of all EBCDIC space characters (0x40) is returned.

fp_type
The type of the focal point for the local management service entry point node. The focal point type depends on how the focal
point-end point relationship was established, and on whether the local node is configured as an NN, EN, or LEN node (an EN
without CP-CP session support). The type can be one of the following:

AP_EXPLICIT_PRIMARY_FP

The current focal point type is explicit primary.

AP_BACKUP_FP

The current focal point type is backup.

AP_DEFAULT_PRIMARY_FP

The current focal point type is default primary.

AP_DOMAIN_FP

The current focal point type is domain.

AP_HOST_FP

The current focal point type is host.

AP_NO_FP

Currently the local node has no focal point.

fp_status
The status of the management service focal point. The status can be one of the following:

AP_NOT_ACTIVE

The focal point has been acquired, but has since become unavailable.

AP_ACTIVE

The remote focal point has been acquired and is available.

AP_PENDING

A request has been sent to a remote primary or backup focal point to acquire that FP, and its reply has not yet been received.

AP_NEVER_ACTIVE

The focal point has never been acquired, but one or more registered management service applications have requested focal
point information.

fp_routing
The routing used to send unsolicited requests to the management service focal point when the local node is an EN. Note that
requests from an NN are always sent directly to the focal point.

The routing can be one of the following:

} MS_FP_OVERLAY;

AP_DEFAULT

Unsolicited management service requests destined for the focal point are sent from the EN to its serving NN for forwarding to
the focal point.

AP_DIRECT

Unsolicited management service requests destined for the focal point are sent directly to the focal point.

Remarks

When a program registers an management service application name, it can request focal point information. When APPC acquires
the focal point, it passes the program the focal point information, which includes the type of routing to use to send unsolicited
management service requests to the focal point.

Microsoft Host Integration Server 2000

APPC TP Verbs
This section describes the APPC TP verbs:

GET_TP_PROPERTIES

SET_TP_PROPERTIES

TP_ENDED

TP_STARTED

The description of each verb provides:

A definition of the verb.
The structure defining the VCB used by the verb. The structure is contained in the WINAPPC.H file. The length of each VCB
field is in bytes. Fields beginning with reserv (for example, reserv2) are reserved.
The parameters (VCB fields) supplied to and returned by APPC. A description of each parameter is provided, along with its
possible values and other information.
The conversation state(s) in which the verb can be issued.
The state(s) to which the conversation can change upon return from the verb. Conditions that do not cause a state change
are not noted. For example, parameter checks and state checks do not cause a state change.
Additional information describing the verb.

Most parameters supplied to and returned by APPC are hexadecimal values. To simplify coding, these values are represented by
meaningful symbolic constants, which are established by #define statements in the WINAPPC.H header file. For example, the
opcode (operation code) member of the mc_send_data structure used by the MC_SEND_DATA verb is the hexadecimal value
represented by the symbolic constant AP_M_SEND_DATA. Use only the symbolic constants when writing TPs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GET_TP_PROPERTIES
The GET_TP_PROPERTIES verb returns attributes of the TP and the current transaction.

The following structure describes the verb control block used by the GET_TP_PROPERTIES verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_GET_TP_PROPERTIES.

opext
Supplied parameter. Specifies the verb operation extension. If the AP_EXTD_VCB bit is set, this indicates that the
get_tp_properties structure includes the prot_luw_id member used for Sync Point support. Otherwise the verb control block
ends immediately after the user_id member.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

tp_name
Returned parameter. Supplies the TP name of the TP that issued the verb. The name is returned as a 64-byte EBCDIC string,
padded on the right with EBCDIC spaces.

lu_alias
Returned parameter. Supplies the alias name assigned to the local LU. It is returned as an 8-byte ASCII string padded on the
right with ASCII spaces.

luw_id
Returned parameter. Supplies the unprotected logical unit-of-work identifier for the transaction in which the TP is participating.
Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the transaction,
allows the conversation that makes up the transaction to be logically connected.

The luw_id can be represented as an luw_id_overlay structure with the following fields:

luw_id.fqla_name_len

struct get_tp_properties {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char tp_name[64];
 unsigned char lu_alias[8];
 unsigned char luw_id[26];
 unsigned char fqlu_name[17];
 unsigned char reserve3[10];
 unsigned char user_id[10];
 unsigned char prot_luw_id[26];
 unsigned char pwd[10];
};

typedef struct luw_id_overlay {
 unsigned char fqla_name_len;
 unsigned char fqla_name[17];
 nsigned char instance[6];
 unsigned char sequence[2];
} LUW_ID_OVERLAY;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers follow
immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those values.
These are provided for compatibility only).

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1, if Sync Point is not supported.)

If the luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

fqlu_name
Returned parameter. Supplies the fully qualified name of the local LU. The name is returned as a 17-byte EBCDIC string,
consisting of the NETID, a period, and the LU name. The name is padded on the right with EBCDIC spaces.

reserve3

A reserved field.

user_id
Supplied parameter. Indicates the user_id supplied by the initiating TP in the allocation request. The name is supplied as a 10-
byte EBCDIC string, padded on the right with EBCDIC spaces.

prot_luw_id
Returned parameter. Contains the protected logical unit-of-work identifier for the transaction in which the TP is participating, if
the conversation was allocated with synclevel Sync Point.

Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the transaction,
allows the conversation that makes up the transaction to be logically connected.

The prot_luw_id can be represented as an luw_id_overlay structure with the following fields:

luw_id.fqla_name_len

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers follow
immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those values.
These are provided for compatibility only).

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1, if Sync Point is not supported.)

If the prot_luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

pwd
Supplied parameter. Contains the password of the user_id of the initiating TP in the allocation request. The password is
supplied as a 10-byte EBCDIC string, padded on the right with EBCDIC spaces.

Return Codes

typedef struct luw_id_overlay {
 unsigned char fqla_name_len;
 unsigned char fqla_name[17];
 nsigned char instance[6];
 unsigned char sequence[2];
} LUW_ID_OVERLAY;

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE or MC_ALLOCATE, it can indicate that no communications subsystem could be
found to support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that
can satisfy the ALLOCATE or MC_ALLOCATE request.

When ALLOCATE or MC_ALLOCATE produces this return code for a system configured with multiple nodes using Microsoft®
Host Integration Server 2000 or SNA Server 4.0, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_TP_BUSY
Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP. This can
occur if the local TP has multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

This verb relates to the TP rather than a specification conversation, so the TP can issue the verb in any state. There is no state
change.

The luw_id member contains fields for fqla_name_len (the length of the fully qualified LU name of the LU originating the TP),
fqla_name (the fully qualified name of the LU originating the TP), instance (generated uniquely by the LU originating the TP),
and sequence (always set to 1 and indicating the segment of unit-of-work).

Microsoft Host Integration Server 2000

SET_TP_PROPERTIES
The SET_TP_PROPERTIES verb allows a TP to set its logical unit-of-work identifiers (LUWIDs) to either an existing value, by
providing the LUWIDs, or request that the SNA server generate new ones and use them from then on. When the LUWID is
generated by the SNA server, it is guaranteed to be unique. This verb is used only if Sync Point support is enabled.

The following structure describes the verb control block used by the SET_TP_PROPERTIES verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_SET_TP_PROPERTIES.

opext
Supplied parameter. Specifies the verb operation extension. The AP_EXTD_VCB bit must be set to indicate that the
set_tp_properties structure requires Sync Point support.

reserv2

A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

set_prot_id
Supplied parameter. Indicates whether the prot_id member should be modified. Legal values are AP_YES or AP_NO.

new_prot_id
Supplied parameter. Indicates whether Host Integration Server or SNA Server should use the supplied prot_id LUWID member
or create a new LUWID. Legal values are AP_YES (create a new LUWID) or AP_NO (use the supplied LUWID).

prot_id
This member is the protected logical unit-of-work identifier for the transaction in which the TP is participating. It is ignored if
set_prot_id is AP_NO. It is a supplied parameter if new_unprot_id is AP_NO or a returned parameter if new_unprot_id is
AP_YES.

Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the transaction,
allows the conversation that makes up the transaction to be logically connected.

The prot_id can be represented as an luw_id_overlay structure with the following fields:

struct set_tp_properties {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char set_prot_id;
 unsigned char new_prot_id;
 unsigned char prot_id[26];
 unsigned char set_unprot_id;
 unsigned char new_unprot_id;
 unsigned char unprot_id[26];
 unsigned char set_user_id;
 unsigned char reserv3;
 unsigned char user_id[10];
 unsigned char reserv4[10];
};

typedef struct luw_id_overlay {
 unsigned char fqla_name_len;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

luw_id.fqla_name_len

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers follow
immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those values.
These are provided for compatibility only).

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1 if Sync Point is not supported.)

If the luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

set_unprot_id
Supplied parameter. Indicates whether the unprot_id member should be modified. Legal values are AP_YES or AP_NO.

new_unprot_id
Supplied parameter. Indicates whether Host Integration Server or SNA Server should use the supplied unprot_id LUWID
member or create a new LUWID. Legal values are AP_YES (create a new LUWID) or AP_NO (use the supplied LUWID).

unprot_id
This member is the unprotected logical unit-of-work identifier for the transaction in which the TP is participating. It is ignored if
set_unprot_id is AP_NO. It is a supplied parameter if new_unprot_id is AP_NO or a returned parameter if new_unprot_id is
AP_YES.

Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the transaction,
allows the conversation that makes up the transaction to be logically connected.

The prot_id can be represented as an luw_id_overlay structure with the following fields:

luw_id.fqla_name_len

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers follow
immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those values.
These are provided for compatibility only).

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1 if Sync Point is not supported.)

If the luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

set_user_id

 unsigned char fqla_name[17];
 nsigned char instance[6];
 unsigned char sequence[2];
} LUW_ID_OVERLAY;

typedef struct luw_id_overlay {
 unsigned char fqla_name_len;
 unsigned char fqla_name[17];
 nsigned char instance[6];
 unsigned char sequence[2];
} LUW_ID_OVERLAY;

Supplied parameter. Indicates whether the user_id member should be modified. Legal values are AP_YES or AP_NO.
reserve3

A reserved field.
user_id

Supplied parameter. Indicates the user_id that should be used by the initiating TP in the allocation request. The name is a 10-
byte EBCDIC string, padded on the right with EBCDIC spaces. This parameter is ignored if set_user_id is AP_NO.

reserve4
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE or MC_ALLOCATE, it can indicate that no communications subsystem could be
found to support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that
can satisfy the ALLOCATE or MC_ALLOCATE request.

When ALLOCATE or MC_ALLOCATE produces this return code for an Host Integration Server or SNA Server system configured
with multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_TP_BUSY
Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP. This can
occur if the local TP has multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

This verb relates to the TP rather than a specification conversation, so the TP can issue the verb in any state. There is no state
change.

The prot_id and unprot_id members contain fields for fqla_name_len (the length of the fully qualified LU name of the LU
originating the TP), fqla_name (the fully qualified name of the LU originating the TP), instance (generated uniquely by the LU
originating the TP), and sequence (always set to 1 and indicating the segment of unit-of-work).

It is the responsibility of the application (the Sync Point support component) to transmit the new LUWID PS header to the partner
Sync Point support when the protected LUWID is changed. Similarly, when the new LUWID PS header is received, the application
must inform the LU by issuing a SET_TP_PROPERTIES verb.

Microsoft Host Integration Server 2000

TP_ENDED
The TP_ENDED verb is issued by both the invoking and invoked TP, and notifies APPC that the TP is ending.

For the Microsoft® Windows® version 3.x system, it is recommended that you use the WinAsyncAPPC function rather than the
blocking version of this call.

The following structure describes the verb control block used by the TP_ENDED verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_TP_ENDED.

opext
Supplied parameter. Specifies the verb operation extension. This field is not used by the TP_ENDED verb.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

type
Supplied parameter. Specifies the type of termination to be performed. The following are allowed values:

AP_HARD indicates that all active verbs for the TP are terminated; the session(s) being used by the conversation(s) are
ended. Both the local TP and the partner TP can receive conversation failure return codes (AP_DEALLOC_ABEND for
mapped conversations and AP_DEALLOC_ABEND_PROG for basic conversations).
AP_SOFT indicates that the TP waits for all active verbs to complete; the session being used by the conversation remains
active.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_TP_ID

Secondary return code; APPC did not recognize the tp_id as an assigned TP identifier.

AP_BAD_TYPE

Secondary return code; the specified type value was not recognized by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).

struct tp_ended {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char type;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The SnaBase at the TP’s computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_TP_BUSY
Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP. This can
occur if the local TP has multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

In response to TP_ENDED, APPC frees the resources used by the TP. After this verb executes, the TP identifier is no longer valid;
the TP cannot issue any more APPC conversation verbs.

The conversation can be in any state when the TP issues this verb.

If the conversation is in SEND state, TP_ENDED performs the function of DEALLOCATE or MC_DEALLOCATE with dealloc_type
set to AP_FLUSH.

If the conversation is in a state other than RESET or SEND, TP_ENDED performs the function of DEALLOCATE or
MC_DEALLOCATE with dealloc_type set to AP_ABEND (for a mapped conversation) or AP_ABEND_PROG (for a basic
conversation).

After successful execution (primary_rc is AP_OK), there is no APPC state.

Microsoft Host Integration Server 2000

TP_STARTED
The TP_STARTED verb is issued by the invoking TP, and notifies APPC that the TP is starting.

For the Microsoft® Windows® version 3.x system, it is recommended that you use the WinAsyncAPPC function rather than the
blocking version of this call.

The following structure describes the verb control block used by the TP_STARTED verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_TP_STARTED.

opext
Supplied parameter. Specifies the verb operation extension. If the AP_EXTD_VCB bit is set, this indicates that the tp_started
structure includes the syncpoint_rqd member used for Sync Point support. Otherwise, the verb control block ends
immediately after the tp_name member.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

lu_alias
Supplied parameter. Specifies the alias by which the local LU is known to the local TP.

The name must match an LU alias established during configuration. APPC checks the LU alias against the current Host
Integration Server or SNA Server configuration file. Due to the client/server architecture used by Host Integration Server and
SNA Server, however, this parameter is not validated until an ALLOCATE or MC_ALLOCATE is performed.

This parameter is an 8-byte ASCII character string. It can consist of the following ASCII characters:

Uppercase letters
Numerals from 0 through 9
Spaces
Special characters $, #, % and @

The first character of this string cannot be a space.

If the value of this parameter is fewer than eight bytes in length, pad it on the right with ASCII spaces (0x20).

To use an LU from the default LU pool, set this field to eight hexadecimal zeros. For more information, see Default LUs.

tp_id
Returned parameter. Identifies the newly-established TP.

tp_name
Supplied parameter. Specifies the name of the local TP.

Under the Host Integration Server and SNA Server implementation of APPC, this parameter is ignored when issued by
TP_STARTED. However, this parameter is required if the program runs under the IBM ES for OS/2 version 1.0 implementation
of APPC.

struct tp_started {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char lu_alias[8];
 unsigned char tp_id[8];
 unsigned char tp_name[64];
 unsigned char syncpoint_rqd;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of the following
EDCDIC characters:

Uppercase and lowercase letters
Numerals from 0 through 9
Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes in length, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention for a service TP name is up to four characters. The first character is a hexadecimal byte between 0x00 and
0x3F.

syncpoint_rqd
This optional parameter is only applicable if the AP_EXTD_VCB bit is set in the opext parameter and Sync Point services are
required.

AP_YES if Sync Point is required.
AP_NO if Sync Point is not required.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE or MC_ALLOCATE, it can indicate that no communications subsystem could be
found to support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that
can satisfy the ALLOCATE or MC_ALLOCATE request.

When ALLOCATE or MC_ALLOCATE produces this return code for a system configured with multiple nodes using Host
Integration Server or SNA Server, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_TP_BUSY
Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The

operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

In response to TP_STARTED, APPC generates a TP identifier for the invoking TP. This identifier is a required parameter for
subsequent APPC verbs issued by the invoking TP.

This must be the first APPC verb issued by the invoking TP. Consequently, no prior APPC state exists.

If the verb executes successfully (primary_rc is AP_OK), the state changes to RESET.

Microsoft Host Integration Server 2000

Default LUs
Any LU can be configured to be in a pool of default local LUs available for use by invoking TPs.

For a user or group who will be using TPs, 5250 emulators, and/or APPC applications, you can assign a default local APPC LU and
a default remote APPC LU. If the invoking TP specifies the LU alias that it uses (in TP_STARTED), that LU alias must match a local
APPC LU alias on the supporting SNA server. If the invoking TP leaves the LU alias blank in TP_STARTED, one of two methods for
designating a default LU must be carried out on the supporting SNA server:

Assign a default local APPC LU to the user or group that starts the invoking TP (that is, the user or group logged on at the
system from which TP_STARTED is issued).

—or—

Designate one or more LUs as members of the default outgoing local APPC LU pool. The SNA server first attempts to
determine the default local APPC LU of the associated user or group, then attempts to assign an available LU from the
default outgoing local APPC LU pool; if these attempts fail, the SNA server rejects the request.

In AS/400 environments, the ability to assign default APPC LUs to users or groups is especially useful because it gives the
administrator centralized control over these LU assignments. In such environments, for each user or group, assign both a default
local APPC LU and a default remote APPC LU. Assigning a default local APPC LU for each user fulfills the normal AS/400
procedure of assigning local LUs on a per-user basis. Assigning a default remote APPC LU is equivalent to assigning a default
AS/400 for the user to connect to, since the remote LU designates the AS/400. By making these assignments, the administrator
can centrally control the default AS/400 that a 5250 emulator user connects to.

For more information, see the Microsoft Host Integration Server 2000 online books.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

APPC Conversation Verbs
This section describes the APPC conversation verbs. The description of each verb provides:

A definition of the verb.
The structure defining the VCB used by the verb. The structure is contained in the WINAPPC.H file. The length of each VCB
field is in bytes. Fields beginning with reserv (for example, reserv2) are reserved.
The parameters (VCB fields) supplied to and returned by APPC. A description of each parameter is provided, along with its
possible values and other information.
The conversation state(s) in which the verb can be issued.
The state(s) to which the conversation can change upon return from the verb. Conditions that do not cause a state change
are not noted. For example, parameter checks and state checks do not cause a state change.
Additional information describing the verb.

Mapped conversation verbs are preceded by an MC_ designator. For example, the mapped conversation verb MC_ALLOCATE
corresponds to the basic conversation verb ALLOCATE.

Most parameters supplied to and returned by APPC are hexadecimal values. To simplify coding, these values are represented by
meaningful symbolic constants, which are established by #define statements in the WINAPPC.H header file. For example, the
opcode (operation code) member of the mc_send_data structure used by the MC_SEND_DATA verb is the hexadecimal value
represented by the symbolic constant AP_M_SEND_DATA. Use only the symbolic constants when writing TPs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ALLOCATE
The ALLOCATE verb is issued by the invoking TP. It allocates a session between the local LU and partner LU and (in conjunction
with RECEIVE_ALLOCATE) establishes a conversation between the invoking TP and the invoked TP. After this verb executes
successfully, APPC generates a conversation identifier (conv_id). The conv_id is a required parameter for all other APPC
conversation verbs.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the ALLOCATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_ALLOCATE.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION. If the AP_EXTD_VCB bit is set, this
indicates that an extended version of the verb control block is used. In this case, the ALLOCATE structure includes Sync Point
support or privileged proxy feature support.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id
Returned parameter. Identifies the conversation established between the two TPs.

struct allocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned long conv_type;
 unsigned char synclevel;
 unsigned char reserv3[2];
 unsigned char rtn_ctl;
 unsigned char reserv4;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv5[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv7;
 unsigned char fqplu_name[17];
 unsigned char reserv8[8];
 unsigned long proxy_user;
 unsigned long proxy_domain;
 unsigned char reserv9[16];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

conv_type
Supplied parameter. Used only by ALLOCATE to specify the type of conversation to allocate and is either
AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

If ALLOCATE establishes a mapped conversation, the local TP must issue basic-conversation verbs and provide its own
mapping layer to convert data records to logical records and logical records to data records. The partner TP can issue basic-
conversation verbs and provide the mapping layer, or it can use mapped-conversation verbs (if the partner TP is using an
implementation of APPC that supports mapped-conversation verbs). For more information, see your IBM SNA manual(s).

synclevel
Supplied parameter. Specifies the synchronization level of the conversation. It determines whether the TPs can request
confirmation of receipt of data and confirm receipt of data.

AP_NONE specifies that confirmation processing will not be used in this conversation.
AP_CONFIRM_SYNC_LEVEL specifies that the TPs can use confirmation processing in this conversation.
AP_SYNCPT specifies that TPs can use Sync Point Level 2 confirmation processing in this conversation.

reserv3
A reserved field.

rtn_ctl
Supplied parameter. Specifies when the local LU, acting on a session request from the local TP, should return control to the local
TP. For information about sessions, see About Transaction Programs.

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns
control to the TP.
AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero, the LU returns control
immediately.) If a session is not available, the TP waits for one.
AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs, (as documented in Return Codes in this
topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.
AP_WHEN_CONWINNER_ALLOCATED specifies that the LU does not return control until it allocates a contention-winner
session or encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero, the LU
returns control immediately.) If a session is not available, the TP waits for one.
AP_WHEN_CONV_GROUP_ALLOCATED specifies that the LU does not return control to the TP until it allocates the session
specified by conv_group_id or encounters one of the errors documented in Return Codes in this topic. If a session is not
available, the TP waits for it to become free.

Note that AP_IMMEDIATE is the only value for rtn_ctl that will never cause a new session to start. For values other than
AP_IMMEDIATE, if an appropriate session is not immediately available, Microsoft® Host Integration Server or SNA Server will
try to start one. This will cause the on-demand connection to be activated.

reserv4
A reserved field.

conv_group_id
Supplied/returned parameter. Specifies the identifier of the conversation group from which the session should be allocated. The
conv_group_id is required only if rtn_ctl is set to WHEN_CONV_GROUP_ALLOC. When rtn_ctl specifies a different value and
the primary_rc is AP_OK, this is a returned value.

sense_data
Returned parameter. Indicates an allocation error (retry or no-retry) and contains sense data.

plu_alias
Supplied parameter. Specifies the alias by which the partner LU is known to the local TP.

The plu_alias must match the name of a partner LU established during configuration.

The parameter is an 8-byte ASCII character string. It can consist of the following ASCII characters:

Uppercase letters
Numerals 0 through 9
Spaces
Special characters $, #, %, and @

The first character of this string cannot be a space.

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

If you want to specify the partner LU with the fqplu_name parameter, fill this parameter with binary zeros.

For a user or group using TPs, 5250 emulators, and/or APPC applications, the system administrator can assign default local and
remote LUs. In this case, the field is left blank or null and the default LUs are accessed when the user or group member starts an
APPC program. For more information on default LUs, see the Microsoft Host Integration Server 2000 online books.

mode_name
Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration.

The value of mode_name must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set:

Uppercase letters
Numerals 0 through 9
Special characters $, #, and @

The first character in the string must be an uppercase letter or a special character.

Do not use SNASVCMG in a mapped conversation. SNASVCMG is a reserved mode_name used internally by APPC. Using this
name in a basic conversation is not recommended.

tp_name
Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by ALLOCATE in the invoking TP
must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of the following
EBCDIC characters:

Uppercase and lowercase letters
Numerals 0 through 9
Special characters $, #, @, and period (.)

If tp_name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte between
0x00 and 0x3F. The other characters are from the type AE EBCDIC character set.

security
Supplied parameter. Provides the information that the partner LU requires to validate access to the invoked TP.

Based on the conversation security established for the invoked TP during configuration, use one of the following values:

AP_NONE for an invoked TP that uses no conversation security.
AP_PGM for an invoked TP that uses conversation security and thus requires a user identifier and password. Supply this
information through the user_id and pwd parameters.
AP_PROXY_PGM for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password. Pointers must be set up for proxy_user and proxy_domain to point to UNICODE strings
containing the user name and domain name of the user to be impersonated. The application does not need to set the
user_id and pwd fields.
AP_PROXY_SAME for a TP that has been invoked using privileged proxy with a valid user identifier and password supplied
by the proxy, which in turn invokes another TP. Pointers must be set up for proxy_user and proxy_domain to point to
UNICODE strings containing the user name and domain name of the user to be impersonated. The application does not
need to set the user_id and pwd fields.

For example, assume that TP A invokes TP B with a valid user identifier and password supplied by the privileged proxy, and TP B
in turn invokes TP C. If TP B specifies the value AP_PROXY_SAME, APPC will send the LU for TP C the user identifier from TP A
and an already-verified indicator. This indicator tells TP C to not require the password (if TP C is configured to accept an
already-verified indicator).

AP_PROXY_STRONG for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password provided by the privileged proxy mechanism. Pointers must be set up for proxy_user and
proxy_domain to point to UNICODE strings containing the user name and domain name of the user to be impersonated.
The application does not need to set the user_id and pwd fields. AP_PROXY_STRONG differs from AP_PROXY_PGM in

that AP_PROXY_STRONG does not allow clear-text passwords. If the remote system does not support encrypted
passwords (strong conversation security), then this call fails.
AP_SAME for a TP that has been invoked with a valid user identifier and password, which in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP B
specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified indicator. This
indicator tells TP C to not require the password (if TP C is configured to accept an already-verified indicator).

When AP_SAME is used in an Allocate verb, your application must always provide values for the user_id and pwd parameters
in the verb control block. Depending on the properties negotiated between the SNA server and the peer LU, the ALLOCATE
verb will send one of 3 kinds of Attach (FMH-5) messages, in this order of precedence:

1. If the LUs have negotiated "already verified" security, then the Attach sent by the SNA server will not include the contents
of the pwd parameter field specified in the VCB.

2. If the LUs have negotiated "persistent verification" security, then the Attach sent by the SNA server will include the pwd
parameter specified in the VCB, but only when the Attach is the first for the specified user_id parameter since the start of
the LU-LU session, and will omit the pwd parameter on all subsequent Attaches (issued by your application or any other
application using this LU-LU-mode triplet).

3. If the LUs have not negotiated either of the above, then the Attach sent by the SNA server will omit both the user_id and
pwd parameters on all Attaches.

Your application cannot tell which mode of security has been negotiated between the LUs, nor can it tell whether the
ALLOCATE verb it is issuing is the first for that LU-LU-mode triplet. So your application must always set the user_id and
pwd parameter fields in the VCB when security is set to AP_SAME.

For more information on persistent verification and already verified security, see the SNA Formats Guide, section "FM
Header 5: Attach (LU 6.2)".

AP_STRONG for an invoked TP that uses conversation security and thus requires a user identifier and password. Supply
this information through the user_id and pwd parameters. AP_STRONG differs from AP_PGM in that AP_STRONG does
not allow clear-text passwords. If the remote system does not support encrypted passwords (strong conversation
security), then this call fails.

If the APPC automatic logon feature is to be used, security must be set to AP_PGM. See the Remarks section for details.

reserv5
A reserved field.

pwd
Supplied parameter. Specifies the password associated with user_id.

The pwd parameter is required only if security is set to AP_PGM or AP_SAME. It must match the password for user_id that was
established during configuration.

The pwd parameter is a 10-byte EBCDIC character string and is case-sensitive. It can consist of the following EBCDIC characters:

Uppercase and lowercase letters
Numerals 0 through 9
Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the pwd character string must be hard-coded to MS$SAME. See the Remarks
section for details.

user_id
Supplied parameter. Specifies the user identifier required to access the partner TP. It is required only if the security parameter is
set to AP_PGM or AP_SAME.

The user_id parameter is a 10-byte EBCDIC character string and is case-sensitive. It must match one of the user identifiers
configured for the partner TP.

The parameter can consist of the following EBCDIC characters:

Uppercase and lowercase letters
Numerals 0 through 9
Special characters $, #, @, and period (.)

If user_id is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the user_id character string must be hard-coded to MS$SAME. See the
Remarks section for details.

pip_dlen
Supplied parameter. Specifies the length of the program initialization parameters (PIP) to be passed to the partner TP. The range
is from 0 through 32767.

pip_dptr
Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater than
zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the general data stream (GDS) format. For more information, see SNA LU6.2
Reference: Peer Protocols published by IBM.

For Microsoft® Windows NT®, Windows 95, Windows 98, and Windows version 3.x, the data buffer can reside in a static data
area or in a globally allocated area. The data buffer must fit entirely within this area.

For OS/2, the PIP data buffer must reside on an unnamed, shared segment, which is allocated by the function DosAllocSeg
with Flags equal to 1. The PIP data buffer must fit entirely on the segment.

reserv7
A reserved field.

fqplu_name
Supplied parameter. Specifies the fully qualified name of the partner LU. This must match the fully qualified name of the local
LU defined in the remote node. The parameter consists of two type A EBCDIC character strings for the NETID and the LU name
of the partner LU. The names are separated by an EBCDIC period (.).

This name must be provided if no plu_alias is specified. It can consist of the following EBCDIC characters:

Uppercase letters
Numerals 0 through 9
Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

reserv8
A reserved field.

proxy_user
Supplied parameter. Specifies a LPWSTR pointing to a UNICODE string containing the user name to be impersonated using the
privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext field, indicating an extended
VCB.

proxy_domain
Supplied parameter. Specifies a LPWSTR pointing to a UNICODE string containing the domain name of the user to be
impersonated using the privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext
field, indicating an extended VCB.

reserv9
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL
Primary return code; the supplied parameter rtn_ctl specified immediate (AP_IMMEDIATE) return of control to the TP, and the
local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was invalid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was invalid.

AP_BAD_SYNC_LEVEL

Secondary return code; the value specified for sync_level was invalid.

AP_BAD_TP_ID

Secondary return code; the value specified for tp_id was invalid.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was invalid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied partner_lu_alias.

AP_BAD_CONV_TYPE (for a basic conversation)

Secondary return code; the value specified for conv_type was invalid.

AP_NO_USE_OF_SNASVCMG (for a mapped conversation)

Secondary return code; SNASVCMG is not a valid value for mode_name.

AP_INVALID_DATA_SEGMENT

Secondary return code; the PIP data was longer than the allocated data segment, or the address of the PIP data buffer was
wrong.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for system configured with multiple nodes using Host Integration Server or SNA
Server, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

ALLOCATE can establish either a basic or mapped conversation.

The conversation state is RESET when the TP issues this verb. After successful execution (primary_rc is AP_OK), the state changes
to SEND. If the verb does not execute, the state remains unchanged.

Several parameters of ALLOCATE are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a string from one
character set to the other.

To send the ALLOCATE request immediately, the invoking TP can issue FLUSH or CONFIRM immediately after ALLOCATE.
Otherwise, the ALLOCATE request accumulates with other data in the local LU's send buffer until the buffer is full.

By issuing CONFIRM after ALLOCATE, the invoking TP can immediately determine whether the allocation was successful (if
synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established between
the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of mode_name.

Host Integration Server and SNA Server support a feature called password substitution. This is a security feature supported by the
latest version of the OS/400 operating system (V3R1) which encrypts any password that flows between two nodes on an Attach
message. A password flows on an Attach whenever someone invokes an APPC transaction program specifying a user identifier
and password. For example, this happens whenever anyone logs on to an AS/400.

Support for password substitution is indicated by setting bit 5 in byte 23 of the BIND request to 1 (which indicates that password
substitution is supported). If the remote system sets this bit in the BIND response, the SNA server automatically encrypts the LU
6.2 conversation security password included in the FMH-5 Attach message. APPC applications using Host Integration Server or
SNA Server automatically take advantage of this feature by setting the security field of the VCB to AP_PGM or AP_STRONG in the
ALLOCATE request.

If an APPC application wants to force an encrypted password to flow, the application can specify AP_STRONG for the security
field in the VCB in the ALLOCATE request. This option is implemented as defined in OS/400 V3R1, and is documented in the
OS/400 CPIC programmer reference as CM_SECURITY_PROGRAM_STRONG, where the LU 6.2 pwd (password) field is encrypted
before it flows over the physical network.

The password substitution features is currently only supported by OS/400 V3R1 or later. If the remote system does not support
this feature, the SNA server will UNBIND the session with the sense code of 10060006. The two nodes negotiate whether or not
they support this feature in the BIND exchange. Host Integration Server and SNA Server set a bit in the BIND, and also adds some
random data on the BIND for encryption. If the remote node supports password substitution, it sets the same bit in the BIND
response, and adds some (different) random data for decryption.

Host Integration Server 2000, SNA Server version 4.0, and SNA Server version 3.0 with Service Pack 1 or later and support

automatic logon for APPC applications. This feature requires specific configuration by the network administrator: The APPC
application must be invoked on the LAN side from a client of Host Integration Server 2000. The client must be logged into a
Windows 2000 or Windows NT domain, but the client can be running on any operating system supported by the Host Integration
Server or SNA Server APPC APIs.

The client application is coded to use "program" level security, with a special hard-coded APPC user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA server, the server looks up the host account and
password corresponding to the Windows 2000 or Windows NT account under which the client is logged in, and substitutes the
host account information into the APPC attach message it sends to the host.

It is illegal for the remote node to set the bit specifying password substitution and not add the random data.

According to IBM, there are implementations of LU 6.2 password substitution that do not support password substitution but do
echo the password substitution bit back to Host Integration Server 2000, without specifying any random data. When they do this,
the SNA server will UNBIND the session with the sense code 10060006.This sense code is interpreted as:

1006 = Required field or parameter missing.
0006 = A required subfield of a control vector was omitted.

Host Integration Server and SNA Server should also log an Event 17 (APPC session activation failure: BIND negative response
sent).

The correct solution is for the failing implementation to be fixed. However, as a short-term workaround, the following Host
Integration Server or SNA Server service registry setting can be set:

HKEY_LOCAL_MACHINE\\SYSTEM\CurrentControlSet\Services\snaservr\parameters\NOPWDSUB: REG_SZ: YES

When this parameter is specified in the registry, password substitution support will be disabled.

Several updates have been made to Host Integration Server and SNA Server to allow a privileged APPC application to open an
APPC conversation using the Single Signon feature on behalf of any defined Windows NT user. This is referred to as the
privileged proxy feature. An extension has been added to the APPC ALLOCATE verb to invoke this feature.

An APPC application becomes privileged by being started in a Windows NT user account that is a member of a special Windows
NT group. When a Host Security Domain is configured, Host Integration Server 2000 Manager will define a second Windows NT
group for use with the host security features of Host Integration Server 2000. If the user account under which the actual client is
running is a member of this second Windows NT group, the client is privileged to initiate an APPC conversation on behalf of any
user account defined in the Host Account Cache.

The following illustrates how the privileged proxy feature works:

The Host Integration Server 2000 administrator creates a Host Security Domain called APP. Host Integration Server 2000
Manager now creates two Windows NT groups. The first group is called APP and the second is called APP_PROXY for this
example. Users that are assigned to the APP group are enabled for single signon. Users assigned to the APP_PROXY group are
privileged proxies. The administrator adds the Windows NT user AppcUser to the APP_PROXY group using the Users button on
the Host Security Domain property dialog box in Host Integration Server 2000 Manager.

The administrator then sets up an APPC application on the Host Integration Server 2000 to run as a Windows NT service called
APPCAPP and that service has been setup to operate under the AppcUser user account. When APPCAPP runs, it opens an APPC
session via an ALLOCATE verb using the extended VCB format and specifies the Windows NT username of the desired user, UserA
(for example).

The SNA service sees the session request coming from a connection that is a member of the Host Security Domain APP. The
Client/Server interface tells the SNA service that the actual client is AppcUser.

The SNA service checks to see if AppcUser is a member of the APP_PROXY group. Because AppcUser is a member of APP_PROXY,
the SNA service inserts the Username/Password for UserA in the APPC Attach (FMH-5) command and sends it off to the partner
TP.

In order to support the privileged proxy feature, the APPC application must implement the following program logic:

The APPC application must determine the Windows NT user ID and domain name that it wishes to impersonate.

The APPC application must set the following parameters before calling the ALLOCATE verb:

Enable the use of the extended ALLOCATE verb control block structure by setting the AP_EXTD_VCB flag in the opext field.

Set security to AP_PROXY_SAME, AP_PROXY_PGM or AP_PROXY_STRONG.

Set up the pointers for proxy_user and proxy_domain to point to UNICODE strings containing the user name and domain name

of the user to be impersonated.

 Note The application does not need to set up the user_id and pwd fields in the ALLOCATE VCB.

When the APPC application performs the above steps and issues the ALLOCATE verb, the Host Integration Server 2000 server
will perform a lookup in the host security domain for the specified Windows NT user and set the user ID and password fields in
the FMH-5 Attach message sent to the remote system.

Microsoft Host Integration Server 2000

CONFIRM
The CONFIRM verb sends the contents of the local LU's send buffer and a confirmation request to the partner TP.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the CONFIRM verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_CONFIRM.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id
Returned parameter. Identifies the conversation established between the two TPs.

rts_rcvd
Returned parameter. Indicates whether the partner TP issued REQUEST_TO_SEND which requests the local TP to change the
conversation to RECEIVE state.

To change to RECEIVE state operating on Microsoft® Windows NT®, Windows 95, or Windows 98, the local TP can use
PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, or RECEIVE_AND_POST.

To change to RECEIVE state operating on Windows 3.x, the local TP can use PREPARE_TO_RECEIVE or RECEIVE_AND_WAIT.

To change to RECEIVE state operating on OS/2, the local TP can use RECEIVE_AND_POST.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_CONFIRM_ON_SYNC_LEVEL_NONE

Secondary return code; the local TP attempted to use CONFIRM in a conversation with a synchronization level of AP_NONE.

struct confirm {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The synchronization level, established by ALLOCATE, must be AP_CONFIRM_SYNC_LEVEL.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state.

AP_CONFIRM_NOT_LL_BDY

Secondary return code; the conversation for the local TP was in SEND state, and the local TP did not finish sending a logical
record.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE, AP_CONFIRM_SYNC_LEVEL, or
AP_SYNCPT) specified in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer has encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to
AP_PROG. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, Windows 98, and OS/2 only), CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been purged.

Remarks

In response to CONFIRM, the partner TP normally issues CONFIRMED to confirm that it has received the data without error. (If
the partner TP encounters an error, it issues SEND_ERROR or abnormally deallocates the conversation.)

The TP can issue CONFIRM only if the conversation's synchronization level, established by ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL.

The conversation must be in SEND state when the TP issues this verb. State changes, summarized in the following table, are based
on the value of the primary_rc.

primary_rc New state
AP_OK No change
AP_ALLOCATION_ERROR RESET

AP_COMM_SUBSYSTEM_ABENDED
AP_COMM_SUBSYSTEM_NOT_LOADED

RESET
RESET

AP_CONV_FAILURE_RETRY
AP_CONV_FAILURE_NO_RETRY

RESET
RESET

AP_DEALLOC_ABEND
AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER

RESET
RESET
RESET
RESET

AP_PROG_ERROR_PURGING
AP_SVC_ERROR_PURGING

RECEIVE
RECEIVE

CONFIRM waits for a response from the partner TP. A response is generated by one of the following verbs in the partner TP:

CONFIRMED
SEND_ERROR
DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER
TP_ENDED

By issuing CONFIRM after ALLOCATE, the invoking TP can immediately determine whether the allocation was successful (if
synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established between
the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of mode_name.
For more information, see the Microsoft Host Integration Server 2000 online books.

Several parameters of ALLOCATE are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a string from one
character set to the other.

To send the ALLOCATE request immediately, the invoking TP can issue FLUSH or CONFIRM immediately after ALLOCATE.
Otherwise, the ALLOCATE request accumulates with other data in the local LU's send buffer until the buffer is full.

Microsoft Host Integration Server 2000

CONFIRMED
The CONFIRMED verb responds to a confirmation request from the partner TP. It informs the partner TP that the local TP has not
detected an error in the received data. Because the TP issuing the confirmation request waits for a confirmation, CONFIRMED
synchronizes the processing of the two TPs.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the CONFIRMED verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_CONFIRMED.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd
Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND, which requests the local TP to change
the conversation to RECEIVE state.

To change to RECEIVE state the local TP can use MC_PREPARE_TO_RECEIVE, MC_RECEIVE_AND_WAIT, or
MC_RECEIVE_AND_POST.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

struct confirmed {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_CONFIRMED_BAD_STATE

Secondary return code; the conversation is not in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications subsystem could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation must be in one of the following states when the TP issues this verb:

CONFIRM
CONFIRM_SEND
CONFIRM_DEALLOCATE

The new state is determined by the old state—the state of the conversation when the local TP issued CONFIRMED. The old state
is indicated by the value of the what_rcvd parameter of the preceding receive verb. The following state changes are possible:

Old state New state

CONFIRM RECEIVE
CONFIRM_SEND SEND
CONFIRM_DEALLOCATE RESET

Confirmation Requests

A confirmation request is issued by one of the following verbs in the partner TP:

CONFIRM
PREPARE_TO_RECEIVE if ptr_type is set to AP_SYNC_LEVEL and the conversation’s synchronization level (established by
ALLOCATE) is AP_CONFIRM_SYNC_LEVEL
DEALLOCATE if dealloc_type is set to AP_SYNC_LEVEL and the conversation’s synchronization level (established by
ALLOCATE) is AP_CONFIRM_SYNC_LEVEL
SEND_DATA if type is set to AP_SEND_DATA_CONFIRM and the conversation’s synchronization level (established by
ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

A confirmation request is received by the local TP through the what_rcvd parameter of one of the following verbs:

RECEIVE_IMMEDIATE
RECEIVE_AND_WAIT
RECEIVE_AND_POST

CONFIRMED is issued by the local TP only if what_rcvd contains one of the following values:

AP_CONFIRM_WHAT_RECEIVED
AP_CONFIRM_SEND
AP_CONFIRM_DEALLOCATE

If the rtn_status parameter is set to AP_YES, what_rcvd can also contain the following values:

AP_DATA_COMPLETE_CONFIRM
AP_DATA_COMPLETE_CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_DEALL

For basic conversations, what_rcvd can also contain the following values:

AP_DATA_CONFIRM
AP_DATA_CONFIRM_SEND
AP_DATA_CONFIRM_DEALLOCATE

Microsoft Host Integration Server 2000

DEALLOCATE
The DEALLOCATE verb deallocates a conversation between two TPs.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC function rather than the
blocking version of this call.

The following structure describes the verb control block used by the DEALLOCATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_DEALLOCATE.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3
A reserved field.

dealloc_type
Supplied parameter. Specifies how to perform the deallocation.

Using one of the following values deallocates the conversation abnormally:

AP_ABEND_PROG
AP_ABEND_SVC
AP_ABEND_TIMER

If the conversation is in SEND state when the local TP issues DEALLOCATE, APPC sends the contents of the local LU's send
buffer to the partner TP before deallocating the conversation. If the conversation is in RECEIVE or PENDING_POST state, APPC
purges any incoming data before deallocating the conversation.

An application or service TP should specify AP_ABEND_PROG when it encounters an error preventing the successful completion
of a transaction.

struct deallocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char dealloc_type;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
 void (WINAPI *callback)();
 void *correlator;
 unsigned char reserv4[4];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

A service TP should specify AP_ABEND_SVC when it encounters an error caused by its partner service TP (for example, a format
error in control information sent by the partner service TP). A service TP should specify AP_ABEND_TIMER when it encounters
an error requiring immediate deallocation (for example, an operator ending the program prematurely).

AP_FLUSH sends the contents of the local LU's send buffer to the partner TP before deallocating the conversation. This value is
allowed only if the conversation is in SEND state.

AP_SYNC_LEVEL uses the conversation's synchronization level (established by ALLOCATE) to determine how to deallocate the
conversation. This value is allowed only if the conversation is in SEND state.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the
partner TP before deallocating the conversation.

If the synchronization level is AP_CONFIRM_SYNC_LEVEL, APPC sends the contents of the local LU's send buffer and a
confirmation request to the partner TP. Upon receiving confirmation from the partner TP, APPC deallocates the conversation. If,
however, the partner TP reports an error, the conversation remains allocated.

log_dlen
Supplied parameter. Specifies the number of bytes of data to be sent to the error log file. The range is from 0 through 32767.

You can set this parameter to a number greater than zero if dealloc_type is set to AP_ABEND_PGM, AP_ABEND_SVC, or
AP_ABEND_TIMER. Otherwise, this parameter must be zero.

log_dptr
Supplied parameter. Provides the address of the data buffer containing error information. The data is sent to the local error log
and to the partner LU.

This parameter is used by DEALLOCATE if log_dlen is greater than zero.

For Microsoft® Windows NT®, Windows 95, Windows 98, and Windows 3.x, the data buffer can reside in a static data area or
in a globally allocated area. The data buffer must fit entirely within this area.

For OS/2, the log data buffer must reside on an unnamed, shared segment, which is allocated by the function DosAllocSeg
with Flags equal to 1. The log data buffer must fit entirely on the segment.

The TP must format the error data as a GDS error log variable. For more information, see your IBM SNA manual(s).

callback
Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member, indicating support for Sync Point. This
parameter is the address of a user-supplied callback function. If this field is NULL, no notification will be provided.

The prototype of the callback routine is as follows:
void WINAPI callback_proc(
struct appc_hdr *vcb,
unsigned char tp_id[8],
unsigned long conv_id,
unsigned short type,
void *correlator
);

The callback procedure can take any name, since the address of the procedure is passed to the APPC DLL. The parameters
passed to the function are as follows:

vcb

A pointer to the DEALLOCATE verb control block that caused the conversation to be deallocated.

tp_id

The TP identifier of the TP that owned the deallocated conversation.

conv_id

The conversation identifier of the deallocated conversation.

type

The type of the message flow that caused the callback to be invoked. Possible values are:

AP_DATA_FLOW

Normal data flow on the session.

AP_UNBIND

The session was unbound normally.

AP_FAILURE

The session terminated due to an outage.

correlator

This value is the correlator specified on the DEALLOCATE verb.

correlator
Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member, indicating support for the Sync Point API.
This correlator field allows the TP to specify a value it can use to correlate a call to the callback function with, for example, its
own internal data structures. This value is returned to the TP as one of the parameters of the callback routine when it is invoked.

reserv4
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_DEALLOC_BAD_TYPE

Secondary return code; the dealloc_type parameter was not set to a valid value.

AP_DEALLOC_LOG_LL_WRONG

Secondary return code; the LL field of the GDS error log variable did not match the actual length of the log data.

AP_INVALID_DATA_SEGMENT

Secondary return code; the error data for the log file was longer than the segment allocated to contain the error data, or the
address of the error data buffer was wrong.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_DEALLOC_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state, and the TP attempted to flush the send buffer and send a
confirmation request. This attempt occurred because the value of dealloc_type was AP_SYNC_LEVEL and the synchronization
level of the conversation was AP_CONFIRM_SYNC_LEVEL.

AP_DEALLOC_FLUSH_BAD_STATE

Secondary return code; the conversation was not in SEND state and the TP attempted to flush the send buffer. This attempt
occurred because the value of dealloc_type was AP_FLUSH or because the value of dealloc_type was AP_SYNC_LEVEL and
the synchronization level of the conversation was AP_NONE. In either case, the conversation must be in SEND state.

AP_DEALLOC_NOT_LL_BDY

Secondary return code; the conversation was in SEND state, and the TP did not finish sending a logical record. The
dealloc_type parameter was set to AP_SYNC_LEVEL or AP_FLUSH.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the

allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications subsystem could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for an Host Integration Server 2000 system configured with multiple nodes, there
are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to
AP_PROG. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, Windows 98, and OS/2 only), CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been purged.

Remarks

Depending on the value of the dealloc_type parameter, the conversation can be in one of the states indicated in the following
table when the TP issues DEALLOCATE.

dealloc_type Allowed state
AP_FLUSH SEND
AP_SYNC_LEVEL SEND
AP_ABEND Any except RESET
AP_ABEND_PROG Any except RESET
AP_ABEND_SVC Any except RESET

AP_ABEND_TIMER Any except RESET

State changes, summarized in the following table, are based on the value of the primary_rc.

primary_rc New state
AP_OK RESET
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_SVC_ERROR_PURGING RECEIVE

Before deallocating the conversation, this verb performs the equivalent of one of the following:

FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).
CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

After this verb has successfully executed, the conversation identifier is no longer valid.

LU 6.2 Sync Point can use an optimization of the message flows known as implied forget. When the protocol specifies that a
FORGET PS header is required, the next data flow on the session implies that a FORGET has been received. In the normal situation,
the TP is aware of the next data flow when data is received or sent on one of its Sync Point conversations.

However, it is possible that the last message to flow is caused by the conversation being deallocated. In this case, the TP is
unaware when the next data flow on the session occurs. To provide the TP with this notification, the DEALLOCATE verb is
modified to allow the TP to register a callback function which will be called:

On the first normal flow transmission (request or response) over the session used by the conversation.
If the session is unbound before any other data flows.
If the session is terminated abnormally due to a DLC outage.

The DEALLOCATE verb also contains a correlator field member that is returned as one of the parameters when the callback
function is invoked. The application can use this parameter in any way (for example, as a pointer to a control block within the
application).

The TP can use the type parameter passed to the callback function to determine whether the message flow indicates an implied
forget has been received.

Note that the DEALLOCATE verb will probably complete before the callback routine is called. The conversation is considered to
be in RESET state and no further verbs can be issued using the conversation identifier. If the application issues a TP_ENDED verb
before the next data flow on the session, the callback routine will not be invoked.

Host Integration Server 2000 allows TPs to deallocate conversations immediately after sending data by specifying the type
parameter on SEND_DATA as AP_SEND_DATA_DEALLOC_*. However, the SEND_DATA verbs do not contain the implied forget
callback function. TPs wishing to receive implied forget notification must issue DEALLOCATE explicitly.

Microsoft Host Integration Server 2000

FLUSH
The FLUSH verb sends the contents of the local LU's send buffer to the partner LU (and TP). If the send buffer is empty, no action
takes place.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the FLUSH verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_FLUSH.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_FLUSH_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

struct flush {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

Data processed by SEND_DATA accumulates in the local LU's send buffer until one of the following happens:

The local TP issues FLUSH (or other verb that flushes the LU's send buffer).
The buffer is full.

The request generated by ALLOCATE is also buffered.

The conversation must be in SEND state when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

GET_ATTRIBUTES
The GET_ATTRIBUTES verb returns the attributes of the conversation.

The following structure describes the verb control block used by the GET_ATTRIBUTES verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_GET_ATTRIBUTES.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

Reserv3
A reserved field.

sync_level
Returned parameter. Specifies the level of synchronization processing for the conversation. This parameter determines whether
the TPs can request confirmation of receipt of data and confirm receipt of data.

AP_NONE indicates that confirmation processing will not be used in this conversation.
AP_CONFIRM_SYNC_LEVEL indicates that TPs can use confirmation processing in this conversation.

struct get_attributes {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char sync_level;
 unsigned char mode_name[8];
 unsigned char net_name[8];
 unsigned char lu_name[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char plu_un_name[8];
 unsigned char reserv4[2];
 unsigned char fqplu_name[17];
 unsigned char reserv5;
 unsigned char user_id[10];
 unsigned long conv_group_id;
 unsigned char conv_corr_len;
 unsigned char conv_corr[8];
 unsigned char reserv6[13];
NOTE: The following fields are present when the high bit of opext is set (opext & AP_EXTD_VCB
) != 0.
 unsigned char luw_id[26];
 unsigned char sess_id[8];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_SYNCPT indicates that TPs can use Sync Point Level 2 confirmation processing in this conversation.

mode_name
Returned parameter. Specifies the name of a set of networking characteristics. It is a type A EBCDIC character string.

net_name
Returned parameter. Specifies the name of the SNA network containing the local LU used by this TP. It is a type A EBCDIC
character string.

lu_name
Returned parameter. Provides the name of the local LU.

lu_alias
Returned parameter. Provides the alias by which the local LU is known to the local TP. It is an ASCII character string.

plu_alias
Returned parameter. Provides the alias by which the partner LU is known to the local TP. It is an ASCII character string.

plu_un_name
Returned parameter. Specifies the uninterpreted name of the partner LU — the name of the partner LU as defined to the system
services control point (SSCP). It is a type AE EBCDIC character string. This parameter is returned only if the local LU is
dependent.

Reserv4
A reserved field.

fqplu_name
Returned parameter. Provides the fully qualified name of the partner LU. It is a type A EBCDIC character string. The field
contains the network name, an EBCDIC period, and the partner-LU name.

Reserv5
A reserved field.

user_id
Returned parameter. Specifies the user identifier sent by the invoking TP through ALLOCATE to access the invoked TP (if
applicable). It is a type AE EBCDIC character string. The field contains the user identifier if the following conditions are true:

The invoked TP requires conversation security.
GET_ATTRIBUTES was issued by the invoked TP.

Otherwise, the field contains spaces.

conv_group_id
Returned parameter. Specifies the conversation group identifier for the session to which the conversation has been allocated.
This is also returned on ALLOCATE and RECEIVE_ALLOCATE.

Conv_Corr_len
Returned parameter. Specifies the length of the conversation correlator identifier that is returned.

Conv_corr
Returned parameter. Specifies the conversation correlator identifier (if any) that the source LU assigns to identify the
conversation, which is unique for the source/partner LU pair. It is sent by the source LU on the allocation request.

The following fields are present when the high bit of opext is set (opext & AP_EXTD_VCB) != 0.These fields are only
present when when using Sync Point Level 2 support.

Reserv6
A reserved field.

Luw_id
Logical unit-of-work identifier.

Sess_id
Session identifier.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

GET_LU_STATUS
The GET_LU_STATUS verb returns the status of a particular LU. This conversation verb is only available when Sync Point
conversations are supported.

The following structure describes the verb control block used by the GET_LU_STATUS verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_GET_LU_STATUS.

opext
This field is unused by the GET_LU_STATUS verb.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

plu_alias
Supplied parameter. Provides the identifier for the LU about which this TP is inquiring. The value of this parameter was returned
by MC_ALLOCATE or ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

active_sess
Returned parameter. Supplies the number of active sessions on this LU.

zero_sess
Returned parameter. Indicates whether a zero session is on this LU. Values are AP_YES or AP_NO.

reserv3
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_LU_ALIAS

Secondary return code; the value of plu_alias did not match any LUs assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

struct get_type {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char plu_alias[8];
 unsigned short active_sess;
 unsigned char zero_sess;
 unsigned char reserv3[7];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

GET_STATE
The GET_STATE verb returns the state of a particular conversation.

The following structure describes the verb control block used by the GET_STATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_GET_STATE.

opext
This field is unused by the GET_STATE verb.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the identifier for the conversation about which this TP is inquiring. The value of this parameter
was returned by MC_ALLOCATE or ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_state
Returned parameter. Indicates the state of the conversation. The conv_state parameter can be one of the following values:

AP_RESET_STATE

The conversation is in the RESET state.

AP_SEND_STATE

The conversation is in the SEND state.

AP_RECEIVE_STATE

The conversation is in the RECEIVE state.

AP_CONFIRM_STATE

The conversation is in the CONFIRM state.

AP_CONFIRM_SEND_STATE

The conversation is in the CONFIRM_SEND state.

AP_CONFIRM_DEALL_STATE

The conversation is in the CONFIRM_DEALLOCATE state.

AP_PEND_POST_STATE

The conversation has a POST verb pending.

struct get_state {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char conv_state;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_PEND_DEALL_STATE

The conversation has a DEALLOCATE verb pending.

AP_END_CONV_STATE

The conversation is in the END_CONVERSATION state.

AP_SEND_PENDING_STATE

The conversation is in the SEND_PENDING state.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any state when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

GET_TYPE
The GET_TYPE verb returns the conversation type (basic or mapped) of a particular conversation so the TP can decide whether to
use basic or mapped conversation verbs.

The following structure describes the verb control block used by the GET_TYPE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_GET_TYPE.

opext
This field is unused by the GET_TYPE verb.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the identifier for the conversation about which this TP is inquiring. The value of this parameter
was returned by MC_ALLOCATE or ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_type
Returned parameter. Supplies the type of conversation, either AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

struct get_type {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char conv_type;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

MC_ALLOCATE
The MC_ALLOCATE verb is issued by the invoking TP. It allocates a session between the local LU and partner LU and (in
conjunction with RECEIVE_ALLOCATE) establishes a conversation between the invoking TP and the invoked TP. After this verb
executes successfully, APPC generates a conversation identifier (conv_id). The conv_id is a required parameter for all other APPC
conversation verbs.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_ALLOCATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code; AP_M_ALLOCATE.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION. If the AP_EXTD_VCB bit is set, this
indicates that an extended version of the verb control block is used. In this case, the MC_ALLOCATE structure includes Sync
Point support or privileged proxy feature support.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id
Returned parameter. Identifies the conversation established between the two TPs.

struct mc_allocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char synclevel;
 unsigned char reserv4[2];
 unsigned char rtn_ctl;
 unsigned char reserv5;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv6[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv7;
 unsigned char fqplu_name[17];
 unsigned char reserv8[8];
 unsigned long proxy_user;
 unsigned long proxy_domain;
 unsigned char reserv9[16];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

reserv3
A reserved field.

synclevel
Supplied parameter. Specifies the synchronization level of the conversation. It determines whether the TPs can request
confirmation of receipt of data and confirm receipt of data.

AP_NONE specifies that confirmation processing will not be used in this conversation.
AP_CONFIRM_SYNC_LEVEL specifies that the TPs can use confirmation processing in this conversation.
AP_SYNCPT specifies that TPs can use Sync Point Level 2 confirmation processing in this conversation.

reserv4
A reserved field.

rtn_ctl
Supplied parameter. Specifies when the local LU, acting on a session request from the local TP, should return control to the local
TP. For information about sessions, see About Transaction Programs.

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns
control to the TP.
AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero, the LU returns control
immediately.) If a session is not available, the TP waits for one.
AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs, (as documented in Return Codes in this
topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.
AP_WHEN_CONWINNER_ALLOC specifies that the LU does not return control until it allocates a contention-winner
session or encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero, the LU
returns control immediately.) If a session is not available, the TP waits for one.
AP_WHEN_CONV_GROUP_ALLOC specifies that the LU does not return control to the TP until it allocates the session
specified by conv_group_id or encounters one of the errors documented in Return Codes in this topic. If a session is not
available, the TP waits for it to become free.

Note that AP_IMMEDIATE is the only value for rtn_ctl that will never cause a new session to start. For values other than
AP_IMMEDIATE, if an appropriate session is not immediately available, Microsoft® Host Integration Server 2000 will try to start
one. This will cause the on-demand connection to be activated.

reserv5
A reserved field.

conv_group_id
Supplied/returned parameter. Specifies the identifier of the conversation group from which the session should be allocated. The
conv_group_id is required only if rtn_ctl is set to WHEN_CONV_GROUP_ALLOC. When rtn_ctl specifies a different value and
the primary_rc is AP_OK, this is a returned value.

sense_data
Returned parameter. Indicates an allocation error (retry or no-retry) and contains sense data.

plu_alias
Supplied parameter. Specifies the alias by which the partner LU is known to the local TP.

The plu_alias must match the name of a partner LU established during configuration.

The parameter is an 8-byte ASCII character string. It can consist of the following ASCII characters:

Uppercase letters
Numerals 0 through 9
Spaces
Special characters $, #, %, and @

The first character of this string cannot be a space.

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

If you want to specify the partner LU with the fqplu_name parameter, fill this parameter with binary zeros.

For a user or group using TPs, 5250 emulators, and/or APPC applications, the system administrator can assign default local and
remote LUs. In this case, the field is left blank or null and the default LUs are accessed when the user or group member starts an
APPC program. For more information on default LUs, see the Microsoft Host Integration Server 2000 online books.

mode_name
Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration.

The value of mode_name must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set:

Uppercase letters
Numerals 0 through 9
Special characters $, #, and @

The first character in the string must be an uppercase letter or a special character.

Do not use SNASVCMG in a mapped conversation. SNASVCMG is a reserved mode_name used internally by APPC.

tp_name
Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by MC_ALLOCATE in the invoking
TP must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of the following
EBCDIC characters:

Uppercase and lowercase letters
Numerals 0 through 9
Special characters $, #, @, and period (.)

If tp_name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte between
0x00 and 0x3F. The other characters are from the type AE EBCDIC character set.

security
Supplied parameter. Provides the information that the partner LU requires to validate access to the invoked TP.

Based on the conversation security established for the invoked TP during configuration, use one of the following values:

AP_NONE for an invoked TP that uses no conversation security.
AP_PGM for an invoked TP that uses conversation security and thus requires a user identifier and password. Supply this
information through the user_id and pwd parameters.
AP_PROXY_PGM for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password. Pointers must be set up for proxy_user and proxy_domain to point to UNICODE strings
containing the user name and domain name of the user to be impersonated. The application does not need to set the
user_id and pwd fields.
AP_PROXY_SAME for a TP that has been invoked using privileged proxy with a valid user identifier and password supplied
by the proxy, which in turn invokes another TP. Pointers must be set up for proxy_user and proxy_domain to point to
UNICODE strings containing the user name and domain name of the user to be impersonated. The application does not
need to set the user_id and pwd fields.

For example, assume that TP A invokes TP B with a valid user identifier and password supplied by the privileged proxy,
and TP B in turn invokes TP C. If TP B specifies the value AP_PROXY_SAME, APPC will send the LU for TP C the user
identifier from TP A and an already-verified indicator. This indicator tells TP C to not require the password (if TP C is
configured to accept an already-verified indicator).

AP_PROXY_STRONG for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password provided by the privileged proxy mechanism. Pointers must be set up for proxy_user and
proxy_domain to point to UNICODE strings containing the user name and domain name of the user to be impersonated.
The application does not need to set the user_id and pwd fields. AP_PROXY_STRONG differs from AP_PROXY_PGM in
that AP_PROXY_STRONG does not allow clear-text passwords. If the remote system does not support encrypted
passwords (strong conversation security), then this call fails.
AP_SAME for a TP that has been invoked with a valid user identifier and password, which in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP
B specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified
indicator. This indicator tells TP C to not require the password (if TP C is configured to accept an already-verified
indicator).

When AP_SAME is used in an MC_ALLOCATE verb, your application must always provide values for the user_id and pwd
parameters in the verb control block. Depending on the properties negotiated between Host Integration Server 2000 and
the peer LU, the MC_ALLOCATE verb will send one of 3 kinds of Attach (FMH-5) messages, in this order of precedence:

1. If the LUs have negotiated "already verified" security, then the Attach sent by Host Integration Server 2000 will not include
the contents of the pwd parameter field specified in the VCB.

2. If the LUs have negotiated "persistent verification" security, then the Attach sent by Host Integration Server 2000 will
include the pwd parameter specified in the VCB, but only when the Attach is the first for the specified user_id parameter
since the start of the LU-LU session, and will omit the pwd parameter on all subsequent Attaches (issued by your
application or any other application using this LU-LU-mode triplet).

3. If the LUs have not negotiated either of the above, then the Attach sent by Host Integration Server 2000 will omit both the
user_id and pwd parameters on all Attaches.

Your application cannot tell which mode of security has been negotiated between the LUs, nor can it tell whether the
MC_ALLOCATE verb it is issuing is the first for that LU-LU-mode triplet. So your application must always set the user_id
and pwd parameter fields in the VCB when security is set to AP_SAME.

For more information on persistent verification and already verified security, see the SNA Formats Guide, section "FM
Header 5: Attach (LU 6.2)".

AP_STRONG for an invoked TP that uses conversation security and thus requires a user identifier and password. Supply
this information through the user_id and pwd parameters. AP_STRONG differs from AP_PGM in that AP_STRONG does
not allow clear-text passwords. If the remote system does not support encrypted passwords (strong conversation
security), then this call fails.

If the APPC automatic logon feature is to be used, security must be set to AP_PGM. See the Remarks section for details.

reserv6
A reserved field.

pwd
Supplied parameter. Specifies the password associated with user_id.

The pwd parameter is required only if security is set to AP_PGM or AP_SAME. It must match the password for user_id that was
established during configuration.

The pwd parameter is a 10-byte EBCDIC character string and is case-sensitive. It can consist of the following EBCDIC characters:

Uppercase and lowercase letters
Numerals 0 through 9
Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the pwd character string must be hard-coded to MS$SAME. See the Remarks
section for details.

user_id
Supplied parameter. Specifies the user identifier required to access the partner TP. It is required only if the security parameter is
set to AP_PGM or AP_SAME.

The user_id parameter is a 10-byte EBCDIC character string and is case-sensitive. It must match one of the user identifiers
configured for the partner TP.

The parameter can consist of the following EBCDIC characters:

Uppercase and lowercase letters
Numerals 0 through 9
Special characters $, #, @, and period (.)

If user_id is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the user_id character string must be hard-coded to MS$SAME. See the
Remarks section for details.

pip_dlen
Supplied parameter. Specifies the length of the program initialization parameters (PIP) to be passed to the partner TP. The range

is from 0 through 32767.
pip_dptr

Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater than
zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the general data stream (GDS) format. For more information, see your IBM SNA
manual(s).

For Windows NT, Windows 95, Windows 98, and Windows 3.x, the data buffer can reside in a static data area or in a globally
allocated area. The data buffer must fit entirely within this area.

For OS/2, the PIP data buffer must reside on an unnamed, shared segment, which is allocated by the function DosAllocSeg
with Flags equal to 1. The PIP data buffer must fit entirely on the segment.

reserv7
A reserved field.

fqplu_name
Supplied parameter. Specifies the fully qualified name of the partner LU. This must match the fully qualified name of the local
LU defined in the remote node. The parameter consists of two type A EBCDIC character strings for the NETID and the LU name
of the partner LU. The names are separated by an EBCDIC period (.).

This name must be provided if no plu_alias is specified. It can consist of the following EBCDIC characters:

Uppercase letters
Numerals 0 through 9
Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

reserv8
A reserved field.

proxy_user
Supplied parameter. Specifies a LPWSTR pointing to a UNICODE string containing the user name to be impersonated using the
privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext field, indicating an extended
VCB.

proxy_domain
Supplied parameter. Specifies a LPWSTR pointing to a UNICODE string containing the domain name of the user to be
impersonated using the privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext
field, indicating an extended VCB.

reserv9
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL
Primary return code; the supplied parameter rtn_ctl specified immediate (AP_IMMEDIATE) return of control to the TP, and the
local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was invalid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was invalid.

AP_BAD_SYNC_LEVEL

Secondary return code; the value specified for sync_level was invalid.

AP_BAD_TP_ID

Secondary return code; the value specified for tp_id was invalid.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was invalid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied partner_lu_alias.

AP_NO_USE_OF_SNASVCMG

Secondary return code; SNASVCMG is not a valid value for mode_name.

AP_INVALID_DATA_SEGMENT

Secondary return code; the PIP data was longer than the allocated data segment, or the address of the PIP data buffer was wrong.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it can indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for an Host Integration Server 2000 system configured with multiple nodes,
there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

MC_ALLOCATE establishes a mapped conversation.

The conversation state is RESET when the TP issues this verb. After successful execution (primary_rc is AP_OK), the state changes
to SEND. If the verb does not execute, the state remains unchanged.

Several parameters of MC_ALLOCATE are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a string from one
character set to the other.

To send the MC_ALLOCATE request immediately, the invoking TP can issue MC_FLUSH or MC_CONFIRM immediately after
MC_ALLOCATE. Otherwise, the MC_ALLOCATE request accumulates with other data in the local LU's send buffer until the buffer
is full.

By issuing MC_CONFIRM after MC_ALLOCATE, the invoking TP can immediately determine whether the allocation was
successful (if synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the MC_ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established between
the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of mode_name.

Host Integration Server 2000 supports a feature called password substitution. This is a security feature supported by the latest
version of the OS/400 operating system (V3R1) which encrypts any password that flows between two nodes on an Attach
message. A password flows on an Attach whenever someone invokes an APPC transaction program specifying a user identifier
and password. For example, this happens whenever anyone logs on to an AS/400.

Support for password substitution is indicated by setting bit 5 in byte 23 of the BIND request to 1 (which indicates that password
substitution is supported). If the remote system sets this bit in the BIND response, Host Integration Server 2000 automatically
encrypts the LU 6.2 conversation security password included in the FMH-5 Attach message. Host Integration Server 2000 APPC
applications automatically take advantage of this feature by setting the security field of the VCB to AP_PGM or AP_STRONG in
the MC_ALLOCATE request.

If an APPC application wants to force an encrypted password to flow, the application can specify AP_STRONG for the security
field in the VCB in the MC_ALLOCATE request. This option is implemented as defined in OS/400 V3R1, and is documented in the
OS/400 CPIC programmer reference as CM_SECURITY_PROGRAM_STRONG, where the LU 6.2 pwd (password) field is encrypted
before it flows over the physical network.

The password substitution features is currently only supported by OS/400 V3R1 or later. If the remote system does not support
this feature, Host Integration Server 2000 will UNBIND the session with the sense code of 10060006. The two nodes negotiate
whether or not they support this feature in the BIND exchange. Host Integration Server 2000 sets a bit in the BIND, and also adds
some random data on the BIND for encryption. If the remote node supports password substitution, it sets the same bit in the
BIND response, and adds some (different) random data for decryption.

SNA Server version 3.0 with Service Pack 1 or later and SNA Server version 4.0 support automatic logon for APPC applications.
This feature requires specific configuration by the network administrator: The APPC application must be invoked on the LAN side
from a client of Host Integration Server 2000. The client must be logged into a Windows NT domain, but can be any platform that
supports Host Integration Server 2000's APPC APIs.

The client application is coded to use "program" level security, with a special hard-coded APPC user name MS$SAME and
password MS$SAME. When this session allocation flows from client to Host Integration Server 2000, the Host Integration Server
2000 server looks up the host account and password corresponding to the Windows NT account under which the client is logged
in, and substitutes the host account information into the APPC attach message it sends to the host.

 Note It is illegal for the remote node to set the bit specifying password substitution and not add the random data.

According to IBM, there are implementations of LU 6.2 password substitution that do not support password substitution but do
echo the password substitution bit back to Host Integration Server 2000, without specifying any random data. When they do this,
Host Integration Server 2000 will UNBIND the session with the sense code 10060006.This sense code is interpreted as:

1006 = Required field or parameter missing.
0006 = A required subfield of a control vector was omitted.

Host Integration Server 2000 should also log an Event 17 (APPC session activation failure: BIND negative response sent).

The correct solution is for the failing implementation to be fixed. However, as a short-term workaround, the following Host
Integration Server 2000 SNA Service registry setting can be set:

HKEY_LOCAL_MACHINE\\SYSTEM\CurrentControlSet\Services\snaservr\parameters\NOPWDSUB: REG_SZ: YES

When this parameter is specified in the registry, Host Integration Server 2000's password substitution support will be disabled.

Several updates have been made to Host Integration Server 2000 to allow a privileged APPC application to open an APPC
conversation using the Single Signon feature on behalf of any defined Windows NT user. This is referred to as the privileged
proxy feature. An extension has been added to the APPC MC_ALLOCATE verb to invoke this feature.

An APPC application becomes privileged by being started in a Windows NT user account that is a member of a special Windows
NT group. When a Host Security Domain is configured, Host Integration Server 2000 Manager will define a second Windows NT
group for use with the host security features of Host Integration Server 2000. If the user account under which the actual client is
running is a member of this second Windows NT group, the client is privileged to initiate an APPC conversation on behalf of any
user account defined in the Host Account Cache.

The following describes how the privileged proxy feature works:

The Host Integration Server 2000 administrator creates a Host Security Domain called APP. Host Integration Server 2000
Manager now creates two Windows NT groups. The first group is called APP and the second is called APP_PROXY for this
example. Users that are assigned to the APP group are enabled for single signon. Users assigned to the APP_PROXY group are
privileged proxies. The administrator adds the Windows NT user AppcUser to the APP_PROXY group using the Users button on
the Host Security Domain property dialog box in Host Integration Server 2000 Manager.

The administrator then sets up an APPC application on the Host Integration Server 2000 server to run as a Windows NT service
called APPCAPP and that service has been setup to operate under the AppcUser user account. When APPCAPP runs, it opens an
APPC session via an ALLOCATE verb using the extended VCB format and specifies the Windows NT username of the desired user,
UserA (for example).

The SNA Service sees the session request coming from a connection that is a member of the Host Security Domain APP. The
Client/Server interface tells the SNA Service that the actual client is AppcUser.

The SNA Service checks to see if AppcUser is a member of the APP_PROXY group. Because AppcUser is a member of APP_PROXY,
the SNA Service inserts the Username/Password for UserA in the APPC Attach (FMH-5) command and sends it off to the partner
TP.

In order to support the privileged proxy feature, the APPC application must implement the following program logic:

The APPC application must determine the Windows NT user ID and domain name that it wishes to impersonate.

The APPC application must set the following parameters before calling the MC_ALLOCATE verb:

Enable the use of the extended MC_ALLOCATE verb control block structure by setting the AP_EXTD_VCB flag in the opext field.

Set security to AP_PROXY_SAME, AP_PROXY_PGM or AP_PROXY_STRONG.

Set up the pointers for proxy_user and proxy_domain to point to UNICODE strings containing the user name and domain name
of the user to be impersonated.

The application does not need to set up the user_id and pwd fields in the MC_ALLOCATE VCB.

When the APPC application performs the above steps and issues the MC_ALLOCATE verb, the Host Integration Server 2000
server will perform a lookup in the host security domain for the specified Windows NT user and set the user ID and password
fields in the FMH-5 Attach message sent to the remote system.

Microsoft Host Integration Server 2000

MC_CONFIRM
The MC_CONFIRM verb sends the contents of the local LU's send buffer and a confirmation request to the partner TP.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_CONFIRM verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_CONFIRM.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id
Returned parameter. Identifies the conversation established between the two TPs.

rts_rcvd
Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND, which requests the local TP to change
the conversation to RECEIVE state.

To change to RECEIVE state operating on Microsoft® Windows NT®, Windows 95, or Windows 98, the local TP can use
MC_PREPARE_TO_RECEIVE, MC_RECEIVE_AND_WAIT, or MC_RECEIVE_AND_POST.

To change to RECEIVE state operating on Windows 3.x, the local TP can use MC_PREPARE_TO_RECEIVE or
MC_RECEIVE_AND_WAIT.

To change to RECEIVE state operating on OS/2, the local TP can use MC_RECEIVE_AND_POST.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_CONFIRM_ON_SYNC_LEVEL_NONE

struct mc_confirm {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Secondary return code; the local TP attempted to use MC_CONFIRM in a conversation with a synchronization level of
AP_NONE. The synchronization level, established by MC_ALLOCATE, must be AP_CONFIRM_SYNC_LEVEL.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state.

AP_CONFIRM_NOT_LL_BDY

Secondary return code; the conversation for the local TP was in SEND state, and the local TP did not finish sending a logical
record.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE, AP_CONFIRM_SYNC_LEVEL, or
AP_SYNCPT) specified in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer has encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it can indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet
received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

In response to MC_CONFIRM, the partner TP normally issues MC_CONFIRMED to confirm that it has received the data without
error. (If the partner TP encounters an error, it issues MC_SEND_ERROR or abnormally deallocates the conversation.)

The TP can issue MC_CONFIRM only if the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL.

The conversation must be in SEND state when the TP issues this verb. State changes, summarized in the following table, are based
on the value of the primary_rc.

primary_rc New state
AP_OK No change
AP_ALLOCATION_ERROR RESET
AP_COMM_SUBSYSTEM_ABENDED
AP_COMM_SUBSYSTEM_NOT_LOADED

RESET
RESET

AP_CONV_FAILURE_RETRY
AP_CONV_FAILURE_NO_RETRY

RESET
RESET

AP_DEALLOC_ABEND
AP_DEALLOC_ABEND_PROG
AP_DEALLOC_ABEND_SVC
AP_DEALLOC_ABEND_TIMER

RESET
RESET
RESET
RESET

AP_PROG_ERROR_PURGING
AP_SVC_ERROR_PURGING

RECEIVE
RECEIVE

MC_CONFIRM waits for a response from the partner TP. A response is generated by one of the following verbs in the partner TP:

MC_CONFIRMED
MC_SEND_ERROR
MC_DEALLOCATE with dealloc_type set to AP_ABEND
TP_ENDED

By issuing MC_CONFIRM after MC_ALLOCATE, the invoking TP can immediately determine whether the allocation was successful
(if synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the MC_ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established between
the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of mode_name.
For more information, see the Microsoft Host Integration Server 2000 online books.

Several parameters of MC_ALLOCATE are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a string from one
character set to the other.

To send the MC_ALLOCATE request immediately, the invoking TP can issue MC_FLUSH or MC_CONFIRM immediately after
MC_ALLOCATE. Otherwise, the MC_ALLOCATE request accumulates with other data in the local LU's send buffer until the buffer
is full.

Microsoft Host Integration Server 2000

MC_CONFIRMED
The MC_CONFIRMED verb responds to a confirmation request from the partner TP. It informs the partner TP that the local TP has
not detected an error in the received data. Because the TP issuing the confirmation request waits for a confirmation,
MC_CONFIRMED synchronizes the processing of the two TPs.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_CONFIRMED verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_CONFIRMED.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd
Returned parameter.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CONFIRMED_BAD_STATE

Secondary return code; the conversation is not in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.

struct mc_confirmed {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it can indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation must be in one of the following states when the TP issues this verb:

CONFIRM
CONFIRM_SEND
CONFIRM_DEALLOCATE

The new state is determined by the old state — the state of the conversation when the local TP issued MC_CONFIRMED. The old
state is indicated by the value of the what_rcvd parameter of the preceding receive verb. The following state changes are
possible:

Old state New state
CONFIRM RECEIVE
CONFIRM_SEND SEND

CONFIRM_DEALLOCATE RESET

Confirmation Requests

A confirmation request is issued by one of the following verbs in the partner TP:

MC_CONFIRM
MC_PREPARE_TO_RECEIVE if ptr_type is set to AP_SYNC_LEVEL and the conversation's synchronization level (established
by MC_ALLOCATE) is AP_CONFIRM_SYNC_LEVEL
MC_DEALLOCATE if dealloc_type is set to AP_SYNC_LEVEL and the conversation's synchronization level (established by
MC_ALLOCATE) is AP_CONFIRM_SYNC_LEVEL
MC_SEND_DATA if type is set to AP_SEND_DATA_CONFIRM and the conversation's synchronization level (established by
MC_ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

A confirmation request is received by the local TP through the what_rcvd parameter of one of the following verbs:

MC_RECEIVE_IMMEDIATE
MC_RECEIVE_AND_WAIT
MC_RECEIVE_AND_POST for Windows NT, Windows 95, Windows 98, , and OS/2

MC_CONFIRMED is issued by the local TP only if what_rcvd contains one of the following values:

AP_CONFIRM_WHAT_RECEIVED
AP_CONFIRM_SEND
AP_CONFIRM_DEALLOCATE

If the rtn_status parameter is set to AP_YES, what_rcvd can also contain the following values:

AP_DATA_COMPLETE_CONFIRM
AP_DATA_COMPLETE_CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_DEALL

Microsoft Host Integration Server 2000

MC_DEALLOCATE
The MC_DEALLOCATE verb deallocates a conversation between two TPs.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC function rather than the
blocking version of this call.

The following structure describes the verb control block used by the MC_DEALLOCATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_DEALLOCATE.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3
A reserved field.

dealloc_type
Supplied parameter. Specifies how to perform the deallocation.

For MC_DEALLOCATE, use AP_ABEND to deallocate the conversation abnormally. If the conversation is in SEND state when the
local TP issues MC_DEALLOCATE, APPC sends the contents of the local LU's send buffer to the partner TP before deallocating
the conversation. If the conversation is in RECEIVE or PENDING_POST state, APPC purges any incoming data before deallocating
the conversation.

A TP should specify AP_ABEND when it encounters an error preventing the successful completion of a transaction.

AP_FLUSH sends the contents of the local LU's send buffer to the partner TP before deallocating the conversation. This value is
allowed only if the conversation is in SEND state.

AP_SYNC_LEVEL uses the conversation's synchronization level (established by MC_ALLOCATE) to determine how to deallocate
the conversation. This value is allowed only if the conversation is in SEND state.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the

struct mc_deallocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char dealloc_type;
 unsigned char reserv4[2];
 unsigned char reserv5[4];
 void (WINAPI *callback)();
 void *correlator;
 unsigned char reserv6[4];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

partner TP before deallocating the conversation.

If the synchronization level is AP_CONFIRM_SYNC_LEVEL, APPC sends the contents of the local LU's send buffer and a
confirmation request to the partner TP. Upon receiving confirmation from the partner TP, APPC deallocates the conversation. If,
however, the partner TP reports an error, the conversation remains allocated.

callback
Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member indicating support for Sync Point. This
parameter is the address of a user-supplied callback function. If this field is NULL, no notification will be provided.

The prototype of the callback routine is as follows:
void WINAPI callback_proc(
struct appc_hdr *vcb,
unsigned char tp_id[8],
unsigned long conv_id,
unsigned short type,
void *correlator
);

The callback procedure can take any name, since the address of the procedure is passed to the APPC DLL. The parameters passed
to the function are as follows:

vcb

A pointer to the MC_DEALLOCATE verb control block that caused the conversation to be deallocated.

tp_id

The TP identifier of the TP that owned the deallocated conversation.

conv_id

The conversation identifier of the deallocated conversation.

type

The type of the message flow that caused the callback to be invoked. Possible values are:

AP_DATA_FLOW Normal data flow on the session.

AP_UNBIND The session was unbound normally.

AP_FAILURE The session terminated due to an outage.

correlator

This value is the correlator specified on the MC_DEALLOCATE verb.

correlator
Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member indicating support for the Sync Point API.
This correlator field allows the TP to specify a value it can use to correlate a call to the callback function with, for example, its
own internal data structures. This value is returned to the TP as one of the parameters of the callback routine when it is invoked.

reserv4
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_DEALLOC_BAD_TYPE

Secondary return code; the dealloc_type parameter was not set to a valid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_DEALLOC_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state, and the TP attempted to flush the send buffer and send a
confirmation request. This attempt occurred because the value of dealloc_type was AP_SYNC_LEVEL and the synchronization
level of the conversation was AP_CONFIRM_SYNC_LEVEL.

AP_DEALLOC_FLUSH_BAD_STATE

Secondary return code; the conversation was not in SEND state and the TP attempted to flush the send buffer. This attempt
occurred because the value of dealloc_type was AP_FLUSH or because the value of dealloc_type was AP_SYNC_LEVEL and
the synchronization level of the conversation was AP_NONE. In either case, the conversation must be in SEND state.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet
received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

Depending on the value of the dealloc_type parameter, the conversation can be in one of the states indicated in the following
table when the TP issues MC_DEALLOCATE.

Dealloc_type Allowed state
AP_FLUSH SEND
AP_SYNC_LEVEL SEND
AP_ABEND Any state except RESET
AP_ABEND_PROG Any state except RESET
AP_ABEND_SVC Any state except RESET
AP_ABEND_TIMER Any state except RESET

State changes, summarized in the following table, are based on the value of the primary_rc.

Primary_rc New state
AP_OK RESET
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET
AP_PROG_ERROR_PURGING RECEIVE

Before deallocating the conversation, this verb performs the equivalent of one of the following:

MC_FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).
MC_CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

After this verb has successfully executed, the conversation identifier is no longer valid.

LU 6.2 Sync Point can use an optimization of the message flows known as implied forget. When the protocol specifies that a
FORGET PS header is required, the next data flow on the session implies that a FORGET has been received. In the normal situation,
the TP is aware of the next data flow when data is received or sent on one of its Sync Point conversations.

However, it is possible that the last message to flow is caused by the conversation being deallocated. In this case, the TP is
unaware when the next data flow on the session occurs. In order to provide the TP with this notification, the MC_DEALLOCATE
verb is modified to allow the TP to register a callback function which will be called:

On the first normal flow transmission (request or response) over the session used by the conversation.
If the session is unbound before any other data flows.
If the session is terminated abnormally due to a DLC outage.

The MC_DEALLOCATE verb also contains a correlator field member that is returned as one of the parameters when the callback
function is invoked. The application can use this parameter in any way (for example, as a pointer to a control block within the
application).

The TP can use the type parameter passed to the callback function to determine whether the message flow indicates an implied
forget has been received.

Note that the MC_DEALLOCATE verb will probably complete before the callback routine is called. The conversation is considered
to be in RESET state and no further verbs can be issued using the conversation identifier. If the application issues a TP_ENDED
verb before the next data flow on the session, the callback routine will not be invoked.

Host Integration Server 2000 allows TPs to deallocate conversations immediately after sending data by specifying the type
parameter on MC_SEND_DATA as AP_SEND_DATA_DEALLOC_*. However, the MC_SEND_DATA verbs do not contain the implied
forget callback function. TPs wishing to receive implied forget notification must issue MC_DEALLOCATE explicitly.

Microsoft Host Integration Server 2000

MC_FLUSH
The MC_FLUSH verb sends the contents of the local LU's send buffer to the partner LU (and TP). If the send buffer is empty, no
action takes place.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_FLUSH verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_FLUSH.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_FLUSH_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

struct mc_flush {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

Data processed by MC_SEND_DATA accumulates in the local LU's send buffer until one of the following happens:

The local TP issues MC_FLUSH (or other verb that flushes the LU's send buffer).
The buffer is full.

The request generated by MC_ALLOCATE is also buffered.

The conversation must be in SEND state when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

MC_GET_ATTRIBUTES
The MC_GET_ATTRIBUTES verb returns the attributes of the conversation.

The following structure describes the verb control block used by the MC_GET_ATTRIBUTES verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_GET_ATTRIBUTES.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

sync_level
Returned parameter. Specifies the level of synchronization processing for the conversation. This parameter determines whether
the TPs can request confirmation of receipt of data and confirm receipt of data.

AP_NONE indicates that confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL indicates that TPs can use confirmation processing in this conversation.

AP_SYNCPT indicates that TPs can use Sync Point Level 2 confirmation processing in this conversation.

struct mc_get_attributes {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char sync_level;
 unsigned char mode_name[8];
 unsigned char net_name[8];
 unsigned char lu_name[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char plu_un_name[8];
 unsigned char reserv4[2];
 unsigned char fqplu_name[17];
 unsigned char reserv5;
 unsigned char user_id[10];
 unsigned long conv_group_id;
 unsigned char conv_corr_len;
 unsigned char conv_corr[8];
 unsigned char reserv6[13];
NOTE: The following fields are present when the high bit of opext is set (opext & AP_EXTD_VCB
) != 0.
 unsigned char luw_id[26];
 unsigned char sess_id[8];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

mode_name
Returned parameter. Specifies the name of a set of networking characteristics. It is a type A EBCDIC character string.

net_name
Returned parameter. Specifies the name of the SNA network containing the local LU used by this TP. It is a type A EBCDIC
character string.

lu_name
Returned parameter. Provides the name of the local LU.

lu_alias
Returned parameter. Provides the alias by which the local LU is known to the local TP. It is an ASCII character string.

plu_alias
Returned parameter. Provides the alias by which the partner LU is known to the local TP. It is an ASCII character string.

plu_un_name
Returned parameter. Specifies the uninterpreted name of the partner LU — the name of the partner LU as defined to the system
services control point (SSCP). It is a type AE EBCDIC character string. This parameter is returned only if the local LU is
dependent.

fqplu_name
Returned parameter. Provides the fully qualified name of the partner LU. It is a type A EBCDIC character string. The field
contains the network name, an EBCDIC period, and the partner-LU name.

user_id
Returned parameter. Specifies the user identifier sent by the invoking TP through MC_ALLOCATE to access the invoked TP (if
applicable). It is a type AE EBCDIC character string. The field contains the user identifier if the following conditions are true:

The invoked TP requires conversation security.
MC_GET_ATTRIBUTES was issued by the invoked TP.

Otherwise, the field contains spaces.

conv_group_id
Returned parameter. Specifies the conversation group identifier for the session to which the conversation has been allocated.
This is also returned on MC_ALLOCATE and RECEIVE_ALLOCATE.

conv_corr_len
Returned parameter. Specifies the length of the conversation correlator identifier that is returned.

conv_corr
Returned parameter. Specifies the conversation correlator identifier (if any) that the source LU assigns to identify the
conversation, which is unique for the source/partner LU pair. It is sent by the source LU on the allocation request.

 Note The following fields are present when the high bit of opext is set (opext & AP_EXTD_VCB) != 0.These
fields are only present when when using Sync Point Level 2 support.

luw_id
Logical unit-of-work identifier.

sess_id
Session identifier.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

MC_POST_ON_RECEIPT
The MC_POST_ON_RECEIPT verb allows the application to register to receive a notification when data or status arrives at the
local LU without actually receiving it at the same time. This verb can only be issued while in RECEIVE state and it never causes a
change in conversation state. This verb is only supported on Microsoft® Windows NT® and Microsoft® Windows® 95 by
Microsoft® SNA Server version 3.0 with Service Pack 1 or later and by SNA Server version 4.0.

When the TP issues this verb, APPC returns control to the TP immediately. When the specified conditions are satisfied, the
Win32® event specified by the sema parameter is signalled and the verb completes. Then the TP looks at the return code in the
verb control block to determine whether or not any data or status notification has arrived at the local LU and issues an
MC_RECEIVE_IMMEDIATE or MC_RECEIVE_AND_WAIT verb to actually receive the data or status notification.

The MC_POST_ON_RECEIPT verb implements both the POST_ON_RECEIPT and TEST verbs as described in the IBM Transaction
Programmer's manual for LU Type 6.2.

The following structure describes the verb control block used by the MC_POST_ON_RECEIPT verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_POST_ON_RECEIPT.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv1
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv2
A reserved field.

reserv3
A reserved field.

reserv4
A reserved field.

max_len
Supplied parameter. Specifies the length of data that triggers APPC to post a notification to the TP.

struct mc_post_on_receipt {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned char primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short reserv2;
 unsigned char reserv3;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short reserv5;
 unsigned char * reserv6;
 unsigned char reserv7[5];
 unsigned long sema;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

reserv5
A reserved field.

reserv6
A reserved field.

reserv7
A reserved field.

sema
Supplied parameter. Specifies the handle of a Win32 event. The event should have been created by the TP and the TP is
responsible for ensuring that it is reset before a call is made and after the verb completes.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_DATA

Secondary return code; data is available for the program to receive.

AP_NOT_DATA

Secondary return code; information other than data is available for the program to receive.

AP_CANCELLED
Primary return code; the verb was canceled.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the sema parameter was not set to a valid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE.
The partner TP has encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

AP_DEALLOC_NORMAL
Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued
MC_DEALLOCATE with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL
AP_FLUSH
AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

AP_PROG_ERROR_NO_TRUNC
Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet
received is purged.

AP_PROG_ERROR_TRUNC
Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was
truncated.

AP_SVC_ERROR_NO_TRUNC
Primary return code; the partner TP (or partner LU) issued MC_SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only), CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state. Data sent to the partner TP was not truncated.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued MC_SEND_ERROR with err_type set to AP_SVC while in RECEIVE,

PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only), CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been purged.

AP_SVC_ERROR_TRUNC
Primary return code; the partner TP (or partner LU) issued MC_SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only), CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been truncated.

Remarks

While an MC_POST_ON_RECEIPT verb is outstanding, the following verbs can be issued on the same conversation:

GET_ATTRIBUTES

GET_TYPE

MC_DEALLOCATE

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_REQUEST_TO_SEND

MC_SEND_ERROR

MC_TEST_RTS

TP_ENDED

Issuing any of the following verbs prior to completion of the asynchronous MC_POST_ON_RECEIPT verb causes the
MC_POST_ON_RECEIPT verb to be canceled (the Win32 event is signaled and the primary return code in the verb control block
is set to AP_CANCELLED).

MC_DEALLOCATE

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_SEND_ERROR

TP_ENDED

Microsoft Host Integration Server 2000

MC_PREPARE_TO_RECEIVE
The MC_PREPARE_TO_RECEIVE verb changes the state of the conversation for the local TP from SEND to RECEIVE.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_PREPARE_TO_RECEIVE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_PREPARE_TO_RECEIVE.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

ptr_type
Supplied parameter. Specifies how to perform the state change.

Use AP_FLUSH to send the contents of the local LU's send buffer to the partner LU (and TP) before changing the conversation's
state to RECEIVE.

The AP_SYNC_LEVEL value uses the conversation's synchronization level (established by MC_ALLOCATE) to determine how to
perform the state change.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the
partner TP before changing the conversation's state to RECEIVE. If the synchronization level is AP_CONFIRM_SYNC_LEVEL,
APPC sends the contents of the local LU's send buffer and a confirmation request to the partner TP. Upon receiving
confirmation from the partner TP, APPC changes the conversation's state to RECEIVE. If, however, the partner TP reports an
error, the state changes to RECEIVE or RESET. See the Remarks in this topic.

locks
Supplied parameter. Specifies when APPC should return control to the local TP.

Use this parameter only if ptr_type is set to AP_SYNC_LEVEL and the synchronization level of the conversation, established by
MC_ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. (Otherwise, the parameter is ignored.)

AP_LONG indicates that APPC returns control to the local TP when the confirmation and subsequent data from the
partner TP arrive at the local LU. (This method results in more efficient use of the network but requires a longer time to
return control to the local TP.)

struct mc_prepare_to_receive {
 unsigned short opcode;
 unsigned char opext;
 unsigned char primary_rc;
 unsigned short reserv2;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char ptr_type;
 unsigned char locks;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_SHORT indicates that APPC returns control to the local TP when the confirmation from the partner TP arrives at the
local LU.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_P_TO_R_INVALID_TYPE

Secondary return code; the ptr_type parameter was not set to a valid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_P_TO_R_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_P_TO_R_NOT_LL_BDY

Secondary return code; the local TP did not finish sending a logical record.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Microsoft® Windows NT®, Windows 95, Windows 98, , and
OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent
but not yet received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

Before changing the conversation state, this verb performs the equivalent of one of the following:

MC_FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).
MC_CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

After this verb has successfully executed, the local TP can receive data.

The conversation must be in SEND state when the TP issues this verb.

State changes, summarized in the following table, are based on the value of primary_rc.

primary_rc New state
AP_OK RECEIVE
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_SVC_ERROR_PURGING RECEIVE

The conversation does not change to SEND state for the partner TP until the partner TP receives one of the following values
through the what_rcvd parameter of a subsequent receive verb:

AP_SEND
AP_CONFIRM_SEND and replies with MC_CONFIRMED
AP_DATA_COMPLETE_CONFIRM_SEND and replies with MC_CONFIRMED
AP_DATA_CONFIRM_SEND and replies with MC_CONFIRMED

The receive verbs are MC_RECEIVE_AND_POST (Windows NT, Windows 95, Windows 98, and OS/2), MC_RECEIVE_IMMEDIATE,
and MC_RECEIVE_AND_WAIT.

Microsoft Host Integration Server 2000

MC_RECEIVE_AND_POST
The MC_RECEIVE_AND_POST verb receives application data and status information asynchronously. This allows the local TP to
proceed with processing while data is still arriving at the local LU.

MC_RECEIVE_AND_POST is only supported under the Microsoft® Windows NT®, Microsoft® Windows® 95, and OS/2
operating systems. For similar functionality under the Windows version 3.x graphical environment, use MC_RECEIVE_AND_WAIT
in conjunction with WinAsyncAPPC. Specifically, while an asynchronous MC_RECEIVE_AND_POST is outstanding, the following
verbs can be issued on the same conversation:

GET_TYPE
MC_GET_ATTRIBUTES
MC_REQUEST_TO_SEND
MC_SEND_ERROR
MC_TEST_RTS
TP_ENDED

This allows an application to use an asynchronous MC_RECEIVE_AND_POST to receive data. While the
MC_RECEIVE_AND_POST is outstanding, it can still use MC_SEND_ERROR and REQUEST_TO_SEND. It is recommended that
you use this feature for full asynchronous support. For information on how a TP receives data and how to use this verb, see
Remarks in this topic.

The following structure describes the verb control block used by the MC_RECEIVE_AND_POST verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_AND_POST.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the

struct mc_receive_and_post {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char reserv4;
 unsigned char rts_rcvd;
 unsigned char reserv5;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char FAR * sema;
 unsigned char reserv6;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

invoking TP or by RECEIVE_ALLOCATE in the invoked TP.
what_rcvd

Returned parameter. Indicates whether data or conversation status was received.

AP_CONFIRM_DEALLOCATE indicates that the partner TP issued MC_DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL. The conversation's synchronization level, established by MC_ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues MC_CONFIRMED.
AP_CONFIRM_SEND indicates that the partner TP issued MC_PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL. The conversation's synchronization level, established by MC_ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues MC_CONFIRMED, and begins to send data.
AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP issued MC_CONFIRM. Upon receiving this value, the local TP
normally issues MC_CONFIRMED.
AP_DATA_COMPLETE indicates, for MC_RECEIVE_AND_POST, that the local TP has received a complete data record or
the last part of a data record. Upon receiving this value, the local TP normally reissues MC_RECEIVE_AND_POST or
issues another receive verb. If the partner TP has sent more data, the local TP begins to receive a new unit of data.
Otherwise, the local TP examines status information.

If primary_rc contains AP_OK and what_rcvd contains AP_SEND, AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE, or
AP_CONFIRM_WHAT_RECEIVED, see the description of the value (in this section) for the next action the local TP normally
takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to the
MC_DEALLOCATE issued by the partner TP.

AP_DATA_INCOMPLETE indicates, for MC_RECEIVE_AND_POST, that the local TP has received an incomplete data record.
The max_len parameter specified a value less than the length of the data record (or less than the remainder of the data
record if this is not the first receive verb to read the record). Upon receiving this value, the local TP normally reissues
MC_RECEIVE_AND_POST (or issues another receive verb) to receive the next part of the record.
AP_NONE indicates that the TP did not receive data or conversation status indicators.
AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the conversation
is now in SEND state. Upon receiving this value, the local TP normally uses MC_SEND_DATA to begin sending data.

rtn_status
Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.
AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The data is the last data record before the status indicator.

rts_rcvd
Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND.

AP_YES indicates that the partner TP issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.
AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

max_len
Supplied parameter. Specifies the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

The value must not exceed the length of the buffer to contain the received data. The offset of dptr plus the value of max_len must
not exceed the size of the data segment.

dlen
Returned parameter. Specifies the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr
Supplied parameter. Provides the address of the buffer to contain the data received by the local LU.

For the Windows NT, Windows 95, and Windows 98 operating systems, the data buffer can reside in a static data area or in a
globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the
DosAllocSeg function with Flags equal to 1. The data buffer must fit entirely on the data segment.

sema
Supplied parameter. Provides the address of the semaphore that APPC is to clear when the asynchronous receiving operation is
finished. On OS/2, the sema parameter is either a RAM or system semaphore. On Windows NT, Windows 95, and Windows 98
the sema parameter is an event handle obtained by calling either the CreateEvent or OpenEvent Win32® function.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DEALLOC_NORMAL
Primary return code; the partner TP issued MC_DEALLOCATE with dealloc_type set to AP_FLUSH or AP_SYNC_LEVEL with the
synchronization level of the conversation specified as AP_NONE.

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the address of the RAM semaphore or system semaphore handle was invalid.

APPC cannot trap all invalid semaphore handles. If the TP passes a bad RAM semaphore handle, a protection
violation results.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_POST_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_RCV_AND_POST_NOT_LL_BDY

Secondary return code; the conversation was in SEND state; the TP began but did not finish sending a logical record.

AP_CANCELED

Primary return code; the local TP issued one of the following verbs, which canceled MC_RECEIVE_AND_POST:

MC_DEALLOCATE with dealloc_type set to AP_ABEND

MC_SEND_ERROR

TP_ENDED

Issuing one of these verbs causes the semaphore to be cleared.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC
Primary return code; the partner TP issued MC_SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet
received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received is one data record.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete unit of
data has been received, the local TP can manipulate it. The receive verbs are MC_RECEIVE_AND_POST (Windows NT, Windows
95, Windows 98, , and OS/2), MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

1. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.
If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The following procedure shows tasks performed by the local TP in using MC_RECEIVE_AND_POST.

To use MC_RECEIVE_AND_POST

1. For the Windows NT, Windows 95, and Windows 98 operating systems, the TP retrieves the WinAsyncAPPC message
number by calling the RegisterWindowMessage API or allocating a semaphore. The sema field should be set to NULL if
the application expects to be notified through the Windows message mechanism.

APPC sends the Windows message or clears the semaphore when the local TP finishes receiving data.

For the OS/2 operating system, the TP uses the DosSemSet function to set the semaphore pointed to by sema.

The semaphore will remain set while the local TP receives data asynchronously. APPC will clear the semaphore when the local TP
finishes receiving data.

1. The TP issues MC_RECEIVE_AND_POST.
2. The TP checks the value of primary_rc.

If primary_rc is AP_OK, the receive buffer (pointed to by dptr) is asynchronously receiving data from the partner TP. While
receiving data asynchronously, the local TP can:

Perform tasks not related to this conversation.
Issue MC_REQUEST_TO_SEND.
Gather information about this conversation by issuing GET_TYPE, MC_GET_ATTRIBUTES, or MC_TEST_RTS.
Prematurely cancel MC_RECEIVE_AND_POST by issuing MC_DEALLOCATE with dealloc_type set to AP_ABEND;
MC_SEND_ERROR; or TP_ENDED.

If, however, primary_rc is not AP_OK, MC_RECEIVE_AND_POST has failed. In this case, the local TP does not perform the next
two tasks.

1. For the Windows NT, Windows 95, and Windows 98 operating systems, when the TP finishes receiving data
asynchronously, APPC issues the WinAsyncAPPC Windows message or clears the semaphore.

For the OS/2 operating system, the TP uses the DosSemWait function to wait for APPC to clear the semaphore pointed to by
sema. When the TP finishes receiving data asynchronously, APPC clears the semaphore. To prevent the local TP from waiting,
have it test the semaphore (invoking DosSemWait with Timeout set to zero) until APPC clears the semaphore.

1. The TP checks the new value of primary_rc.

If primary_rc is AP_OK, the local TP can examine the other returned parameters and manipulate the asynchronously received
data.

If primary_rc is not AP_OK, only secondary_rc and rts_rcvd (request-to-send received) are meaningful.

Conversation State Effects

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing MC_RECEIVE_AND_POST while the conversation is in SEND state has the following effects:

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.
The conversation changes to PENDING_POST state; the local TP is ready to receive information from the partner TP
asynchronously.

The conversation changes states twice:

Upon initial return of the verb, if primary_rc contains AP_OK, the conversation changes to PENDING_POST state.
After completion of the verb, the state changes depending on the value of the following:

The primary_rc parameter

The what_rcvd parameter if primary_rc is AP_OK

The following table shows the new state associated with each value of what_rcvd when primary_rc is AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND
AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA RECEIVE
AP_DATA_COMPLETE RECEIVE
AP_DATA_INCOMPLETE RECEIVE
AP_SEND SEND

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table shows the new state associated with each value of primary_rc other than AP_OK.

primary_rc New state
AP_CANCELED No change
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_PROG_ERROR_NO_TRUNC RECEIVE
AP_SVC_ERROR_PURGING RECEIVE
AP_SVC_ERROR_NO_TRUNC RECEIVE
AP_PROG_ERROR_TRUNC RECEIVE
AP_SVC_ERROR_TRUNC RECEIVE

Microsoft Host Integration Server 2000

MC_RECEIVE_AND_WAIT
The MC_RECEIVE_AND_WAIT verb receives any data that is currently available from the partner TP. If no data is currently
available, the local TP waits for data to arrive.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call. To allow full use to be made of the asynchronous support, asynchronously issued MC_RECEIVE_AND_WAIT
verbs have been altered to act like MC_RECEIVE_AND_POST verbs. Specifically, while an asynchronous MC_RECEIVE_AND_WAIT
is outstanding, the following verbs can be issued on the same conversation:

GET_TYPE
MC_GET_ATTRIBUTES
MC_REQUEST_TO_SEND
MC_SEND_ERROR
MC_TEST_RTS
TP_ENDED

This allows an application, and in particular, a 5250 emulator, to use an asynchronous MC_RECEIVE_AND_WAIT to receive data.
While the MC_RECEIVE_AND_WAIT is outstanding, it can still use MC_SEND_ERROR and MC_REQUEST_TO_SEND. It is
recommended that you use this feature for full asynchronous support.

The following structure describes the verb control block used by the MC_RECEIVE_AND_WAIT verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_AND_WAIT.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Specifies the conversation identifier.

struct mc_receive_and_wait {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char reserv4;
 unsigned char rts_rcvd;
 unsigned char reserv5;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv6[5];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd
Returned parameter. Indicates whether data or conversation status was received.

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued MC_DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED.
AP_CONFIRM_SEND indicates that the partner TP has issued MC_PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED and begins to send
data.
AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued MC_CONFIRM. Upon receiving this value, the
local TP normally issues MC_CONFIRMED.
AP_DATA_COMPLETE indicates, for MC_RECEIVE_AND_WAIT, that the local TP has received a complete data record or
the last part of a data record. Upon receiving this value, the local TP normally reissues MC_RECEIVE_AND_WAIT or
issues another receive verb. If the partner TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information, if primary_rc contains AP_OK and what_rcvd contains AP_SEND,
AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE, or AP_CONFIRM_WHAT_RECEIVED.

See Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to MC_DEALLOCATE
issued by the partner TP.

AP_DATA_INCOMPLETE indicates that the local TP has received an incomplete data record. The max_len parameter
specified a value less than the length of the data record (or less than the remainder of the data record if this is not the first
receive verb to read the record). Upon receiving this value, the local TP normally reissues MC_RECEIVE_AND_WAIT (or
issues another receive verb) to receive the next part of the record.
AP_NONE indicates that the TP did not receive data or conversation status indicators.
AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the conversation
is now in SEND state. Upon receiving this value, the local TP normally uses MC_SEND_DATA to begin sending data.

rtn_status
Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.
AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The data is the last data record before the status indicator.

rts_rcvd
Returned parameter. Contains the request-to-send indicator.

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.
AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

max_len
Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Windows NT, Windows 95, and Windows 98 operating systems and the Windows graphical environment, this value
must not exceed the length of the buffer to contain the received data.

For the OS/2 operating system, the offset of dptr plus the value of max_len must not exceed the size of the data segment.

By issuing MC_RECEIVE_AND_WAIT with max_len set to zero, the local TP can determine whether the partner TP has data to
send, seeks confirmation, or has changed the conversation state.

dlen
Returned parameter. Indicates the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr
Supplied parameter. Provides the address of the buffer to contain the data received by the local TP.

For the Windows NT, Windows 95, and Windows 98 operating systems and the Windows graphical environment, the data
buffer can reside in a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the
DosAllocSeg function with Flags equal to 1. The data buffer must fit entirely on the data segment.

For the Windows environment, the data buffer can reside in a static data area or in a globally allocated area. The data buffer
must fit entirely within this area.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DEALLOC_NORMAL
Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued
MC_DEALLOCATE with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL
AP_FLUSH
AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_WAIT_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single

conversation.
AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.
AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet
received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received is one data record.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete unit of
data has been received, the local TP can manipulate it.

The receive verbs are MC_RECEIVE_AND_POST (Windows NT, Windows 95, Windows 98, , and OS/2 operating systems),
MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

1. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.
If the partner TP has finished sending data or is waiting for confirmation, status information (available through the
what_rcvd parameter) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing the Verb in SEND State

Issuing MC_RECEIVE_AND_WAIT while the conversation is in SEND state has the following effects:

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.
The conversation changes to RECEIVE state; the local TP waits for the partner TP to send data.

State Change

The new conversation state is determined by the following factors:

The state the conversation is in when the TP issues the verb.
The primary_rc parameter.
The what_rcvd parameter if primary_rc contains AP_OK.

Verb Issued in SEND State

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in SEND state and primary_rc is AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND
AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA RECEIVE
AP_DATA_COMPLETE RECEIVE
AP_DATA_INCOMPLETE RECEIVE
AP_SEND No change
AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in SEND state and primary_rc is not
AP_OK.

primary_rc New state
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_PROG_ERROR_NO_TRUNC RECEIVE
AP_SVC_ERROR_PURGING RECEIVE
AP_SVC_ERROR_NO_TRUNC RECEIVE

Verb Issued in RECEIVE State

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is
AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND
AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA No change
AP_DATA_COMPLETE No change
AP_DATA_INCOMPLETE No change
AP_SEND SEND
AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is not
AP_OK.

primary_rc New state

AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING No change
AP_PROG_ERROR_NO_TRUNC No change
AP_SVC_ERROR_PURGING No change
AP_SVC_ERROR_NO_TRUNC No change
AP_PROG_ERROR_TRUNC No change
AP_SVC_ERROR_TRUNC No change

Microsoft Host Integration Server 2000

MC_RECEIVE_IMMEDIATE
The MC_RECEIVE_IMMEDIATE verb receives any data currently available from the partner TP. If no data is available, the local TP
does not wait. To avoid blocking the conversation, the Microsoft® Windows NT®, Microsoft® Windows® 95, and Windows
version 3.x systems can issue MC_RECEIVE_AND_WAIT in conjunction with WinAsyncAPPC. For OS/2 systems, use
MC_RECEIVE_AND_POST.

The following structure describes the verb control block used by the MC_RECEIVE_IMMEDIATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_IMMEDIATE.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd
Returned parameter. Contains information received with the incoming data:

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued MC_DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED.
AP_CONFIRM_SEND indicates that the partner TP has issued MC_PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED, and begins to send
data.
AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued MC_CONFIRM. Upon receiving this value, the
local TP normally issues MC_CONFIRMED.
AP_DATA_COMPLETE indicates, for MC_RECEIVE_IMMEDIATE in mapped conversations, that the local TP has received a
complete data record or the last part of a data record. Upon receiving this value, the local TP normally reissues

struct mc_receive_immediate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char reserv4;
 unsigned char rts_rcvd;
 unsigned char reserv5;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv6[5];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

MC_RECEIVE_IMMEDIATE or issues another receive verb. If the partner TP has sent more data, the local TP begins to
receive a new unit of data.

Otherwise, the local TP examines status information if primary_rc contains AP_OK and what_rcvd contains any of these
values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

See the description of the value in Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to MC_DEALLOCATE
issued by the partner TP.

AP_DATA_INCOMPLETE indicates for MC_RECEIVE_IMMEDIATE in mapped conversations that the local TP has received
an incomplete data record. The max_len parameter specified a value less than the length of the data record (or less than
the remainder of the data record if this is not the first receive verb to read the record). Upon receiving this value, the local
TP normally reissues MC_RECEIVE_IMMEDIATE (or issues another receive verb) to receive the next part of the record.
AP_NONE indicates that the TP did not receive data or conversation status indicators.
AP_SEND indicates, for the partner TP, the conversation has entered RECEIVE state. For the local TP, the conversation is
now in SEND state. Upon receiving this value, the local TP normally uses MC_SEND_DATA to begin sending data.

rtn_status
Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.
AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The data is the last data record before the status indicator.

rts_rcvd
Returned parameter. Contains the request-to-send indicator. Possible values are:

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.
AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

max_len
Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Windows NT, Windows 95, and Windows 98 operating systems and the Windows graphical environment, this value
must not exceed the length of the buffer to contain the received data.

For the OS/2 operating system, the offset of dptr plus the value of max_len must not exceed the size of the data segment.

By issuing MC_RECEIVE_IMMEDIATE with max_len set to zero, the local TP can determine whether the partner TP has data to
send, seeks confirmation, or has changed the conversation state.

dlen
Returned parameter. Provides the number of bytes of data received. Data is stored in a buffer specified by dptr. A length of zero
indicates that no data was received.

dptr
Supplied parameter. Address of the buffer to contain the data received by the local TP.

For the Windows NT, Windows 95, and Windows 98 operating systems and the Windows graphical environment, the data
buffer can reside in a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the function
DosAllocSeg with Flags equal to 1. The data buffer must fit entirely on the data segment.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_UNSUCCESSFUL
Primary return code; no data is immediately available from the partner TP.

AP_DEALLOC_NORMAL
Primary return code; the partner TP has deallocated the conversation without requesting confirmation. The partner TP issued
MC_DEALLOCATE with dealloc_type set to one of the following:

AP_FLUSH
AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_IMMD_BAD_STATE

Secondary return code; the conversation was not in RECEIVE state.

AP_ALLOCATION_ERROR

Secondary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC
Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, Windows 98, , and OS/2 only),
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet
received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.
AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received is one data record.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete unit of
data has been received, the local TP can manipulate it.

The receive verbs are MC_RECEIVE_AND_POST (Windows NT, Windows 95, Windows 98, , and OS/2 operating systems),
MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

1. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.
If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE state when the TP issues this verb.

The new state is determined by primary_rc. If primary_rc is AP_OK, the new state is determined by what_rcvd.

The following table details the state changes when the primary_rc is AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND
AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA No change
AP_DATA_COMPLETE No change
AP_DATA_INCOMPLETE No change
AP_SEND SEND
AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when the primary_rc is not AP_OK.

primary_rc New state
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING No change
AP_PROG_ERROR_NO_TRUNC No change
AP_SVC_ERROR_PURGING No change
AP_SVC_ERROR_NO_TRUNC No change
AP_PROG_ERROR_TRUNC No change
AP_SVC_ERROR_TRUNC No change
AP_UNSUCCESSFUL No change

Microsoft Host Integration Server 2000

MC_RECEIVE_LOG_DATA
The MC_RECEIVE_LOG_DATA verb allows the user to register to receive the log data associated with an inbound Function
Management Header 7 (FMH7) error report. The verb passes a buffer to APPC, and any log data received is placed in that buffer.
APPC continues to use this buffer as successive FMH7s arrive until it is provided with another buffer (that is, until the TP issues
another MC_RECEIVE_LOG_DATA specifying a different buffer or no buffer at all). This verb is only supported on Microsoft®
Windows NT® and Microsoft® Windows® 95 by Microsoft® SNA Server version 3.0 with Service Pack 1 or later and by SNA
Server version 4.0.

Note that the TP itself is responsible for allocating and freeing the buffer. After the buffer has been passed to APPC, the TP should
either issue another MC_RECEIVE_LOG_DATA specifying a new buffer or a zero-length buffer, or wait until the conversation has
finished before freeing the original buffer.

When an FMH7 is received, APPC copies any associated error log general data stream (GDS) into the buffer. If there is no
associated error log variable, the buffer is zeroed out. It is up to the TP to check the buffer whenever a return code from a receive
verb indicates that an error has been received.

The following structure describes the verb control block used by the MC_RECEIVE_LOG_DATA verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_LOG_DATA.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

‹reserv1
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

log_dlen
Supplied parameter. Specifies the maximum length of log data that APPC can place in the buffer (that is, the buffer size). The
range is from 0 through 65535. Note that a length of zero here indicates that any previous MC_RECEIVE_LOG_DATA verb
should be cancelled.

log_dptr
Supplied parameter. Specifies the address of the buffer that APPC will use to store the log data.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

struct mc_receive_log_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

Microsoft Host Integration Server 2000

MC_REQUEST_TO_SEND
The MC_REQUEST_TO_SEND verb notifies the partner TP that the local TP wants to send data.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_REQUEST_TO_SEND verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_REQUEST_TO_SEND.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_R_T_S_BAD_STATE

Secondary return code; the conversation is not in an allowed state when the TP issued this verb.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

struct mc_request_to_send {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Host Integration Server 2000 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any of the following states when the TP issues this verb:

CONFIRM

PENDING_POST (OS/2)

RECEIVE

There is no state change.

The request-to-send notification is received by the partner program through the rts_rcvd parameter of the following verbs:

MC_CONFIRM
MC_RECEIVE_AND_POST (Windows NT, Windows 95, and OS/2 operating systems)
MC_RECEIVE_AND_WAIT
MC_RECEIVE_IMMEDIATE
MC_SEND_DATA

MC_SEND_ERROR

It is also indicated by a primary_rc of AP_OK on MC_TEST_RTS.

Request-to-send notification is sent to the partner TP immediately; APPC does not wait until the send buffer fills up or is flushed.
Consequently, the request-to-send notification may arrive out of sequence. For example, if the local TP is in SEND state and issues
MC_PREPARE_TO_RECEIVE followed by MC_REQUEST_TO_SEND, the partner TP, in RECEIVE state, may receive the request-to-
send notification before it receives the send notification. For this reason, request-to-send can be reported to a TP through a
receive verb.

In response to this request, the partner TP can change the conversation to:

RECEIVE state by issuing MC_PREPARE_TO_RECEIVE or MC_RECEIVE_AND_WAIT.
PENDING_POST state by issuing MC_RECEIVE_AND_POST.

The partner TP can also ignore the request-to-send.

The conversation state changes to SEND for the local TP when the local TP receives one of the following values through the
what_rcvd parameter of a subsequent receive verb:

AP_CONFIRM_SEND and replies with MC_CONFIRMED
AP_DATA_COMPLETE_CONFIRM_SEND and replies with MC_CONFIRMED
AP_SEND

The receive verbs are MC_RECEIVE_AND_POST (Microsoft® Windows NT®, Windows 95, and OS/2 operating systems),
MC_RECEIVE_IMMEDIATE, and MC_RECEIVE_AND_WAIT.

Microsoft Host Integration Server 2000

MC_SEND_CONVERSATION
The MC_SEND_CONVERSATION verb allocates a session between the local LU and partner LU, sends data on the session, and
then deallocates the session.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_SEND_CONVERSATION verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_SEND_CONVERSATION.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id
Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_ctl
Supplied parameter. Specifies how APPC should select a session to allocate for the conversation and when the local LU should
return control to the local TP. The allowed values are:

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns

struct mc_send_conversation {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3[8];
 unsigned char rtn_ctl;
 unsigned char reserv4;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv6[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv6;
 unsigned char fqplu_name[17];
 unsigned char reserv7[8];
 unsigned short dlen;
 unsigned char FAR * dptr;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

control to the TP.
AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU returns control
immediately. Note that if a session is not available, the TP waits for one.
AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs (as described in Return Codes in this
topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.
AP_WHEN_CONWINNER_ALLOC specifies that the LU does not return control until it allocates a contention-winner
session or encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU returns
control immediately. Note that if a session is not available, the TP waits for one.
AP_WHEN_CONV_GROUP_ALLOC specifies that the LU does not return control to the TP until it allocates the session
specified by conv_group_id or encounters one of the errors described in Return Codes in this topic. If the session is not
available, the TP waits for it to become free.

conv_group_id
Supplied/returned parameter. Used as a supplied parameter when rtn_ctl is WHEN_CONV_GROUP_ALLOC to specify the
identity of the conversation group from which the session should be allocated. When rtn_ctl specifies a different value, and the
primary_rc is AP_OK, this is a returned value. The purpose of this parameter is to provide a TP with the assurance that the same
session will be reallocated and therefore the conversations conducted over the session will occur in the same sequence that
they were initiated.

sense_data
Returned parameter. If the primary and secondary return codes indicate an allocation error (retry or no-retry), an SNA-defined
sense code is returned.

plu_alias
Supplied parameter. Specifies the alias by which the partner LU is known to the local TP. This parameter must match the name
of a partner LU established during configuration. The parameter is an 8-byte, type G ASCII character set that includes:

Uppercase letters
Numerals 0 to 9
Spaces
Special characters $, #, %, and @

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

mode_name
Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration. This parameter
must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set, including
all EBCDIC spaces. These characters are:

Uppercase letters
Numerals 0 to 9
Special characters $, #, and @

The first character in the string must be an uppercase letter or special character.

In a mapped conversation, the name cannot be SNASVCMG (a reserved mode name used internally by APPC).

tp_name
Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by MC_ALLOCATE in the invoking TP
must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte, case-sensitive, EBCDIC character string. This parameter can consist of characters from the type AE
EBCDIC character set. These characters are:

Uppercase and lowercase letters
Numerals 0 to 9
Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte between
0x00 and 0x3F. The other characters are from the EBCDIC AE character set.

security
Supplied parameter. Specifies the information the partner LU requires in order to validate access to the invoked TP.

AP_NONE specifies that the invoked TP uses no conversation security.
AP_PGM specifies that the invoked TP uses conversation security and requires a user identifier and password. Use user_id
and pwd to supply this information.
AP_SAME specifies that the invoked TP, invoked with a valid user identifier and password, in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP B
specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified indicator. This
indicator indicates to TP C not to require the password (if TP C is configured to accept an already-verified indicator).

pwd
Supplied parameter. Specifies the password associated with user_id. This parameter is required only if the security parameter is
set to AP_PGM and must match the password for user_id that was established during configuration.

This parameter is a 10-byte, case-sensitive, EBCDIC character string. It can consist of characters from the type AE EBCDIC
character set. These characters are:

Uppercase and lowercase letters
Numerals 0 to 9
Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

user_id
Supplied parameter. Specifies the user identifier required to access the partner TP. This parameter is required only if the security
parameter is set to AP_PGM and must match one of the user identifiers configured for the partner TP.

The parameter can consist of characters from the type AE EBCDIC character set. These characters are:

Uppercase and lowercase letters
Numerals 0 to 9
Special characters $, #, @, and period (.)

If the user identifier is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

pip_dlen
Supplied parameter. Specifies the length of the PIP to be passed to the partner TP. The range for this parameter is from 0
through 32767.

pip_dptr
Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater than
zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the GDS format. For more information, see your IBM SNA manual(s).

For the Microsoft® Windows NT® and Windows 95 operating systems and the Windows graphical environment, the data
buffer can reside in a static data area or in a globally allocated area.

For the OS/2 operating system, use a shared, unnamed segment for the data buffer. To allocate the segment, issue the function
call DosAllocSeg with the shared indicator equal to 1. The data buffer must be entirely within the data segment.

fqplu_name
Supplied parameter. Specifies the fully qualified name of the local LU. This parameter must match the fully qualified name of
the local LU defined in the remote node. The parameter is made up of two type A EBCDIC character strings (each of up to eight
characters), which are the network name (NETID) and the LU name of the partner LU. The names are separated by an EBCDIC
period (.). The NETID can be omitted, and if this is the case, the period should also be omitted.

This name must be provided if no plu_alias is provided.

Type A EBCDIC characters contain:

Uppercase letters
Numerals 0 to 9
Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

dlen
Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range for this parameter
is from 0 through 65535.

dptr
Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Windows NT and Windows 95 operating systems and the Windows graphical environment, the data buffer can reside in
a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, use a shared, unnamed segment for the data buffer. To allocate the segment, issue the function
call DosAllocSeg with the shared indicator equal to 1. The data buffer must be entirely within the data segment.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL
Primary return code; the supplied parameter rtn_ctl specified immediate return of the control to the TP (AP_IMMEDIATE), and
the local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was invalid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was invalid.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was invalid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code, APPC did not recognize the supplied partner_lu_alias.

AP_NO_USE_OF_SNASVCMG

Secondary return code; SNASVCMG is not a valid value for mode_name.

AP_INVALID_DATA_SEGMENT

Secondary return code; the PIP data or application data was longer than the allocated data segment, or the address of a data
buffer was wrong.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

This verb is issued by the invoking TP to conduct an entire conversation with the remote TP. If the remote TP rejects either the
conversation initiation or the data, the invoking TP will not receive notification of the rejection.

The conversation state is RESET when the TP issues this verb. There is no state change.

Several parameters of MC_SEND_CONVERSATION are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a
string from one character set to the other.

Normally, the value of mode_name must match the name of a mode configured for the invoked TP's node and associated during
configuration with the partner LU. If one of the modes associated with the partner LU on the invoked TP's node is an implicit
mode, the session established between the two LUs will be of the implicit mode when no mode name associated with the partner
LU matches the value of mode_name.

Microsoft Host Integration Server 2000

MC_SEND_DATA
The MC_SEND_DATA verb places data in the local LU's send buffer for transmission to the partner TP.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_SEND_DATA verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_SEND_DATA.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd
Returned parameter. Provides the request-to-send-received indicator.

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use MC_PREPARE_TO_RECEIVE,
MC_RECEIVE_AND_WAIT, or MC_RECEIVE_AND_POST (Microsoft® Windows NT®, Windows 95, and OS/2 operating
systems).
AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

data_type
Supplied parameter. Specifies the type of data to be sent if Sync Point is supported. Valid parameters are:

AP_APPLICATION

AP_USER_CONTROL_DATA

AP_PS_HEADER

struct mc_send_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char data_type;
 unsigned short int dlen;
 unsigned char FAR * dptr ;
 unsigned char type;
 unsigned char reserv4;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

dlen
Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range is from 0 through
65535.

dptr
Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Windows NT and Windows 95 operating systems and the Windows graphical environment, the data buffer can reside in
a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For OS/2, the data buffer must reside on an unnamed, shared segment, which is allocated by the function DosAllocSeg with
Flags equal to 1. The data buffer must fit entirely on the data segment.

type
Supplied parameter. Allows a TP to send data and perform other functions within one API call. For example, you can combine
MC_SEND_DATA with type set to CONFIRM to accomplish the same objective as issuing MC_SEND_DATA followed by
MC_CONFIRM.

AP_SEND_DATA_CONFIRM corresponds to MC_SEND_DATA followed by MC_CONFIRM.
AP_SEND_DATA_FLUSH corresponds to MC_SEND_DATA followed by MC_FLUSH.
AP_SEND_DATA_DEALLOC_ABEND corresponds to MC_SEND_DATA followed by MC_DEALLOCATE with a dealloc_type
of AP_ABEND.
AP_SEND_DATA_DEALLOC_FLUSH corresponds to MC_SEND_DATA followed by MC_DEALLOCATE with a
dealloc_type of AP_FLUSH.
AP_SEND_DATA_DEALLOC_SYNC_LEVEL corresponds to MC_SEND_DATA followed by MC_DEALLOCATE with a
dealloc_type of AP_SYNC_LEVEL.
AP_SEND_DATA_P_TO_R_FLUSH corresponds to MC_SEND_DATA followed by MC_PREPARE_TO_RECEIVE with a
ptr_type of AP_FLUSH.
AP_SEND_DATA_P_TO_R_SYNC_LEVEL corresponds to MC_SEND_DATA followed by MC_PREPARE_TO_RECEIVE with a
ptr_type of AP_SYNC_LEVEL and locks set to AP_SHORT.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_SEND_DATA_INVALID_TYPE

Secondary return code; the specified type was not recognized by APPC.

AP_SEND_DATA_CONFIRM_SYNC_NONE

Secondary return code; the type CONFIRM is not permitted for a conversation that was allocated with a sync_level of NONE.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_SEND_DATA_NOT_SEND_STATE

Secondary return code; the local TP issued MC_SEND_DATA, but the conversation was not in SEND state.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is
purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

The conversation must be in SEND state when the TP issues this verb. State changes, based on primary_rc, are summarized in the
following table.

primary_rc New state
AP_OK No change
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_SVC_ERROR_PURGING RECEIVE

MC_SEND_DATA may wait indefinitely because the partner TP has not issued a receive verb. If this occurs, the send buffer may

fill up.

The data collected in the local LU's send buffer is transmitted to the partner LU (and partner TP) when one of the following occurs:

The send buffer fills up.
The local TP issues MC_FLUSH, MC_CONFIRM, or MC_DEALLOCATE (or other verb that flushes the LU's send buffer).

Microsoft Host Integration Server 2000

MC_SEND_ERROR
The MC_SEND_ERROR verb notifies the partner TP that the local TP has encountered an application-level error.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the MC_SEND_ERROR verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_SEND_ERROR.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd
Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND. Possible values include:

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use MC_PREPARE_TO_RECEIVE,
MC_RECEIVE_AND_WAIT, or MC_RECEIVE_AND_POST.
AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

err_type
For a mapped conversation, this parameter is supplied if Sync Point is supported. Valid values are:

AP_PROG

AP_BACKOUT_NO_RESYNC

AP_BACKOUT_RESYNC

err_dir

struct mc_send_error {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char err_type;
 unsigned char err_dir;
 unsigned char reserv4;
 unsigned char reserv5[2];
 unsigned char reserv6[4];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Supplied parameter. Indicates whether the error is with data just received or with data that is about to be sent. Use this
parameter only when the conversation is in SEND_PENDING state. The parameter is ignored otherwise. The following are
allowed values:

AP_RCV_DIR_ERROR indicates that the TP issued MC_SEND_ERROR after detecting an error associated with the data just
received.
AP_SEND_DIR_ERROR indicates that the TP issued MC_SEND_ERROR after detecting an error associated with data it was
going to send. For example, the TP encountered an error while reading data from the disk drive.

reserv3
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_ERROR_DIRECTION

Secondary return code; the specified err_dir was not recognized by APPC.

AP_SEND_ERROR_BAD_TYPE

Secondary return code; the value of err_type was invalid.

AP_SEND_ERROR_LOG_LL_WRONG

Secondary return code; the LL field of the error log GDS variable did not match the actual length of the data.

The following return codes can be generated when MC_SEND_ERROR is issued in any allowed state:

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Host Integration Server 2000 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This may occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

The following return codes can be generated only if MC_SEND_ERROR is issued in SEND state:

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is
purged.

AP_DEALLOC_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

The following return code can be generated only if MC_SEND_ERROR is issued in RECEIVE state:

AP_DEALLOC_NORMAL
Primary return code; this return code does not indicate an error.

The partner TP issued MC_DEALLOCATE with dealloc_type set to one of the following:

AP_FLUSH
AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

Remarks

The conversation can be in any state except RESET when the TP issues this verb. The conversation state must be SEND_PENDING
if err_dir is used.

The local TP sends the error notification immediately to the partner TP; it does not hold the information in the local LU's send
buffer.

Upon successful execution of this verb, the conversation is in SEND state for the local TP and in RECEIVE state for the partner TP.

The new state is determined by primary_rc. Possible state changes are summarized in the following table.

primary_rc New state
AP_OK SEND
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_SVC_ERROR_PURGING RECEIVE

If the conversation is in RECEIVE state when the TP issues MC_SEND_ERROR, incoming data is purged by APPC. This data
includes:

Data sent by MC_SEND_DATA.
Return code indicators.
Confirmation requests.
Deallocation requests.

APPC does not purge an incoming request-to-send indicator. APPC replaces purged incoming return code indicators with other
return codes. The primary return code AP_OK replaces the following purged return code indicators:

AP_PROG_ERROR_NO_TRUNC

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

The primary return code AP_DEALLOC_NORMAL replaces the following purged return code indicators:

AP_ALLOCATION_ERROR

AP_ALLOCATION_FAILURE_NO_RETRY

AP_ALLOCATION_FAILURE_RETRY

AP_CONVERSATION_TYPE_MISMATCH

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PIP_NOT_ALLOWED

AP_PIP_NOT_SPECIFIED_CORRECTLY

AP_SECURITY_NOT_VALID

AP_SYNC_LEVEL_NOT_SUPPORTED

AP_TP_NAME_NOT_RECOGNIZED

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

AP_TRANS_PGM_NOT_AVAIL_RETRY

When the conversation is in SEND_PENDING state, APPC reports the following return codes to the partner TP based on the value
in err_dir:

AP_PROG_ERROR_PURGING
The local TP issued MC_SEND_ERROR with RECEIVE as the err_dir.

AP_PROG_ERROR_NO_TRUNC
The local TP issued MC_SEND_ERROR with SEND as the err_dir.

Microsoft Host Integration Server 2000

MC_TEST_RTS
The MC_TEST_RTS verb determines whether a request-to-send notification has been received from the partner TP.

The following structure describes the verb control block used by the MC_TEST_RTS verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_TEST_RTS.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL
Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID
Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

struct mc_test_rts {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

MC_TEST_RTS_AND_POST
The MC_TEST_RTS_AND_POST verb allows an application, typically a 5250 emulator, to request asynchronous notification when
a partner TP requests send direction. It is not supported on Microsoft® MS-DOS® platforms.

The following structure describes the verb control block used by the MC_TEST_RTS_AND_POST verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_M_TEST_RTS_AND_POST.

opext
Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3
A reserved field.

handle
Supplied parameter. On Microsoft® Windows NT® and Microsoft® Windows® 95 this field provides the event handle to set.
On Windows 3.x, this field provides the Windows handle to receive the completion message. On OS/2, this field provides the
address of the semaphore APPC is to clear when the asynchronous operation is finished.

Return Codes from Initial Verb

AP_OK
Primary return code; the verb executed successfully. Note particularly that a return code of AP_OK from the initial verb does not
indicate that MC_REQUEST_TO_SEND verb received from the partner TP. It simply indicates that the facility to receive
asynchronous notification has been registered.

AP_UNSUCCESSFUL
Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

struct mc_test_rts_and_post {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned long handle;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications subsystem could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note
that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the
right. This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Return Codes from Asynchronous Completion

AP_OK
Primary return code; the request-to-send notification has been received from the partner TP.

AP_CANCELLED
The outstanding TEST_RTS_AND_POST verb has been terminated. This will occur if the underlying conversation has been
deallocated or an AP_TP_ENDED has been issued.
Note that as with RECEIVE_AND_POST, the TP is still responsible for correctly terminating the conversation and possibly
terminating the TP. Issuing another verb, such as RECEIVE_IMMEDIATE, at this point will indicate the reason for the
conversation failure.

Remarks

The conversation can be in any state except RESET when the TP issues this verb. There is no state change.

A common feature of many APPC applications, such as 5250 emulators, is a requirement to detect a partner's request to send.

Currently, this can be done by polling the APPC interface to detect the partner's request. For example, an application can
occasionally issue one of the following verbs:

MC_TEST_RTS
MC_RECEIVE_IMMEDIATE and check the rts_rcvd field
MC_SEND_DATA of zero bytes, again checking the rts_rcvd field.

Some of the problems associated with this polling approach are:

The application must continually interrupt its main work to poll APPC.
The partner's request is not detected as soon as it becomes available.
These approaches are processor-intensive.

The MC_TEST_RTS_AND_POST verb allows an application running on Windows NT, Windows 95, Windows 3.x, or OS/2, typically
a 5250 emulator, to request asynchronous notification when the partner TP requests send direction.

An APPC application typically issues the MC_TEST_RTS_AND_POST verb while in SEND state and then continues with its main
processing. A request for send direction from the partner TP is indicated asynchronously to the application. After dealing with the
partner's request, the application typically returns to SEND state, reissues MC_TEST_RTS_AND_POST, and continues.

The MC_TEST_RTS_AND_POST verb completes synchronously and the return code AP_OK indicates that a request for
asynchronous notification has been registered. It is important to emphasize that this does not indicate that request-to-send was
received from the partner TP.

When the partner's request to send is received, the asynchronous event completion occurs. It is important to note that this may be
before the completion of the local TP's original MC_TEST_RTS_AND_POST verb. This will be the case if the partner's request to
send was received before the local TP's MC_TEST_RTS_AND_POST verb was issued, or while the local TP's
MC_TEST_RTS_AND_POST verb was being processed.

Microsoft Host Integration Server 2000

POST_ON_RECEIPT
The POST_ON_RECEIPT verb allows the application to register to receive a notification when data or status arrives at the local LU
without actually receiving it at the same time. This verb can only be issued while in RECEIVE state and it never causes a change in
conversation state. This verb is only supported on Microsoft® Windows NT® and Microsoft® Windows® 95 by Microsoft® SNA
Server version 3.0 with Service Pack 1 or later and by SNA Server version 4.0.

When the TP issues this verb, APPC returns control to the TP immediately. When the specified conditions are satisfied the
Win32® event specified by the sema parameter is signalled and the verb completes. Then the TP looks at the return code in the
verb control block to determine whether or not any data or status notification has arrived at the local LU and issues a
RECEIVE_IMMEDIATE or RECEIVE_AND_WAIT verb to actually receive the data or status notification.

The POST_ON_RECEIPT verb implements both the POST_ON_RECEIPT and TEST verbs as described in the IBM Transaction
Programmer's manual for LU Type 6.2.

The following structure describes the verb control block used by the POST_ON_RECEIPT verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_POST_ON_RECEIPT.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv1
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv2
A reserved field.

fill
Supplied parameter. Specifies how the local TP receives data. The following values are allowed:

AP_BUFFER

Specifies that APPC should post a notification when the number of data bytes specified by max_len have arrived at the local LU,
the end of the data has been reached, or information other than data is received.(such as a conversation status, a confirmation,

struct post_on_receipt {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned char primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short reserv2;
 unsigned char fill;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short reserv5;
 unsigned char * reserv6;
 unsigned char reserv7[5];
 unsigned long sema;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

or a syncpoint request).

AP_LL

Specifies that APPC should post a notification when a complete or truncated logical record is received, when a portion of a
logical record is received which is at least equal in length to the length specified by max_len, or when information other than
data is received.

reserv4
A reserved field.

max_len
Supplied parameter. Specifies the length of data that triggers APPC to post a notification to the TP.

reserv5
A reserved field.

reserv6
A reserved field.

reserv7
A reserved field.

sema
Supplied parameter. Specifies the handle of a Win32 event. The event should have been created by the TP and the TP is
responsible for ensuring that it is reset before a call is made and after the verb completes.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_DATA

Secondary return code; data is available for the program to receive.

AP_NOT_DATA

Secondary return code; information other than data is available for the program to receive.

AP_CANCELLED
Primary return code; the verb was canceled.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the sema parameter was not set to a valid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_DEALLOC_NORMAL
Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued DEALLOCATE
with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL
AP_FLUSH
AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

AP_PROG_ERROR_NO_TRUNC
Primary return code; the partner TP has issued SEND_ERROR while the conversation was in SEND state. Data was not truncated.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR. Data sent but not yet received is
purged.

AP_PROG_ERROR_TRUNC
Primary return code; the partner TP has issued SEND_ERROR while the conversation was in SEND state. Data was truncated.

AP_SVC_ERROR_NO_TRUNC
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP was not truncated.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been purged.

AP_SVC_ERROR_TRUNC
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been truncated.

Remarks

While a POST_ON_RECEIPT verb is outstanding, the following verbs can be issued on the same conversation:

GET_ATTRIBUTES

GET_TYPE

DEALLOCATE

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

REQUEST_TO_SEND

SEND_ERROR

TEST_RTS

TP_ENDED

Issuing any of the following verbs prior to completion of the asynchronous POST_ON_RECEIPT verb causes the
POST_ON_RECEIPT verb to be canceled (the Win32 event is signaled and the primary return code in the verb control block is set
to AP_CANCELLED).

DEALLOCATE

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

SEND_ERROR

TP_ENDED

Microsoft Host Integration Server 2000

PREPARE_TO_RECEIVE
The PREPARE_TO_RECEIVE verb changes the state of the conversation for the local TP from SEND to RECEIVE.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the PREPARE_TO_RECEIVE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_PREPARE_TO_RECEIVE.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

ptr_type
Supplied parameter. Specifies how to perform the state change.

Use AP_FLUSH to send the contents of the local LU's send buffer to the partner LU (and TP) before changing the conversation's
state to RECEIVE.

The AP_SYNC_LEVEL value uses the conversation's synchronization level (established by ALLOCATE) to determine how to
perform the state change.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the
partner TP before changing the conversation's state to RECEIVE. If the synchronization level is AP_CONFIRM_SYNC_LEVEL,
APPC sends the contents of the local LU's send buffer and a confirmation request to the partner TP. Upon receiving
confirmation from the partner TP, APPC changes the conversation's state to RECEIVE. If, however, the partner TP reports an
error, the state changes to RECEIVE or RESET. See the Remarks in this topic.

locks
Supplied parameter. Specifies when APPC should return control to the local TP.

Use this parameter only if ptr_type is set to AP_SYNC_LEVEL and the synchronization level of the conversation, established by
ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. (Otherwise, the parameter is ignored.)

Use AP_LONG to indicate that APPC returns control to the local TP when the confirmation and subsequent data from the
partner TP arrive at the local LU. (This method results in more efficient use of the network but requires a longer time to return
control to the local TP.)

struct prepare_to_receive {
 unsigned short opcode;
 unsigned char opext;
 unsigned char primary_rc;
 unsigned short reserv2;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char ptr_type;
 unsigned char locks;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Use AP_SHORT to indicate that APPC returns control to the local TP when the confirmation from the partner TP arrives at the
local LU.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_P_TO_R_INVALID_TYPE

Secondary return code; the ptr_type parameter was not set to a valid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_P_TO_R_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_P_TO_R_NOT_LL_BDY

Secondary return code; the local TP did not finish sending a logical record.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications subsystem could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data
sent but not yet received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued a SEND_ERROR verb with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been purged.

Remarks

Before changing the conversation state, this verb performs the equivalent of one of the following:

FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).
CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

After this verb has successfully executed, the local TP can receive data.

The conversation must be in SEND state when the TP issues this verb.

State changes, summarized in the following table, are based on the value of primary_rc.

primary_rc New state
AP_OK RECEIVE
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_SVC_ERROR_PURGING RECEIVE

The conversation does not change to SEND state for the partner TP until the partner TP receives one of the following values
through the what_rcvd parameter of a subsequent receive verb:

AP_SEND
AP_CONFIRM_SEND and replies with CONFIRMED
AP_DATA_COMPLETE_CONFIRM_SEND and replies with CONFIRMED
AP_DATA_CONFIRM_SEND and replies with CONFIRMED

The receive verbs are RECEIVE_AND_POST (Windows NT, Windows 95, and OS/2), RECEIVE_IMMEDIATE, and
RECEIVE_AND_WAIT.

Microsoft Host Integration Server 2000

RECEIVE_ALLOCATE
The RECEIVE_ALLOCATE verb is issued by the invoked TP to confirm that the invoked TP is ready to begin a conversation with
the invoking TP that issued ALLOCATE or MC_ALLOCATE.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the RECEIVE_ALLOCATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_RECEIVE_ALLOCATE.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_name
Supplied parameter. Provides the name of the local TP. The value of tp_name must match the TP name configured through
registry or environment variables. APPC matches the RECEIVE_ALLOCATE verb's tp_name parameter with the TP name
specified by the incoming allocate, which is generated by MC_ALLOCATE or ALLOCATE in the invoking TP.

This parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of characters
from the type AE EBCDIC character set:

Uppercase and lowercase letters
Numerals 0 through 9
Special characters $, #, and period (.)

If tp_name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte between
0x00 and 0x3F. The other characters are from the type AE EBCDIC character set.

tp_id

struct receive_allocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_name[64];
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char sync_level;
 unsigned char conv_type;
 unsigned char user_id[10];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char reserv3[2];
 unsigned long conv_group_id;
 unsigned char fqplu_name[17];
 unsigned char pip_incoming;
 unsigned char syncpoint_rqd;
 unsigned char reserv4[3];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Returned parameter. Identifies the local TP.
conv_id

Returned parameter. Provides the conversation identifier. It identifies the conversation APPC has established between the two
partner TPs.

sync_level
Returned parameter. Specifies the synchronization level of the conversation. It determines whether the TPs can request
confirmation of receipt of data and confirm receipt of data.

AP_NONE specifies that confirmation processing will not be used in this conversation.
AP_CONFIRM_SYNC_LEVEL specifies that the TPs can use confirmation processing in this conversation.
AP_SYNCPT specifies that TPs can use Sync Point Level 2 confirmation processing in this conversation.

conv_type
Returned parameter. Specifies the type of conversation chosen by the partner TP, using MC_ALLOCATE or ALLOCATE. The
following are possible values:

AP_BASIC_CONVERSATION

AP_MAPPED_CONVERSATION

user_id
Returned parameter. Provides the user identifier specified by the partner TP, using MC_ALLOCATE or ALLOCATE (if the partner
TP set the MC_ALLOCATE or ALLOCATE verb's security parameter to AP_PGM or AP_SAME). It is a type AE EBCDIC character
string.

lu_alias
Returned parameter. Provides the alias by which the local LU is known to the local TP. It is an ASCII character string.

plu_alias
Returned parameter. Provides the alias by which the partner LU (which initiated the incoming allocate) is known to the local TP.
It is an ASCII character string.

mode_name
Returned parameter. Provides the mode name specified by MC_ALLOCATE or ALLOCATE in the partner TP. It is the name of a
set of networking characteristics defined during configuration. The mode_name is a type A EBCDIC character string.

reserv3
A reserved field.

conv_group_id
Conversation group identifier.

fqplu_name
This returned parameter provides the fully qualified LU name.

pip_incoming
This optional supplied and returned parameter is applicable only if Sync Point services are required.

For the supplied parameter:

AP_YES if TP does accept PIP data.

AP_NO if TP does not accept PIP data.

For the returned parameter:

AP_YES if PIP data is available.

AP_NO if PIP data is not available.

syncpoint_rqd
This parameter indicates if Sync Point services are required.

AP_YES if Sync Point is required.

AP_NO if Sync Point is not required.

reserv4
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_UNDEFINED_TP_NAME

Secondary return code; the TP name was not configured correctly.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_ALLOCATE_NOT_PENDING

Secondary return code; APPC did not find an incoming allocate (from the invoking TP) to match the value of tp_name, supplied
by RECEIVE_ALLOCATE. RECEIVE_ALLOCATE waited for the incoming allocate and eventually timed out.

AP_INVALID_PROCESS

Secondary return code; the process issuing RECEIVE_ALLOCATE was different from the one started by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

This must be the first APPC verb issued by the invoked TP. The initial state is RESET. If the verb executes successfully (primary_rc
is AP_OK), the state changes to RECEIVE.

In response to this verb, APPC establishes a conversation between the two TPs and generates a TP identifier for the invoked TP
and a conversation identifier. These identifiers are required parameters for subsequent APPC verbs.

If the invoked TP issues RECEIVE_ALLOCATE and a corresponding incoming allocate (resulting from MC_ALLOCATE or
ALLOCATE issued by the invoking TP) is not present, the invoked TP waits until the incoming allocate arrives or the verb times out.
The time-out value is set by the system administrator.

Microsoft Host Integration Server 2000

RECEIVE_AND_POST
The RECEIVE_AND_POST verb receives application data and status information asynchronously. This allows the local TP to
proceed with processing while data is still arriving at the local LU.

RECEIVE_AND_POST is only supported under the Microsoft® Windows NT®, Microsoft® Windows® 95, and OS/2 operating
systems. For similar functionality under the Windows version 3.x graphical environment, use RECEIVE_AND_WAIT in conjunction
with WinAsyncAPPC. Specifically, while an asynchronous RECEIVE_AND_POST is outstanding, the following verbs can be issued
on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

GET_ATTRIBUTES

GET_TYPE

REQUEST_TO_SEND

SEND_ERROR

TEST_RTS

TP_ENDED

This allows an application to use an asynchronous RECEIVE_AND_POST to receive data. While the RECEIVE_AND_POST is
outstanding, it can still use SEND_ERROR and REQUEST_TO_SEND. It is recommended that you use this feature for full
asynchronous support. For information on how a TP receives data and how to use this verb, see Remarks in this topic.

The following structure describes the verb control block used by the RECEIVE_AND_POST verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_AND_POST.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

struct receive_and_post {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char fill;
 unsigned char rts_rcvd;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char FAR * sema;
 unsigned char reserv5;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd
Returned parameter. Indicates whether data or conversation status was received. Possible values are listed following the
Members section.

rtn_status
Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.
AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The fill parameter specifies BUFFER or LL, and the data is the last logical record before the status indicator.

fill
Supplied parameter. Specifies how the local TP receives data.

Use AP_BUFFER to indicate that the local TP receives data until the number of bytes specified by max_len is reached or until
end of data. Data is received without regard for the logical-record format.

Use AP_LL to indicate that data is received in logical-record format. The data received can be:

A complete logical record.
A max_len byte portion of a logical record.
The end of a logical record.

rts_rcvd
Returned parameter. Indicates whether the partner TP issued REQUEST_TO_SEND. Possible values are:

AP_YES indicates that the partner TP issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.
AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

max_len
Supplied parameter. Specifies the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

The value must not exceed the length of the buffer to contain the received data. The offset of dptr plus the value of max_len
must not exceed the size of the data segment.

dlen
Returned parameter. Specifies the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr
Supplied parameter. Provides the address of the buffer to contain the data received by the local LU.

For the Windows NT and Windows 95 operating systems, the data buffer can reside in a static data area or in a globally
allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the
DosAllocSeg function with Flags equal to 1. The data buffer must fit entirely on the data segment.

sema
Supplied parameter. Provides the address of the semaphore that APPC is to clear when the asynchronous receiving operation is
finished. On OS/2, the sema parameter is either a RAM or system semaphore. On Windows NT and Windows 95, the sema
parameter is an event handle obtained by calling either the CreateEvent or OpenEvent Win32® function.

Values returned by the what_rcvd parameter

AP_CONFIRM_DEALLOCATE indicates that the partner TP issued DEALLOCATE with dealloc_type set to AP_SYNC_LEVEL.
The conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. Upon receiving this
value, the local TP normally issues CONFIRMED.
AP_CONFIRM_SEND indicates that the partner TP issued PREPARE_TO_RECEIVE with ptr_type set to AP_SYNC_LEVEL. The
conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. Upon receiving this value,

the local TP normally issues CONFIRMED, and begins to send data.
AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP issued CONFIRM. Upon receiving this value, the local TP
normally issues CONFIRMED.
AP_DATA indicates that this value can be returned by RECEIVE_AND_POST if fill is set to AP_BUFFER. The local TP received
data until max_len or the end of the data was reached. For more information, see Remarks in this topic.
AP_DATA_COMPLETE indicates, for RECEIVE_AND_POST, that the local TP has received a complete data record or the last
part of a data record.

For RECEIVE_AND_POST with fill set to AP_LL, this value indicates that the local TP has received a complete logical record
or the end of a logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_POST or issues another receive verb. If the partner
TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information.

If primary_rc contains AP_OK and what_rcvd contains AP_SEND, AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE, or
AP_CONFIRM_WHAT_RECEIVED, see the description of the value (in this section) for the next action the local TP normally
takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to the DEALLOCATE
issued by the partner TP.

AP_DATA_INCOMPLETE indicates, for RECEIVE_AND_POST, that the local TP has received an incomplete data record. The
max_len parameter specified a value less than the length of the data record (or less than the remainder of the data record if
this is not the first receive verb to read the record).

For RECEIVE_AND_POST with fill set to AP_LL, this value indicates that the local TP has received an incomplete logical
record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_POST (or issues another receive verb) to receive
the next part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.
AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the conversation is
now in SEND state. Upon receiving this value, the local TP normally uses SEND_DATA to begin sending data.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DATA_SEND
Primary return code; this is a combination of AP_DATA and AP_SEND.

AP_DATA_CONFIRM_SEND
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_SEND.

AP_DATA_CONFIRM
Primary return code; this is a combination of AP_DATA and AP_CONFIRM.

AP_DATA_CONFIRM_DEALLOCATE
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE.

AP_DEALLOC_NORMAL
Primary return code; the partner TP issued DEALLOCATE with dealloc_type set to AP_FLUSH or AP_SYNC_LEVEL with the
synchronization level of the conversation specified as AP_NONE.

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the address of the RAM semaphore or system semaphore handle was invalid.

APPC cannot trap all invalid semaphore handles. If the TP passes a bad RAM semaphore handle, a protection violation
results.

AP_RCV_AND_POST_BAD_FILL

Secondary return code; the fill parameter was set to an invalid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_POST_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_RCV_AND_POST_NOT_LL_BDY

Secondary return code; the conversation was in SEND state; the TP began but did not finish sending a logical record.

AP_CANCELED
Primary return code; the local TP issued one of the following verbs, which canceled RECEIVE_AND_POST:

DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER

SEND_ERROR

TP_ENDED

Issuing one of these verbs causes the semaphore to be cleared.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the

partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications subsystem could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC
Primary return code; the partner TP issued SEND_ERROR with err_type set to AP_PROG while the conversation was in SEND
state. Data was not truncated.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data
sent but not yet received is purged.

AP_PROG_ERROR_TRUNC
Primary return code; in SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR with
err_type set to AP_PROG. The local TP may have received the first part of the logical record through a receive verb.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_NO_TRUNC
Primary return code; while in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC. Data
was not truncated.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been purged.

AP_SVC_ERROR_TRUNC
Primary return code; in SEND state, after sending an incomplete logical record, the partner TP (or partner LU) issued
SEND_ERROR. The local TP may have received the first part of the logical record.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received can be:

One logical record.
A buffer of data received independent of its logical-record format.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it. The receive verbs are RECEIVE_AND_POST (Windows NT,
Windows 95, and OS/2), RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.
If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The following procedure shows tasks performed by the local TP in using RECEIVE_AND_POST.

To use RECEIVE_AND_POST

1. For the Windows NT and Windows 95 operating systems, the TP retrieves the WinAsyncAPPC message number by calling
the RegisterWindowMessage API or allocating a semaphore. The sema field should be set to NULL if the application
expects to be notified through the Windows message mechanism.

APPC sends the Windows message or clears the semaphore when the local TP finishes receiving data.

For the OS/2 operating system, the TP uses the DosSemSet function to set the semaphore pointed to by sema.

The semaphore will remain set while the local TP receives data asynchronously. APPC will clear the semaphore when the
local TP finishes receiving data.

2. The TP issues RECEIVE_AND_POST.
3. The TP checks the value of primary_rc.

If primary_rc is AP_OK, the receive buffer (pointed to by dptr) is asynchronously receiving data from the partner TP. While
receiving data asynchronously, the local TP can:

Perform tasks not related to this conversation.
Issue REQUEST_TO_SEND.
Gather information about this conversation by issuing GET_TYPE, GET_ATTRIBUTES, or TEST_RTS.
Prematurely cancel RECEIVE_AND_POST by issuing DEALLOCATE with dealloc_type set to AP_ABEND_PROG,
AP_ABEND_SVC, or AP_ABEND_TIMER; SEND_ERROR; or TP_ENDED.

If, however, primary_rc is not AP_OK, RECEIVE_AND_POST has failed. In this case, the local TP does not perform the next
two tasks.

4. For the Windows NT and Windows 95 operating systems, when the TP finishes receiving data asynchronously, APPC issues
the WinAsyncAPPC Windows message or clears the semaphore.

For the OS/2 operating system, the TP uses the DosSemWait function to wait for APPC to clear the semaphore pointed to
by sema. When the TP finishes receiving data asynchronously, APPC clears the semaphore. To prevent the local TP from
waiting, have it test the semaphore (invoking DosSemWait with Timeout set to zero) until APPC clears the semaphore.

5. The TP checks the new value of primary_rc.

If primary_rc is AP_OK, the local TP can examine the other returned parameters and manipulate the asynchronously
received data.

If primary_rc is not AP_OK, only secondary_rc and rts_rcvd (request-to-send received) are meaningful.

Conversation State Effects

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing RECEIVE_AND_POST while the conversation is in SEND state has the following effects:

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.
The conversation changes to PENDING_POST state; the local TP is ready to receive information from the partner TP
asynchronously.

The conversation changes states twice:

Upon initial return of the verb, if primary_rc contains AP_OK, the conversation changes to PENDING_POST state.
After completion of the verb, the state changes depending on the value of the following:

The primary_rc parameter

The what_rcvd parameter if primary_rc is AP_OK

The following table shows the new state associated with each value of what_rcvd when primary_rc is AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND
AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA RECEIVE
AP_DATA_COMPLETE RECEIVE
AP_DATA_INCOMPLETE RECEIVE
AP_SEND SEND
AP_DATA_COMPLETE_SEND SEND_PENDING

The following table shows the new state associated with each value of primary_rc other than AP_OK.

primary_rc New state
AP_CANCELED No change
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_PROG_ERROR_NO_TRUNC RECEIVE
AP_SVC_ERROR_PURGING RECEIVE
AP_SVC_ERROR_NO_TRUNC RECEIVE
AP_PROG_ERROR_TRUNC RECEIVE
AP_SVC_ERROR_TRUNC RECEIVE

End of Data for a Basic Conversation

If the local TP issues RECEIVE_AND_POST and sets fill to AP_BUFFER, the receipt of data ends when max_len or the end of the
data is reached. The end of the data is indicated by either primary_rc with a value other than AP_OK (for example,
AP_DEALLOC_NORMAL), or by what_rcvd with one of the following values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM_SEND

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM

To determine if the end of the data has been reached, the local TP reissues RECEIVE_AND_POST. If the new primary_rc contains
AP_OK and what_rcvd contains AP_DATA, the end of the data has not been reached. If, however, the end of the data has been
reached, primary_rc or what_rcvd will indicate the cause of the end of the data.

Troubleshooting

The local TP can wait indefinitely if one of the following situations occurs:

For the Windows NT and Windows 95 operating systems, the local TP issues a RECEIVE_AND_POST request, but either the
partner TP has not sent data or the initial primary_rc is not AP_OK.

For the OS/2 operating system, the local TP issues a DosSemWait function call, but either the partner TP has not sent data
or the initial primary_rc is not AP_OK.

This is because APPC will not issue the Windows message or clear the semaphore.

When a condition resulting in one of the following primary_rc parameters occurs, APPC does not clear the semaphore:

AP_INVALID_SEMAPHORE_HANDLE

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

To test what_rcvd, issue RECEIVE_AND_POST with max_len set to zero, so that the local TP can determine whether the partner
TP has data to send, seeks confirmation, or has changed the conversation state.

Microsoft Host Integration Server 2000

RECEIVE_AND_WAIT
The RECEIVE_AND_WAIT verb receives any data that is currently available from the partner TP. If no data is currently available,
the local TP waits for data to arrive.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call. To allow full use to be made of the asynchronous support, asynchronously issued RECEIVE_AND_WAIT verbs
have been altered to act like RECEIVE_AND_POST verbs. Specifically, while an asynchronous RECEIVE_AND_WAIT is outstanding,
the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

GET_ATTRIBUTES

GET_TYPE

REQUEST_TO_SEND

SEND_ERROR

TEST_RTS

TP_ENDED

This allows an application, and in particular, a 5250 emulator, to use an asynchronous RECEIVE_AND_WAIT to receive data.
While the RECEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR and REQUEST_TO_SEND. It is recommended that
you use this feature for full asynchronous support.

The following structure describes the verb control block used by the RECEIVE_AND_WAIT verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_AND_WAIT.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

struct receive_and_wait {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char fill;
 unsigned char rts_rcvd;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv5[5];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

conv_id
Supplied parameter. Specifies the conversation identifier.

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd
Returned parameter. Indicates whether data or conversation status was received. Possible values are listed in the table following
the Members section.

rtn_status
Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.
AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The fill parameter specifies BUFFER or LL, and the data is the last logical record before the status indicator.

fill
Supplied parameter. Used in a basic conversation to specify how the local TP receives data. The following are allowed values:

AP_BUFFER specifies that the local TP receives data until the number of bytes specified by max_len is reached or until the
end of the data. Data is received without regard for the logical-record format.
AP_LL specifies that data is received in logical-record format. The data received can be a complete logical record, a
max_len byte portion of a logical record, or the end of a logical record.

rts_rcvd
Returned parameter. Contains the request-to-send indicator. Possible values are:

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.
AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

max_len
Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Microsoft® Windows NT® and Windows 95 operating systems and the Windows graphical environment, this value
must not exceed the length of the buffer to contain the received data.

For the OS/2 operating system, the offset of dptr plus the value of max_len must not exceed the size of the data segment.

By issuing RECEIVE_AND_WAIT with max_len set to zero, the local TP can determine whether the partner TP has data to send,
seeks confirmation, or has changed the conversation state.

dlen
Returned parameter. Indicates the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr
Supplied parameter. Provides the address of the buffer to contain the data received by the local TP.

For the Windows NT and Windows 95 operating systems and the Windows graphical environment, the data buffer can reside in
a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the
DosAllocSeg function with Flags equal to 1. The data buffer must fit entirely on the data segment.

For the Windows environment, the data buffer can reside in a static data area or in a globally allocated area. The data buffer
must fit entirely within this area.

Values returned by the what_rcvd member

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues CONFIRMED.
AP_CONFIRM_SEND indicates that the partner TP has issued PREPARE_TO_RECEIVE with ptr_type set to AP_SYNC_LEVEL,
and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. Upon receiving this

value, the local TP normally issues CONFIRMED and begins to send data.
AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued CONFIRM. Upon receiving this value, the local TP
normally issues CONFIRMED.
AP_DATA can be returned in a basic conversation by RECEIVE_AND_WAIT if fill is set to AP_BUFFER. The local TP received
data until max_len or end of data was reached. For more information, see "RECEIVE_AND_WAIT End of Data" at the end of
this topic.
AP_DATA_COMPLETE indicates, for RECEIVE_AND_WAIT, that the local TP has received a complete data record or the last
part of a data record.

For RECEIVE_AND_WAIT with fill set to AP_LL, this value indicates that the local TP has received a complete logical record
or the end of a logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_WAIT or issues another receive verb. If the partner
TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information, if primary_rc contains AP_OK and what_rcvd contains AP_SEND,
AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE, or AP_CONFIRM_WHAT_RECEIVED.

See Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to DEALLOCATE issued
by the partner TP.

AP_DATA_INCOMPLETE indicates, for RECEIVE_AND_WAIT, that the local TP has received an incomplete data record. The
max_len parameter specified a value less than the length of the data record (or less than the remainder of the data record if
this is not the first receive verb to read the record).

For RECEIVE_AND_WAIT with fill set to AP_LL, this value indicates that the local TP has received an incomplete logical
record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_WAIT (or issues another receive verb) to receive
the next part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.
AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the conversation is
now in SEND state. Upon receiving this value, the local TP normally uses SEND_DATA to begin sending data.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DATA_SEND
Primary return code; this is a combination of AP_DATA and AP_SEND.

AP_DATA_CONFIRM_SEND
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_SEND.

AP_DATA_CONFIRM
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_CONFIRM_DEALLOCATE
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE.

AP_DEALLOC_NORMAL
Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued DEALLOCATE
with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_RCV_AND_WAIT_BAD_FILL

Secondary return code; for basic conversations, fill was set to an invalid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_WAIT_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_RCV_AND_WAIT_NOT_LL_BDY

Secondary return code; for basic conversations, the conversation was in SEND state; the TP began but did not finish sending a
logical record.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Host Integration Server 2000 Client system configured with multiple nodes,
there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC
Primary return code; the partner TP has issued SEND_ERROR with err_type set to AP_PROG while the conversation was in

SEND state. Data was not truncated.
AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data
sent but not yet received is purged.

AP_PROG_ERROR_TRUNC
Primary return code; in SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR with
err_type set to AP_PROG. The local TP may have received the first part of the logical record through a receive verb.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_NO_TRUNC
Primary return code; while in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC. Data
was not truncated.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been purged.

AP_SVC_ERROR_NO_TRUNC
Primary return code; while in SEND state, after sending an incomplete logical record, the partner TP (or partner LU) issued
SEND_ERROR. The local TP may have received the first part of the logical record.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received can be:

One logical record.
A buffer of data received independent of its logical-record format.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it.

The receive verbs are RECEIVE_AND_POST (Windows NT, Windows 95, and OS/2 operating systems),
RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.
If the partner TP has finished sending data or is waiting for confirmation, status information (available through the
what_rcvd parameter) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing the Verb in SEND State

Issuing RECEIVE_AND_WAIT while the conversation is in SEND state has the following effects:

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.
The conversation changes to RECEIVE state; the local TP waits for the partner TP to send data.

State Change

The new conversation state is determined by the following factors:

The state the conversation is in when the TP issues the verb.
The primary_rc parameter.
The what_rcvd parameter if primary_rc contains AP_OK.

Verb Issued in SEND State

The following table details the state changes when RECEIVE_AND_WAIT is issued in SEND state and primary_rc is AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND
AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA RECEIVE
AP_DATA_COMPLETE RECEIVE
AP_DATA_INCOMPLETE RECEIVE
AP_SEND No change
AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when RECEIVE_AND_WAIT is issued in SEND state and primary_rc is not AP_OK.

primary_rc New state
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_PROG_ERROR_NO_TRUNC RECEIVE
AP_SVC_ERROR_PURGING RECEIVE
AP_SVC_ERROR_NO_TRUNC RECEIVE

Verb Issued in RECEIVE State

The following table details the state changes when RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA No change
AP_DATA_COMPLETE No change
AP_DATA_INCOMPLETE No change
AP_SEND SEND
AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is not AP_OK.

primary_rc New state
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING No change
AP_PROG_ERROR_NO_TRUNC No change
AP_SVC_ERROR_PURGING No change
AP_SVC_ERROR_NO_TRUNC No change
AP_PROG_ERROR_TRUNC No change
AP_SVC_ERROR_TRUNC No change

RECEIVE_AND_WAIT End of Data

In basic conversations, if the local TP issues RECEIVE_AND_WAIT and sets fill to AP_BUFFER, the receipt of the data ends when
max_len or the end of the data is reached. The end of the data is indicated by either:

A primary_rc parameter with a value other than AP_OK (for example, AP_DEALLOC_NORMAL).
A what_rcvd parameter with one of the following values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM_SEND

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM

To determine if the end of the data has been reached, the local TP reissues RECEIVE_AND_WAIT. If the new primary_rc contains
AP_OK and what_rcvd contains AP_DATA, the end of the data has not been reached. If, however, the end of the data has been
reached, primary_rc or what_rcvd will indicate the cause of the end of the data.

RECEIVE_AND_WAIT waits for data or an indicator to be sent by the partner TP. If you need the local TP to operate continuously,
use RECEIVE_IMMEDIATE instead.

Microsoft Host Integration Server 2000

RECEIVE_IMMEDIATE
The RECEIVE_IMMEDIATE verb receives any data currently available from the partner TP. If no data is available, the local TP does
not wait. To avoid blocking the conversation, the Microsoft® Windows NT®, Microsoft® Windows® 95, and Windows version 3.x
systems can issue RECEIVE_AND_WAIT in conjunction with WinAsyncAPPC. For OS/2 systems, use RECEIVE_AND_POST.

The following structure describes the verb control block used by the RECEIVE_IMMEDIATE verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_IMMEDIATE.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd
Returned parameter. Contains information received with the incoming data. Possible values are listed in the table following the
Members section.

rtn_status
Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

Use AP_NO to specify that indicators should be returned individually on separate invocations of the verb.

Use AP_YES to specify that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.
The fill parameter specifies either BUFFER or LL, and the data is the last logical record before the status indicator.

fill
Supplied parameter. Specifies the manner in which the local TP receives data. It is used only for RECEIVE_IMMEDIATE.

Use AP_BUFFER to indicate that the local TP receives data until the number of bytes specified by max_len is reached or until

struct receive_immediate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char fill;
 unsigned char rts_rcvd;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv5[5];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

end of data. Data is received without regard for the logical-record format.

Use AP_LL to indicate that data is received in logical-record format. The data received can be a complete logical record, a
max_len byte portion of a logical record, or the end of a logical record.

rts_rcvd
Returned parameter. Contains the request-to-send indicator. Possible values are:

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.
AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

max_len
Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Windows NT and Windows 95 operating systems and the Windows graphical environment, this value must not exceed
the length of the buffer to contain the received data.

For the OS/2 operating system, the offset of dptr plus the value of max_len must not exceed the size of the data segment.

By issuing RECEIVE_IMMEDIATE with max_len set to zero, the local TP can determine whether the partner TP has data to
send, seeks confirmation, or has changed the conversation state.

dlen
Returned parameter. Provides the number of bytes of data received. Data is stored in a buffer specified by dptr. A length of zero
indicates that no data was received.

dptr
Supplied parameter. Address of the buffer to contain the data received by the local TP.

For the Windows NT and Windows 95 operating systems and the Windows graphical environment, the data buffer can reside in
a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the function
DosAllocSeg with Flags equal to 1. The data buffer must fit entirely on the data segment.

Values returned by the what_rcvd member

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues CONFIRMED.
AP_CONFIRM_SEND indicates that the partner TP has issued PREPARE_TO_RECEIVE with ptr_type set to AP_SYNC_LEVEL,
and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. Upon receiving this
value, the local TP normally issues CONFIRMED, and begins to send data.
AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued CONFIRM. Upon receiving this value, the local TP
normally issues CONFIRMED.
AP_DATA is returned for basic conversations by RECEIVE_IMMEDIATE if fill is set to AP_BUFFER. The local TP received data
until max_len or end of data was reached. For more information, see "RECEIVE_IMMEDIATE End of Data" at the end of
this topic.
AP_DATA_COMPLETE indicates, for RECEIVE_IMMEDIATE with fill set to AP_LL in basic conversations, that the local TP has
received a complete logical record or the end of a logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_IMMEDIATE or issues another receive verb. If the
partner TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information if primary_rc contains AP_OK and what_rcvd contains any of these
values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

See the description of the value in Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to DEALLOCATE issued
by the partner TP.

AP_DATA_INCOMPLETE indicates for RECEIVE_IMMEDIATE in mapped conversations that the local TP has received an
incomplete data record. The max_len parameter specified a value less than the length of the data record (or less than the
remainder of the data record if this is not the first receive verb to read the record).

For RECEIVE_IMMEDIATE with fill set to AP_LL in basic conversations, this value indicates that the local TP has received an
incomplete logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_IMMEDIATE (or issues another receive verb) to receive
the next part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.
AP_SEND indicates, for the partner TP, the conversation has entered RECEIVE state. For the local TP, the conversation is now
in SEND state. Upon receiving this value, the local TP normally uses SEND_DATA to begin sending data.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL
Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DATA_SEND
Primary return code; this is a combination of AP_DATA and AP_SEND.

AP_DATA_CONFIRM_SEND
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_SEND.

AP_DATA_CONFIRM
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_CONFIRM_DEALLOCATE
Primary return code; this is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE.

AP_UNSUCCESSFUL
Primary return code; no data is immediately available from the partner TP.

AP_DEALLOC_NORMAL
Primary return code; the partner TP has deallocated the conversation without requesting confirmation. The partner TP issued
DEALLOCATE with dealloc_type set to one of the following:

AP_FLUSH
AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_RCV_IMMD_BAD_FILL

Secondary return code for a basic conversation; the fill parameter was set to an invalid value.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_IMMD_BAD_STATE

Secondary return code; the conversation was not in RECEIVE state.

AP_ALLOCATION_ERROR

Secondary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications subsystem could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Host Integration Server 2000 Client system configured with multiple nodes,
there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC
Primary return code; the partner TP has issued SEND_ERROR with err_type set to AP_PROG while the conversation was in
SEND state. Data was not truncated.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data
sent but not yet received is purged.

AP_PROG_ERROR_TRUNC
Primary return code; in SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR with
err_type set to AP_PROG. The local TP may have received the first part of the logical record through a receive verb.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_NO_TRUNC
Primary return code; while in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC.
Data was not truncated.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been purged.

AP_SVC_ERROR_TRUNC
Primary return code; in SEND state, after sending an incomplete logical record, the partner TP (or partner LU) issued
SEND_ERROR. The local TP may have received the first part of the logical record.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received can be:

One logical record.
A buffer of data received independent of its logical-record format.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it.

The receive verbs are RECEIVE_AND_POST (Windows NT, Windows 95, and OS/2 operating systems), RECEIVE_AND_WAIT,
and RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.
If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE state when the TP issues this verb.

The new state is determined by primary_rc. If primary_rc is AP_OK, the new state is determined by what_rcvd.

The following table details the state changes when the primary_rc is AP_OK.

what_rcvd New state
AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE
AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE
AP_CONFIRM_SEND CONFIRM_SEND
AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND
AP_DATA_CONFIRM_SEND CONFIRM_SEND
AP_CONFIRM_WHAT_RECEIVED CONFIRM
AP_DATA_COMPLETE_CONFIRM CONFIRM
AP_DATA_CONFIRM CONFIRM
AP_DATA No change
AP_DATA_COMPLETE No change
AP_DATA_INCOMPLETE No change
AP_SEND SEND
AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when the primary_rc is not AP_OK.

primary_rc New state
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING No change
AP_PROG_ERROR_NO_TRUNC No change
AP_SVC_ERROR_PURGING No change
AP_SVC_ERROR_NO_TRUNC No change
AP_PROG_ERROR_TRUNC No change
AP_SVC_ERROR_TRUNC No change
AP_UNSUCCESSFUL No change

RECEIVE IMMEDIATE End of Data

In basic conversations, if the local TP issues RECEIVE_IMMEDIATE and sets fill to AP_BUFFER, the receipt of the data ends when
max_len or the end of the data is reached. The end of the data is indicated by either:

A primary_rc parameter with a value other than AP_OK (for example, AP_DEALLOC_NORMAL).
A what_rcvd parameter with one of the following values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM_SEND

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM

To determine if the end of the data has been reached, the local TP reissues RECEIVE_IMMEDIATE. If the new primary_rc
parameter contains AP_OK and what_rcvd contains AP_DATA, the end of the data has not been reached. If, however, the end of
the data has been reached, primary_rc or what_rcvd will indicate the cause of the end of the data.

Microsoft Host Integration Server 2000

RECEIVE_LOG_DATA
The RECEIVE_LOG_DATA verb allows the user to register to receive the log data associated with an inbound Function
Management Header 7 (FMH7) error report. The verb passes a buffer to APPC, and any log data received is placed in that buffer.
APPC continues to use this buffer as successive FMH7s arrive until it is provided with another one (that is, until the TP issues
another RECEIVE_LOG_DATA specifying a different buffer or no buffer at all). This verb is only supported on Microsoft®
Windows NT® and Microsoft® Windows® 95 by Microsoft® SNA Server version 3.0 with Service Pack 1 or later and by SNA
Server version 4.0.

Note that the TP itself is responsible for allocating and freeing the buffer. After the buffer has been passed to APPC, the TP should
either issue another RECEIVE_LOG_DATA specifying a new buffer or a zero-length buffer, or wait until the conversation has
finished before freeing the original buffer.

When an FMH7 is received, APPC copies any associated error log general data stream (GDS) into the buffer. If there is no
associated error log variable, the buffer is zeroed out. It is up to the TP to check the buffer whenever a return code from a receive
verb indicates that an error has been received.

The following structure describes the verb control block used by the RECEIVE_LOG_DATA verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_LOG_DATA.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv1
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

log_dlen
Supplied parameter. Specifies the maximum length of log data that APPC can place in the buffer (that is, the buffer size). The
range is from 0 through 65535. Note that a length of zero here indicates that any previous RECEIVE_LOG_DATA verb should
be cancelled.

log_dptr
Supplied parameter. Specifies the address of the buffer that APPC will use to store the log data.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

struct receive_log_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

Microsoft Host Integration Server 2000

REQUEST_TO_SEND
The REQUEST_TO_SEND verb notifies the partner TP that the local TP wants to send data.

For the Windows version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking version of this call.

The following structure describes the verb control block used by the REQUEST_TO_SEND verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_REQUEST_TO_SEND.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_R_T_S_BAD_STATE

Secondary return code; the conversation is not in an allowed state when the TP issued this verb.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

struct request_to_send {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any of the following states when the TP issues this verb:

CONFIRM

PENDING_POST (OS/2)

RECEIVE

There is no state change.

The request-to-send notification is received by the partner program through the rts_rcvd parameter of the following verbs:

CONFIRM
RECEIVE_AND_POST (Windows NT, Windows 95, and OS/2 operating systems)
RECEIVE_AND_WAIT
RECEIVE_IMMEDIATE
SEND_DATA
SEND_ERROR

It is also indicated by a primary_rc of AP_OK on TEST_RTS.

Request-to-send notification is sent to the partner TP immediately; APPC does not wait until the send buffer fills up or is flushed.
Consequently, the request-to-send notification may arrive out of sequence. For example, if the local TP is in SEND state and issues
PREPARE_TO_RECEIVE followed by REQUEST_TO_SEND, the partner TP, in RECEIVE state, may receive the request-to-send
notification before it receives the send notification. For this reason, request-to-send can be reported to a TP through a receive
verb.

In response to this request, the partner TP can change the conversation to:

RECEIVE state by issuing PREPARE_TO_RECEIVE or RECEIVE_AND_WAIT.
PENDING_POST state by issuing RECEIVE_AND_POST.

The partner TP can also ignore the request-to-send.

The conversation state changes to SEND for the local TP when the local TP receives one of the following values through the
what_rcvd parameter of a subsequent receive verb:

AP_CONFIRM_SEND and replies with CONFIRMED
AP_DATA_COMPLETE_CONFIRM_SEND and replies with CONFIRMED
AP_DATA_CONFIRM_SEND and replies with CONFIRMED
AP_SEND

The receive verbs are RECEIVE_AND_POST (Windows NT, Windows 95, and OS/2 operating systems), RECEIVE_IMMEDIATE, and
RECEIVE_AND_WAIT.

Microsoft Host Integration Server 2000

SEND_CONVERSATION
The SEND_CONVERSATION verb allocates a session between the local LU and partner LU, sends data on the session, and then
deallocates the session.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the SEND_CONVERSATION verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_SEND_CONVERSATION.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id
Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_ctl
Supplied parameter. Specifies how APPC should select a session to allocate for the conversation and when the local LU should
return control to the local TP. The allowed values are:

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns

struct send_conversation {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3[8];
 unsigned char rtn_ctl;
 unsigned char reserv4;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv6[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv6;
 unsigned char fqplu_name[17];
 unsigned char reserv7[8];
 unsigned short dlen;
 unsigned char FAR * dptr;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

control to the TP.
AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU returns control
immediately. Note that if a session is not available, the TP waits for one.
AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs (as described in Return Codes in this
topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.
AP_WHEN_CONWINNER_ALLOC specifies that the LU does not return control until it allocates a contention-winner
session or encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU returns
control immediately. Note that if a session is not available, the TP waits for one.
AP_WHEN_CONV_GROUP_ALLOC specifies that the LU does not return control to the TP until it allocates the session
specified by conv_group_id or encounters one of the errors described in Return Codes in this topic. If the session is not
available, the TP waits for it to become free.

conv_group_id
Supplied/returned parameter. Used as a supplied parameter when rtn_ctl is WHEN_CONV_GROUP_ALLOC to specify the
identity of the conversation group from which the session should be allocated. When rtn_ctl specifies a different value, and the
primary_rc is AP_OK, this is a returned value. The purpose of this parameter is to provide a TP with the assurance that the same
session will be reallocated and therefore the conversations conducted over the session will occur in the same sequence that
they were initiated.

sense_data
Returned parameter. If the primary and secondary return codes indicate an allocation error (retry or no-retry), an SNA-defined
sense code is returned.

plu_alias
Supplied parameter. Specifies the alias by which the partner LU is known to the local TP. This parameter must match the name
of a partner LU established during configuration. The parameter is an 8-byte, type G ASCII character set that includes:

Uppercase letters
Numerals 0 to 9
Spaces
Special characters $, #, %, and @

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

mode_name
Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration. This parameter
must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set, including
all EBCDIC spaces. These characters are:

Uppercase letters
Numerals 0 to 9
Special characters $, #, and @

The first character in the string must be an uppercase letter or special character.

Using the name SNASVCMG (a reserved mode name used internally by APPC) in a basic conversation is not recommended.

tp_name
Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by ALLOCATE in the invoking TP
must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte, case-sensitive, EBCDIC character string. This parameter can consist of characters from the type AE
EBCDIC character set. These characters are:

Uppercase and lowercase letters
Numerals 0 to 9
Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention for naming a service TP is up to four characters. The first character is a hexadecimal byte between 0x00
and 0x3F. The other characters are from the EBCDIC AE character set.

security
Supplied parameter. Specifies the information the partner LU requires in order to validate access to the invoked TP.

AP_NONE specifies that the invoked TP uses no conversation security.
AP_PGM specifies that the invoked TP uses conversation security and requires a user identifier and password. Use user_id
and pwd to supply this information.
AP_SAME specifies that the invoked TP, invoked with a valid user identifier and password, in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP B
specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified indicator. This
indicator indicates to TP C not to require the password (if TP C is configured to accept an already-verified indicator).

pwd
Supplied parameter. Specifies the password associated with user_id. This parameter is required only if the security parameter is
set to AP_PGM and must match the password for user_id that was established during configuration.

This parameter is a 10-byte, case-sensitive, EBCDIC character string. It can consist of characters from the type AE EBCDIC
character set. These characters are:

Uppercase and lowercase letters
Numerals 0 to 9
Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

user_id
Supplied parameter. Specifies the user identifier required to access the partner TP. This parameter is required only if the security
parameter is set to AP_PGM and must match one of the user identifiers configured for the partner TP.

The parameter can consist of characters from the type AE EBCDIC character set. These characters are:

Uppercase and lowercase letters
Numerals 0 to 9
Special characters $, #, @, and period (.)

If the user identifier is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

pip_dlen
Supplied parameter. Specifies the length of the PIP to be passed to the partner TP. The range for this parameter is from 0
through 32767.

pip_dptr
Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater than
zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the GDS format. For more information, see your IBM SNA manual(s).

For the Microsoft® Windows NT® and Windows 95 operating systems and the Windows graphical environment, the data
buffer can reside in a static data area or in a globally allocated area.

For the OS/2 operating system, use a shared, unnamed segment for the data buffer. To allocate the segment, issue the function
call DosAllocSeg with the shared indicator equal to 1. The data buffer must be entirely within the data segment.

fqplu_name
Supplied parameter. Specifies the fully qualified name of the local LU. This parameter must match the fully qualified name of
the local LU defined in the remote node. The parameter is made up of two type A EBCDIC character strings (each of up to eight
characters), which are the network name (NETID) and the LU name of the partner LU. The names are separated by an EBCDIC
period (.). The NETID can be omitted, and if this is the case, the period should also be omitted.

This name must be provided if no plu_alias is provided.

Type A EBCDIC characters contain:

Uppercase letters
Numerals 0 to 9
Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

dlen
Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range for this parameter
is from 0 through 65535.

dptr
Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Windows NT and Windows 95 operating systems and the Windows graphical environment, the data buffer can reside in
a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, use a shared, unnamed segment for the data buffer. To allocate the segment, issue the function
call DosAllocSeg with the shared indicator equal to 1. The data buffer must be entirely within the data segment.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL
Primary return code; the supplied parameter rtn_ctl specified immediate return of the control to the TP (AP_IMMEDIATE), and
the local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was invalid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was invalid.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was invalid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied partner_lu_alias.

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Host Integration Server 2000 Client system configured with multiple nodes,
there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

This verb is issued by the invoking TP to conduct an entire conversation with the remote TP. If the remote TP rejects either the
conversation initiation or the data, the invoking TP will not receive notification of the rejection.

The conversation state is RESET when the TP issues this verb. There is no state change.

Several parameters of SEND_CONVERSATION are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a string
from one character set to the other.

Normally, the value of mode_name must match the name of a mode configured for the invoked TP's node and associated during
configuration with the partner LU. If one of the modes associated with the partner LU on the invoked TP's node is an implicit
mode, the session established between the two LUs will be of the implicit mode when no mode name associated with the partner
LU matches the value of mode_name.

Microsoft Host Integration Server 2000

SEND_DATA
The SEND_DATA verb places data in the local LU's send buffer for transmission to the partner TP.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the SEND_DATA verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_SEND_DATA.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd
Returned parameter. Provides the request-to-send-received indicator.

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use PREPARE_TO_RECEIVE,
RECEIVE_AND_WAIT, or RECEIVE_AND_POST (Windows NT, Windows 95, and OS/2 operating systems).
AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

data_type
Supplied parameter. Specifies the type of data to be sent if Sync Point is supported. Valid parameters are:

AP_APPLICATION

AP_USER_CONTROL_DATA

AP_PS_HEADER

struct send_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char data_type;
 unsigned short int dlen;
 unsigned char FAR * dptr ;
 unsigned char type;
 unsigned char reserv4;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

dlen
Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range is from 0 through
65535.

dptr
Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Microsoft® Windows NT® and Windows 95 operating systems and the Windows graphical environment, the data
buffer can reside in a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For OS/2, the data buffer must reside on an unnamed, shared segment, which is allocated by the function DosAllocSeg with
Flags equal to 1. The data buffer must fit entirely on the data segment.

type
Supplied parameter. Allows a TP to send data and perform other functions within one API call. For example, you can combine
SEND_DATA with type set to CONFIRM to accomplish the same objective as issuing SEND_DATA followed by CONFIRM.

AP_SEND_DATA_CONFIRM corresponds to SEND_DATA followed by CONFIRM.
AP_SEND_DATA_FLUSH corresponds to SEND_DATA followed by FLUSH.
AP_SEND_DATA_DEALLOC_ABEND corresponds to SEND_DATA followed by DEALLOCATE with a dealloc_type of
AP_ABEND_PROG.
AP_SEND_DATA_DEALLOC_FLUSH corresponds to SEND_DATA followed by DEALLOCATE with a dealloc_type of
AP_FLUSH.
AP_SEND_DATA_DEALLOC_SYNC_LEVEL corresponds to SEND_DATA followed by DEALLOCATE with a dealloc_type of
AP_SYNC_LEVEL.
AP_SEND_DATA_P_TO_R_FLUSH corresponds to SEND_DATA followed by PREPARE_TO_RECEIVE with a ptr_type of
AP_FLUSH.
AP_SEND_DATA_P_TO_R_SYNC_LEVEL corresponds to SEND_DATA followed by PREPARE_TO_RECEIVE with a ptr_type
of AP_SYNC_LEVEL and locks set to AP_SHORT.

reserv4
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_LL

Secondary return code; the logical record length field of a logical record contained an invalid value—0x0000, 0x0001, 0x8000,
or 0x8001. See About Transaction Programs for information on logical records.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_SEND_DATA_INVALID_TYPE

Secondary return code; the specified type was not recognized by APPC.

AP_SEND_DATA_CONFIRM_SYNC_NONE

Secondary return code; the type CONFIRM is not permitted for a conversation that was allocated with a sync_level of NONE.

AP_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

AP_SEND_DATA_NOT_SEND_STATE

Secondary return code; the local TP issued SEND_DATA, but the conversation was not in SEND state.

AP_SEND_DATA_NOT_LL_BDY

Secondary return code; the TP started but did not finish sending a logical record. This occurs only when the type parameter is
one of the following:

AP_SEND_DATA_CONFIRM

AP_SEND_DATA_DEALLOC_FLUSH

AP_SEND_DATA_DEALLOC_SYNC_LEVEL

AP_SEND_DATA_P_TO_R_FLUSH

AP_SEND_DATA_P_TO_R_SYNC_LEVEL

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Host Integration Server 2000 Client system configured with multiple nodes,
there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data
sent but not yet received is purged.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued a SEND_ERROR verb with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been purged.

Remarks

The conversation must be in SEND state when the TP issues this verb. State changes, based on primary_rc, are summarized in the
following table.

primary_rc New state
AP_OK No change
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_SVC_ERROR_PURGING RECEIVE

SEND_DATA may wait indefinitely because the partner TP has not issued a receive verb. If this occurs, the send buffer may fill up.

The data collected in the local LU's send buffer is transmitted to the partner LU (and partner TP) when one of the following occurs:

The send buffer fills up.
The local TP issues FLUSH, CONFIRM, or DEALLOCATE (or other verb that flushes the LU's send buffer).

Microsoft Host Integration Server 2000

SEND_ERROR
The SEND_ERROR verb notifies the partner TP that the local TP has encountered an application-level error.

For the Microsoft® Windows® version 3.x system, it is recommended that you use WinAsyncAPPC rather than the blocking
version of this call.

The following structure describes the verb control block used by the SEND_ERROR verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_SEND_ERROR.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the invoking
TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd
Returned parameter. Indicates whether the partner TP issued REQUEST_TO_SEND. Possible values include:

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use PREPARE_TO_RECEIVE,
RECEIVE_AND_WAIT, or RECEIVE_AND_POST.
AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

err_type
Supplied parameter. Indicates the type of the error being reported — application program or service program.

AP_PROG indicates that the error is to be reported to an end-user application program. This value causes APPC to send one of
the following return codes to the partner TP:

AP_PROG_ERROR_NO_TRUNC

AP_PROG_ERROR_PURGING

struct send_error {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char err_type;
 unsigned char err_dir;
 unsigned char reserv3;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_PROG_ERROR_TRUNC

AP_SVC indicates that the error is to be reported to a service program. This value causes APPC to send one of the following
return codes to the partner TP:

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

err_dir
Supplied parameter. Indicates whether the error is with data just received or with data that is about to be sent. Use this
parameter only when the conversation is in SEND_PENDING state. The parameter is ignored otherwise. The following are
allowed values:

AP_RCV_DIR_ERROR indicates that the TP issued SEND_ERROR after detecting an error associated with the data just
received.
AP_SEND_DIR_ERROR indicates that the TP issued SEND_ERROR after detecting an error associated with data it was
going to send. For example, the TP encountered an error while reading data from the disk drive.

reserv3
A reserved field.

log_dlen
Supplied parameter for basic conversations; specifies the number of bytes of data to be sent to the error log file. The range is
from 0 through 32767.

A length of zero indicates that there is no error log data.

log_dptr
Supplied parameter for basic conversations; specifies the address of the data buffer containing error information. The data is
sent to the local error log and to the partner LU.

This parameter is used by SEND_ERROR if log_dlen is greater than zero.

For the Microsoft® Windows NT® and Windows 95 operating systems and the Windows graphical environment, the data
buffer can reside in a static data area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the log data buffer must reside on an unnamed, shared segment, which is allocated by the
function DosAllocSeg with Flags equal to 1. The log data buffer must fit entirely on the segment.

The TP must format the error data as a GDS error log variable. For more information, see your IBM SNA manual(s).

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_ERROR_DIRECTION

Secondary return code; the specified err_dir was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the error data for the log file was longer than the segment allocated to contain the error data, or the
address of the error data buffer was wrong.

AP_SEND_ERROR_BAD_TYPE

Secondary return code; the value of err_type was invalid.

AP_SEND_ERROR_LOG_LL_WRONG

Secondary return code; the LL field of the error log GDS variable did not match the actual length of the data.

The following return codes can be generated when SEND_ERROR is issued in any allowed state:

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY
Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error. The
system administrator should examine the system error log to determine the cause of the error. Do not retry the conversation
until the error has been corrected.

AP_CONV_FAILURE_RETRY
Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs
again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This may occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

The following return codes can be generated only if SEND_ERROR is issued in SEND state:

AP_ALLOCATION_ERROR
Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in
the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_PROG_ERROR_PURGING
Primary return code; while in RECEIVE, PENDING, PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM,
CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data
sent but not yet received is purged.

The following return codes can be generated only if SEND_ERROR is issued in SEND state:

AP_DEALLOC_ABEND_PROG
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set
to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING
Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST (Windows NT, Windows 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.
Data sent to the partner TP may have been purged.

The following return code can be generated only if SEND_ERROR is issued in RECEIVE state:

AP_DEALLOC_NORMAL
Primary return code; this return code does not indicate an error.

The partner TP issued DEALLOCATE with dealloc_type set to one of the following:

AP_FLUSH
AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

Remarks

The conversation can be in any state except RESET when the TP issues this verb. The conversation state must be SEND_PENDING
if err_dir is used.

The local TP sends the error notification immediately to the partner TP; it does not hold the information in the local LU's send
buffer.

Upon successful execution of this verb, the conversation is in SEND state for the local TP and in RECEIVE state for the partner TP.

The new state is determined by primary_rc. Possible state changes are summarized in the following table.

primary_rc New state
AP_OK SEND
AP_ALLOCATION_ERROR RESET
AP_CONV_FAILURE_RETRY RESET
AP_CONV_FAILURE_NO_RETRY RESET
AP_DEALLOC_ABEND RESET
AP_DEALLOC_ABEND_PROG RESET
AP_DEALLOC_ABEND_SVC RESET
AP_DEALLOC_ABEND_TIMER RESET
AP_DEALLOC_NORMAL RESET
AP_PROG_ERROR_PURGING RECEIVE
AP_SVC_ERROR_PURGING RECEIVE

If the conversation is in RECEIVE state when the TP issues SEND_ERROR, incoming data is purged by APPC. This data includes:

Data sent by SEND_DATA.
Return code indicators.
Confirmation requests.
Deallocation requests.

APPC does not purge an incoming request-to-send indicator. APPC replaces purged incoming return code indicators with other
return codes. The primary return code AP_OK replaces the following purged return code indicators:

AP_PROG_ERROR_NO_TRUNC

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

The primary return code AP_DEALLOC_NORMAL replaces the following purged return code indicators:

AP_ALLOCATION_ERROR

AP_ALLOCATION_FAILURE_NO_RETRY

AP_ALLOCATION_FAILURE_RETRY

AP_CONVERSATION_TYPE_MISMATCH

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PIP_NOT_ALLOWED

AP_PIP_NOT_SPECIFIED_CORRECTLY

AP_SECURITY_NOT_VALID

AP_SYNC_LEVEL_NOT_SUPPORTED

AP_TP_NAME_NOT_RECOGNIZED

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

AP_TRANS_PGM_NOT_AVAIL_RETRY

When the conversation is in SEND_PENDING state, APPC reports the following return codes to the partner TP based on the value
in err_dir:

AP_PROG_ERROR_PURGING
The local TP issued SEND_ERROR with RECEIVE as the err_dir.

AP_PROG_ERROR_NO_TRUNC
The local TP issued SEND_ERROR with SEND as the err_dir.

AP_SVC_ERROR_PURGING
The local TP issued SEND_ERROR with RECEIVE as the err_dir.

AP_SVC_ERROR_NO_TRUNC
The local TP issued SEND_ERROR with SEND as the err_dir.

Microsoft Host Integration Server 2000

TEST_RTS
The TEST_RTS verb determines whether a request-to-send notification has been received from the partner TP.

The following structure describes the verb control block used by the TEST_RTS verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_TEST_RTS.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3
A reserved field.

Return Codes

AP_OK
Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL
Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID
Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

struct test_rts {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Host Integration Server 2000 Client system configured with multiple nodes,
there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

Microsoft Host Integration Server 2000

TEST_RTS_AND_POST
The TEST_RTS_AND_POST verb allows an application, typically a 5250 emulator, to request asynchronous notification when a
partner TP requests send direction. It is not supported on Microsoft® MS-DOS® platforms.

The following structure describes the verb control block used by the TEST_RTS_AND_POST verb.

Members

opcode
Supplied parameter. Specifies the verb operation code, AP_B_TEST_RTS_AND_POST.

opext
Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id
Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id
Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3
A reserved field.

handle
Supplied parameter. On Microsoft® Windows NT® and Microsoft® Windows® 95 this field provides the event handle to set.
On Windows 3.x, this field provides the Windows handle to receive the completion message. On OS/2, this field provides the
address of the semaphore APPC is to clear when the asynchronous operation is finished.

Return Codes from Initial Verb

AP_OK
Primary return code; the verb executed successfully. Note particularly that a return code of AP_OK from the initial verb does not
indicate that REQUEST_TO_SEND verb received from the partner TP. It simply indicates that the facility to receive
asynchronous notification has been registered.

AP_UNSUCCESSFUL
Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

struct test_rts {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned long handle;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code, the value of handle was invalid.

AP_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications subsystem could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right. This
error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the ALLOCATE
request.

When ALLOCATE produces this return code for a Microsoft® Host Integration Server 2000 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured on
any active nodes. The problem could be either of the following:

The node with the local LU is not started.
The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED
Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

AP_CONV_BUSY
Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING
Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR
Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP. The
operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem
persists, consult the system administrator.

Return Codes from Asynchronous Completion

AP_OK
Primary return code; the request-to-send notification has been received from the partner TP.

AP_CANCELLED
The outstanding TEST_RTS_AND_POST verb has been terminated. This will occur if the underlying conversation has been
deallocated or an AP_TP_ENDED has been issued.
Note that as with RECEIVE_AND_POST, the TP is still responsible for correctly terminating the conversation and possibly
terminating the TP. Issuing another verb, such as RECEIVE_IMMEDIATE, at this point will indicate the reason for the
conversation failure.

The conversation can be in any state except RESET when the TP issues this verb. There is no state change.

A common feature of many APPC applications, such as 5250 emulators, is a requirement to detect a partner's request to send.
Currently, this can be done by polling the APPC interface to detect the partner's request. For example, an application can
occasionally issue one of the following verbs:

TEST_RTS

Remarks

RECEIVE_IMMEDIATE and check the rts_rcvd field
SEND_DATA of zero bytes, again checking the rts_rcvd field.

Some of the problems associated with this polling approach are:

The application must continually interrupt its main work to poll APPC.
The partner's request is not detected as soon as it becomes available.
These approaches are processor-intensive.

The TEST_RTS_AND_POST verb allows an application running on Windows NT, Windows 95, Windows 3.x, or OS/2, typically a
5250 emulator, to request asynchronous notification when the partner TP requests send direction.

An APPC application typically issues the TEST_RTS_AND_POST verb while in SEND state and then continues with its main
processing. A request for send direction from the partner TP is indicated asynchronously to the application. After dealing with the
partner's request, the application typically returns to SEND state, reissues TEST_RTS_AND_POST, and continues.

The TEST_RTS_AND_POST verb completes synchronously and the return code AP_OK indicates that a request for asynchronous
notification has been registered. It is important to emphasize that this does not indicate that request-to-send was received from
the partner TP.

When the partner's request to send is received, the asynchronous event completion occurs. It is important to note that this may be
before the completion of the local TP's original TEST_RTS_AND_POST verb. This will be the case if the partner's request to send
was received before the local TP's TEST_RTS_AND_POST verb was issued, or while the local TP's TEST_RTS_AND_POST verb
was being processed.

Microsoft Host Integration Server 2000

APPC Extensions for the Windows Environment
This section describes API extensions to Windows APPC that allow asynchronous communication. Asynchronous communication
occurs when a function returns before the request completes. The application is notified later when the request is completed.

Under Microsoft® Windows®3.x, one method is are available for asynchronous communication using the APPC API:

Message posting using window handles.

Under Microsoft Windows 98, and Windows® 95, two methods are available for asynchronous communication using the APPC
API:

Message posting using window handles.
Waiting on Win32® events.

Under Microsoft Windows 2000 and Windows NT®, three methods are available for asynchronous communication using the
APPC API:

Message posting using window handles.
Waiting on Win32 events.
Using Win32 IO completion ports.

The first method uses messages posted to a window handle to notify an application of verb completion. This method using
window handles and messages is supported on Microsoft Windows 3.x with the exception of real mode Windows 3.0. There is one
such window for each APPC application, independent of the number of conversations. Each APPC conversation can have one
asynchronous verb outstanding at any time. When a verb completes, the posting to the window takes as parameters the
asynchronous task handle returned by the original call and a pointer to the verb control block which has completed, containing
the return codes of the verb.

The extensions using window handles and message posting described in this section (WinAsyncAPPC) have been designed for all
implementations and versions of Microsoft Windows from version 3.0 through the latest versions of Windows 2000,
Windows NT, Windows 98, and Windows 95. They provide compatibility for Windows programming and optimum application
performance in the 16-bit Windows operating environment.

A second method using Win32 events for notification is supported. The extensions using Win32 events described in this section
(WinAsyncAPPCEx) operate only on Windows 2000, Windows NT, Windows 98, and Windows 95. and offer optimum application
performance in the 32-bit Windows operating environment. If an event has been registered with the conversation, then an
application can call the Win32 WaitForSingleObject or WaitForMultipleObjects function to wait to be notified of the
completion of the verb.

A third method using Win32 I/O completion ports for notification is supported on Windows 2000 and Windows NT. The
extensions using I/O completion ports described in this section (WinAsyncAPPCIOCP) operate only on Windows 2000 and
Windows NT, and offer optimum application performance in the 32-bit Windows operating environment. If an I/O completion
port has been created using CreateIoCompletionPort, then an application can call the Win32 GetQueuedCompletionStatus
function to wait to be notified of the completion of the verb.

Windows APPC allows multithreaded Windows-based processes. A process contains one or more threads of execution. The 16-bit
Windows environment is not multithreaded. In this instance, a task corresponds to a process with a single thread. All references to
threads in this document refer to actual threads in multithreaded Windows environments.

This section provides, for each extension, a definition of the function, syntax, returns, and remarks for using the function.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinAsyncAPPC
The WinAsyncAPPC function provides an asynchronous entry point for all of the APPC verbs. Use this function instead of the
blocking versions of the verbs if you run your application and want to use message posting using Windows handles for
asynchronous verb completion. This function is supported on Windows 3.x

Parameters

hWnd
A window handle that will be used for message posting to notify an application when an APPC verb completes.

lpVcb
Pointer to the verb control block

Return Values

The return value specifies whether the asynchronous request was successful. If the function was successful, the return value is an
asynchronous task handle. If the function was not successful, a zero is returned.

When this function returns with a successful value, this does not indicate that the APPC call will ultimately return successfully. It
only indicates that it was possible for the APPC library to attempt the APPC call asynchronously using message posting for
notification.

Remarks

For an example of how to use this verb in TPs, see the send and receive sample TP (SENDRECV.C located in the APPC folder)
included in the SDK.

APPC verbs used in basic conversations that can block are as follows:

ALLOCATE
CONFIRM
CONFIRMED
DEALLOCATE
FLUSH
PREPARE_TO_RECEIVE
RECEIVE_ALLOCATE
RECEIVE_AND_WAIT
REQUEST_TO_SEND
SEND_CONVERSATION
SEND_DATA
SEND_ERROR
TP_ENDED
TP_STARTED

APPC verbs used in mapped conversations that can block are as follows:

MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH
MC_PREPARE_TO_RECEIVE
MC_RECEIVE_AND_WAIT
MC_REQUEST_TO_SEND
MC_SEND_CONVERSATION

HANDLE WINAPI WinAsyncAPPC(
 HANDLE hWnd,
 long lpVcb
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

MC_SEND_DATA
MC_SEND_ERROR

When using the synchronous or asynchronous versions of a verb, an application can only have one outstanding function in
progress on a conversation at a time. An attempt to initiate a second function results in the error code AP_CONV_BUSY.

The exceptions to the preceding paragraph are RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT,
and MC_RECEIVE_AND_WAIT. To allow full use of the asynchronous support, asynchronously issued
RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT verbs have been altered to act like the RECEIVE_AND_POST
and MC_RECEIVE_AND_POST verbs. Specifically, while an asynchronous version of one of these verbs is outstanding,
the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)
GET_ATTRIBUTES or MC_GET_ATTRIBUTES
GET_TYPE
REQUEST_TO_SEND or MC_REQUEST_TO_SEND
SEND_ERROR or MC_SEND_ERROR
TEST_RTS or MC_TEST_RTS
TP_ENDED

This allows an application, in particular, a 5250 emulator, to use an asynchronous RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, or
MC_RECEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR or MC_SEND_ERROR and REQUEST_TO_SEND or
MC_REQUEST_TO_SEND. It is recommended that you use this feature for full asynchronous support.

When the asynchronous operation is complete, the application’s window hWnd receives the message returned by
RegisterWindowMessage with “WinAsyncAPPC” as the input string. The wParam argument contains the asynchronous task
handle returned by the original function call. The lParam argument contains the original VCB pointer and can be dereferenced to
determine the final return code.

As part of the Windows APPC definition, WinAPPCCancelAsyncRequest allows an application to cancel any asynchronous APPC
action; but terminates the related conversation or TP as appropriate. Any outstanding operations return with AP_CANCELED as
the return code.

If the function returns successfully, a WinAsyncAPPC message is posted to the application when the operation completes or the
conversation is canceled.

Microsoft Host Integration Server 2000

WinAsyncAPPCEx
The WinAsyncAPPCEx function provides an asynchronous entry point for all of the APPC verbs. Use this function instead of the
blocking versions of the verbs to allow multiple sessions to be handled on the same thread using events. This verb is only
supported on Microsoft® Windows 2000, Windows NT®, Windows® 98, and Windows® 95, and uses Win32® events.

Parameters

event_handle
Handle used for event notification using Win32 events.

lpVcb
Pointer to the verb control block

Return Values

The return value specifies whether the asynchronous resolution request was successful. If the function was successful, the return
value is an asynchronous task handle. If the function was not successful, a zero is returned.

When this function returns with a successful value, this does not indicate that the APPC call will ultimately return successfully. It
only indicates that it was possible for the APPC library to attempt the APPC call asynchronously using events for notification.

Remarks

This function is intended for use with WaitForSingleObject or WaitForMultipleObjects in the Win32 API. These functions are
described in the "Reference" section of the Microsoft® Platform SDK documentation.

For an example of how to use this verb in multithreaded TPs, see the multithreaded send and receive sample TPs (MRCV.C
MSEND.C, and MSENDRCV.C located in the MSENDRCV folder) included in the SDK.

APPC verbs used in basic conversations that can block are as follows:

ALLOCATE
CONFIRM
CONFIRMED
DEALLOCATE
FLUSH
PREPARE_TO_RECEIVE
RECEIVE_ALLOCATE
RECEIVE_AND_WAIT
REQUEST_TO_SEND
SEND_CONVERSATION
SEND_DATA
SEND_ERROR
TP_ENDED
TP_STARTED

APPC verbs used in mapped conversations that can block are as follows:

MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH
MC_PREPARE_TO_RECEIVE
MC_RECEIVE_AND_WAIT
MC_REQUEST_TO_SEND

HANDLE WINAPI WinAsyncAPPCEx(
 HANDLE event_handle,
 long lpVcb
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

MC_SEND_CONVERSATION
MC_SEND_DATA
MC_SEND_ERROR
RECEIVE_ALLOCATE
TP_ENDED
TP_STARTED

When using the synchronous or asynchronous versions of a verb, an application can only have one outstanding function in
progress on a conversation at a time. An attempt to initiate a second function results in the error code AP_CONV_BUSY.

The exceptions to the preceding paragraph are RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT,
and MC_RECEIVE_AND_WAIT. To allow full use of the asynchronous support, asynchronously issued
RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT verbs have been altered to act like the RECEIVE_AND_POST
and MC_RECEIVE_AND_POST verbs. Specifically, while an asynchronous version of one of these verbs is outstanding,
the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)
GET_ATTRIBUTES or MC_GET_ATTRIBUTES
GET_TYPE
REQUEST_TO_SEND or MC_REQUEST_TO_SEND
SEND_ERROR or MC_SEND_ERROR
TEST_RTS or MC_TEST_RTS
TP_ENDED

This allows an application, in particular, a server application, to use an asynchronous RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, or
MC_RECEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR or MC_SEND_ERROR and REQUEST_TO_SEND or
MC_REQUEST_TO_SEND. It is recommended that you use this feature for full asynchronous support, and in particular, for
support of multiple conversations on the same thread.

When the asynchronous operation is complete, the application is notified through the signaling of the event. Upon signaling of
the event, examine the APPC primary return code and secondary return code in the verb control block for any error conditions.

Microsoft Host Integration Server 2000

WinAsyncAPPCIOCP
The WinAsyncAPPCIOCP function provides an asynchronous entry point for all of the APPC verbs. Use this function instead of
the blocking versions of the verbs to allow multiple sessions to be handled on the same thread using I/O completion ports. This
verb is only supported on Microsoft® Windows 2000 and Windows NT®, and uses Win32® I/O completion ports.

Parameters

iocp_handle
A pointer to an APPC_IOCP_INFO structure used for passing I/O completion port information.

lpVcb
Pointer to the verb control block

The APPC_IOCP_INFO structure has the following prototype:

APPC_CompletionPort

This supplied parameter is the HANDLE returned by the call to the CreateIoCompletionPort.function when the I/O completion
port is created. The I/O completion port must be created before calling the WinAsyncAPPCIOCP function.
When the verb completes, the APPC Library calls the PostQueuedCompletionStatus with the remaining fields in the structure
as inputs, and these fields are simply passed through to the GetQueuedCompletionStatus function issued by the application.

APPC_NumberOfBytesTransferred

This supplied parameter is ignored. When the APPC verb completes, the APPC Library calls the PostQueuedCompletionStatus
function with this field as an input, and the value returned for the dwNumberOfBytesTransferred is simply passed through to the
GetQueuedCompletionStatus function issued by the application.

APPC_CompletionKey

This supplied parameter is ignored. When the APPC verb completes, the APPC Library calls the PostQueuedCompletionStatus
function with this field as an input, and the value returned for the dwCompletionKey is simply passed through to the
GetQueuedCompletionStatus function issued by the application.

APPC_pOverlapped

This supplied parameter is ignored. When the APPC verb completes, the APPC Library calls the PostQueuedCompletionStatus
function with this field as an input, and the value returned for the lpOverlapped is simply passed through to the
GetQueuedCompletionStatus function issued by the application.

Return Values

The return value specifies whether the asynchronous resolution request was successful. If the function was successful, the return
value is an asynchronous task handle. If the function was not successful, a zero is returned.

When this function returns with a successful value, this does not indicate that the APPC call will ultimately return successfully. It
only indicates that it was possible for the APPC library to attempt the APPC call asynchronously using an I/O completion port for
notification.

Remarks

This function is intended for use with CreateIoCompletionPort and GetQueuedCompletionStatus in the Win32 API. These
functions are described in the "Reference" section of the Microsoft® Platform SDK documentation.

For an example of how to use this verb in multithreaded TPs, see the multithreaded receive sample TP (MRCVIO located in the

HANDLE WINAPI WinAsyncAPPCIOCP(
 APPC_IOCP_INFO *iocp_handle,
 long lpVcb
);

typedef struct {
 HANDLE APPC_CompletionPort;
 DWORD APPC_NumberOfBytesTransferred;
 DWORD APPC_CompletionKey;
 LPOVERLAPPED APPC_pOverlapped;
} APPC_IOCP_INFO;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

SNA\MSENDRCV folder) using I/O completion ports included in the Host Integration Server 2000 SDK.

APPC verbs used in basic conversations that can block are as follows:

ALLOCATE
CONFIRM
CONFIRMED
DEALLOCATE
FLUSH
PREPARE_TO_RECEIVE
RECEIVE_ALLOCATE
RECEIVE_AND_WAIT
REQUEST_TO_SEND
SEND_CONVERSATION
SEND_DATA
SEND_ERROR
TP_ENDED
TP_STARTED

APPC verbs used in mapped conversations that can block are as follows:

MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH
MC_PREPARE_TO_RECEIVE
MC_RECEIVE_AND_WAIT
MC_REQUEST_TO_SEND
MC_SEND_CONVERSATION
MC_SEND_DATA
MC_SEND_ERROR
RECEIVE_ALLOCATE
TP_ENDED
TP_STARTED

When using the synchronous or asynchronous versions of a verb, an application can only have one outstanding function in
progress on a conversation at a time. An attempt to initiate a second function results in the error code AP_CONV_BUSY.

The exceptions to the preceding paragraph are RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT,
and MC_RECEIVE_AND_WAIT. To allow full use of the asynchronous support, asynchronously issued
RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT verbs have been altered to act like the RECEIVE_AND_POST
and MC_RECEIVE_AND_POST verbs. Specifically, while an asynchronous version of one of these verbs is outstanding,
the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)
GET_ATTRIBUTES or MC_GET_ATTRIBUTES
GET_TYPE
REQUEST_TO_SEND or MC_REQUEST_TO_SEND
SEND_ERROR or MC_SEND_ERROR
TEST_RTS or MC_TEST_RTS
TP_ENDED

This allows an application, in particular, a server application, to use an asynchronous RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, or
MC_RECEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR or MC_SEND_ERROR and REQUEST_TO_SEND or
MC_REQUEST_TO_SEND. It is recommended that you use this feature for full asynchronous support, and in particular, for
support of multiple conversations on the same thread.

When the asynchronous operation is complete, the application is notified through the GetQueuedCompletionStatus function.
Upon I/O completion, examine the APPC primary return code and secondary return code in the verb control block for any error
conditions.

Microsoft Host Integration Server 2000

WinAPPCCancelAsyncRequest
The WinAPPCCancelAsyncRequest function cancels an outstanding WinAsyncAPPC-based request.

Parameters

hAsyncTaskID
Supplied parameter. Specifies the asynchronous task to be canceled.

Return Values

The return value specifies whether the asynchronous request was canceled. If the value is zero, the request was canceled.
Otherwise, the value is one of the following:

WAPPCINVALID
An error code indicating that the specified asynchronous task identifier was invalid.

WAPPCALREADY
An error code indicating that the asynchronous routine being canceled has already completed.

Remarks

An asynchronous task previously initiated by issuing one of the WinAsyncAPPC, WinAsyncAPPCEx, or WinAsyncAPPCIOCP
functions can be canceled prior to completion by issuing the WinAPPCCancelAsyncRequest function, specifying the
asynchronous task identifier as returned by the initial function in hAsyncTaskID.

If the outstanding verb relates to a conversation (for example, SEND_DATA or RECEIVE_AND_WAIT), the verb is purged and the
session is closed. If the verb relates to a TP (for example, RECEIVE_ALLOCATE or TP_STARTED), the TP is ended. In both cases,
while the implementation closes conversations and sessions as cleanly as possible, it does not flush send buffers, wait for
confirmations, and so on. This call is synchronous, and after the processing described above is complete, a completion message is
posted for the canceled verb.

If an attempt to cancel an existing asynchronous WinAsyncAPPC routine fails with an error code of WAPPCALREADY, one of two
things has occurred. Either the original routine has already completed and the application has dealt with the resulting message, or
the original routine has already completed and the resulting message is still waiting in the application window queue.

int WINAPI WinAPPCCancelAsyncRequest(
 HANDLE hAsyncTaskID
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinAPPCCancelBlockingCall
The WinAPPCCancelBlockingCall function cancels any outstanding blocking operation for its thread. Any outstanding blocked
call canceled will cause an error code of WAPPCCANCEL to be generated.

Return Values

The return value specifies whether the cancellation request was successful. If the value is zero, the request was canceled.
Otherwise, the value is the following:

WAPPCINVALID
An error code indicating that there is no outstanding blocking call.

Remarks

If the outstanding verb relates to a conversation (for example, SEND_DATA or RECEIVE_AND_WAIT), the verb is purged and the
session is closed. If the verb relates to a TP (for example, RECEIVE_ALLOCATE or TP_STARTED), the TP is ended. In both cases,
while the implementation brings down conversations and sessions as cleanly as possible, it does not flush send buffers, wait for
confirmations, and so on. This call is synchronous and after the processing described above is complete, the function is finished.

In Microsoft® Windows 2000, Windows NT®, Microsoft® Windows® 98, and Microsoft® Windows® 95, a multithreaded
application can have multiple blocking operations outstanding, but only one per thread. To distinguish between multiple
outstanding calls, WinAPPCCancelBlockingCall cancels the outstanding operation on the current, or calling, application thread
if one exists; otherwise, it fails. By default in Windows 2000, Windows NT, Windows 98, and Windows 95, Windows APPC
suspends the calling application thread while an operation is outstanding. As a result, the thread on which the blocking operation
was initiated will not regain control (and therefore, will not be able to issue a call to WinAPPCCancelBlockingCall) unless a
blocking hook is registered for the thread using WinAPPCSetBlockingHook. This condition does not apply to Microsoft®
Windows® version 3.x since applications only have one effective thread and the default blocking hook is registered by default.

BOOL WINAPI WinAPPCCancelBlockingCall(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinAPPCCleanup
The WinAPPCCleanup function terminates and deregisters an application from a Windows APPC implementation.

Return Values

The return value specifies whether the deregistration was successful. If the value is nonzero, the application was successfully
deregistered. The application was not deregistered if a value of zero is returned.

Remarks

Use WinAPPCCleanup to indicate deregistration of a Windows APPC application from a Windows APPC implementation.

Conversations that are still active will be terminated and TPs ended. This function is equivalent to issuing TP_ENDED(HARD) on all
TPs owned by the application.

See Also

WinAPPCStartup

BOOL WINAPI WinAPPCCleanup(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinAPPCIsBlocking
The WinAPPCIsBlocking function determines if a thread is executing while waiting for a previous blocking call to finish.

Return Values

The return value specifies the outcome of the function. If the value is nonzero, there is an outstanding blocking call awaiting
completion. A zero indicates the absence of an outstanding blocking call.

Remarks

Although a call issued on a blocking function appears to an application as though it blocks, the Windows APPC DLL has to
relinquish the processor to allow other applications to run. This means that it is possible for the application that issued the
blocking call to be re-entered, depending on the message(s) it receives. In this instance, the WinAPPCIsBlocking call can be used
to determine whether the application task currently has been re-entered while waiting for an outstanding blocking call to finish.
Note that Windows APPC prohibits more than one outstanding blocking call per thread.

The Windows APPC DLL prohibits more than one blocking call per thread and returns AP_THREAD_BLOCKING if this occurs.

See Also

WinAPPCSetBlockingHook, WinAPPCUnhookBlockingHook, WinAPPCCancelBlockingCall

BOOL WINAPI WinAPPCIsBlocking(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinAPPCStartup
The WinAPPCStartup function allows an application to specify the version of Windows APPC required and to retrieve details of
the specific Windows APPC implementation. An application must call this function to register itself with a Windows APPC
implementation before issuing any further Windows APPC calls.

Parameters

wVersionRequired
Specifies the version of Windows APPC support required. The high-order byte specifies the minor version (revision) number;
the low-order byte specifies the major version number. The current version of the Windows APPC API is 1.0.

lpAPPCData
Pointer to a returned structure containing a Windows APPC version number and a description of the Windows APPC
implementation.

Return Values

The return value specifies whether the application was registered successfully and whether the Windows APPC implementation
can support the specified version number. If the value is zero, it was registered successfully and the specified version can be
supported. Otherwise, the return value is one of the following:

WAPPCSYSNOTREADY
The underlying network subsystem is not ready for network communication.

WAPPCVERNOTSUPPORTED
The version of Windows APPC support requested is not provided by this particular Windows APPC implementation.

WAPPCINVALID
The Windows APPC version specified by the application is not supported by this DLL.

Remarks

To support future Windows APPC implementations and applications that may have functionality differences from Windows APPC
version 1.0, a negotiation takes place in WinAPPCStartup. An application passes to WinAPPCStartup the Windows APPC
version that it can use. If this version is lower than the lowest version supported by the Windows APPC DLL, the DLL cannot
support the application and WinAPPCStartup fails. If the version is not lower, however, the call succeeds and returns the highest
version of Windows APPC supported by the DLL. If this version is lower than the lowest version supported by the application, the
application either fails its initialization or attempts to find another Windows APPC DLL on the system.

This negotiation allows both a Windows APPC DLL and a Windows APPC application to support a range of Windows APPC
versions. An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinAPPCStartup works in conjunction with different application and DLL versions.

Application versions DLL versions To WinAPPCStartup From WinAPPCStartup Result
1.0 1.0 1.0 1.0 Use 1.0
1.0, 2.0 1.0 2.0 1.0 Use 1.0
1.0 1.0, 2.0 1.0 2.0 Use 1.0
1.0 2.0, 3.0 1.0 WAPPCINVALID Fail
2.0, 3.0 1.0 3.0 1.0 App Fails
1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0
1.0 1.0 4.0 1.0 App Fails
1.0, 2.0, 3.0, 4.0 1.0, 2.0, 3.0, 4.0 4.0 4.0 Use 4.0

Details of the actual Windows APPC implementation are described in the WAPPCDATA structure defined as follows that is

int WINAPI WinAPPCStartup(
 WORD wVersionRequired,
 LPWAPPCDATA lpAPPCData
);

typedef struct {
 WORD wVersion;
 char szDescription[WAPPCDESCRIPTION_LEN+1];
} WAPPCDATA, FAR * LPWAPPCDATA;

where WAPPCDESCRIPTION_LEN is defined as 127

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

returned by WinAPPCStartup:

The structure members are as follows:

wVersion
The highest APPC version number supported by the Windows APPC DLL.

szDescription
A descriptive string describing the WinAPPC implementation.

After it makes its last Windows APPC call, an application should call the WinAPPCCleanup routine.

Each Windows APPC implementation must make a WinAPPCStartup call before issuing any other Windows APPC calls.

typedef struct tagWAPPCDDATA { WORD wVersion;
char szDescription[WAPPCDESCRIPTION_LEN+1];
} WAPPCDATA, FAR *LPWAPPCDATA;

Microsoft Host Integration Server 2000

WinAPPCSetBlockingHook
The WinAPPCSetBlockingHook function allows a Windows APPC implementation to block APPC function calls by means of a
new function. This call is used by Microsoft® Windows® version 3.x applications to make blocking calls without blocking the rest
of the system. By default in Microsoft® Windows NT®, Windows 95, and Windows 98, blocking calls suspend the calling
application’s thread until the request is finished. Therefore, if a single-threaded application is targeted at both Windows 2000,
Windows NT, Windows 98, Windows 95, and Windows version 3.x, and relies on this functionality, it should register a blocking
hook even if the default hook will suffice.

Parameters

lpBlockFunc
Specifies the procedure instance address of the blocking function to be installed.

Return Values

The return value points to the procedure instance of the previously installed blocking function. The application or library that calls
WinAPPCSetBlockingHook should save this return value so that it can be restored if needed. (If nesting is not important, the
application can simply discard the value returned by WinAPPCSetBlockingHook and eventually use
WinAPPCUnhookBlockingHook to restore the default mechanism.)

Remarks

A Windows APPC implementation has a default mechanism by which blocking APPC functions are implemented. This function
gives the application the ability to execute its own function at blocking time in place of the default function.

The default blocking function is equivalent to:

A blocking function must return FALSE if it receives a WM_QUIT message so Windows APPC can return control to the application
to process the message and terminate gracefully. Otherwise, the function should return TRUE.

This function is implemented on a per-thread basis. It provides for a particular thread to replace the blocking mechanism without
affecting other threads.

The WinAPPCSetBlockingHook function is provided to support those applications that require more complex message
processing—for example, those employing the multiple document interface (MDI) model.

See Also

WinAPPCIsBlocking, WinAPPCCancelBlockingCall

FARPROC WINAPI WinAPPCSetBlockingHook (
 FARPROC lpBlockFunc
);

BOOL DefaultBlockingHook (void) {
 MSG msg;
 /* get the next message if any */
 if (PeekMessage (&msg,0,0,PM_NOREMOVE)) {
 if (msg.message = = WM_QUIT)
 return FALSE; // let app process WM_QUIT
 PeekMessage (&msg,0,0,PM_REMOVE) ;
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 /* TRUE if no WM_QUIT received */
 return TRUE;
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinAPPCUnhookBlockingHook
The WinAPPCUnhookBlockingHook function removes any previous blocking hook that has been installed and reinstalls the
default blocking mechanism.

Return Values

The return value specifies the outcome of the function. It is nonzero if the default mechanism is successfully reinstalled. The value
is zero if the mechanism did not reinstall.

See Also

WinAPPCSetBlockingHook

BOOL WINAPI WinAPPCUnhookBlockingHook(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Integration Server 2000 Enhancements to the Windows
Environment
This section describes the Microsoft® Host Integration Server 2000-specific extensions to Windows APPC and the Common
Service Verb (CSV) API.

The GetAppcConfig function takes a local LU and returns the remote LUs that are accessible to the user through that LU. If left
blank, and a default local LU has been configured, the user’s default local LU will be used. In all instances, if one of the returned
remote LUs is the user’s default, this is indicated as such. For more information on configuring default local and remote LUs, see
the Microsoft Host Integration Server 2000 online books. The call is asynchronous and completion is normally signaled by the
posting of a Windows message. However, an alternative completion mechanism is provided for console applications.

The GetAppcReturnCode and GetCsvReturnCode functions convert the primary and secondary return codes in the verb control
block (VCB) to a printable string. These functions provide a standard set of error strings for use by applications.

For each extension, this section provides a definition of the function, syntax, returns, and remarks for using the function.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GetAppcConfig
The GetAppcConfig function provides an asynchronous entry point for retrieving the remote systems to which a
particular local LU can connect.

Parameters

hWnd
Supplied parameter. Contains the handle of the window that is to receive an asynchronous completion message when the call
has completed. If non-null, the completion message will be posted to this window handle. In this case, pAsyncRetCode (the last
parameter) must be null. Asynchronous message completion is the recommended approach for a Windows applications to use
this function.

pLocalLu
Supplied parameter. Specifies the address of a buffer containing the local LU name for which information is returned. This local
LU name must be specified as follows:

Nonpadded
Null-terminated
ASCII string
Maximum length of eight bytes (excluding the terminator)

To request that the user’s default local LU be used, the buffer should contain eight spaces followed by a null.

pMode
Supplied parameter. Specifies the address of a buffer containing the mode name for which information is returned. In
Microsoft® SNA Server version 3.0 and later this parameter is not used, but for compatibility with earlier versions of SNA
Server a mode name must be specified as follows:

Nonpadded
Null-terminated
ASCII string
Maximum length of eight bytes (excluding the terminator)

pNumRemLu
Supplied parameter. Specifies the address of an integer variable that when the function completes will contain the number of
remote LUs that would have been returned, had the buffer specified by pRemLu been large enough to accommodate all of the
remote LUs.

iMaxRemLu
Supplied parameter. Specifies the number of remote LU names that can be held by the buffer indicated by pRemLu.

pRemLu
Supplied parameter. Specifies the address of the buffer that will hold the remote LU names after the function completes. The
information will be returned as an array of strings. Each remote LU name will be stored in the buffer as follows:

Nonpadded
Null-terminated
ASCII string
Maximum length of eight bytes (excluding the terminator)

The strings start every nine bytes in the buffer, and thus (pRemLu + (i–1)*9) gives the start of the ith string. In the case where
the buffer is too small to hold all the names, only iMaxRemLu strings will be returned.

HANDLE WINAPI GetAppcConfig(
 HANDLE hWnd,
 LPSTR pLocalLu,
 LPSTR pMode,
 LPINT pNumRemLu,
 INT iMaxRemLu,
 PSTR pRemLu,
 LPINT pAsyncRetCode
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

pAsyncRetCode
Supplied parameter. Specifies the address of an integer variable used to store the return code from this function, if the supplied
address is non-null. The return codes will be the same as those returned by an asynchronous completion message. While the
call is completing, the value of the this variable will be APPC_CFG_PENDING. When this asynchronous call is completed, the
value of this variable will contain some return code other than APPC_CFG_PENDING.

This variable is used by polling for completion when asynchronous message completion to a window handle is not used.

Note that if pAsyncRetCode is used, hWnd must be null.

Return Values

The meaning of the immediate return value depends on whether or not the asynchronous request was accepted. To test for
acceptance, evaluate the expression:

(<Returned Handle> & APPC_CFG_SUCCESS)

If the expression is FALSE, the request was rejected. The return value is then one of the synchronous return codes in the following
list. If the expression is TRUE, the request was accepted, and one of the following cases will apply.

If hWnd was non-null, a completion message will arrive in the following form:
Message p
arameter

Description

hWnd The handle of the target window. This value is the same as the value passed in hWnd on the initial call.
uMsg Matches the number returned by a call to RegisterWindowMessage, with WinAppcCfg used as the identifyin

g string. This string is available by the #define WIN_APPC_CFG_COMPLETION_MSG.
wParam Matches the HANDLE returned from the initial call. It is used as a correlator.
lParam Contains one of the asynchronous return codes in the following list.
If pAsyncRetCode was non-null, then the specified integer variable will be set to APPC_CFG_PENDING. After this function
completes asynchronously, its value will change to one of the asynchronous return codes listed below.

Synchronous Return Codes

APPC_CFG_ERROR_NO_APPC_INIT
The Windows APPC library needs to be initialized by a call to WinAPPCStartup before calling GetAPPCConfig and this has not
been done.

APPC_CFG_ERROR_INVALID_HWND
The handle passed in hWnd was non-null, yet not a valid window handle.

APPC_CFG_ERROR_BAD_POINTER
The hWnd parameter was null, indicating that completion was signaled by setting the integer variable pointed to by
pAsyncRetCode, but pAsyncRetCode was not a valid pointer.

APPC_CFG_ERROR_UNCLEAR_COMPLETION_MODE
Both hWnd and pAsyncCompletion were non-null, so GetAPPCConfig was unable to decide how completion should be
signaled.

APPC_CFG_ERROR_TOO_MANY_REQUESTS
Too many GetAPPCConfig calls are already being processed (currently, this indicates 16 requests are outstanding). Try the call
again after a delay. For the Microsoft® Windows® version 3.x system, you must yield during this period.

APPC_CFG_ERROR_GENERAL_FAILURE
An unexpected error occurred, probably of a system nature.

Asynchronous Return Codes

APPC_CFG_SUCCESS_NO_DEFAULT_REMOTE
The configuration information has been retrieved, and either no default remote LU was defined or it was not accessible by the
specified local LU.

APPC_CFG_SUCCESS_DEFAULT_REMOTE
The configuration information has been retrieved, and there is a default remote LU that is accessible by the specified local LU.

APPC_CFG_ERROR_NO_DEFAULT_LOCAL_LU
An attempt was made to retrieve remote LUs partnered with the default local LU, but no default local LU was configured.

APPC_CFG_ERROR_BAD_LOCAL_LU
The local LU specified is either not configured, or is not valid for the calling verb.

APPC_CFG_ERROR_GENERAL_FAILURE
An unexpected error occurred, probably of a system nature.

Remarks

WinAPPCStartup must be called before using GetAPPCConfig.

Whether an error code represents success or failure can be determined by evaluating either (RetCode& APPC_CFG_SUCCESS) to
test for success or (RetCode& APPC_CFG_FAILURE) to test for failure.

The following code fragment shows how a console application can test completion:

while (*pAsyncRetCode == APPC_CFG_PENDING)
{
 sleep(250);
}

Microsoft Host Integration Server 2000

GetAppcReturnCode
The GetAppcReturnCode function converts the primary and secondary return codes in the verb control block to a printable
string. This function provides a standard set of error strings for use by APPC applications such as 5250 emulators.

Parameters

vpb
Supplied parameter. Specifies the address of the verb control block.

buffer_length
Supplied parameter. Specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256.

buffer_addr
Supplied parameter. Specifies the address of the buffer that will hold the formatted, null-terminated string.

Return Values

The GetAppcReturnCode function returns a positive value on success that indicates the length of the error string passed back in
buffer_addr.

A return value of zero indicates an error. On Microsoft® Windows 2000, Windows NT®, Windows® 98, and Windows® 95, a call
to GetLastError provides the actual error return code as follows:

0x20000001
The parameters are invalid; the function could not read from the specified verb control block or could not write to the specified
buffer.

0x20000002
The specified buffer is too small.

0x20000003
The APPC string library APPCSTR.DLL (for Windows) or APPCST32.DLL (for Windows 2000, Windows NT, Windows 98, and
Windows 95) could not be loaded.

Remarks

The descriptive error string returned in buffer_addr does not terminate with a new line character (\n).

The descriptive error strings are contained in APPCSTR.DLL (for Windows version 3.x) or APPCST32.DLL (for Windows 2000,
Windows NT, Windows 98, and Windows 95) and can be customized for different languages.

int WINAPI GetAppcReturnCode(
 struct appc_hdr FAR * vpb,
 UINT buffer_length,
 unsigned char FAR * buffer_addr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GetCsvReturnCode
The GetCsvReturnCode function converts the primary and secondary return codes in the verb control block to a printable string.
This function provides a standard set of error strings for use by applications using CSVs.

Parameters

vpb
Supplied parameter. Specifies the address of the verb control block.

buffer_length
Supplied parameter. Specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256.

buffer_addr
Supplied parameter. Specifies the address of the buffer that will hold the formatted, null-terminated string when the function
completes.

Return Values

The GetCsvReturnCode function returns a positive value on success that indicates the length of the error string passed back in
buffer_addr.

A return value of zero indicates an error. On Microsoft® Windows 2000, Windows NT®, Windows 98, and Windows 95, a call to
GetLastError provides the actual error return code as follows:

0x20000001
The parameters are invalid; the function could not read from the specified verb parameter block or could not write to the
specified buffer.

0x20000002
The specified buffer is too small.

0x20000003
The CSV string library CSVSTR.DLL (for Microsoft® Windows® version 3.x) or CSVST32.DLL (for Windows NT, Windows 95,
and Windows 98) could not be loaded.

Remarks

The descriptive error string returned in buffer_addr does not terminate with a newline character (\n).

The descriptive error strings are contained in CSVSTR.DLL (for Windows version 3.x) or CSVST32.DLL (for Windows NT, Windows
95, and Windows 98) and can be customized for different languages.

int WINAPI GetCsvReturnCode(
 struct csv_hdr FAR * vpb,
 UINT buffer_length,
 unsigned char FAR * buffer_addr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Common Service Verbs
This section describes each of the CSVs and provides:

A definition of the verb.
The structure that defines the VCB used by the verb. The structure is declared in the WINCSV.H file.
The parameters (VCB fields) supplied to and returned by the verb. A description of each parameter is provided, along with
its possible values and other information.
Additional information describing the use of the verb.

Most parameters supplied to and returned by CSVs are hexadecimal values. To simplify coding, these values are represented by
meaningful symbolic constants, which are established by #define statements in the header file WINCSV.H. For example, the
opcode (operation code) parameter for CONVERT is the hexadecimal value represented by the symbolic constant SV_CONVERT.
Use only the symbolic constants when programming CSVs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CONVERT
The CONVERT verb translates an ASCII character string to EBCDIC or an EBCDIC character string to ASCII. The string to be
converted is called the source string. The converted string is called the target string.

The following structure describes the verb control block used by the CONVERT verb.

Members

opcode
Supplied parameter. The verb identifying the operation code, SV_CONVERT.

opext
A reserved field.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

direction
Supplied parameter. Specifies the direction of the conversion. To convert from ASCII to EBCDIC, use SV_ASCII_TO_EBCDIC. To
convert from EBCDIC to ASCII, use SV_EBCDIC_TO_ASCII.

char_set
Supplied parameter. Specifies the character set to use in converting the source string. Allowed values include SV_A (type A
character set), SV_AE (type AE character set), and SV_G (user-defined type G character set).

len
Supplied parameter. Specifies the number of characters to be converted.

This length plus the offset from the beginning of the source or target buffer must not exceed the segment boundary.

source
Supplied parameter. Specifies the address of the buffer containing the character string to be converted.

target
Supplied parameter. Specifies the address of the buffer to contain the converted character string.

This buffer can overlap or coincide with the buffer pointed to by the source parameter. In this case, the converted data string
overwrites the source data string.

Return Codes

SV_OK
Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

SV_CONVERSION_ERROR

Secondary return code; one or more characters in the source string were not found in the conversion table. These characters
were converted to nulls (0x00). The verb still executed.

struct convert {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char direction;
 unsigned char char_set;
 unsigned short len;
 unsigned char FAR * source;
 unsigned char FAR * target;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

SV_INVALID_CHARACTER_SET

Secondary return code; the char_set parameter contained an invalid value.

SV_INVALID_DATA_SEGMENT

Secondary return code; the data buffer containing the source or target string did not fit in one segment, or the target segment
was not a read/write segment. This applies only to the Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft®
Windows® 98, Microsoft® Windows® 95, Microsoft® Windows version 3.x, and OS/2 operating systems.

SV_INVALID_DIRECTION

Secondary return code; the direction contained an invalid value.

SV_INVALID_FIRST_CHARACTER

Secondary return code; the first character of a type A source string was invalid.

SV_TABLE_ERROR

Secondary return code; one of the following occurred:

The file containing the user-written type G conversion table was not specified by the environment variable CSVTBLG.
The table was not in the correct format.
The file specified by the CSVTBLG variable was not found.

SV_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB
Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR
Primary return code; one of the following conditions occurred:

The Microsoft® Windows 2000, Microsoft® Windows NT, Microsoft® Windows 98, Microsoft® Windows 95, Microsoft®
Windows version 3.x, Microsoft® MS-DOS®, or OS/2 system encountered an error while processing the verb. The
operating system return code was returned through the secondary return code. If the problem persists, contact the system
administrator for corrective action.
A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.
A CSV was issued when SendMessage invoked your application. You can determine whether your application has been
invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

The type A character set consists of:

Uppercase letters.
Numerals 0 through 9.
Special characters $, #, @, and space.

This character set is supported by a system-supplied type A conversion table.

The first character of the source string must be an uppercase letter or the special character $, #, or @. Spaces are allowed only in
trailing positions. Lowercase ASCII letters are translated to uppercase EBCDIC letters when the direction is ASCII to EBCDIC.

The type AE character set consists of:

Uppercase letters.
Lowercase letters.
Numerals 0 through 9.
Special characters $, #, @, period, and space.

This character set is supported by a system-supplied type AE conversion table.

The first character of the source string can be any character in the character set, except the space. Spaces are allowed only in
trailing positions.

During conversion, embedded blanks (including blanks in the first position) are converted to 0x00. Although such a conversion
will complete, CONVERSION_ERROR is returned as the secondary return code, indicating that the CSV library has completed an
irreversible conversion on the supplied data.

For Windows 2000 or Windows NT, a description of COMTBLG should point to the Windows 2000 or Windows NT registry under
\SnaBase\Parameters\Client. For Windows version 3.x, the fully qualified file name for a type G conversion table must be the
COMTBLG=filename entry of the [WNAP] section in the WIN.INI file. Entries in this section of the WIN.INI file are used in all
places where MS-DOS and OS/2 use environment variables. (If the file is not found, the system returns the parameter check
SV_TABLE_ERROR.)

The data for a type G conversion table must be an ASCII file 32 lines long. Each line must consist of 32 hexadecimal digits,
representing 16 characters, and be terminated by a carriage return and line feed. The first 16 lines (256 characters) specify the
EBCDIC characters to which ASCII characters are converted; the remaining 16 lines specify the ASCII characters to which EBCDIC
characters are converted.

The hexadecimal digits A through F can be either uppercase or lowercase. However, you may want to make these digits uppercase
to ensure compatibility with IBM ES for OS/2 version 1.0.

 Note You can use GET_CP_CONVERT_TABLE to build a type G user-written conversion table in memory, and then
store the table in a file.

Microsoft Host Integration Server 2000

COPY_TRACE_TO_FILE
The COPY_TRACE_TO_FILE verb concatenates individual API/link service trace files to form a single file.

The following structure describes the verb control block used by the COPY_TRACE_TO_FILE verb.

Members

opcode
Supplied parameter. The verb identifying the operation code, SV_COPY_TRACE_TO_FILE.

opext
A reserved field.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3
A reserved field.

file_name
Supplied parameter. Specifies the name of the file to which trace data is to be copied. This parameter is a 64-byte character
string, and it can include a path. If the name is fewer than 64 bytes, use spaces to pad it on the right.

file_option
Supplied parameter. Specifies the output file copy option:

Use SV_NEW to copy the trace only if the specified file does not already exist.
Use SV_OVERWRITE to copy the trace to an existing file, overwriting the current data. The size of the file is increased if
necessary; and the file is created if it does not already exist.

reserv4
The address at which supplied data resides.

Return Codes

SV_OK
Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_FILE_OPTION

Secondary return code; a value other than SV_NEW or SV_OVERWRITE was specified for file_option.

SV_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

SV_COPY_TRACE_IN_PROGRESS

Secondary return code; a previously issued COPY_TRACE_TO_FILE verb is still in progress.

SV_TRACE_FILE_EMPTY

struct copy_trace_to_file {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char file_name[64];
 unsigned char file_option;
 unsigned char reserv4[12];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Secondary return code; there is no data in the trace files.

SV_TRACE_NOT_STOPPED

Secondary return code; a trace was in progress when the verb was issued.

SV_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

SV_FILE_ALREADY_EXISTS
Primary return code; when the SV_NEW file option was used, the file name specified was the name of an existing file.

SV_INVALID_VERB
Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

SV_OUTPUT_DEVICE_FULL
Primary return code; there is insufficient space on the device where the output file resides. Retry the operation after freeing
additional disk space.

SV_UNEXPECTED_DOS_ERROR
Primary return code; one of the following conditions occurred:

The Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, Microsoft® Windows® 95,
Microsoft® Windows version 3.x, Microsoft® MS-DOS®, or OS/2 system encountered an error while processing the
verb. The operating system return code was returned through the secondary return code. If the problem persists, contact
the system administrator for corrective action.
A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.
A CSV was issued when SendMessage invoked your application. You can determine whether your application has been
invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

There are two API/link-service trace files. The files are used alternately; tracing switches from one file to the other when one file is
full (larger than 250K). When COPY_TRACE_TO_FILE is called, these trace files are concatenated and copied to a single file, the
name of which is specified as a parameter to the call.

API/link-service tracing is stopped before issuing the verb, and restarted after the copy is complete. The trace files are reset when
this verb is successfully completed.

Microsoft Host Integration Server 2000

DEFINE_TRACE
The DEFINE_TRACE verb enables or disables tracing for specified APIs and controls the amount of tracing.

The following structure describes the verb control block used by the DEFINE_TRACE verb.

Members

opcode
Supplied parameter. The verb identifying the operation code, SV_DEFINE_TRACE.

opext
A reserved field.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3
A reserved field.

dt_set
Supplied parameter. Sets the trace state.

Use SV_ON to enable tracing for a particular API if the parameter pertaining to the API (such as appc or comm_serv) is
set to SV_CHANGE.
Use SV_OFF to disable tracing for a particular API if the parameter pertaining to the API is set to SV_CHANGE.

appc

struct define_trace {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char dt_set;
 unsigned char appc;
 unsigned char reserv4;
 unsigned char srpi;
 unsigned char sdlc;
 unsigned char tkn_rng_dlc;
 unsigned char pcnet_dlc;
 unsigned char dft;
 unsigned char acdi;
 unsigned char reserv5;
 unsigned char ehllapi;
 unsigned char x25_api;
 unsigned char x25_dlc;
 unsigned char twinax;
 unsigned char reserv6;
 unsigned char lua_api;
 unsigned char etherand;
 unsigned char subsym;
 unsigned char reserv7[8];
 unsigned char reset_trc;
 unsigned short trunc;
 unsigned short strg_size;
 unsigned char reserv8;
 unsigned char phys_link[8];
 unsigned char reserv9[56];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Supplied parameter. Indicates whether tracing of APPC is desired.

Use SV_CHANGE to enable or disable tracing for APPC, depending on the dt_set parameter.
Use SV_IGNORE to leave tracing in its current state for APPC.

The allowed values turn bit 0 on or off; bits 1 through 7 are reserved.

reserv4
A reserved field.

srpi
Supplied parameter. Indicates whether tracing of SRPI is desired.

Use SV_CHANGE to enable or disable tracing for APPC, depending on the dt_set parameter.
Use SV_IGNORE to leave tracing in its current state for APPC.

sdlc
A reserved field.

tkn_rng_dlc
A reserved field.

pcnet_dlc
A reserved field.

dft
A reserved field.

acdi
A reserved field.

reserv5
A reserved field.

comm_serv
Supplied parameter. Indicates whether tracing of COMM_SERV_API is desired.

Use SV_CHANGE to enable or disable tracing for APPC, depending on the dt_set parameter.
Use SV_IGNORE to leave tracing in its current state for APPC.

ehllapi
A reserved field.

x25_api
A reserved field.

x25_dlc
A reserved field.

twinax
A reserved field.

reserved6
A reserved field.

lua_api
A reserved field.

etherand
A reserved field.

subsym
A reserved field.

reserved7
A reserved field.

reset_trc
Supplied parameter. Indicates whether the trace file pointer should be reset.

Use SV_NO to not reset the trace file pointer to the start of the trace file. Previous trace records are not overwritten.
Use SV_YES to reset the trace file pointer to the start of the trace file. Previous trace records are overwritten.

trunc
Supplied parameter. Specifies the maximum number of bytes for each trace record. Excess bytes are truncated. Set this value to
zero if you do not want truncation.

strg_size
A reserved field.

reserved8

A reserved field.
phys_link

A reserved field.
reserved9

A reserved field.

Return Codes

SV_OK
Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_RESET_TRACE

Secondary return code; the reset_trc parameter contained an invalid value.

SV_INVALID_SET

Secondary return code; the dt_set parameter contained an invalid value.

SV_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

SV_COPY_TRACE_IN_PROGRESS

Secondary return code; a previously issued COPY_TRACE_TO_FILE is still in progress. Traces cannot be active while using
DEFINE_TRACE.

SV_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB
Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR
Primary return code; one of the following conditions occurred:

The Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, Microsoft® Windows® 95,
Microsoft® Windows version 3.x, Microsoft® MS-DOS®, or OS/2 system encountered an error while processing the
verb. The operating system return code was returned through the secondary return code. If the problem persists, contact
the system administrator for corrective action.
A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.
A CSV was issued when SendMessage invoked your application. You can determine whether your application has been
invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

For information on how to run and use traces, see the appropriate manual for your product.

Microsoft Host Integration Server 2000

GET_CP_CONVERT_TABLE
The GET_CP_CONVERT_TABLE verb creates and returns a 256-byte conversion table to translate character strings from a source
code page to a target code page.

The following structure describes the verb control block used by the GET_CP_CONVERT_TABLE verb.

Members

opcode
Supplied parameter. The verb identifying the operation code, SV_GET_CP_CONVERT_TABLE.

opext
A reserved field.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3
A reserved field.

source_cp
Supplied parameter. Specifies the source code page from which characters are converted. The allowed code pages (decimal
values) are as follows:

ASCII 437, 850, 860, 863, 865
EBCDIC 037, 273, 277, 278, 280, 284, 285, 297, 500

User-defined code pages in the range from 65280 through 65535 are also allowed.

ASCII code pages are sometimes referred to as PC code pages; EBCDIC code pages are sometimes referred to as host code
pages.

target_cp
Supplied parameter. Specifies the target code page to which characters are converted. For allowed code pages, see the
preceding definition for source_cp.

conv_tbl_addr
Supplied parameter. Specifies the address of the buffer to contain the 256-byte conversion table. The buffer must be in a
writable segment and long enough to contain the table.

char_not_fnd
Supplied parameter. Specifies the action to take if a character in the source code page does not exist in the target code page:

Use SV_ROUND_TRIP to store a unique value in the conversion table for each source code page character.
Use SV_SUBSTITUTE to store a substitute character (specified by substitute_char) in the conversion table.

substitute_char
Supplied parameter. Specifies the character to store in the conversion table when a character from the source code page has no
equivalent in the target code page.

struct get_cp_convert_table {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned short source_cp;
 unsigned short target_cp;
 unsigned char FAR * conv_tbl_addr;
 unsigned char char_not_fnd;
 unsigned char substitute_char;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Return Codes

SV_OK
Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_CHAR_NOT_FOUND
Secondary return code; the char_not_fnd parameter contained an invalid value.

SV_INVALID_DATA_SEGMENT
Secondary return code; the 256-byte area specified for the conversion table extended beyond the segment boundary, or the
segment was not writable.

SV_INVALID_SOURCE_CODE_PAGE
Secondary return code; the code page specified by source_cp is not supported.

SV_INVALID_TARGET_CODE_PAGE
Secondary return code; the code page specified by target_cp is not supported.

SV_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB
Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR
Primary return code; one of the following conditions occurred:

The Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, Microsoft® Windows® 95,
Microsoft® Windows version 3.x, Microsoft® MS-DOS®, or OS/2 system encountered an error while processing the
verb. The operating system return code was returned through the secondary return code. If the problem persists, contact
the system administrator for corrective action.
A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.
A CSV was issued when SendMessage invoked your application. You can determine whether your application has been
invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

The type A character set consists of:

Uppercase letters.
Numerals 0 through 9.
Special characters $, #, @, and space.

This character set is supported by a system-supplied type A conversion table.

The first character of the source string must be an uppercase letter or the special character $, #, or @. Spaces are allowed only in
trailing positions. Lowercase ASCII letters are translated to uppercase EBCDIC letters when the direction is ASCII to EBCDIC.

The type AE character set consists of:

Uppercase letters.
Lowercase letters.
Numerals 0 through 9.
Special characters $, #, @, period, and space.

This character set is supported by a system-supplied type AE conversion table.

The first character of the source string can be any character in the character set except the space.

During conversion, embedded blanks (including blanks in the first position) are converted to 0x00. Although such a conversion
will complete, CONVERSION_ERROR is returned as the secondary return code, indicating that the CSV library has completed an
irreversible conversion on the supplied data.

For Windows 2000 or Windows NT, a description of COMTBLG should point to the Windows 2000 or Windows NT registry under
\SnaBase\Parameters\Client. For the OS/2 operating system, the directory and file containing the table must be specified by
the environment variable COMTBLG. (If the file is not found, the system returns the SV_TABLE_ERROR parameter check.).

The SV_ROUND_TRIP value for char_not_fnd is useful only if you build a second conversion table to convert between the same
two code pages in the reverse direction. If you specify the SV_ROUND_TRIP value in building both conversion tables, any
character translated from one code page to the other and then back will be unchanged.

When using the SV_SUBSTITUTE value for char_not_fnd, converting the translated character string back to the original code page
will not necessarily re-create the original character string.

Use substitute_char only if char_not_fnd is set to SV_SUBSTITUTE.

The value stored in the conversion table is the ASCII value associated with the character. If the table is used for conversion from
ASCII to EBCDIC, the character that appears in the converted string is the character associated with the numeric EBCDIC value
rather than ASCII.

For example, if you supply the underscore (_) character (ASCII value F6) while creating an ASCII to EBCDIC conversion table, the
character that appears in the converted strings will be 6, the character associated with the value F6 in EBCDIC. To use the _
character as the substitute character in an ASCII to EBCDIC conversion table, you should supply the value E1 (the value associated
with the _ character in EBCDIC) rather than the actual character.

A code page is a table that associates specific ASCII or EBCDIC values with specific characters. If a character from the source code
page does not exist in the target code page, the translated (target) string differs from the original (source) string.

Microsoft Host Integration Server 2000

LOG_MESSAGE
For OS/2 only, the LOG_MESSAGE verb records a message in the error log file and optionally displays the message on the user’s
screen. This verb is included for compatibility with existing applications.

The following structure describes the verb control block used by the LOG_MESSAGE verb.

Members

opcode
Supplied parameter. The verb identifying the operation code, SV_LOG_MESSAGE.

opext
A reserved field.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

msg_num
Supplied parameter. Specifies the number of the message in the message file specified by msg_file_name.

origntr_id
Supplied parameter. Specifies the name of the component issuing LOG_MESSAGE or an 8-byte, user-supplied string.

msg_file_name
Supplied parameter. Specifies the name of the file containing the message to be logged.

msg_act
Supplied parameter. Specifies the action to be taken when processing the message:

Use SV_INTRV to log the intervention with a severity level of 12 and display the message on the user’s screen. The user
must press a key to remove the message from the screen.
Use SV_NO_INTRV to log the intervention with a severity level of 12 but not display the message.

msg_ins_len
Supplied parameter. Specifies the length of data to be inserted into the message. Set this parameter to zero if no data is to be
inserted.

msg_ins_ptr
Supplied parameter. Specifies the address of the data to be inserted into the message.

Use this parameter only if msg_ins_len is greater than zero.

Return Codes

SV_OK
Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_DATA_SEGMENT
Secondary return code; the data that was to be inserted into the message extended beyond the segment boundary.

struct log_message {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned short msg_num;
 unsigned char origntr_id[8];
 unsigned char msg_file_name[3];
 unsigned char msg_act;
 unsigned short msg_ins_len;
 unsigned char FAR * msg_ins_ptr;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

SV_INVALID_MESSAGE_ACTION
Secondary return code; the msg_act parameter contained an invalid value.

SV_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB
Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR
Primary return code; one of the following conditions occurred:

The Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, Microsoft® Windows® 95,
Microsoft® Windows version 3.x, Microsoft® MS-DOS®, or OS/2 system encountered an error while processing the
verb. The operating system return code was returned through the secondary return code. If the problem persists, contact
the system administrator for corrective action.
A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.
A CSV was issued when SendMessage invoked your application. You can determine whether your application has been
invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

The value for msg_file_name must be three characters long. Pad with spaces if necessary. The .MSG extension is added
automatically.

The total length of msg_ins_len, including header information (40 bytes), message text, and inserted data, should not exceed 256
bytes. If the length is greater than 256 bytes, the communication system will attempt to log only the header information and
inserted text; the message text will be left out.

When you create the log message file, you can specify where in the message the additional data is to be inserted. Further
information is provided below.

The data for msg_ins_ptr consists of a series of up to nine null-terminated strings. (Because IBM OS/2 ES version 1.0 supports
only three data strings, you may want to limit the inserted text to three strings to ensure compatibility.)

Creating a Message File
If you want to create your own message file, you must use the utility MKMSGF. This utility can also run with MS-DOS.

The first three characters of the message number must match the three-character name of the log message file. These three
characters are declared at the top of the file as well.

The system finds the message file as follows:

If you use your own message file, the system assumes the file is in the same directory as your program’s executable file.
If you use the default message file, COM.MSG, the system finds the file automatically, provided the SnaBase for Microsoft®
Host Integration Server 2000 or SNA Server is loaded.
If you use the default message file without loading the previously-mentioned software, the system expects DPATH to
indicate the path to the message file. This applies only to the Windows version 3.x and OS/2 operating systems.

Microsoft Host Integration Server 2000

TRANSFER_MS_DATA
The TRANSFER_MS_DATA verb builds an SNA request unit containing Network Management Vector Transport (NMVT) data. The
verb can send the NMVT data to NetView for centralized problem diagnosis and resolution. The data is logged in the local audit
file.

The following structure describes the verb control block used by the TRANSFER_MS_DATA verb.

Members

opcode
Supplied parameter. The verb identifying the operation code, SV_TRANSFER_MS_DATA.

data_type
Supplied parameter. Specifies the type of data provided by this verb:

Use SV_NMVT to generate an NMVT (including the NS header, the major network management vector, and subvectors).
Use SV_ALERT_SUBVECTORS to generate an RU containing data for an alert in the appropriate format, without the NS
header or major NMVT vector.
Use SV_PDSTATS_SUBVECTORS to generate an RU containing data for problem determination statistics in the
appropriate format, without the NS header or major NMVT vector.
Use SV_USER_DEFINED to generate user-defined data; this data is recorded in the error log but cannot be sent on the
systems services control point-physical unit (SSCP-PU) session on the connection configured for diagnostics.

reserv2
A reserved field.

primary_rc
Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc
Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

options
Supplied parameter. Specifies the desired options by turning individual bits on or off. (Bits 1, 2, and 3 are ignored if data_type
is set to SV_USER_DEFINED.) See the Remarks section.

origntr_id
Supplied parameter. Specifies the name of the component issuing TRANSFER_MS_DATA. This parameter is optional. Set it to
0x00 if you want the system to ignore it.

dlen
Supplied parameter. Specifies the length of data to be supplied to this verb. The total length of the data (user-supplied data and
any added headers or subvectors) must fit into one RU. The maximum RU length is 512 bytes.

dptr
Supplied parameter. Specifies the address of the data to be sent.

Return Codes

SV_OK
Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

struct transfer_ms_data {
 unsigned short opcode;
 unsigned char data_type;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char options;
 unsigned char reserv3;
 unsigned char origntr_id[8];
 unsigned short dlen;
 unsigned char FAR * dptr;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

SV_DATA_EXCEEDS_RU_SIZE

Secondary return code; the data to be sent was too long. The length of the user-supplied data plus headers and added
subvectors must fit in a single RU that is not more than 512 bytes long.

SV_INVALID_DATA_SEGMENT

Secondary return code; the buffer pointed to by dptr was not a readable segment or extended beyond the segment boundary.

SV_INVALID_DATA_TYPE

Secondary return code; the data_type parameter contained an invalid value.

SV_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

SV_SSCP_PU_SESSION_NOT_ACTIVE

Secondary return code; the NMVT was not sent; either the SSCP-PU session was not active, the node configured to receive
diagnostic information was not active, or no network management connection was configured.

SV_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB
Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR
Primary return code; one of the following conditions occurred:

The Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, Microsoft® Windows® 95,
Microsoft® Windows version 3.x, Microsoft® MS-DOS®, or OS/2 system encountered an error while processing the
verb. The operating system return code was returned through the secondary return code. If the problem persists, contact
the system administrator for corrective action.
A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.
A CSV was issued when SendMessage invoked your application. You can determine whether your application has been
invoked with SendMessage by using the InSendMessage Windows API function call.

SV_CANCELLED
Primary return code; this code is returned for an asynchronous verb when it has been shut down by a WinCSVCleanup call.

SV_SERVER_RESOURCE_NOT_FOUND
Primary return code; no communication server was found that could provide the requested function.

SV_SERVER_RESOURCES_LOST
Primary return code; the communications server that was providing the function was lost due to a connection failure.

SV_SERVER_CONN_FAILURE

Secondary return code; the connection to the server was lost due to physical path problems; for example, the server may have
been powered off.

SV_THREAD_BLOCKING
Primary return code; this verb exceeds the maximum number of simultaneous synchronous verbs allowed.

Remarks

To specify options, turn bits on or off as follows:

Bit Description
0 TIME_STAMP_SUBVECTOR. Adds date/time subvector to data. Allowed values include SV_ADD and SV_NO_ADD.
1 PRODUCT_SET_ID_SUBVECTOR. Adds Product_Set_ID subvector to data. This allows network management services to identif

y the sender of an alert. Allowed values include SV_ADD and SV_NO_ADD.
2 SSCP_PU_SESSION. Sends the data on the SSCP-PU session on the connection configured for diagnostics if the session is act

ive. (The data is added to the error log regardless of whether it is sent on the session or whether SV_STATE_CHECK or SV_CO
MM_SUBSYSTEM_NOT_LOADED is returned.) Allowed values include SV_SEND and SV_NO_SEND.

3 LOCAL_LOGGING. Logs local alerts that are retrieved from the error log and forwarded to the host. This option is valid only
when data_type SV_NMVT or data_type SV_ALERT_SUBVECTORS with option SV_SEND is specified. Allowed values includ
e SV_LOG and SV_NO_LOG.

4 th
rou
gh
7

Reserved

Microsoft Host Integration Server 2000

CSV Extensions for the Windows Environment
This section describes API extensions to the Windows Common Service Verb (CSV) API. The extensions described in this section
have been designed for all implementations and versions of the Microsoft® Windows® graphical environment, version 3.0 and
later. They provide support for maximum Windows programming compatibility and optimum application performance in both
16-bit and 32-bit operating environments.

Windows CSV allows multithreaded Windows-based processes. Multithreading is the running of several processes in rapid
sequence within a single program. A process contains one or more threads of execution. The 16-bit Windows environment is not
multithreaded. In this instance, a task corresponds to a process with a single thread. All references to threads in this document
refer to actual threads in multithreaded Windows environments.

For each extension, this section provides a definition of the function, syntax, returns, and remarks for using the function.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinAsyncCSV
The WinAsyncCSV function provides an asynchronous entry point for TRANSFER_MS_DATA only. If this function is used for any
other verb, the behavior will be synchronous. Use this function instead of the blocking version of the verb if you run your
application under Microsoft® Windows® version 3.x.

Parameters

hWnd
Handle of window to receive message.

lpVcb
Pointer to the verb control block.

Return Values

The return value specifies whether the asynchronous resolution request was successful. If the function was successful, the return
value is an asynchronous task handle. If the function was not successful, a zero is returned.

Remarks

When the asynchronous operation is complete, the application’s window hWnd receives the message returned by
RegisterWindowMessage with “WinAsyncCSV” as the input string. The wParam argument contains the asynchronous task
handle returned by the original function call. The lParam argument contains the original VCB pointer and can be dereferenced to
determine the final return code.

If the function returns successfully, a “WinAsyncCSV” message will be posted to the application when the operation completes or
the conversation is canceled.

HANDLE WINAPI WinAsyncCSV(
 HWND hWnd,
 long lpVcb
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCSVCleanup
The WinCSVCleanup function terminates and deregisters an application from a Windows CSV implementation.

Return Values

The return value specifies whether the deregistration was successful. If the value is nonzero, the application was successfully
deregistered. The application was not deregistered if a value of zero is returned.

Remarks

Use WinCSVCleanup to indicate deregistration of a Windows CSV application from a Windows CSV implementation. This
function can be used, for example, to free up resources allocated to the specific application.

BOOL WINAPI WinCSVCleanup(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCSVStartup
The WinCSVStartup function allows an application to specify the version of Windows CSV required and to retrieve details of the
specific Windows CSV implementation. This function must be called by an application to register itself with a Windows CSV
implementation before issuing any further Windows CSV calls.

Parameters

wVersionRequired
Specifies the version of Windows CSV support required. The high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number. The current version of the Windows CSV API is 1.0.

lpwcsvdata
A pointer to the CSV data structure. The CSVDATA structure is defined as follows:

where WCSVDESCRIPTION is defined to be 127 and the structure members are as follows:

wVersion

The version of Windows CSV supported. The high-order byte specifies the minor version (revision) number; the low-order byte
specifies the major version number.

szDescription

A description string identifying the vendor of the Windows CSV DLL.

This CVSDATA structure provides information about the underlying Windows CSV DLL implementation. The first wVersion field
has the same structure as the wVersionRequired parameter, and the szDescription field contains a string identifying the vendor of
the Windows CSV DLL. The description field is only meant to provide a display string for the application and should not be used
to programmatically distinguish between Windows CSV implementations.

Return Values

The return value specifies whether the application was registered successfully and whether the Windows CSV implementation can
support the specified version number. If the value is zero, it was registered successfully. Otherwise, the return value is one of the
following:

WCSVSYSNOTREADY
Indicates that the underlying network subsystem is not ready for network communication.

WCSVVERNOTSUPPORTED
The version of Windows CSV support requested is not provided by this particular Windows CSV implementation.

WCSVINVALID
The Windows CSV version specified by the application is not supported by this DLL.

Remarks

To support future Windows CSV implementations and applications that may have functionality differences from Windows CSV
version 1.0, a negotiation takes place in WinCSVStartup. An application passes to WinCSVStartup the Windows CSV version
that it can use. If this version is lower than the lowest version supported by the Windows CSV DLL, the DLL cannot support the
application and WinCSVStartup fails. If the version is not lower, however, the call succeeds and returns the highest version of
Windows CSV supported by the DLL. If this version is lower than the lowest version supported by the application, the application
either fails its initialization or attempts to find another Windows CSV DLL on the system.

This negotiation allows both a Windows CSV DLL and a Windows CSV application to support a range of Windows CSV versions.
An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinCSVStartup works in conjunction with different application and DLL versions.

int WINAPI WinCSVStartup(
 WORD wVersionRequired,
 LPWCSVDATA lpwcsvdata
);

typedef struct tagWCSVDATA {
....WORD wVersion;
 char szDescription[WCSVDESCRIPTION_LEN+1];
} CSVDATA, FAR * LPWCSVCDATA;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Application versions DLL versions To WinCSVStartup From WinCSVStartup Result
1.0 1.0 1.0 1.0 Use 1.0
1.0, 2.0 1.0 2.0 1.0 Use 1.0
1.0 1.0, 2.0 1.0 2.0 Use 1.0
1.0 2.0, 3.0 1.0 WCSVINVALID Fail
2.0, 3.0 1.0 3.0 1.0 App Fails
1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

After making its last Windows CSV call, an application should call WinCSVCleanup.

Each Windows CSV implementation must make a WinCSVStartup call before issuing any other Windows CSV calls.
Consequently, this function can be used for initialization purposes.

Microsoft Host Integration Server 2000

Common APPC Return Codes
This section describes the primary and, if applicable, secondary return codes for the APPC verbs. The return codes are listed in
hexadecimal order.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Primary APPC Return Codes
0000

AP_OK
The verb executed successfully.

0001

AP_PARAMETER_CHECK
The verb did not execute because of a parameter error.

0002

AP_STATE_CHECK
The verb did not execute because it was issued in an invalid state.

0003

AP_ALLOCATION_ERROR
APPC failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE or MC_ALLOCATE.

0005

AP_DEALLOC_ABEND (for a mapped conversation)
The conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.
The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

0006

AP_DEALLOC_ABEND_PROG (for a basic conversation)
The conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.
The partner TP encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

0007

AP_DEALLOC_ABEND_SVC (for a basic conversation)
The conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_SVC.

0008

AP_DEALLOC_ABEND_TIMER (for a basic conversation)
The conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set to
AP_ABEND_TIMER.

0009

AP_DEALLOC_NORMAL
The partner TP has deallocated the conversation without requesting confirmation.

000C

AP_PROG_ERROR_NO_TRUNC
The partner TP has issued one of the following verbs while the conversation was in SEND state:

SEND_ERROR with err_type set to AP_PROG
MC_SEND_ERROR_sna_MC_SEND_ERROR_appc

Data was not truncated.

000F

AP_CONV_FAILURE_RETRY
The conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs again. If it does, the

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

system administrator should examine the error log to determine the cause of the error.

0010

AP_CONV_FAILURE_NO_RETRY
The conversation was terminated because of a permanent condition, such as a session protocol error. The system administrator
should examine the system error log to determine the cause of the error. Do not retry the conversation until the error has been
corrected.

0011

AP_SVC_ERROR_NO_TRUNC
While in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC. Data was not truncated.

0012

AP_PROG_ERROR_TRUNC/AP_SVC_ERROR_TRUNC
In SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR. The local TP may have received
the first part of the logical record.

0013

AP_SVC_ERROR_PURGING
The partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE, PENDING_POST
(Microsoft® Windows NT®, Microsoft® Windows® 95, and OS/2 only), CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been purged.

0014

AP_UNSUCCESSFUL
No data is immediately available from the partner TP.

0017

AP_CNOS_LOCAL_RACE_REJECT
APPC is currently processing a CNOS verb issued by a local LU.

0018

AP_CNOS_PARTNER_LU_REJECT
The partner LU rejected a CNOS request from the local LU.

0019

AP_CONVERSATION_TYPE_MIXED
The TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single conversation.

0021

AP_CANCELED
The local TP issued one of the following verbs, which canceled RECEIVE_AND_POST or MC_RECEIVE_AND_POST:

DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER
MC_DEALLOCATE with dealloc_type set to AP_ABEND
SEND_ERROR or MC_SEND_ERROR
TP_ENDED_sna_TP_ENDED_appc

Issuing one of these verbs causes the semaphore to be cleared.

F002

AP_TP_BUSY
The local TP has issued a call to APPC while APPC was processing another call for the same TP. This can occur if the local TP has
multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

F003

AP_COMM_SUBSYSTEM_ABENDED
Indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

F004

AP_COMM_SUBSYSTEM_NOT_LOADED
A required component could not be loaded or has terminated while processing the verb. Thus, communication could not take
place. Contact the system administrator for corrective action.

F005

AP_CONV_BUSY
There can only be one outstanding conversation verb at a time on any conversation.

F006

AP_THREAD_BLOCKING
The calling thread is already in a blocking call.

F008

AP_INVALID_VERB_SEGMENT
The VCB extended beyond the end of the data segment.

F011

AP_UNEXPECTED_DOS_ERROR
The operating system returned an error to APPC while processing an APPC call from the local TP. The operating system return
code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem persists, consult the system
administrator.

F015

AP_STACK_TOO_SMALL
The stack size of the application is too small to execute the verb. Increase the stack size of your application.

F020

AP_INVALID_KEY
The supplied key was incorrect.

Microsoft Host Integration Server 2000

Secondary APPC Return Codes
00000000

AP_CNOS_ACCEPTED
APPC accepts the session lines and responsibility as specified.

00000001

AP_BAD_TP_ID
The value of tp_id did not match a TP identifier assigned by APPC.

00000002

AP_BAD_CONV_ID
The value of conv_id did not match a conversation identifier assigned by APPC.

00000003

AP_BAD_LU_ALIAS
APPC cannot find the specified lu_alias among those defined.

000000C4

AP_RCV_IMMD_BAD_FILL (for a basic conversation)
The fill parameter was set to an invalid value.

00000004

AP_ALLOCATION_FAILURE_NO_RETRY
The conversation cannot be allocated because of a permanent condition, such as a configuration error or session protocol error.
To determine the error, the system administrator should examine the error log file. Do not retry the allocation until the error has
been corrected.

00000005

AP_ALLOCATION_FAILURE_RETRY
The conversation could not be allocated because of a temporary condition, such as a link failure. The reason for the failure is
logged in the system error log. Retry the allocation.

00000006

AP_INVALID_DATA_SEGMENT
The PIP data was longer than the allocated data segment, or the address of the PIP data buffer was wrong.

00000007

AP_CNOS_NEGOTIATED
APPC accepts the session limits and responsibility as negotiable by the partner LU. Values that can be negotiated are:

plu_mode_session_limit

min_conwinners_source

min_conwinners_target

responsible

drain_target

000000D7

AP_BAD_RETURN_STATUS_WITH_DATA
The specified rtn_status value was not recognized by APPC.

00000011

AP_BAD_CONV_TYPE (for a basic conversation)
The value specified for conv_type was invalid.

00000012

AP_BAD_SYNC_LEVEL

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The value specified for sync_level was invalid.

00000013

AP_BAD_SECURITY
The value specified for security was invalid.

00000014

AP_BAD_RETURN_CONTROL
The value specified for rtn_ctl was invalid.

00000016

AP_PIP_LEN_INCORRECT
The value of pip_dlen was greater than 32767.

00000017

AP_NO_USE_OF_SNASVCMG (for a mapped conversation)
SNASVCMG is not a valid value for mode_name.

00000018

AP_UNKNOWN_PARTNER_MODE
The value specified for mode_name was invalid.

00000031

AP_CONFIRM_ON_SYNC_LEVEL_NONE
The local TP attempted to use CONFIRM or MC_CONFIRM in a conversation with a synchronization level of AP_NONE. The
synchronization level, established by ALLOCATE or MC_ALLOCATE, must be AP_CONFIRM_SYNC_LEVEL.

00000032

AP_CONFIRM_BAD_STATE
The conversation was not in SEND state.

00000033

AP_CONFIRM_NOT_LL_BDY
The conversation for the local TP was in SEND state, and the local TP did not finish sending a logical record.

00000051

AP_DEALLOC_BAD_TYPE
The dealloc_type parameter was not set to a valid value.

00000052

AP_DEALLOC_FLUSH_BAD_STATE

The conversation was not in SEND state and the TP attempted to flush the send buffer. This attempt occurred because the value of
dealloc_type was AP_FLUSH or because the value of dealloc_type was AP_SYNC_LEVEL and the synchronization level of the
conversation was AP_NONE. In either case, the conversation must be in SEND state.

00000053

AP_DEALLOC_CONFIRM_BAD_STATE
The conversation was not in SEND state, and the TP attempted to flush the send buffer and send a confirmation request.

00000055

AP_DEALLOC_NOT_LL_BDY (for a basic conversation)
The conversation was in SEND state, and the TP did not finish sending a logical record. The dealloc_type parameter was set to
AP_SYNC_LEVEL or AP_FLUSH.

00000057

AP_DEALLOC_LOG_LL_WRONG
The LL field of the GDS error log variable did not match the actual length of the log data.

00000061

AP_FLUSH_NOT_SEND_STATE
The conversation was not in SEND state.

000000A1

AP_P_TO_R_INVALID_TYPE
The ptr_type parameter was not set to a valid value.

000000A2

AP_P_TO_R_NOT_LL_BDY
The local TP did not finish sending a logical record.

000000A3

AP_P_TO_R_NOT_SEND_STATE
The conversation was not in SEND state.

000000B1

AP_RCV_AND_WAIT_BAD_STATE
The conversation was not in RECEIVE or SEND state when the TP issued this verb.

000000B2

AP_RCV_AND_WAIT_NOT_LL_BDY (for a basic conversation)
The conversation was in SEND state; the TP began but did not finish sending a logical record.

000000B5

AP_RCV_AND_WAIT_BAD_FILL (for a basic conversation)
The fill parameter was set to an invalid value.

000000C1

AP_RCV_IMMD_BAD_STATE
The conversation was not in RECEIVE state.

000000D1

AP_RCV_AND_POST_BAD_STATE
The conversation was not in RECEIVE or SEND state when the TP issued this verb.

000000D2

AP_RCV_AND_POST_NOT_LL_BDY
The conversation was in SEND state; the TP began but did not finish sending a logical record.

000000D5

AP_RCV_AND_POST_BAD_FILL
The fill parameter was set to an invalid value.

000000D6

AP_INVALID_SEMAPHORE_HANDLE
The address of the RAM semaphore or system semaphore handle was invalid.

 Note APPC cannot trap all invalid semaphore handles. If the TP passes a bad RAM semaphore handle, a protection violation
results.

000000D7

AP_BAD_RETURN_STATUS_WITH_DATA
The specified rtn_status value was not recognized by APPC.

000000E1

AP_R_T_S_BAD_STATE
The conversation is not in an allowed state when the TP issued this verb.

000000F1

AP_BAD_LL (for a basic conversation)

The logical record length field of a logical record contained an invalid value — 0x0000, 0x0001, 0x8000, or 0x8001. See
About Transaction Programs for information on logical records.

000000F2

AP_SEND_DATA_NOT_SEND_STATE
The local TP issued SEND_DATA or MC_SEND_DATA, but the conversation was not in SEND state.

000000F5

AP_SEND_DATA_CONFIRM_ON_SYNC_NONE
The type CONFIRM is not permitted for a conversation that was allocated with a sync_level of NONE.

000000F6

AP_SEND_DATA_NOT_LL_BDY (for a basic conversation)
The TP started but did not finish sending a logical record. This occurs only when type is one of the following:

AP_SEND_DATA_CONFIRM

AP_SEND_DATA_DEALLOC_FLUSH

AP_SEND_DATA_DEALLOC_SYNC_LEVEL

AP_SEND_DATA_P_TO_R_FLUSH

AP_SEND_DATA_P_TO_R_SYNC_LEVEL

00000102

AP_SEND_ERROR_LOG_LL_WRONG (for a basic conversation)
The LL field of the error log GDS variable did not match the actual length of the data.

00000103

AP_SEND_ERROR_BAD_TYPE (for a basic conversation)
The value of err_type was invalid.

00000105

AP_BAD_ERROR_DIRECTION
The specified err_dir was not recognized by APPC.

00000150

AP_CNOS_IMPLICIT_PARALLEL
APPC does not permit a program to change the session limit for a mode other than SNASVCMG mode for the implicit partner
template when the template specifies parallel sessions. (The term “template” is used because many of the actual values are yet
to be filled in).

00000151

AP_CANT_RAISE_LIMITS
APPC does not permit setting session limits to a nonzero value unless the limits currently are zero.

00000152

AP_AUTOACT_EXCEEDS_SESSLIM
On the CNOS verb, the value for auto_activate is greater than the value for partner_lu_mode_session_limit.

00000153

AP_ALL_MODE_MUST_RESET
APPC does not permit a nonzero session limit when mode_name_select indicates ALL.

00000154

AP_BAD_SNASVCMG_LIMITS
Your program specified invalid settings for the partner_lu_mode_session_limit, min_conwinners_source, or
min_conwinners_target parameters when mode_name was supplied.

00000155

AP_MIN_GT_TOTAL

The sum of min_conwinners_source and min_conwinners_target specifies a number greater than
partner_lu_mode_session_limit.

00000156

AP_MODE_CLOSED
The local LU cannot negotiate a nonzero session limit because the local maximum session limit at the partner LU is zero.

00000156

AP_CNOS_MODE_CLOSED
The local LU cannot negotiate a nonzero session limit because the local maximum session limit at the partner LU is zero.

00000157

AP_CNOS_MODE_NAME_REJECT
The partner LU does not recognize the specified mode name.

00000159

AP_RESET_SNA_DRAINS
The SNASVCMG mode does not support the drain parameter values.

0000015A

AP_SINGLE_NOT_SRC_RESP
For a single-session CNOS verb, APPC permits only the local (source) LU to be responsible for deactivating sessions.

0000015B

AP_BAD_PARTNER_LU_ALIAS
APPC did not recognize the supplied partner_lu_alias.

0000015C

AP_EXCEEDS_MAX_ALLOWED
Your program issued a CNOS verb, specifying a partner_lu_mode_session_limit number and set_negotiable (NO).

0000015D

AP_CHANGE_SRC_DRAINS
APPC does not permit mode_name_select (ONE) and drain_source (YES) when drain_source (NO) is currently in effect for
the specified mode.

0000015E

AP_LU_DETACHED
A command reset the definition of the local LU before the CNOS verb tried to specify the LU.

0000015F

AP_CNOS_COMMAND_RACE_REJECT
The local LU is currently processing a CNOS verb issued by the partner LU.

00000167

AP_SNASVCMG_RESET_NOT_ALLOWED
Your local program attempted to issue the CNOS verbs for the mode named SNASVCMG, specifying a session limit of zero.

000001B4

AP_DISPLAY_INFO_EXCEEDS_LENGTH
The returned DISPLAY information did not fit in the buffer.

000001B5

DISPLAY_INVALID_CONSTANT
The value supplied for NUM_SECTIONS or INIT_SEC_LEN is invalid.

00000506

AP_UNDEFINED_TP_NAME
In the configuration file for your application, APPC could not find an invokable TP name matching the value of tp_name.

00000509

AP_ALLOCATE_NOT_PENDING
APPC did not find an incoming allocate (from the invoking TP) to match the value of tp_name, supplied by RECEIVE_ALLOCATE.
RECEIVE_ALLOCATE waited for the incoming allocate and eventually timed out.

00000519

AP_CPSVCMG_MODE_NOT_ALLOWED
The mode named CPSVCMG cannot be specified as the mode_name on the deactivate session verb.

00000525

AP_INVALID_PROCESS
The process issuing RECEIVE_ALLOCATE was different from the one started by APPC.

080F6051

AP_SECURITY_NOT_VALID
The user identifier or password specified in the allocation request was not accepted by the partner LU.

084B6031

AP_TRANS_PGM_NOT_AVAIL_RETRY
The remote LU rejected the allocation request because it was unable to start the requested partner TP. The condition may be
temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the allocation.

084C0000

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY
The remote LU rejected the allocation request because it was unable to start the requested partner TP. The condition is
permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

10086021

AP_TP_NAME_NOT_RECOGNIZED
The partner LU does not recognize the TP name specified in the allocation request.

10086031

AP_PIP_NOT_ALLOWED
The allocation request specified PIP data, but either the partner TP does not require this data, or the partner LU does not support
it.

10086032

AP_PIP_NOT_SPECIFIED_CORRECTLY
The partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect number of parameters.

10086034

AP_CONVERSATION_TYPE_MISMATCH
The partner LU or TP does not support the conversation type (basic or mapped) specified in the allocation request.

10086041

AP_SYNC_LEVEL_NOT_SUPPORTED
The partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in the allocation request,
or the sync_level was not recognized.

Microsoft Host Integration Server 2000

Common CSV Return Codes
This section describes the primary and, if applicable, secondary return codes for CSV. The return codes are listed in hexadecimal
order.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Primary CSV Return Codes
0000

SV_OK
The verb executed successfully.

0001

SV_PARAMETER_CHECK
The verb did not execute because of a parameter error.

0002

SV_STATE_CHECK
The verb did not execute because it was issued in an invalid state.

0021

SV_CANCELLED
This code is returned for an asynchronous verb when it has been shut down by a WinCSVCleanup call.

0030

SV_FILE_ALREADY_EXISTS
When the SV_NEW file option was used, the file name specified was the name of an existing file.

0031

SV_OUTPUT_DEVICE_FULL
There is insufficient space on the device where the output file resides. Retry the operation after freeing additional disk space.

F006

SV_THREAD_BLOCKING
This verb exceeds the maximum number of simultaneous synchronous verbs allowed.

F008

SV_INVALID_VERB_SEGMENT
The VCB extended beyond the end of the data segment.

F011

SV_UNEXPECTED_DOS_ERROR
One of the following conditions occurred:

The Microsoft® Windows NT®, Microsoft® Windows® 95, Windows version 3.x, Microsoft® MS-DOS®, or OS/2 system
encountered an error while processing the verb. The operating system return code was returned through the secondary
return code. If the problem persists, contact the system administrator for corrective action.
A CSV was issued from a message loop that was invoked by another application issuing a Windows environment
SendMessage function call, rather than the more common Windows environment PostMessage function call. Verb
processing cannot take place.
A CSV was issued when SendMessage invoked your application. You can determine whether your application has been
invoked with SendMessage by using the InSendMessage Windows API function call.

F012

SV_COMM_SUBSYSTEM_NOT_LOADED
A required component could not be loaded or has terminated while processing the verb. Thus, communication could not take
place. Contact the system administrator for corrective action.

F024

SV_SERVER_RESOURCE_NOT_FOUND
No communication server was found that could provide the requested function.

F026

SV_SERVER_RESOURCE_LOST

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The communications server that was providing the function was lost due to a connection failure.

FFFF

SV_INVALID_VERB
The opcode parameter did not match the operation code of any verb. No verb executed.

Microsoft Host Integration Server 2000

Secondary CSV Return Codes
00000006

SV_INVALID_DATA_SEGMENT
The data buffer containing the source or target string did not fit in one segment, or the target segment was not a read/write
segment. This applies only to the Microsoft® Windows® and OS/2 systems.

00000301

SV_SSCP_PU_SESSION_NOT_ACTIVE
The NMVT was not sent; either the SSCP-PU session was not active, the node configured to receive diagnostic information was
not active, or no network management connection was configured.

00000302

SV_DATA_EXCEEDS_RU_SIZE
The data to be sent was too long. The length of the user-supplied data plus headers and added subvectors must fit in a single
RU that is not more than 512 bytes long.

00000303

SV_INVALID_DATA_TYPE
The data_type parameter contained an invalid value.

00000401

SV_INVALID_DIRECTION
The direction parameter contained an invalid value.

00000402

SV_INVALID_CHARACTER_SET
The char_set parameter contained an invalid value.

00000404

SV_INVALID_FIRST_CHARACTER
The first character of a type A source string was invalid.

00000405

SV_TABLE_ERROR
One of the following occurred:

The file containing the user-written type G conversion table was not specified by the environment variable CSVTBLG.
The table was not in the correct format.
The file specified by the CSVTBLG variable was not found.

00000406

SV_CONVERSION_ERROR
One or more characters in the source string were not found in the conversion table. These characters were converted to nulls
(0x00). The verb still executed.

00000621

SV_INVALID_MESSAGE_ACTION
The msg_act parameter contained an invalid value.

00000624

SV_INVALID_SET
The dt_set parameter contained an invalid value.

00000629

SV_COPY_TRACE_IN_PROGRESS
A previously issued COPY_TRACE_TO_FILE is still in progress.

0000062A

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

SV_TRACE_NOT_STOPPED
A trace was in progress when the verb was issued.

0000062B

SV_INVALID_FILE_OPTION
A value other than SV_NEW or SV_OVERWRITE was specified for file_option.

0000062C

SV_TRACE_BUFFER_EMPTY
The trace storage buffer did not contain any data.

0000062F

SV_INVALID_RESET_TRACE
The reset_trc parameter contained an invalid value.

00000630

SV_INVALID_CHAR_NOT_FOUND
The char_not_fnd parameter contained an invalid value.

00000631

SV_INVALID_SOURCE_CODE_PAGE
The code page specified by source_cp is not supported.

00000632

SV_INVALID_TARGET_CODE_PAGE
The code page specified by target_cp is not supported.

030000AB

SV_SERVER_COMM_FAILURE
The connection to the server was lost due to physical path problems; for example, the server may have been powered off.

Microsoft Host Integration Server 2000

APPC Sample Applications
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about the sample
applications that implement the APPC.

This section contains:

Sample APPC TPs in the SDK

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample APPC TPs in the SDK
The source code for several sample programs that illustrate using APPC are included on the Microsoft® Host Integration Server
2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. These sample programs are located in the
\SDK\Samples\SNA subdirectory on the Host Integration Server 2000 CD-ROM (these samples are located under the
\SDK\SAMPLES folder on earlier versions of SNA Server). These files are copied to your hard drive during Host Integration Server
software or Host Integration Client software installation when the Host Integration Server Software Development Kit option is
selected. These samples are installed in the Samples\SNA subdirectory below where the Host Integration Server SDK software is
installed (C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\Sna subdirectory
below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These APPC sample programs include the following:

APPC TP samples Description
APPC Send and Receive TPs Sample programs in C that represent simple APPC send and receive transaction programs (

TPs) illustrating the use of asynchronous verb completion. These samples are located in the
SENDRECV subdirectory implements simple bulk data sending and receiving TPs (SENDTP a
nd RECVTP). This sample is located in the \SDK\Samples\SNA\appc subdirectory on the CD-
ROM.

Multithreaded Send and Receive TPs Sample programs in C that represent more advanced APPC send and receive transaction pr
ograms illustrating the use of multiple threads and multiple conversations per thread. The m
ultithreaded receive TP samples illustrate using events or IO completion ports for notificatio
n These samples are located in the \SDK\Samples\SNA\msendrcv subdirectory on the CD-R
OM.

In addition to these APPC sample programs, the following supplemental programs are included on the Host Integration Server
CD-ROM.

Supple
mental
progra
m

Description

TPSETUP A sample installation program in C demonstrating an interface that assists in the configuration of autostarted invokable
transaction programs (TPs). This sample is located in the \SDK\Samples\SNA\tpsetup subdirectory on the CD-ROM.

TPSTART A sample program in C required for the automatic startup of invokable transaction programs that run as applications u
nder Microsoft® Windows 2000 and Windows NT®. TPSTART is not required if the transaction program has been writt
en as a Windows NT service. TPSTART is also unnecessary under Windows 98 and Windows 95. An executable binary of
TPSTART is installed by Host Integration Server Setup in the SYSTEM subdirectory of the Host Integration Server root di
rectory. This sample is located in the \SDK\Samples\SNA\tpstart subdirectory on the CD-ROM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Building the TPs
The APPC samples are designed to be built using Microsoft® Visual C/C++ 6.0 or later using the command-line compiler or
using the Microsoft® Visual Studio .NET interactive development environment (IDE).

To build the APPC samples installed from the Host Integration Server CD-ROM, set the following environment variables:

Variable Specifies
ISVLIBS Directory containing the Microsoft® Host Integration Server LIB files for Windows 2000, Windows NT, Windows 98,

and Windows 95.
ISVINCS Directory containing the WINSNA header files
SAMPLERO
OT

Root directory of the sample code

For example, if you installed the Host Integration Server SDK directory to the default location
(C:\Program Files\Host Integration Server SDK), use the following lines to set the variables (assumes Intel binaries are being
produced for Windows 2000, Windows NT on I386, Windows 98, or Windows 95):

Change to each subdirectory and run NMAKE on the .MAK file in each directory. For example, for the msendrcv sample, change to
the msendrcv subdirectory and type the following:

nmake -f msendrcv.mak

Note that Windows NT on DEC Alpha is not supported by the Host Integration Server SDK. If you wish to build these samples on
Windows NT 4.0 for DEC Alpha, the earlier SNA Server 4.0 SDK will be required for accessing the Windows NT import libraries for
DEC Alpha under the \SDK\LIB\WINNT\ALPHA folder.

To build the APPC samples installed as part of the MSDN Platform SDK using the command-line compiler, set up your build
environment as follows:

Run VCVARS32.bat (for VS6) or VSVARS32.bat (for VS.NET) from the Visual Studio bin directory. The default location of this
file is C:\Program Files\Microsoft Visual Studio\VC98\Bin (for VS6) or C:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools (for VS.NET)

To build all the SNA samples, open an MS-DOS Command Prompt window, navigate to the SNA subdirectory, and invoke
NMAKE. This will recursively invoke NMAKE and build all of the SNA samples including the APPC samples.

To build a specific sample (SendTP or RecvTP, for example) using the command-line compiler, open an MS-DOS Command
Prompt window, navigate to the appropriate subdirectory (SNA\Appc, for example), and invoke NMAKE.

To build a specific sample (SendTp, for example) using the Visual Studio .NET IDE, start Microsoft Visual Studio .NET 7.0 and open
the appropriate Visual C++ 7.0 project file (SNA\appc\sendtp.vcproj, for example) from the File menu. Select a configuration and
build the sample from the Build menu. Each VC7 project file has two configurations, one for a DEBUG build and one for a RETAIL
build.

ISVLIBS=C:\Program Files\Host Integration Server SDK\LIB
ISVINCS=C:\Program Files\Host Integration Server SDK\Include
SAMPLEROOT=C:\Program Files\Host Integration Server SDK\Samples\SNA

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TPSETUP
TPSETUP is a program that simplifies the setting of registry or environment variables needed by autostarted invokable TPs.
Without an interface like that provided by TPSETUP, configuring of such variables can be complicated and error-prone. Therefore,
it is recommended that you use code like TPSETUP in installation programs for autostarted invokable TPs.

Operation

INSTALL.C, the source code for TPSETUP, can be compiled to work in either the Microsoft® Windows 2000, Windows NT®,
Windows® 98, Windows® 95 environments or in the Windows version 3.x environment. TPSETUP has been constructed so that
the program responds correctly in each environment.

For clients running Windows 2000 or Windows NT, it is recommended that autostarted invokable TPs be written as Windows NT
services. To create the installation program for such TPs, study the code in INSTALL.C. For example, use the CreateService
function or similar code when installing a TP that will run as a service under Windows 2000 and Windows NT. (For important
information about how services work under Windows 2000 and Windows NT, see the documentation for Windows 2000,
Windows NT, and for Win32®.)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TPSTART
An autostarted TP that runs as an application under Microsoft® Windows NT® requires the support of the TPSTART program,
which is installed with the Microsoft® Host Integration Server software in the SYSTEM subdirectory of the Host Integration Server
root directory. Therefore, the TPSTART program must be started on a Windows 2000-based or Windows NT-based client before
an autostarted invokable TP can be started as an application. Starting TPSTART can be accomplished by using standard Windows
2000 and Windows NT methods, such as including TPSTART in the Startup group on the client.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

APPC Send and Receive TPs
These are simple APPC send and receive TPs that illustrate the use of asynchronous verb completion. This sample implements
simple bulk data sending and receiving TPs (SENDTP and RECVTP).

Setup

To set up these TPs, create an appropriate APPC LU-LU-mode triplet. The default is SENDLU-RECVLU-#INTER, but this can be
configured (see the following sections).

Input and Output

The APPC send and receive TPs each use a configuration file for input. To name the file, use .CFG as the extension, and use the
same base file name as the TP executable file (SENDTP.CFG, for example). Save this configuration file in the same directory
location as the executable file (the TP itself).

For SENDTP, the configuration file (called SENDTP.CFG if the executable file is SENDTP.EXE) can contain the following items, one
per line, in any order. If a variable is not found in the file or the file is not present at all, the default is used.

Line Default val
ue

Value to supply

ResultFile = C:\SENDTP.O
UT

File name to print timings to

LocalLUAlias = SENDLU Local LU alias
RemoteLUAlias = RECVLU Remote LU alias
ModeName = #INTER Mode name
LocalTPName = SENDTP Name of local TP
RemoteTPName
=

RECVTP Name of remote TP

NumConversatio
ns =

1 Number of conversations

NumSends = 2 Number of SEND_DATA verbs per conversation
SendSize = 1024 Size in bytes of data sent each time
ConfirmEvery = 1 Number of SEND_DATA verbs between CONFIRM verbs
SendConversatio
n =

No Yes or No: Use the SEND_CONVERSATION verb rather than the sequence of ALLOCATE, SEND_D
ATA, DEALLOCATE

RECVTP uses a RECVTP.CFG file in a similar way, but only to read the LocalTPName field.

The output from SENDTP and RECVTP consists of details of the configuration and the time taken for each conversation, and is
sent to the result file specified in SENDTP.CFG.

Operation

RECVTP should be started first; it issues RECEIVE_ALLOCATE with the specified TP name. SENDTP is then started; it first issues
MC_SEND_CONVERSATION to tell RECVTP how many conversations will be carried out. It then carries out the specified number
of conversations.

For SENDTP, each conversation consists of an MC_ALLOCATE verb, followed by a given number of MC_SEND_DATA verbs of a
given size, and interspersed with MC_CONFIRM verbs at a given interval, followed by an MC_DEALLOCATE.

RECVTP issues MC_RECEIVE_AND_WAIT when RECEIVE_ALLOCATE completes, and then issues either MC_RECEIVE_AND_WAIT
or MC_CONFIRMED according to the return from the previous MC_RECEIVE_AND_WAIT.

At any stage, if the TPs encounter an error, they terminate. Use APPC API tracing to diagnose problems with the configuration.

At the end of the specified number of conversations, SENDTP sends timing information to a file.

Both TPs are built from a single source code file, SENDRECV.C. SENDTP is compiled only if -DSENDTP is used on the command
line.

The TPs run as Microsoft® Windows 2000, Windows NT®, Microsoft® 98, or Windows® 95 applications with a minimized
window, the title bar of which displays the status. When the WndProc of this window, TPWndProc, receives the WM_CREATE
message for the window, this triggers the issuing of the first verb. When TPWndProc receives an ASYNC_COMPLETE message
from Windows APPC, this triggers the issuing of the next verb, dependent on what the previous verb was. When the window is
closed, WinAPPCCleanup is issued to terminate any active conversations.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Multithreaded Send and Receive TPs
These multithreaded send and receive TPs are more advanced than the single-threaded equivalents. The samples located in the
MSENDRCV subdirectory all use the asynchronous interface of APPC, with verb completion signaled by events (WinAsyncAPPCEx)
or IO completion ports (WinAsyncAPPCIOCP). These TPs show how to code multithreaded APPC applications with multiple
conversations per thread. They are more complex than the single-threaded equivalents, but are also more realistic.

If you are unfamiliar with APPC, examine the single-threaded TPs first. If you are unfamiliar with methods of creating threads or
processing events in Microsoft® Windows 2000, Windows NT®, Windows® 98, and Windows® 95, see the Microsoft® Platform
SDK documentation along with the multithreaded TPs.

Setup

There are four multithreaded send and receive routines that illustrate using asynchronous APPC calls:

MRCV for receiving using events for notification.
MRCVIO for receiving using IO completion ports for notification.
MSEND for sending using events for notification
MSENDRCV for simultaneous sending and receiving using events for notification

To set up these TPs, create an appropriate APPC LU-LU-mode triplet. The default is SENDLU-RECVLU-#INTER, but this can be
configured (see the sections that follow). To run a large number of simultaneous conversations, increase the session limits for
#INTER or use another mode with large session limits.

One obvious way of configuring these programs is to configure MSEND to run with MRCV or MRCVIO; another way is to
configure MSENDRCV to run with another copy of MSENDRCV. However, you can also configure MSEND to run with one or more
copies of RECVTP (the single-threaded version) and MRCV or MCRVIO to run with one or more copies of SENDTP. You can also
configure MSENDRCV to run with MSEND, MRCV, SENDTP or RECVTP. For more information, see the sections that follow.

One possible arrangement is to place SENDTP (single-threaded) on multiple client computers, and configure MRCV or MCRVIO
(multithreaded) on a server so that it interacts with all the TPs on the clients. Many other arrangements are possible.

Configuration for MRCV, MSEND, and MSENDRCV

The MRCV, MSEND, and MSENDRCV TP samples uses a configuration file for configuration and input. To name the file, use .CFG
as the extension, and use the same base file name and directory location as the executable file (the TP itself).

The following table shows examples of CFG files that could be used with MSEND and MRCV.

Example of MSEND.CFG file Example of MRCV.CFG file
ResultFile=MSEND.OUT TraceFile=MRCV.TRC
TraceFile=MSEND.TRC LocalTPName=MRCVTP
RemoteTPName=MRCVTP NumRcvConvs=32
LocalLUAlias=LUA NumRcvThreads=4
RemoteLUAlias=LUB RcvSize=4096
ModeName=#INTER
NumSendConvs=32
NumSends=128
ConfirmEvery=16
SendSize=256

For MSEND, the configuration file (MSEND.CFG) can contain the following items, one per line, in any order. If a variable is not
found in the file or the file is not present at all, the default is used.

Line Default value Value to supply
ResultFile = MSEND.OUT File name to print timings to (located in default directory for MSEND)
TraceFile = MSEND.TRC Trace file name (located in default directory for MSEND)
LocalLUAlias = SENDLU Local LU alias
RemoteLUAlias = RECVLU Remote LU alias
ModeName = #INTER Mode name
RemoteTPName = MRCVTP Name of remote TP (for MC_ALLOCATE)
NumSendConvs = 4 Number of conversations to send

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

NumSends = 8 Number of MC_SEND_DATA verbs per conversation
SendSize = 256 Size in bytes of data sent each time
ConfirmEvery = 2 Number of MC_SEND_DATA verbs between MC_CONFIRM verbs

The following lines are for MRCV:

Line Default value Value to supply
TraceFile = MRCV.TRC Trace file name (located in default directory for MSEND)
LocalTPName = MRCVTP Name of local TP (for RECEIVE_ALLOCATE)
NumRcvConvs = 4 Number of conversations to receive
NumRcvThreads = 2 Number of threads to start for processing receive conversations
RcvSize = 4096 Size in bytes of receive buffer for MC_RECEIVE_AND_WAIT

The following table shows examples of configuration files (MSENDRCV.CFG) that could be used with MSENDRCV. Each row of the
table (Example A and Example B) contains two files that work together on a pair of computers.

Example A of MSENDRCV.CFG Example B of MSENDRCV.CFG
ResultFile=MSENDRCV.OUT ResultFile=MSENDRCV.OUT
TraceFile=MSENDRCV.TRC TraceFile=MSENDRCV.TRC
LocalTPName=TPA LocalTPName=TPB
RemoteTPName=TPB RemoteTPName=TPA
LocalLUAlias=LUA LocalLUAlias=LUB
RemoteLUAlias=LUB RemoteLUAlias=LUA
ModeName=#INTER ModeName=#INTER
NumRcvConvs=50 NumRcvConvs=25
NumRcvThreads=4 NumRcvThreads=4
RcvSize=4096 RcvSize=4096
NumSendConvs=25 NumSendConvs=50
NumSends=100 NumSends=100
ConfirmEvery=10 ConfirmEvery=10
SendSize=256 SendSize=256

The following lines are for MSENDRCV:

Line Default value Value to supply
ResultFile = MSENDRCV.OU

T
File name to print timings to (located in default directory for the MSEND or MSENDRCV sendi
ng TP)

TraceFile = MSENDRCV.TR
C

Trace file name (located in default directory for the MSEND or MSENDRCV sending TP)

LocalLUAlias = SENDLU Local LU alias
RemoteLUAlias = RECVLU Remote LU alias
ModeName = #INTER Mode name
RemoteTPName
=

MRCVTP Name of remote TP (for MC_ALLOCATE)

NumSendConvs
=

4 Number of conversations to send

NumSends = 8 Number of MC_SEND_DATA verbs per conversation
SendSize = 256 Size in bytes of data sent each time
ConfirmEvery = 2 Number of MC_SEND_DATA verbs between MC_CONFIRM verbs
LocalTPName = MRCVTP Name of local TP (for RECEIVE_ALLOCATE)
NumRcvConvs = 4 Number of conversations to receive
NumRcvThreads
=

2 Number of threads to start for processing receive conversations

RcvSize = 4096 Size in bytes of receive buffer for MC_RECEIVE_AND_WAIT

The output from MSEND and MSENDRCV consists of details of the configuration and the time taken for each conversation, and is
sent to the result file specified in MSEND.CFG or MSENDRCV.CFG.

Operation of MRCV, MSEND, and MSENDRCV

The MRCV, MSEND, and MSENDRCV TPs use multiple event processing in Windows 2000, Windows NT, Windows 98, or
Windows 95 to avoid creating an unnecessary number of threads.

These TPs also use Windows-based processing, but this is incidental. Its only purpose is to display beneath the icon on the screen
a running count of threads, the number of conversations currently sending or receiving data, and the number of conversations
completed. The Windows-based processing could easily be removed to create a completely batch-oriented program. To do this,
termination would need to be signaled with an event rather than with WM_CLOSE.

The TP name used in TP_STARTED is the name of the executable file (MSEND, MRCV, or MSENDRCV). The TP names used in
MC_ALLOCATE and RECEIVE_ALLOCATE can be configured, as shown in the preceding tables.

MSEND reads its configuration file (or uses defaults) to determine the number of send conversations to start. Each conversation
reads the value of NumSends (or uses the default), issues that number of MC_SEND_DATA verbs, and then terminates. When all
of the conversations for a thread have terminated, the thread itself terminates. When all of the send threads have terminated, the
program terminates.

An MC_CONFIRM verb is issued before the first MC_SEND_DATA and then at the intervals specified by ConfirmEvery. The
complete data flow for a conversation is as follows:

TP_STARTED

MC_ALLOCATE

MC_CONFIRM

MC_SEND_DATA (repeated the number of times specified by ConfirmEvery)

MC_CONFIRM

MC_SEND_DATA (repeated the number of times specified by ConfirmEvery)

MC_CONFIRM

(Pattern repeats until the number of MC_SEND_DATA verbs equals NumSends.)

MC_DEALLOCATE

TP_ENDED

MRCV starts up an initial thread for issuing RECEIVE_ALLOCATE verbs, then reads its configuration file (or uses defaults) to
determine the number of receive threads to start and the number of conversations to receive.The initial thread issues a
RECEIVE_ALLOCATE and waits. When the RECEIVE_ALLOCATE completes, the initial thread turns the processing of the
conversation over to the next available receive thread, and issues another RECEIVE_ALLOCATE. This process continues until the
configured number of RECEIVE_ALLOCATE verbs (that is, NumRcvConvs) have completed.

There is a limit to the number of conversations that can be supported on a thread, because of the limit to the number of events
that can be waited for with WaitForMultipleObjects (a function in the Win32® API). For send threads, the limit is 64
conversations per thread; for receive threads, the limit is 63 conversations per thread.

MSEND works with this limit by starting enough threads to support the configured number of conversations. For example, if
NumSendConvs is set to 200, four send threads are started: three of them process 64 conversations each and one processes the
remaining eight conversations.

MRCV works with this limit by comparing NumRcvConvs to NumRcvThreads. If NumRcvConvs is more than (63 *
NumRcvThreads), NumRcvThreads is increased. If NumRcvThreads is greater than NumRcvConvs, NumRcvThreads is
reduced to prevent creating unneeded threads.

With MRCV, to ensure that a receive thread correctly picks up the conversation, two special events are used per thread: event1
and event2. The following table illustrates their use.

RECEIVE_ALLOCATE thread Receive thread
Issue RECEIVE_ALLOCATE and wait Wait on event1
(RECEIVE_ALLOCATE completes)
Select next receive thread and
set event1 for that thread;
then wait on event2 for that thread

 (Event1 completes)
 Add conversation to list of conversations being processed
 Set event2

(Event2 completes)
REPEAT REPEAT

The receive thread waits not only on the event1 set for it, but also on one event for each conversation the thread is processing.

If NumRcvConvs is set to zero, the RECEIVE_ALLOCATE thread will never terminate. If NumSends is set to zero, the
conversation will never terminate; this is useful for getting the maximum number of simultaneous conversations.

Tracing of MRCV, MSEND, and MSENDRCV

If you want to observe the detailed processing of the MRCV, MSEND, or MSENDRCV sample TPs, you can enable tracing. To do
this, find the following line, commented out, near the top of the file:

Enable this line or define this value on the command-line option to the compiler, and trace statements will be written to the trace
file(s) specified by the TraceFile variable in the configuration.

There are also some trace statements that have been commented out. If they are left commented out, only MC_CONFIRM and
MC_CONFIRMED processing is traced while a conversation is running, to maintain a send or receive count without generating a
large amount of trace information. You can activate the detailed tracing of events (such as the sending of data) by enabling one or
more trace statements.

The Trace Initiator (snatrace.exe) tool provides APPC API tracing for Host Integration Server applications (Using the earlier SNA
Server, the tracing tool was called snatrace). For more information about the Trace Initiator and Trace Viewer tools, see the
Applications and Tools section of the Microsoft Host Integration Server Guide.

Configuration for MRCVIO

The MRCVIO TP sample is a multi-threaded console application that uses command-line options for configuration and input. If an
option is not provided on the command-line, then the default is used. The following table lists the possible command-line options
for MRCVIO.

Command-Line Op
tion

Description

-? Displays usage information for this sample and exits.
-c numRcvConvs The maximum number of APPC conversations to support.

The default value is 8 with a maximum value of 64.

-d duration The number of seconds that the sample application should run. The default value is 60 seconds.

A value of 0 for duration means run indefinitely.

-h Displays usage information for this sample and exits.
-i IntTraceFile The name of the internal trace file if tracing is required. When this command-line option is specified, interna

l tracing is enabled.

This option has no default value and internal tracing is turned off.

-n numRcvThreads The number of Completion Port threads to allocate.

The default value is 4 with a maximum value of 32.

-r rcvSize The size in bytes of the buffer supplied on each RECEIVE_ALLOCATE.

The default value is 4096 with a maximum value of 65535.

-t TPName The name supplied on the RECEIVE_ALLOCATE verbs.

The default value is the "MRCVTP" string.

Operation of MRCVIO

The MRCVIO TP sample uses IO completion ports for notification and will only operate on Windows 2000 or Windows NT. Using
the IO completion port mechanism is the preferable method for writing scalable APPC server applications.

The MCRVIO TP sample contains the routines for a multi-threaded console application which uses asynchronous APPC calls on a
single I/O completion port to receive data. The MCRVIO sample creates a small pool of threads that will be used for processing

#define SRTRC

RECEIVE requests. It operates in conjunction with one of the following:

single-threaded version of send (SENDTP)
multi-threaded event-based versions of send (MSEND, MSENDRCV)

The MRCVIO sample uses a server model which continues to accept conversations via RECEIVE_ALLOCATE until the application is
manually terminated, or a specified timer expires. The conversations do not belong to any particular RECEIVE thread. Each receive
thread issues GetQueuedCompletionStatus calls to wait for completion of an APPC verb (on any conversation). Each
conversation issues MC_RECEIVE_AND_WAIT verbs to receive data. If confirmation is requested, an MC_CONFIRM verb is
issued.

The TP name used in MC_ALLOCATE and RECEIVE_ALLOCATE can be configured using the command-line options as shown in the
preceding table of options for the configuration of MCRVIO.

MRCVIO starts up and parses its command-line options (or uses defaults) to determine the number of receive threads to start, the
number of conversations to receive, the buffer size for each RECEIVE_ALLOCATE, its TP name, how long the application should
run, and whether internal tracing is enabled.

Once command-line options are parsed, the MCRVIO sample calls the CreateCompletionPort function to allocate the IO
completion port. If this call is successful, then the specified number of threads are created with the thread start routine pointing to
the MCRVIO ReceiveThread function and the thread priority for each thread is lowered. Then the specified number of APPC
conversations are started.

The MCRVIO sample uses the IO completion port structure and the WinAsyncAPPCIOCP function as listed below.

The APPC_CompletionPort must be a HANDLE returned by the CreateIoCompletionPort function issued by the application
before using WinAsyncAPPCIOCP. The other three fields can be set to any value whatsoever. The APPC library does nothing with
these other fields, except to return them unaltered on the GetQueuedCompletionStatus when the APPC verb completes. An
application developer can set these values to whatever they like, but assuming the server application is handling multiple
concurrent APPC conversations, an application will need to use one of these three fields to correlate APPC verbs with their
completions.

For example, the MCRVIO sample passes a pointer to a Conversation Control Block into the APPC_pOverlapped field when it
issues an APPC verb. The same value is returned when the APPC verb completes on the GetQueuedCompletionStatus. This
allows the sample MCRVIO TP to figure out which APPC verb has actually completed. APPC developers can use a different
method (an index into an array of VCBs, for example) to provide the same effect.

Also, an application might use the APPC_CompletionKey field to distinguish between APPC events and other events posted to this
IO Completion port. For example, the MCRVIO sample sets this value to a user-defined constant IOCP_VERB_COMPLETE so that
the GetQueuedCompletionStatus function can distinguish APPC verb completions from the other events that are posted to this
IO Completion port (IOCP_START_CONVERSATION, IOCP_END_CONVERSATION and IOCP_TERMINATE_THREAD). However, this
is purely for the convenience of the application. An APPC developer could decide not to post any events to its IO Completion port
(except implicitly for APPC completions). In such a case, it would be unnecessary to set any value in the APPC_CompletionKey.

/* IOCP - Structure and function prototype */
typedef struct
{
 HANDLE APPC_CompletionPort;
 DWORD APPC_NumberOfBytesTransferred;
 DWORD APPC_CompletionKey;
 LPOVERLAPPED APPC_pOverlapped;

} APPC_IOCP_INFO;

extern HANDLE WINAPI WinAsyncAPPCIOCP(
 APPC_IOCP_INFO* iocp_handle, // IO completion port information
 long lpVcb); // pointer to APPC verb control block

Microsoft Host Integration Server 2000

CPI-C Applications
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information required to develop C-
language applications that use the Common Programming Interface for Communications (CPI-C) to exchange data in a Systems
Network Architecture (SNA) environment.

This section contains:

About the CPI-C Guide
CPI-C Programmer's Guide
CPI-C Reference
CPI-C Sample Application

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

About the CPI-C Guide
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop C-
language applications that use the Common Programming Interface for Communications (CPI-C) to exchange data in a Systems
Network Architecture (SNA) environment.

This guide is intended for the programmer writing applications that use CPI-C to exchange data. It provides conceptual
information and detailed reference information.

To use this guide effectively, you should be familiar with:

Microsoft® Host Integration Server 2000
One of the following operating environments:

Microsoft Windows® 2000
Microsoft Windows NT®
Microsoft Windows 98
Microsoft Windows 95

SNA concepts

This section contains:

Operating Systems Support for CPI-C Development
Finding Further Information on CPI-C

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Operating Systems Support for CPI-C Development
This section of the guide contains information relating to following operating systems:

Microsoft® Windows® 2000
Microsoft Windows NT®
Microsoft Windows 98
Microsoft Windows 95
Microsoft Windows version 3.x
Microsoft MS-DOS®
OS/2

Microsoft Host Integration Server 2000 supports the development of CPI-C applications for Windows 2000, Windows NT,
Windows 98, and Windows 95. Under these operating systems, support for CPI-C applications is provided only for the Win32®
subsystem.

The previous Microsoft SNA Server product also supported the development of CPI-C applications for Windows 3.x and OS/2.
Most CPI-C applications developed for Windows 3.x and OS/2 with SNA Server can be used with Host Integration Server 2000.
The Windows 3.x, MS-DOS, and OS/2 interface is described here for completeness, but Windows 3.x, MS-DOS, or OS/2 CPI-C
application development is not supported using Host Integration Server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Finding Further Information on CPI-C
For information about SNA architecture, refer to your system network documentation.

The following documents provide additional information about Host Integration Server application programming interfaces (APIs)
based on SNA architecture:

APPC Applications section of the Microsoft Host Integration Server Developer's Guide
LUA Applications section of the Microsoft Host Integration Server Developer's Guide

For more information about SNA and about 3270 information display systems, see the following manuals:

IBM 3270 Information Display System: 3274 Control Unit Description and Programmer’s Guide
IBM 3270 Information Display System: Color and Programmed Symbols
IBM 3270 Information Display System: 3274 Control Unit Display Station: Operator’s Guide
IBM Systems Network Architecture: Technical Overview
IBM Systems Network Architecture: Concepts and Products
IBM Advanced Communications Function Products Installation Guide
IBM Installation and Resource Definition
IBM 9370 LAN Token Ring Support
IBM SNA Format and Protocol Reference Manual: Architectural Logic

For background information about logical unit (LU) 6.2, Advanced Program-to-Program Communications (APPC), or CPI-C, see
the following manuals:

IBM Systems Network Architecture: Introduction to APPC
IBM Systems Network Architecture: Transaction Programmer’s Reference Manual for LU Type 6.2
IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2
IBM SNA: Formats
IBM SNA: Technical Overview
IBM SNA: ACF/VTAM Programming for LU Type 6.2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CPI-C Programmer's Guide
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about developing
applications with the Common Programming Interface for Communications (CPI-C).

This section contains:

Introduction to CPI-C
Writing CPI-C Applications
Support for CPI-C Automatic Logon

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Introduction to CPI-C
This section introduces the fundamental concepts of the Common Programming Interface for Communications (CPI-C). The
following topics are covered:

Windows CPI-C overview
Windows CPI-C asynchronous support
Using asynchronous call completion
CPI-C call summary
Conversation characteristics
Side information
Configuration
Operating system considerations

CPI-C is a Systems Application Architecture adherent application programming interface (API) that allows peer-to-peer
communications among programs in a Systems Network Architecture (SNA) environment.

Through CPI-C, programs distributed across a network can work together, communicating with each other and exchanging data,
to accomplish a single processing task such as querying a remote database, copying a remote file, or sending and receiving
electronic mail.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Windows CPI-C Overview
A Windows SNA standard was created to provide one common API to port applications from various operating environments to
Microsoft® Windows NT®, Microsoft® Windows® 95, and Microsoft® Windows® version 3.x. As a direct result of this work,
Windows CPI-C was developed. The CPI-C calls and information presented in this guide represent an evolving Windows CPI-C
that is composed of CPI-C version 1.2 and a set of Windows extensions that allow for multiple applications and asynchronous call
completion.

CPI-C version 1.0 was first introduced to provide a means by which two applications could speak and listen to each other; in other
words, have a conversation. A conversation is the logical connection between two programs that allows the programs to
communicate with each other. Programs using CPI-C converse with each other by making program calls. These calls are used to
establish the full characteristics of the conversation, to exchange data, and to control the information flow between the two
programs.

CPI-C version 1.1 was extended to include four new areas of function:

Support for resource recovery (not supported in Windows CPI-C)
Automatic parameter conversion
Support for communicating with non-CPI-C programs
Local/remote transparency

Built upon CPI-C version 1.1, X/Open CPI-C provided:

Support for nonblocking calls
The ability to accept multiple conversations
Support for data conversion (beyond parameters)
Support for security parameters

CPI-C version 1.2 consolidated CPI-C version 1.1 and X/Open CPI-C by providing all the functions described above. Windows CPI-
C adds to this functionality by providing a set of extensions for asynchronous communication in addition to supporting most
features in CPI-C version 1.2 with the exception of the following features:

full duplex operation
non-blocking call behavior (as defined in the CPI-C 1.2 specification)
some data conversion functions

For a complete list of unsupported functions, see CPI-C Functions Not Supported.

The use of the Windows CPI-C interface on Windows 2000, Windows NT, Windows 98, Windows 95, and OS/2 will cause
additional threads to be created within the calling process. These other threads perform interprocess communication with the
SNA Server service over the LAN interface that the client is configured to use (TCP/IP, IPX/SPX, or named pipes, for example).

If an application using Windows CPI-C is running on Windows 2000 or Windows NT, stopping the SNABASE service will cause the
application to be unloaded from memory.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Windows CPI-C Asynchronous Support
A program that issues a call and does not regain control until the call completes cannot perform any other operations. This type of
operation, referred to as blocking, is not suited to a server application designed to handle multiple requests from many clients.
Asynchronous call completion returns the initial call immediately so the application can continue with other processes.

Windows CPI-C support related to asynchronous communications includes the following calls and extensions:

Set_Processing_Mode

Specify_Windows_Handle

Wait_For_Conversation

WinCPICExtractEvent

WinCPICIsBlocking

WinCPICSetBlockingHook

WinCPICSetEvent

WinCPICUnhookBlockingHook

Two methods under Windows 2000, Windows NT, Windows 98, and Windows 95 are available for asynchronous verb
completion:

Message posting using window handles
Waiting on Win32® events

The traditional method uses messages posted to a window handle to notify an application of verb completion. This method using
window handles and messages is also supported on Windows 3.x.

Asynchronous support using message posting is appended to the Set_Processing_Mode call and allows an application to be
notified of call completion on a window handle. Calling RegisterWindowsMessage with "WinAsyncCPIC" as the string, an
application passes a window handle by which the application is notified of call completion. The application then makes the CPI-C
call, and when it completes a message is posted to the window handle that was passed, notifying the application that the call is
complete.

With the exception of an asynchronous Receive call that can issue certain other calls while pending, a conversation can have only
one incomplete operation at any time. For more information on using an asynchronous Receive call, see
Using Asynchronous Call Completion. In the case of an incomplete operation, the program can issue Wait_For_Conversation to
test for its completion or Cancel_Conversation to end the conversation and the incomplete operation.

A second method using Win32 events for notification is supported on Microsoft® Host Integration Server and Microsoft® SNA
Server version 3.0 and later. The extension functions using Win32 events (WinCPICSetEvent and WinCPICExtractEvent) will
operate only on Windows 2000, Windows NT, Windows 98, and Windows 95. If an event has been registered with the
conversation using WinCPICSetEvent, then an application can call the Win32 WaitForSingleObject or
WaitForMultipleObjects function to wait to be notified of the completion of the verb.

The only Windows extension functions required for Windows CPI-C are for initialization (WinCPICStartup) and termination
(WinCPICCleanup) purposes. Depending on your application, other Windows extensions for handling asynchronous verb
completion can be useful, but they are not required. An example of how to use Windows CPI-C asynchronous calls and Windows
extensions appears in Using Asynchronous Call Completion. A complete description of all Windows CPI-C calls and extensions
appears in CPI-C Calls and Extensions for the Windows Environment.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Before Using Windows CPI-C
The following CPI-C calls and Windows extensions are of particular importance and should be reviewed before using this version
of Host Integration Server or earlier versions of SNA Server. Note that the names of the calls are pseudonyms. The actual C
function names appear in parentheses after the pseudonym. For example, Set_Processing_Mode is the pseudonym for a call.
The actual function name is cmspm.

Set_Processing_Mode (cmspm)
Specifies for the conversation whether subsequent calls will be returned when the operation they request is complete (blocking)
or immediately after the operation is initiated (nonblocking). A program is notified of the completion of nonblocking calls when
it issues Wait_For_Conversation or through a Windows message sent to a WndProc identified by hwndNotify in
Specify_Windows_Handle. When the processing mode is set for a conversation, it applies to all subsequent calls on the
conversation until the mode is set again.

Specify_Windows_Handle (xchwnd)
Sets the window handle to which a message is sent on completion of an operation in nonblocking mode.

Wait_For_Conversation (cmwait)
Waits for the completion of an operation that was initiated when the processing mode conversation characteristic was set to
CM_NON_BLOCKING and CM_OPERATION_INCOMPLETE was returned in the return_code parameter. Use
Wait_For_Conversation when running a background thread or a single-threaded application for the Windows 2000, Windows
NT, Windows 98, Windows 95, or Windows version 3.x systems.

Important An application can set the processing mode by calling Set_Processing_Mode. If the window handle is set to NULL,
or this call is never issued, then the application must call Wait_For_Conversation to be notified when the outstanding
operation completes.

When an asynchronous operation is complete, the application’s window hwndNotify receives the message returned by
RegisterWindowMessage with "WinAsyncCPIC" as the input string. The wParam value contains the conversation return code
from the operation that is completing. Its values depend on which operation was originally issued. The lParam argument
contains the CM_PTR to the conversation identifier specified in the original function call.

WinCPICCleanup
Terminates and deregisters an application from a Windows CPI-C implementation.

Important This function must be called by an application when finished to deregister the application from the
Windows CPI-C implementation.

WinCPICExtractEvent
Provides a method for an application to determine the event handle being used for a CPI-C conversation.

WinCPICIsBlocking
Determines if a task is executing while waiting for a previous blocking call to finish. Windows version 3.x goes into a
PeekMessageLoop while allowing Windows to continue. Although a call issued on a blocking function appears to an
application as though it blocks, the Windows CPI-C dynamic-link library (DLL) has to relinquish the processor to allow other
applications to run. This means that it is possible for the application that issued the blocking call to be re-entered, depending on
the message(s) it receives. In this instance, WinCPICIsBlocking can be used to determine whether the application task
currently has been re-entered while waiting for an outstanding blocking call to finish.

This extension is intended to provide help to an application written to use the CM_BLOCKING characteristic of the Windows
Specify_Processing_Mode function. WinCPICIsBlocking serves the same purpose as InSendMessage in the Windows API.

Applications targeted at Windows version 3.x that support multiple conversations must specify CM_NONBLOCKING in
Specify_Processing_Mode so they can support multiple outstanding operations simultaneously. Applications are still limited
to one outstanding operation per conversation in all environments. Note that Windows CPI-C prohibits more than one
outstanding blocking call per thread.

WinCPICSetBlockingHook
Allows a Windows CPI-C implementation to block CPI-C function calls by means of a new function. Blocking calls apply only if
you do not use asynchronous calls. If a function needs to block, the blocking call is called repeatedly until the original request
completes. This allows Windows to continue to run while the original application waits for the call to return. Note that while
inside the blocking call, the application can be re-entered. WinCPICSetBlockingHook is used by Windows version 3.x
applications that go into a PeekMessageLoop to make blocking calls without blocking the rest of the system.

 Note By default, Windows 2000, Windows NT, Windows 98, and Windows 95 do not go into a
PeekMessageLoop; rather, they actually block on an event waiting for the call to complete. The only time you need
to use WinCPICSetBlockingHook for Windows 2000, Windows NT, Windows 98, and Windows 95 is when a

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

single-threaded application for Windows 2000, Windows NT, Windows 98, Windows 95, and Windows version 3.x
share common source code. In this case, you must explicitly make this call. Contrast this call with
WinCPICIsBlocking and WinCPICUnhookBlockingHook.

WinCPICSetEvent
Associates a Win32 event handle with a verb completion.

WinCPICStartup
Allows an application to specify the version of Windows CPI-C required and to retrieve details of the specific CPI-C
implementation.

An application must call this function to register itself with a Windows CPI-C implementation before issuing any
further Windows CPI-C calls.

WinCPICUnhookBlockingHook
Removes any previous blocking hook that has been installed and reinstalls the default blocking mechanism.

Microsoft Host Integration Server 2000

Using Asynchronous Call Completion
With one exception, Host Integration Server and the earlier SNA Server permit one outstanding Windows SNA asynchronous call
per connection and one blocking verb per thread. The exception to this guideline is that when issuing an asynchronous Receive
call, the following calls can be issued while the Receive is outstanding:

Cancel_Conversation

Deallocate

Request_To_Send

Send_Error

Test_Request_To_Send_Received

This allows an application, in particular a 5250 emulator, to use an asynchronous Receive to receive data. Use of this feature is
strongly recommended.

The following example illustrates how to use asynchronous call completion with Host Integration Server or SNA Server:

void ProcessVerbCompletion (WPARAM wParam LPARAM lParam)

{
 for (i = 0; i<nPendingVerbs; i++)
 if (memcmp (pPending [i].ConvID, (Conversation_ID) lParam)== 0)
 ProcessCommand (wParam, lParam);
}

LRESULT CALLBACK SampleWndProc (. . .)
{
 if (msg = = uAsyncCPIC) {
 ProcessVerbCompletion (wParam, lParam);
 }
 else switch (msg) {
 case WM_USER:
 Initialize_Conversation (lpConvId, "GORDM", &lError);
 if (lError ! = CM_OK) {
 ErrorDisplay () ;
 break ;
 }
 Set_Processing_Mode (lpConvId, CM_NON_BLOCKING, &lError) ;
 if (lError ! = CM_OK) {
 ErrorDisplay () ;
 break ;
 }
 Allocate (lpConvId, &lError) ;
 switch (lError) {

 case CM_OK:
 break ;

 case CM_OPERATION_INCOMPLETE:
 memcopy (pPending [nPending ++].ConvId, lpConvId, sizeof (C) ;
 break ;
 default:
 ErrorDisplay () ;

 }
 break ;
}

WinMain (. . .)
{
 if ((WinCPICStartup (. . .) = = FALSE) {
 return FALSE;

 }

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

For more information on CPI-C calls and Windows extensions, see CPI-C Calls and Extensions for the Windows Environment. For
additional information on using CPI-C, see the IBM Systems Application Architecture Common Programming Interface
Communications Reference, part number SC26-4399-04.

 uAsyncCPIC = RegisterWindowMessage ("WinAsyncCPIC"");
 Specify_Windows_Handle (hwndSample) ;
 while (GetMessage (. . .)) {

 }
 WinCPICCleanup (. . .)

}

Microsoft Host Integration Server 2000

CPI-C Call Summary
This section briefly describes each CPI-C call. The features provided by a CPI-C call can be broader than this summary indicates.
The calls are grouped in categories according to the function they perform. There are calls that start and stop a conversation, send
and receive data, get information, and get side information.

 Note The names of the calls are pseudonyms. The actual C function names appear in parentheses after the
pseudonyms. For example, Initialize_Conversation is the pseudonym for a call. The actual function name is cminit.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Starting a Conversation
The calls in this category are used to start a conversation between two programs.

Accept_Conversation (cmaccp)
Issued by the invoked program to accept the incoming conversation and set certain conversation characteristics. Upon
successful execution of this call, CPI-C generates a conversation identifier.

Allocate (cmallc)
Issued by the invoking program to allocate a conversation with the partner program, using the current conversation
characteristics. CPI-C can also start a session between the local LU and partner LU if one does not already exist. The type of
conversation allocated depends on the conversation type characteristic—mapped or basic.

Initialize_Conversation (cminit)
Issued by the invoking program to obtain a conversation identifier and to set the initial values for the conversation’s
characteristics. The initial values are derived from side information associated with the symbolic destination name or are CPI-C
defaults.

After issuing Initialize_Conversation, the invoking program can issue any of the following Set_ calls to change the initial
conversation characteristics. These calls cannot be issued after Allocate has been issued.

Call Sets
Set_Conversation_Security_Password (cmscsp) Security password
Set_Conversation_Security_Type (cmscst) Conversation security type
Set_Conversation_Security_User_ID (cmscsu) Security user identifier
Set_Conversation_Type (cmsct) Conversation type
Set_Mode_Name (cmsmn) Mode name
Set_Partner_LU_Name (cmspln) Partner LU name
Set_Return_Control (cmsrc) Return control
Set_Sync_Level (cmssl) Synchronization level
Set_TP_Name (cmstpn) Program name

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending Data
The following calls are used to send data to the partner program.

Confirm (cmcfm)
Sends the contents of the local LU’s send buffer and a confirmation request to the partner program and waits for confirmation.

Flush (cmflus)
Sends the contents of the local LU’s send buffer to the partner LU (and partner program). If the send buffer is empty, no action
takes place.

Prepare_To_Receive (cmptr)
Changes the state of the conversation for the local program from SEND to RECEIVE, making it possible for the local program to
begin receiving data. Before changing the conversation state, this call performs the equivalent of the Flush or Confirm call.

Request_To_Send (cmrts)
Notifies the partner program that the local program wants to send data. The partner program may or may not act on this
request.

Send_Data (cmsend)
Puts data in the local LU’s send buffer for transmission to the partner program. The data collected in the local LU’s send buffer
is transmitted to the partner LU (and partner program) when one of the following occurs:

The send buffer fills up.
The local program issues a Flush, Confirm, or Deallocate call or other call that flushes the LU’s send buffer. (Some send
types, set by Set_Send_Type, include flush functionality.)

Set_Prepare_To_Receive_Type (cmsptr)
Sets the conversation’s prepare-to-receive type, which specifies whether subsequent Prepare_To_Receive calls will include
Flush or Confirm functionality. The prepare-to-receive type affects all subsequent Prepare_To_Receive calls. It can be
changed by reissuing Set_Prepare_To_Receive_Type.

Set_Send_Type (cmsst)
Sets the conversation’s send type. The send type specifies how data will be sent by Send_Data. The send type can specify that
only data be sent or that, in addition to sending data, CPI-C execute the equivalent of Flush, Confirm, Prepare_To_Receive, or
Deallocate. The send type value affects all subsequent Send_Data calls. It can be changed by reissuing Set_Send_Type.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Receiving Data
The following calls or extensions allow a program to receive data from its partner program.

Receive (cmrcv)
Issuing this call while the conversation is in RECEIVE state causes the local program to receive any data that is currently
available from the partner program. If no data is available and the receive type is set to CM_RECEIVE _AND_WAIT, the local
program waits for data to arrive. If the receive type is set to CM_RECEIVE_IMMEDIATE, the program does not wait.

Issuing this call while the conversation is in SEND or SEND_PENDING state is allowed only if the receive type is set to
CM_RECEIVE_AND_WAIT. This flushes the LU’s send buffer and changes the conversation state to RECEIVE. The local program
then begins to receive data.

Set_Fill (cmsf)
Used in a basic conversation, this call sets the conversation’s fill type, which specifies whether programs will receive data in the
form of logical records or as a specified length of data. This call has an effect only in basic conversations. The fill value affects all
subsequent Receive calls. It can be changed by reissuing Set_Fill.

Set_Processing_Mode (cmspm)
Specifies for the conversation whether subsequent calls will be returned when the operation they have requested is complete
(blocking) or immediately after the operation is initiated (nonblocking). A program is notified of the completion of nonblocking
calls when it issues Wait_For_Conversation or through a Windows message sent to a WndProc identified by the hwndNotify
parameter in Specify_Windows_Handle.

Set_Receive_Type (cmsrt)
Sets the conversation’s receive type, which specifies whether a program issuing a Receive call will wait for data to arrive if data
is not available. The receive type value affects all subsequent Receive calls. It can be changed by reissuing Set_Receive_Type.

Specify_Windows_Handle (xchwnd)
Sets the window handle to which a message is sent on completion of an operation in nonblocking mode. An application can set
the processing mode by calling Set_Processing_Mode. If the window handle is set to NULL or this call is never issued, then the
application must call Wait_For_Conversation to be notified when the outstanding operation completes.

WinCPICSetBlockingHook
Allows a Windows CPI-C implementation to block CPI-C function calls by means of a new function. This call must be explicitly
issued for Windows version 3.x applications to make blocking calls without blocking the rest of the system.

A Windows CPI-C implementation has a default mechanism by which blocking CPI-C functions are implemented. This function
enables the application to execute its own function at blocking time in place of the default function.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Confirming Receipt of Data and Reporting Errors
The following calls confirm receipt of data or report an error.

Confirmed (cmcfmd)
Replies to a confirmation request from the partner program. It informs the partner program that the local program has not
detected an error in the received data. Because the program issuing the confirmation request waits for a confirmation,
Confirmed synchronizes the processing of the two programs.

Send_Error (cmserr)
Notifies the partner program that the local program has encountered an application-level error. The local program can use
Send_Error to inform the partner program of an error encountered in received data, to reject a confirmation request, or to
truncate an incomplete logical record it is sending.

Set_Error_Direction (cmsed)
Specifies whether a program detected an error while receiving data or while preparing to send data. Error direction is relevant
only when a program issues Send_Error in SEND_PENDING state—immediately after issuing Receive and receiving data as
well as a status_received value of CM_SEND_RECEIVED.

Set_Log_Data (cmsld)
Used in a basic conversation, this call specifies a log message (log data) and its length to be sent to the partner LU. This call has
an effect only in basic conversations. If present, log data is sent when Send_Error is issued or when the conversation is
abnormally deallocated. After the log data is sent, CPI-C resets the log data to NULL and the log data length to zero.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Getting Information
The following calls retrieve information about the characteristics of a specified conversation.

Extract_Conversation_Security_Type (xcecst)
Retrieves security type.

Extract_Conversation_Security_User_ID (cmecsu)
Retrieves security user identifier.

Extract_Conversation_State (cmecs)
Retrieves conversation state.

Extract_Conversation_Type (cmect)
Retrieves conversation type.

Extract_Mode_Name (cmemn)
Retrieves mode name.

Extract_Partner_LU_Name (cmepln)
Retrieves partner LU name.

Extract_Sync_Level (cmesl)
Retrieves synchronization level.

Test_Request_To_Send_Received (cmtrts)
Determines whether a request-to-send notification has been received from the partner program.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Ending a Conversation
The following calls end a conversation.

Deallocate (cmdeal)
Deallocates a conversation between two programs. Before deallocating the conversation, this call performs the equivalent of the
Flush or Confirm call, depending on the current conversation synchronization level and deallocate type.

Set_Deallocate_Type (cmsdt)
Specifies how the conversation is to be deallocated. The deallocation instructions specified by this call take effect when
Deallocate is issued or when the send type is set to CM_SEND_AND_DEALLOCATE and Send_Data is issued.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Administering Side Information
The following calls let CPI-C applications add, replace, retrieve, or delete side information entries from memory. (See
Side Information.)

Delete_CPIC_Side_Information (xcmdsi)
Deletes side information entry.

Extract_CPIC_Side_Information (xcmesi)
Retrieves side information.

Set_CPIC_Side_Information (xcmssi)
Adds or replaces side information entry.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Initial Conversation Characteristics
CPI-C maintains a set of internal values called characteristics for each conversation. Some characteristics affect the overall
operation of the conversation, such as the conversation type. Others affect the behavior of specific calls, such as the receive type.

Many of these characteristics are initially derived from the side information table (see Side Information) in memory.
Initialize_Conversation specifies the symbolic destination name (sym_dest_name) associated with the desired side information
table entry.

The following table lists the initial values of the conversation characteristics and tells which call can change a given value.

Characteristi
c

Initial value set by Initialize_Conversation Initial value set by Accept_Conversati
on

Can be changed
by

Conversation
state

CM_INITIALIZE_STATE CM_RECEIVE_STATE Depends on call

Conversation
type

CM_MAPPED_
CONVERSATION

The value specified by the invoking progr
am.

Set_Conversation_
Type

Deallocate ty
pe

CM_DEALLOCATE_
SYNC_LEVEL

CM_DEALLOCATE_
SYNC_LEVEL

Set_Deallocate_
Type

Error directio
n

CM_RECEIVE_ERROR CM_RECEIVE_
ERROR

Set_Error_Direction

Fill CM_FILL_LL CM_FILL_LL Set_Fill
Log data Null Null Set_Log_Data
Log data leng
th

0 0 Set_Log_Data

Mode name The mode name contained in the side information. If
no sym_dest_name is specified, this is a null string.

The mode name for the session on which
the conversation startup request arrived.

Set_Mode_Name

Mode name l
ength

Length of mode name. If no sym_dest_name is speci
fied, this is zero.

Length of mode name. Set_Mode_Name

Partner LU na
me

The partner LU name contained in the side informati
on. If no sym_dest_name is specified, this is a single
blank.

The partner LU name for the session on
which the conversation startup request ar
rived.

Set_Partner_LU_
Name

Partner LU na
me length

Length of partner LU name. If no sym_dest_name is
specified, this is 1.

Length of partner LU name. Set_Partner_LU_
Name

Partner progr
am name

The program name contained in the side informatio
n. If no sym_dest_name is specified, this is a single bl
ank.

Not applicable. Set_TP_Name

Partner progr
am name len
gth

Length of partner program name. If no sym_dest_na
me is specified, this is 1.

Not applicable. Set_TP_Name

Password The password contained in the side information. If n
o sym_dest_name is specified, this is a single blank.

The value specified by the invoking progr
am.

Set_Conversation_
Security_Password

Password len
gth

Length of password. If no sym_dest_name is specifie
d, this is 1.

Length of password. Set_Conversation_
Security_Password

Prepare-to-re
ceive type

CM_PREP_TO_
RECEIVE_SYNC_
LEVEL

CM_PREP_TO_
RECEIVE_SYNC_
LEVEL

Set_Prepare_To_
Receive_Type

Receive type CM_RECEIVE_AND_
WAIT

CM_RECEIVE_AND_
WAIT

Set_Receive_Type

Return contro
l

CM_WHEN_SESSION_
ALLOCATED

Not applicable. Set_Return_Control

Security type The security type contained in the side information. The value specified by the invoking progr
am.

Set_Conversation_
Security_Type

Send type CM_BUFFER_DATA CM_BUFFER_DATA Set_Send_Type
Synchronizati
on level

CM_NONE The value specified by the invoking progr
am.

Set_Sync_Level

User identifie
r

The user identifier contained in the side information.
If no sym_dest_name is specified, this is a single blan
k.

The value specified by the invoking progr
am.

Set_Conversation_
Security_User_ID

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

User identifie
r length

Length of user identifier. If no sym_dest_name is spe
cified, this is 1.

Length of user identifier. Set_Conversation_
Security_User_ID

Microsoft Host Integration Server 2000

Side Information
The information required for two CPI-C programs to communicate is stored as a table, called the side information table, in
memory. The table is derived from the symbolic destination name (configured in Host Integration Server or SNA Server) and from
the Set_CPIC_Side_Information, Extract_CPIC_Side_Information, and Delete_CPIC_Side_Information calls.

The side information is maintained by the system administrator. For additional information about configuration, see the
Administrator's Reference section of the Microsoft Host Integration Server Guide or the Microsoft SNA Server Administration
Guide provided with earlier versions of SNA Server.

If you are developing commercial programs or programs that will be installed on multiple computers within your organization, it
is recommended that you include logic that allows a user or system administrator to specify configuration information for each
copy of the program.

Each side information entry contains the following fields:

Symbolic destination name
This is the sym_dest_name parameter specified by Initialize_Conversation. It is the identifier for the side information entry. The
name can be up to eight ASCII characters. See Set_CPIC_Side_Information for the allowed characters.

Partner LU name
This is the name by which the partner LU is known to the local program. It can be an alias of up to eight ASCII characters or a
fully qualified network name of up to 17 characters. See Set_Partner_LU_Name for the allowed characters.

Partner program type and name
These fields indicate whether the partner program is an application transaction program (TP) or an SNA service TP, and provide
the partner program name. An application TP name can contain up to 64 ASCII characters. A service TP name can contain up to
four characters. See Set_TP_Name for the allowed characters.

Mode name
This name represents a set of characteristics to be used in an LU-to-LU session. The mode name can contain up to eight ASCII
characters. See Set_Mode_Name for the allowed characters.

Conversation security type
This field indicates whether security will be used and if so, what type.

You can use conversation security to require that the invoking program provide a user identifier and password before CPI-C will
allocate a conversation with the invoked program.

For an invoked program that in turn invokes another program, the security type can inform the second invoked program that
security has already been verified.

See Set_Conversation_Security_Type for further information about conversation security.

Security user identifier and password
If you intend to use conversation security, a valid combination of user identifier and password is required to access the invoked
program. The user identifier and password can be up to 10 ASCII characters. See Set_Conversation_Security_User_ID and
Set_Conversation_Security_Password for the allowed characters.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuration
In addition to maintaining the side information (specified by sym_dest_name), the system administrator must define the following
entities during configuration:

Modes
Local logical units (LUs)
Partner LUs
Invokable programs
User identifiers and passwords

 Note For a user or group using TPs, 5250 emulators, or Advanced Program-to-Program Communications (APPC)
applications, you can assign a default local APPC LU and a default remote APPC LU. These default LUs are accessed
when the user or group member starts an APPC program (a TP, 5250 emulator, or APPC application) and the program
does not specify LU aliases by leaving the field NULL or filling with blanks. For more information, see the
Administrator's Reference section of the Microsoft Host Integration Server 2000 Guide or the Microsoft SNA Server
Administration Guide provided with earlier versions of SNA Server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Windows 2000, Windows NT, Windows 98, and Windows 95
Considerations
This topic summarizes things to keep in mind when you are developing programs on a server based on Microsoft® Windows
2000, Microsoft Windows NT®, Microsoft Windows 98, or Microsoft Windows 95.

Host Integration Server 2000 with Service Pack 1 adds support for the following additional operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

Asynchronous completion notification using message posting
When an asynchronous operation is complete, the application’s window hwndNotify receives the message returned by
RegisterWindowMessage with "WinAsyncCPIC" as the input string. The wParam value contains the conversation_return_code
from the operation that is completing. Its values depend on which operation was originally issued. The IParam argument
contains the CM_PTR to the conversation_ID specified in the original function call.

Asynchronous completion notification using Win32 events
When a verb is issued on a non-blocking conversation, it returns CM_OPERATION_INCOMPLETE if it is going to complete
asynchronously. If an event has been registered with the conversation, then the application can call WaitForSingleObject or
WaitForMultipleObjects to be notified of the completion of the verb. WinCPICExtractEvent allows a CPI-C application to
determine this event handle. After the verb has completed, the application must call Wait_for_Conversation to determine the
return code for the asynchronous verb. The Cancel_Conversation function can be called to cancel an operation and the
conversation itself.

It is the responsibility of the application to reset the event, as it is with other APIs.

If no event has been registered, then the asynchronous verb completes as it does at present, which is by posting a message to
the window that the application has registered with the CPI-C library.

Byte ordering
By default, Intel byte ordering is used. For inline environments, defining NON_INTEL_BYTE_ORDER will do all the required
flipping for constants. Nonconstant input parameters in verb control blocks (VCBs)—for example, lengths and pointers—are
always in the native format.

Events
To receive data asynchronously, an event handle is passed in the semaphore field of the VCB. This event must be in the
nonsignaled state when passed to CPI-C, and the handle must have EVENT_MODIFY_STATE access to the event.

Library name
In preparation for the coexistence of Win16 and Win32® API libraries on the same computer, the Win32 DLL name has been
changed from WINCPIC.DLL to WINCPIC32.DLL.

The old DLL name should be used for Win32-based applications that are required to run on Microsoft® SNA Server version 2.0.
The new DLL name should be used for Win32-based applications that are intended to run only on Microsoft® Host Integration
Server or on SNA Server version 2.1 or later versions.

If you intend your Win32-based application to be used with SNA Server version 2.0, you should link with the library included
with SNA Server version 2.0. Otherwise use the library provided with Host Integration Server.

Multiple threads
A TP can have multiple threads that issue verbs. Windows CPI-C makes provisions for multithreaded Windows-based processes.
A process contains one or more threads of execution. All references to threads refer to actual threads in a multithreaded
Windows environment.

Packing
For performance reasons, the VCBs are not packed. As a result of this, DWORDs are on DWORD boundaries, WORDs on
WORDs, and BYTEs on BYTEs. VCBs should be accessed using the structures provided.

Run-time linking
For a TP to be dynamically linked to CPI-C at run time, the TP must issue:

LoadLibrary to dynamically load WINCPIC.DLL or WINCPIC32.DLL, the libraries for WINCPIC.
GetProcAddress to specify WINCPIC as the desired entry point to the dynamic-link library (DLL).

Issue the FreeLibrary call when the CPI-C library is no longer required.

Simultaneous conversations

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

A program can simultaneously participate in as many as 64 conversations per process.
Terminating applications

In the Windows 2000, Windows NT, Windows 98, and Windows 95 environments, CPI-C cannot tell when an application
terminates. Therefore, if an application must close (for example, it receives a WM_CLOSE message as a result of an ALT+F4
from a user), the application should call WinCPICCleanup.

Yielding to other components
When processing CPI-C and Common Service Verbs (CSV), it may be necessary for the library code to yield to allow another
component, such as the SnaBase, to receive messages and pass them to the application. This can be accomplished by using the
Windows extensions WinCPICSetBlockingHook and WinCPICUnhookBlockingHook.

WinCPICSetBlockingHook allows a Windows CPI-C implementation to block CPI-C function calls by means of a new function.
This call is used by Windows version 3.x applications to make blocking calls without blocking the rest of the system. To call
WinCPICSetBlockingHook:

WinCPICUnhookBlockingHook removes any previous blocking hook that has been installed and reinstalls the default
blocking mechanism. To call WinCPICUnhookBlockingHook:

FARPROC WINAPI WinCPICSetBlockingHook (FARPROC 1pBlockFunc)

BOOL WINAPI WinCPICUnhookBlockingHook (void)

Microsoft Host Integration Server 2000

Windows 3.x Considerations
This topic summarizes things to keep in mind when you are developing programs on Microsoft® Windows® 3.x.

Asynchronous completion notification
When an asynchronous operation is complete, the application’s window hwndNotify receives the message returned by
RegisterWindowMessage with "WinAsyncCPIC" as the input string. The wParam value contains the conversation_return_code
from the operation that is completing. Its values will depend on which operation was originally issued. The IParam argument
contains the CM_PTR to the conversation_ID specified in the original function call.

Load-time linking
For a program to be dynamically linked to CPI-C at load time, you must do one of the following at link time:

Insert the following IMPORTS statement in the definition (.DEF) file used to link the program:

IMPORTS WINCPIC.[entry point to be used]

(Use this statement for each entry point needed.)

Link the program to WINCPIC.LIB, which contains the entry-point linkage information for CPI-C. If you intend to use
common service verbs (CSV), you must also link to WINCSV.LIB, which contains the entry point information for CSV.

Local LUs
CPI-C does not provide a parameter for a program to specify the local LU it wants to use. The APPCLLU environment variable
specifies a local LU. This variable can be set through the application section of the WIN.INI file, as in the following example:

Setting APPCLLU is only necessary if the program does not use an LU from the default LU pool.

Packing
VCBs are not packed. As a result, DWORDs and WORDs are on WORD boundaries, and BYTEs are on BYTE boundaries. This
means, for example, that there is not a 2-byte gap between the primary and secondary return codes. VCBs should be accessed
using the structures provided, and compiler options that change this packing method should be avoided.

Run-time linking
For a program to be dynamically linked to CPI-C at run time, the program must issue:

LoadLibrary to dynamically load WINCPIC.DLL, the CPI-C library.
GetProcAddress to specify CPI-C as the desired entry point to the DLL.

Issue the FreeLibrary call when the CPI-C library is no longer required.

Simultaneous conversations
A program can participate in as many as 64 conversations simultaneously with the Windows environment. However, if more
than one CPI-C application is active at once, the total number of conversations cannot exceed 64.

Terminating applications
In the Windows environment, CPI-C cannot tell when an application terminates. Therefore, if an application must close (for
example, it receives a WM_CLOSE message as a result of an ALT+F4 from a user), the application should call WinCPICCleanup.

TP names
When a program issues Initialize_Conversation or Accept_Conversation, SNA Server generates an instance of a TP.

CPI-C does not provide a parameter for specifying the name of the invoking (Initialize_Conversation) TP instance. Instead, it is
provided by setting the APPCTPN variable in the application section of the WIN.INI file, as in the following example:

If APPCTPN is not set, the default value is CPIC_DEFAULT_TPNAME.

For the invoked program, the value of APPCTPN must match the value set by the invoking program. Accept_Conversation
cannot complete unless the allocation request from the invoking program specifies the TP name contained in APPCTPN. The
invoked program also sets APPCTPN through an application section of the WIN.INI file.

[Application]
APPCTPN=TP1
APPCLLU=LU1

[MyApplication]
APPCTPN=TP1

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

If this variable is not set when the invoked program issues Accept_Conversation, the default value is
CPIC_DEFAULT_TP_NAME.

The APPCTPN variable can be an ASCII string from 1 through 64 characters long, consisting of uppercase and lowercase letters,
numerals 0 through 9, and special characters, except the space. The APPCTPN variable cannot be set to an SNA service TP name,
which contains nonprintable hexadecimal values.

If the invoking program issues multiple Initialize_Conversation calls, it can set APPCTPN to a different value before each call.

Yielding to other components
When processing CPI-C and CSV, it may be necessary for the library code to yield to allow another component, such as the
SnaBase, to receive messages and pass them to the application. This can be accomplished by using WinCPICSetBlockingHook
and WinCPICUnhookBlockingHook.

WinCPICSetBlockingHook allows a Windows CPI-C implementation to block CPI-C function calls by means of a new function.
This call is used by Windows version 3.x applications to make blocking calls without blocking the rest of the system. To call
WinCPICSetBlockingHook:

WinCPICUnhookBlockingHook removes any previous blocking hook that has been installed and reinstalls the default
blocking mechanism. To call WinCPICUnhookBlockingHook:

FARPROC WINAPI WinCPICSetBlockingHook (FARPROC 1pBlockFunc)

BOOL WINAPI WinCPICUnhookBlockingHook (void)

Microsoft Host Integration Server 2000

OS/2 Considerations
This topic summarizes processing considerations you need to be aware of when developing programs on an OS/2 server, client,
or workstation.

Critical sections
Exercise great caution when using critical sections, which are the parts of a program that must run without interruption. A
program must not issue a CPI-C call within a critical section.

Load-time linking
For a program to be dynamically linked to CPI-C at load time, you must do one of the following at link time:

Insert the following IMPORTS statement in the definition (.DEF) file used to link the program:

IMPORTS CPIC.[entry point to be used]

(Use this statement for each entry point needed.)

Link the program to WINCPIC.LIB, which contains the entry-point linkage information for CPI-C.

Local LUs
CPI-C does not provide a parameter for a program to specify the local LU it wants to use. The APPCLLU environment variable
specifies a local LU. This variable can be set:

By the program itself.
By the operator if the program is operator-started.
During configuration if the program is automatically started.

Setting APPCLLU is necessary only if the program does not use an LU from the default LU pool.

Multiple processes
Multiple processes cannot have the same conversation identifier. Only the process that issues Initialize_Conversation or
Accept_Conversation can use the conversation identifier returned by the call. Another process wanting to use CPI-C must issue
Initialize_Conversation or Accept_Conversation to obtain its own conversation identifier.

Two or more instances of the same program can be run as different processes.

One process can engage in multiple conversations, subject to the restrictions described under “Simultaneous conversations” in
this topic.

Multiple threads
A program can have multiple threads that issue calls. However, the program cannot issue two calls simultaneously on the same
conversation. If CPI-C is issuing a call and another thread of the program issues a call on the same conversation, the thread will
hang until the first call completes.

OS/2 exception TRAP 000D
The OS/2 exception TRAP 000D occurs when CPI-C is unable to pass a return code to the local program because the return code
pointer parameter supplied to CPI-C is invalid.

Packing
VCBs are not packed. As a result, DWORDs and WORDs are on WORD boundaries, and BYTEs are on BYTE boundaries. This
means, for example, that there is not a 2-byte gap between the primary and secondary return codes. VCBs should be accessed
using the structures provided, and compiler options that change this packing method should be avoided.

Run-time linking
For a program to be dynamically linked to CPI-C at run time, the program must issue:

DosLoadModule to dynamically load CPIC.DLL, the CPI-C library.
DosGetProcAddr to specify the desired entry points to the DLL. Each CPI-C call is an entry point to the DLL.

Unlinking (the DosFreeModule call) is not supported.

Simultaneous conversations
A program can simultaneously participate in as many as 64 conversations for each OS/2 process.

Stack size
The recommended stack size for a program is at least 3000 bytes.

When executing a call, CPI-C uses the calling program’s stack. The combination of OS/2 and CPI-C requires 2560 bytes of stack
space, and the program requires additional stack space for its variables.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Terminating applications
When an application terminates, it should issue the APPC TP_ENDED verb with the type set to AP_HARD for all active TPs.

TP names
When a program issues Initialize_Conversation or Accept_Conversation, SNA Server generates an instance of a TP.

CPI-C does not provide a parameter for specifying the name of the invoking (Initialize_Conversation) TP instance. Instead, it is
provided through the APPCTPN environment variable. For the invoking program, APPCTPN can be set by the operator or by the
program itself. If APPCTPN is not set, the default value is CPIC_DEFAULT_TPNAME.

For the invoked program, the value of APPCTPN must match the value set by the invoking program. Accept_Conversation
cannot be completed unless the allocation request from the invoking program specifies the TP name contained in APPCTPN.

If the invoked program is operator-started, the value of APPCTPN can be set by the operator or by the program. If the program
is automatically started, the value of APPCTPN is set when configuring the invokable program. It can also be set by the program
itself. If this variable is not set when the invoked program issues Accept_Conversation, the default value is
CPIC_DEFAULT_TP_NAME.

The APPCTPN variable can be an ASCII string from 1 through 64 characters long, consisting of uppercase and lowercase letters,
numerals from 0 through 9, and special characters, except the space. The APPCTPN variable cannot be set to an SNA service TP
name, which contains nonprintable hexadecimal values.

If the invoking program issues multiple Initialize_Conversation calls, it can set APPCTPN to a different value before each call.

Microsoft Host Integration Server 2000

Writing CPI-C Applications
A processing task accomplished by programs using CPI-C is called a transaction. Consequently, programs that use CPI-C are
called transaction programs, or TPs. These programs communicate as peers, on an equal (rather than hierarchical) basis. The TPs
use CPI-C calls to exchange status information and application data. Each TP uses CPI-C calls to supply parameters to CPI-C, which
performs the desired function and returns parameters to the TP.

TPs distributed across a local or wide area network perform distributed transaction processing.

This section describes how to write transaction programs using CPI-C and how to configure the systems on which TPs run. The
topics in this section cover the following general areas:

Understanding fundamental concepts related to TPs
Designing and coding TPs
Configuring registry and environment variables for invokable TPs
Configuring Microsoft® Host Integration Server or the earlier Microsoft® SNA Server to work with your TPs

This section contains:

Communication Between TPs
Designing and Coding TPs
Configuring Invokable TPs
Configuring Host Integration Server to Support TPs
Simplifying CPI-C Configuration

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Communication Between TPs
Various hardware and software elements in the SNA environment are required in order for two TPs to communicate with each
other. The following figure illustrates several fundamental elements:

Each TP is associated with a logical unit (LU) of type 6.2. The LU allows the TP to access the network. Note that several TPs can be
associated with the same LU.

A partner TP can invoke another TP, which, in turn, invokes another TP, and so on. In the following figure, TP A invokes TP B, and
TP B invokes TP C.

This section contains:

Fundamental Terms for TPs and LUs
Sample TPs Illustrating Fundamental Concepts
Configuring and Controlling TPs
Creating TPs and Their Supporting Configuration

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Fundamental Terms for TPs and LUs
The following terms describe some fundamental characteristics of TPs communicating through LUs:

basic conversation
A type of conversation more complex than a mapped conversation and generally used by service TPs (SNA-based programs
that provide services to other programs). For a basic conversation, use Set_Conversation_Type and specify
CM_BASIC_CONVERSATION for the conversation_type. For more information, see Basic and Mapped Conversations Compared.

conversation
The interaction between TPs carrying out a specific task. Each conversation requires an LU-LU session. A TP can be involved in
several conversations simultaneously, as shown with TP B in Communication Between TPs.

invokable TP
A TP that can be invoked by another TP. Invokable TPs are usually server-type applications, that is, they work in the same
general way that an IBM CICS application works. Parameters for an invokable TP are configured through registry or
environment variables.

There are several types of invokable TPs:

operator-started invokable TP

A TP that is started manually in preparation for being invoked.

autostarted invokable TP

A TP that is automatically started by CPI-C when invoked.

queued TP

A TP that, when invoked multiple times, loads once and then queues up subsequent requests to be dealt with one at a time. All
operator-started TPs and some autostarted TPs are queued.

nonqueued TP

A TP loaded multiple times, once for every time it is invoked. Some autostarted TPs are nonqueued but no operator-started TPs
are nonqueued.

For more information see Invokable TPs.

invoking TP
A TP that can invoke (that is, initiate a conversation with) other TPs. Invoking TPs are usually client-type applications, that is, they
work in the same general way that an emulator works. For more information see Invoking TPs.

local LU and local TP
An LU and TP working together, when viewed as the "home base" for a particular conversation. From this viewpoint, some other
LU and TP are seen as the "partner" or "remote" LU and TP.

LU alias
The string that identifies an LU to a TP. The alias can be up to eight characters long.

LU-LU session
The communication between two LUs over a specific connection for a specific amount of time. An LU-LU session is needed for
two TPs to interact. One session can be used serially by many pairs of TPs.

An LU 6.2 can have multiple sessions (two or more concurrent sessions with different partner LUs) and parallel sessions (two or
more concurrent sessions with the same partner LU).

LUs are configured through SNA Management on Host Integration Server or through SNA Server Manager on the earlier SNA
Server. These administration tools are also used to configure LU-LU pairs and modes; the LU and mode configurations control
how many sessions a particular LU-LU pair supports.

mapped conversation
A type of conversation simpler than a basic conversation and generally used by application TPs (programs that accomplish
tasks for end users). The default for conversation type is mapped; the conversation type can be changed with the
Set_Conversation_Type call. For more information, see Basic and Mapped Conversations Compared.

partner LU and partner TP, or remote LU and remote TP
An LU and TP working together, when viewed as being at the far end of a particular conversation.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample TPs Illustrating Fundamental Concepts
A set of sample TPs is provided on the Host Integration Server CD-ROM in the \SDK\Samples\SNA directory (in the
\SDK\SAMPLES directory on the earlier SNA Server CD-ROM). Included with the sample code is TPSETUP, a program that
simplifies the setting of registry or environment variables needed by autostarted invokable TPs. Without an interface like that
provided by TPSETUP, configuring such variables can be complicated and error-prone. Therefore, it is recommended that you use
code like TPSETUP in installation programs for autostarted invokable TPs.

INSTALL.C (the source code for TPSETUP) can be compiled to work either in the Microsoft® Windows 2000, Microsoft® Windows
NT®, Microsoft® Windows® 98, or Microsoft® Windows® 95 environments or in the Windows version 3.x environment.

For information about TPSETUP and about the sample TPs, see Sample CPI-C TPs in the SDK.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring and Controlling TPs
The following table shows how the characteristics of the TPs and selection of the LUs for a conversation are controlled.

Characteristic How controlled
Type of conversation:
basic or mapped

Written into the code. For two TPs to communicate successfully, both must use the same type o
f conversation, basic or mapped. The default for conversation type is mapped; the type can be c
hanged with the Set_Conversation_Type call. See Basic and Mapped Conversations Compared.

Type of TP:
invoking or invokable

Written into the code. Invoking TPs start with Initialize_Conversation and Allocate. Invokable TP
s start with Accept_Conversation. See Invoking TPs and Invokable TPs.

The local LU alias to be used by a
n invoking TP

Three options:

Configured with a registry or environment variable.
Configured (in Host Integration Server using SNA Management or in SNA Server using S
NA Server Manager) as the default local APPC LU for the user who starts the invoking TP.
Configured (in Host Integration Server using SNA Management or in SNA Server using S
NA Server Manager) as a member of the default outgoing local APPC LU pool.

See Invoking TPs and the SNA Server Configuration.

The symbolic destination name u
sed by an invoking TP

Written into the code, in Initialize_Conversation.

The invokable (partner) TP reques
ted by an invoking TP

Specified within the symbolic destination name, which can be configured through SNA Manag
ement using Host Integration Server or SNA Server Manager on the earlier SNA Server produc
t.

The LU alias to be used by an inv
okable TP (the partner LU alias fr
om the point of view of the invoki
ng TP)

Specified within the symbolic destination name, which can be configured through SNA Manag
ement using Host Integration Server or SNA Server Manager on the earlier SNA Server produc
t. See Invoking TPs and the SNA Server Configuration and
Matching Invoking and Invokable TPs.

Type of autostarted invokable TP:
queued or nonqueued

Configured with registry or environment variables. See Configuring Invokable TPs.

Local LU and remote LU aliases Configured through SNA Management using Host Integration Server or SNA Server Manager
on the earlier SNA Server product. For information, see the Installation and Configuration secti
on in the Microsoft Host Integration Server Guide or the earlier Microsoft SNA Server Administr
ation Guide.

The pairing of local and remote L
Us, and the mode used for each L
U-LU pair

Configured through SNA Management using Host Integration Server or SNA Server Manager
on the earlier SNA Server product. For information, see the Installation and Configuration secti
on in the Microsoft Host Integration Server Guide or the Microsoft SNA Server Administration G
uide.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Creating TPs and Their Supporting Configuration
The following procedure describes how to create TPs and set up a supporting configuration.

To create TPs and set up a supporting configuration

1. Write, compile, and link each TP.
2. Place each TP on an appropriate computer.

For TPs that you will start many times or that will be started by a user, arrange for the TP to be started easily. That is, for
graphical interfaces, create a program icon for starting the TP; for nongraphical interfaces, make sure the TP is in the path.

3. On one or more SNA servers, configure LUs, modes, LU-LU pairs, and a symbolic destination name for use by the TPs.

For information about how to set up LU-LU pairs to support TPs, see Using Invoking and Invokable TPs and the Host
Integration Server or SNA Server. For information, see the Installation and Configuration section in the Microsoft Host
Integration Server Guide or the Microsoft SNA Server Administration Guide.

For information about symbolic destination names and side information, see Side Information and the Host Integration
Server or SNA Server. For information, see the Installation and Configuration section in the Microsoft Host Integration
Server Guide or the Microsoft SNA Server Administration Guide.

4. Set any registry or environment variables needed for the invoking and invokable TPs.

For autostarted invokable TPs, it is recommended that you use the sample TP configuration program, TPSETUP, for this step.
When you write an installation program for autostarted invokable TPs, it is recommended that you include code similar to
TPSETUP.

For information about registry or environment variables, see Configuring Invokable TPs and Invoking TPs. For information
about TPSETUP, see Sample CPI-C TPs in the SDK.

5. If the invokable TP is operator-started, start it, or arrange for it to be started when the computer is restarted and then restart
the computer.

If the invokable TP is autostarted, Host Integration Server or SNA Server will start it when needed.

6. Start the invoking TP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Designing and Coding TPs
The following topics provide background information about designing and coding TPs.

This section contains:

CPI-C Calls in C Programs
CPI-C and LU 6.2
Conversation States
Confirmation Processing
Conversation Security
Basic and Mapped Conversations Compared
Using Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CPI-C Calls in C Programs
This implementation of CPI-C is available to programs written in Microsoft® C version 5.1 or later.

The WINCPIC.H header file defines the prototypes for each CPI-C function. Other definitions include:

Types specifically defined for use by CPI-C parameters.
The structure of the side information entries.
Symbolic names defined for integer parameters.

To use CPI-C calls, the C program must include WINCPIC.H and declare the variables to be used in passing parameters on CPI-C
calls. Note that you must define WIN32, WINDOWS, or DOS5 before including WINCPIC.H. For example:

In the case of strings, the program must also determine the desired string length.

Windows 2000, Windows NT, Windows 98, and Windows 95 clients:
 #define WIN32
 #include <wincpic.h>

Windows 3.x clients:
 #define WINDOWS
 #include <wincpic.h>

OS/2 clients:
 #define DOS5
 #include <wincpic.h>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CPI-C and LU 6.2
CPI-C applications can communicate with non-CPI-C LU 6.2 applications, such as APPC.

CPI-C supports all functions of LU 6.2 except:

Sync Point/backout processing
PIP data
LOCKS=LONG
MAP_NAME
FMH_DATA

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Conversation States
The state of the conversation (as viewed by a particular TP) governs which CPI-C calls can be made by the TP at a particular time.
For example, a TP cannot issue Send_Data if the conversation is not in SEND or SEND_PENDING state for that TP.

The state of a conversation depends on the TP from which it is viewed. A local TP can view a conversation as being in SEND state
while the partner TP views the conversation as being in RECEIVE state. A particular TP can be in several conversations, each of
which is in a different state.

The possible conversation states are summarized here.

CONFIRM
The TP has received a request for confirmation of receipt of data; it must respond positively or send error information to the
partner TP.

CONFIRM_DEALLOCATE
The TP has received a request for confirmation and must respond positively or send error information. If the TP responds
positively, the conversation is automatically deallocated.

CONFIRM_SEND
The TP has received a request for confirmation; it must respond positively or send error information. After responding, the TP
can begin to send data.

INITIALIZE
The conversation has been initialized successfully.

RECEIVE
The TP can receive application data and status information from the partner TP. When the conversation is in RECEIVE state, the
TP can also send error information and request permission to send data.

RESET
The conversation has not started or has been terminated.

SEND
The TP can send data to the partner TP and request confirmation. When the conversation is in SEND state, the TP can also begin
to receive data, which can cause the state to change to RECEIVE.

SEND_PENDING
The TP issued a Receive call and received data as well as a send indicator (status_received = CM_SEND_RECEIVED), indicating
that the TP can begin to send data. This state differs from the SEND state, which occurs when the TP receives data on one
Receive call and the send indicator on a subsequent Receive call.

This section contains:

State Checks
Changing Conversation States

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

State Checks
A state check occurs when a TP issues a CPI-C call and the conversation is not in the appropriate state. For example, a state check
occurs if a TP issues Send_Data while the conversation is in RECEIVE state. When a state check occurs, CPI-C does not execute the
call; it returns state check information through the return_code parameter.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Changing Conversation States
A change in the conversation state can result from:

A call made by the local TP.
A call made by the partner TP.
An error condition.

The following example shows how CPI-C calls can change the state of the conversation from SEND to RECEIVE and from RECEIVE
to SEND.

Any TP can send or receive data, regardless of whether it is the invoking TP (the TP that started the conversation) or
the invokable TP (the TP that responded to a request to start a conversation).

This example shows how CPI-C calls can change the conversation state. In this table, each conversation state appears in bold and
precedes the CPI-C calls that are used while in that state.

Issued by the invoking TP Issued by the invokable TP
Conversation state: RESET
Initialize_Conversation
Conversation state: INITIALIZE
Set_Sync_Level
(sync_level=CM_CONFIRM)
Allocate
Conversation state: SEND
Send_Data
Prepare_to_Receive Conversation state: RESET
 Accept_Conversation
 Conversation state: RECEIVE
 (status_received=

CM_CONFIRM_SEND_RECEIVED)
 Conversation state: CONFIRM_SEND
 Confirm
 Conversation state: SEND
(return_code=CM_OK) Send_Data
Conversation state: RECEIVE Confirm
(status_received=
CM_CONFIRM_RECEIVED)

Conversation state: CONFIRM
Request_To_Send
Confirmed
Conversation state: RECEIVE (return_code=CM_OK)
 (request_to_send_received=

CM_REQ_TO_SEND_RECEIVED)
 Prepare_To_Receive
Receive
(status_received=
CM_CONFIRM_SEND_RECEIVED)

Conversation state: CONFIRM_SEND
Confirmed
Conversation state: SEND (return_code=CM_OK)
 Conversation state: RECEIVE
Send_Data
Deallocate
 Receive
 (status_received=

CM_CONFIRM_DEALLOC_RECEIVED)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 Conversation state:
CONFIRM_DEALLOCATE

 Confirmed
(return_code=CM_OK) Conversation state: RESET
Conversation state: RESET

Initial States
Before the conversation is allocated, the state is RESET for both TPs.

In the example, after the conversation is allocated, the initial state is SEND for the invoking TP and RECEIVE for the invokable TP.

Changing to RECEIVE State
The Prepare_To_Receive call allows a TP to change the conversation from SEND to RECEIVE state. This call:

Flushes the local LU's send buffer.
Sends a CM_CONFIRM_SEND indicator to the partner TP through the status_received parameter of a Receive call, because
the synchronization level is set to CM_CONFIRM. This indicator tells the partner TP that a Confirmed response is expected
before the partner TP can begin to send data.

Changing to SEND State
The Request_To_Send call informs the partner TP (for which the conversation is in SEND state) that the local TP (for which the
conversation is in RECEIVE state) wants to send data. This request is communicated to the partner TP through the
request_to_send_received parameter of the Confirm call. (The request_to_send_received parameter is also returned to Send_Data
and other calls.)

When the partner TP issues the Prepare_To_Receive call, the conversation state changes to RECEIVE for the partner TP, making it
possible for the local TP to send data.

Important Issuing Request_To_Send does not change the state of the conversation. Upon receiving a request to
send, the partner TP is not required to change the conversation state; it can ignore the request.

Microsoft Host Integration Server 2000

Confirmation Processing
The sequence of events for confirmation processing is as follows:

1. Establish the synchronization level.
2. Send a confirmation request.
3. Receive data and confirmation request.
4. Respond to the confirmation request.
5. Deallocate the conversation.

Using confirmation processing, a TP sends a confirmation request with the data; the partner TP confirms receipt of the data or
indicates that an error occurred. Each time the two TPs exchange a confirmation request and response, they are synchronized.

Although the example in this section does not show this, any TP can send or receive data, regardless of whether the TP
is the invoking TP or the invokable TP.

The following example illustrates confirmation processing.

Issued by the invoking TP Issued by the invokable TP
Initialize_Conversation

Set_Sync_Level
(sync_level=CM_CONFIRM)

Allocate

Send_Data

Confirm

 Accept_Conversation
 Receive

(data_received=
CM_COMPLETE_DATA_RECEIVED)
(status_received=
CM_CONFIRM_RECEIVED)

 Confirmed
(return_code=CM_OK)
Send_Data
Deallocate
 Receive
 (status_received=

CM_CONFIRM_DEALLOC_RECEIVED)
 Confirmed
(return_code=CM_OK)

Establishing the Synchronization Level
The Set_Sync_Level call lets you override the default synchronization level of the conversation. The synchronization level is one of
the conversation's characteristics. There are two possible synchronization levels:

CM_CONFIRM, under which the TPs can request confirmation of receipt of data and respond to such requests.
CM_NONE, the default, under which confirmation processing does not occur.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The Initialize_Conversation call sets the default characteristics of a conversation. There are several calls that begin with Set_. These
calls let you override the default conversation characteristics.

Sending a Confirmation Request
Issuing the Confirm call has two effects:

It flushes the local LU's send buffer and sends any data contained in the buffer to the partner TP.
It sends a confirmation request that the partner TP receives through the status_received parameter of a Receive call.

After issuing Confirm, the local TP waits for confirmation from the partner TP.

Receiving a Confirmation Request
The status_received parameter of the Receive call indicates any future action required by the local TP.

In the example, the first Receive has a status_received of CM_CONFIRM_RECEIVED, indicating that a confirmation is required
before the partner TP can continue.

Responding to a Confirmation Request
The partner TP issues the Confirmed call to confirm receipt of data. This frees the local TP to resume processing.

Deallocating the Conversation
Because the synchronization level of the conversation is set to CM_CONFIRM, Deallocate sends a confirmation request with the
data flushed from the buffer.

For the second Receive call, status_received is CM_CONFIRM_DEALLOC_RECEIVED, indicating that the partner TP requires a
confirmation, generated by the Confirmed call, before the conversation can be deallocated.

Microsoft Host Integration Server 2000

Conversation Security
You can use conversation security to require that the invoking TP provide a user identifier and password before CPI-C will allocate
a conversation with the invokable TP.

For the invoking TP, conversation security is activated and configured (with user identifier and password) through the symbolic
destination name in Microsoft® SNA Server Manager or by the following calls, which override the symbolic destination name:

Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Security_Password

For the invokable TP, conversation security is activated and configured through registry or environment variables on the
computer where the invokable TP is located.

With communication involving more than two TPs, the verification of a user identifier and password can be passed from one TP to
another. Suppose that TP A invokes TP B, which requires security information, and TP B in turn invokes TP C, which also requires
security information. TP B can inform TP C that conversation security has already been verified.

For information about the registry or environment variables affecting conversation security, see Configuring Invokable TPs. For
information about symbolic destination names and side information, see Side Information and the Microsoft SNA Server
Administration Guide.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Basic and Mapped Conversations Compared
The following table offers some guidelines for choosing between basic and mapped conversations for your TPs. The default for
conversation type is mapped; to change to a basic conversation, use Set_Conversation_Type, and specify
CM_BASIC_CONVERSATION for the conversation_type. For definitions of basic and mapped conversations, see
Fundamental Terms for TPs and LUs.

Characte
ristic

Basic conversations Mapped conversations

Common
use

Generally used for service TPs. Generally used for application TPs.

Partnerin
g

Must be used to communicate with an existing TP that uses basic verbs. Must be used to communicate with an existin
g TP that uses mapped verbs.

Sending
and recei
ving met
hod

Before a TP can begin a send operation, it must convert data records into
logical records. The TP does this by adding a 2-byte prefix that indicates t
he length of the record. A TP can send several logical records at one time.

When a partner TP receives logical records, it must reconstruct them into
usable data records. For more information, see
Logical Records Used in Basic Conversations.

A TP sends data one record at a time. Neither
the sending TP nor the receiving TP needs to
convert data records between different forms
.

Abnorma
l terminat
ion

In the Deallocate call, a TP can indicate whether an error or ABEND (abno
rmal program termination) was caused by a TP or by a program using th
e TP.

A TP can indicate an error or ABEND, but can
not tell whether a problem was caused by a T
P or by a program using a TP.

 A TP can indicate whether an ABEND was caused by a timeout or by a cri
tical error.

A TP cannot indicate the cause of an ABEND.

Error log
ging

For an error or ABEND, a TP can send an error message, in the form of a
general data stream (GDS) error log variable, to the local log and to the p
artner LU.

For an error or ABEND, a TP cannot send an e
rror message to the local log or to the partne
r LU.

This section contains:

Logical Records Used in Basic Conversations
An Example of a Mapped Conversation

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Logical Records Used in Basic Conversations
Logical records are sent and received in basic conversations only.

A TP can send or receive multiple logical records with a single Send_Data or Receive call. A TP can also send or receive a logical
record in successive portions: beginning, middle, and end.

A logical record is made up of:

A 2-byte record-length (LL) field.
A data field that can range in length from 0 bytes through 32765 bytes.

The LL field contains a hexadecimal value that is the length of the data field plus two bytes (for the LL field). For example, if a
record contains 228 bytes of application data, the logical record length is 230. The LL field is 0x00E6, the hexadecimal equivalent
of 230. If the length of the data field is 0, the value contained in the LL field is 0x0002.

Logical records are sent from or received in a data buffer established by the TP. In the data buffer, the LL field must not be in Intel
byte-swapped format. For example, a length of 230 must be 0x00E6, not 0xE600.

The LL field cannot be 0x0000 or 0x0001, which allow less than the two bytes required for the LL field itself. The LL field also
cannot be greater than or equal to 0x8000, which is equivalent to decimal 32768 and therefore allows for a data field greater than
32765 or an LL field greater than 2.

Setting the most significant bit of the LL field to 1 indicates that the information contained in the current logical record is
continued in the next logical record.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

An Example of a Mapped Conversation
The following example of a mapped conversation shows the CPI-C calls used to start a conversation, exchange data, and end the
conversation. Call parameters are in parentheses.

Issued by the invoking TP Issued by the invokable TP
Initialize_Conversation
Allocate
Send_Data
Deallocate Accept_Conversation
 Receive
 (data_received=
 CM_COMPLETE_DATA_RECEIVED)
 (return_code=
 CM_DEALLOCATED_NORMAL)

The following paragraphs describe the calls that are used in a mapped conversation.

Calls for Starting a Mapped Conversation
To start a conversation, the invoking TP issues the following calls:

Initialize_Conversation, which requests CPI-C to set the values defining the characteristics of the conversation. The
Initialize_Conversation call specifies a symbolic destination name that is associated with an entry in a side information
table in memory. The side information specifies partner TP, partner LU, mode, security, and so on.
Allocate, which requests that CPI-C establish a conversation between the invoking TP and the invokable TP.

The invokable TP issues the Accept_Conversation call, which informs CPI-C that it is ready to begin a conversation with the
invoking TP.

Calls for Sending Data in a Mapped Conversation
The Send_Data call puts one data record (a record containing application data to be transmitted) in the send buffer of the local LU.
Data transmission to the partner TP does not happen until one of the following events occurs:

The send buffer fills up.
The sending TP makes a call that forces CPI-C to flush the buffer and send data to the partner TP.

In addition to the data record, the send buffer also contains the allocation request (which precedes the data record).

In the preceding example, Deallocate flushes the send buffer, sending the allocation request and data to the partner TP. Other calls
that flush the buffer are Confirm and Flush.

Calls for Receiving Data in a Mapped Conversation
The Receive call receives the data record and status information from the partner TP. If no data or status information is currently
available, the local TP, by default, waits for data to arrive.

The data_received parameter of Receive tells the program whether it received data and if so, whether or not the data is complete.

Calls for Ending a Mapped Conversation
To end a conversation, one of the TPs issues Deallocate, which causes CPI-C to deallocate the conversation between the two TPs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using Invoking and Invokable TPs
There are two kinds of TPs: TPs that can invoke (that is, initiate a conversation with) other TPs, and TPs that can be invoked. A TP
that can invoke another TP is called an invoking TP, and a TP that can be invoked is called an invokable TP.

The following topics describe how:

Invoking TPs request invokable TPs.
Invokable TPs identify themselves to SNA Server in preparation for being invoked.
An invokable TP is matched to an invoking TP's request.

For information about how to configure LUs to support TPs, see Configuring Host Integration Server to Support TPs and the
Installation and Configuration section of the Microsoft Host Integration Server Guide Microsoft SNA Server Administration Guide
(for SNA Server, see the Microsoft SNA Server Administration Guide).

This section contains:

Invoking TPs
Invoking TPs and Contention
Invokable TPs
Subcategories for Invokable TPs
Matching Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Invoking TPs
An invoking TP can be located on any system on the SNA network. An invoking TP identifies itself by issuing
Initialize_Conversation, which specifies the name of the invoking TP and the symbolic destination name to be used. A local LU
alias can be specified for the invoking TP by using a registry or environment variable, as shown in the following table.

Operating system on c
omputer that contains
invoking TP Location and name of variable
Microsoft® Windows 20
00 and Windows NT®

Location in Windows 2000 or Windows NT registry:

HKEY_LOCAL_MACHINE
SYSTEM
CurrentControlSet
Services
SnaBase
Parameters
Client
<exename>:REG_SZ:localLUalias

Any exename registry entries under the Client key represent the file names of Win32 executable files (w
ithout the file extension) for any Invoking TPs. A REG_SZ value associated with each exename registry e
ntry specifies the local LU alias for the invoking TP.

For example, the APING.EXE CPI-C sample included with the Host Integration Server or earlier SNA Serv
er SDK would have the following registry entry:

HKEY_LOCAL_MACHINE
SYSTEM
CurrentControlSet
Services
SnaBase
Parameters
Client
APING:REG_SZ:localLUalias

Microsoft® Windows®
98 and Windows® 95

Location in Windows 98 or Windows 95 registry:

HKEY_LOCAL_MACHINE
SOFTWARE
Microsoft
SnaBase
Parameters
Client
<exename>:REG_SZ:localLUalias

Any exename registry entries under the Client key represent the file names of Win32 executable files (w
ithout the file extension) for any Invoking TPs. A REG_SZ value associated with each exename registry e
ntry specifies the local LU alias for the invoking TP.

For example, the APING.EXE CPI-C sample included with the Host Integration Server or earlier SNA Serv
er SDK would have the following registry entry:

HKEY_LOCAL_MACHINE
SOFTWARE
Microsoft
SnaBase
Parameters
Client
APING:REG_SZ:localLUalias

Windows version 3.x Section and variable in WIN.INI file:

[ApplicationName]
APPCLLU=localLUalias

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

OS/2 Section and variable in SNA.INI file:

[ApplicationName]
APPCLLU=localLUalias
Alternatively, this can be configured through set commands, either at the command prompt or in CONF
IG.SYS.

The registry parameter for the local LU alias takes greatest precedence when associating a local LU to an invoking CPI-C
application. If a registry value is not configured, two other methods are used to associate a local LU to the CPI-C application:

A local APPC LU can be associated with the user context under which the CPI-C application is running, A local APPC LU can be
configured by checking the "member of default local APPC LU pool" checkbox. Of the two possible options, a local LU associated
with user context has the higher precedence.

If the local LU alias is not specified in a registry or environment variable, SNA Server must be configured to supply it through one
of these two types of default local LU; otherwise, Initialize_Conversation will fail. For more information, see
Invoking TPs and the SNA Server Configuration.

Next, the symbolic destination name specified in Initialize_Conversation provides the name of the invokable (or partner) TP and
the partner LU alias (the LU alias to be used by the invokable TP). With this information available, the invoking TP can issue the
Allocate call.

After a TP successfully issues an Allocate call, an allocation request flows. For more information about what happens after an
invoking TP requests an invokable TP, see Matching Invoking and Invokable TPs.

Microsoft Host Integration Server 2000

Invoking TPs and Contention
The following information applies only to cases where LUs are communicating in complex ways (such as chains of LUs) over
multiple sessions. In such cases, two LUs may attempt to allocate a conversation on the same session at the same time. If this
happens, one LU must win (the contention winner) and one must lose (the contention loser). The contention-winner LU and the
contention-loser LU are determined for each session when the session is established. During that particular session, the
contention-loser LU must receive permission from the contention-winner LU before allocating a conversation. In contrast, the
contention-winner LU on that session allocates a conversation as needed.

Note that when two LUs are communicating over multiple sessions, one LU can be the contention winner for some of the
sessions, and the other LU the contention winner for others.

An invoking TP will operate most efficiently if the number of concurrent Allocate requests that the TP issues is matched by the
number of sessions on which the local LU is the contention winner. The choice of contention winner is controlled through the
modes configured at the two ends of the communication. For SNA Server, the mode is configured in SNA Server Manager. A
mode must be configured to work with the mode on the remote system for communication to begin between two LUs. For more
information about modes, see the Microsoft SNA Server Administration Guide.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Invokable TPs
An invokable TP is a TP that can be invoked by another TP. Invokable TPs are written or configured through registry or
environment variables to supply their names to SNA Server as a notification that they are available for incoming requests. SNA
Server invokable TPs can be run on any SNA server or client running Windows NT, Windows 95, Windows version 3.x, or OS/2.

There are two types of invokable TPs:

Operator-started invokable TPs
An operator-started invokable TP must be started by an operator before the TP can be invoked. When the operator-started
invokable TP is started, it notifies SNA Server of its availability by issuing an Accept_Conversation call. The
Accept_Conversation call causes the name of the invokable TP to be communicated to all the SNA servers in the domain,
along with the alias of an associated LU if one has been configured through a registry or environment variable.

Autostarted invokable TPs
An autostarted invokable TP can be started by SNA Server when needed. The TP must be registered through registry entries or
environment variables on its local system, so that it can be identified to the SnaBase component of the SNA Server client
software. The registered information defines the TP as autostarted and must specify the TP name. The registered information
can also specify the local LU alias that the invokable TP will use.

The recommended method for setting registry or environment variables for autostarted invokable TPs is to use the sample TP
configuration program, TPSETUP, or similar code written into your own installation program. For more information about
registry or environment variables for invokable TPs, see Configuring Invokable TPs. For information about TPSETUP, see
Sample CPI-C TPs in the SDK.

If no local LU alias is registered with autostarted TPs, the resulting SNA Server configuration can be more flexible in responding
to invoking requests. For more information about such flexible configurations, see
TP Name Not Unique; Local LU Alias Unspecified.

After an autostarted invokable TP is started by SNA Server, the TP issues Accept_Conversation just as an operator-started TP
does. Accept_Conversation must provide the TP name that was registered for the TP.

Autostarted TPs must be configured through registry or environment variables to be either queued or nonqueued. All operator-
started TPs act as queued TPs.

Queued TPs
If an autostarted TP is configured as queued, or if the TP is operator-started, incoming allocation requests are queued and then
sent only when the invokable TP issues Accept_Conversation. For autostarted invokable TPs, if a copy of the TP is not yet
running, one is started when an incoming allocation request specifies that TP.

For the Windows 2000 and Windows NT system, only one copy of a service can be running at any given time; this
means that all autostarted TPs that run as services under Windows 2000 or Windows NT must be queued. To write
an autostarted TP so it will run under Windows 2000 and Windows NT as a service and also run in a nonqueued
way, write a multithreaded program with an Accept_Conversation always outstanding.

Nonqueued TPs
If an autostarted TP is configured as nonqueued, a new copy will be started every time an Allocate is received for the TP.
Nonqueued TPs should process the conversation they have been allocated and then exit, since they will not receive any
additional Allocate requests.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Subcategories for Invokable TPs
The following figure shows subcategories for invokable TPs.

The concept of a TP "running as a service" or "running as an application" is distinct from a service TP or an application TP. Service
TP and application TP are SNA terms that describe how a TP is used: either as a supportive service program for other CPI-C
programs, or directly by a user, as an application. For detailed information about services in Windows 2000 and Windows NT, see
the documentation for Windows 2000 and Windows NT and the Microsoft® Developer Network (MSDN) Platform Software
Development Kit (SDK).

To write an autostarted TP so it will run under Windows NT as a service and also run in a nonqueued way, write a multithreaded
program with an Accept_Conversation always outstanding. See Invokable TPs.

To run an autostarted TP as an application under Windows 2000, Windows NT, Windows 98 or Windows 95, make sure the
TPSTART program is always started before the TP. See Sample CPI-C TPs in the SDK.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Matching Invoking and Invokable TPs
Each Host Integration Server or SNA Server maintains a list of available invokable TP names and any LU aliases to be associated
with the TP names. This information is obtained as follows:

For autostarted invokable TPs, registry or environment variables identify a TP name containing a maximum of eight
characters, and can specify an associated LU. This information is sent from the client to the server that sponsors the client. A
client learns about the domain through a sponsor connection to a server; clients must establish the sponsor connection
before proceeding with any other tasks.
For operator-started invokable TPs, a TP name (with a maximum of 64 characters) is specified in Specify_Local_TP_Name
(or, for OS/2 only, by setting APPCTPN=TPname). The TP name is truncated to eight characters and sent from the client to
the server that sponsors the client, along with the alias of an associated LU if one has been configured through a registry or
environment variable.

 Note If you want a TP name to be unique, it is recommended that you limit the name to eight characters or
fewer, or make the name unique within the first eight characters. This is because the preliminary routing of
allocation requests is carried out using the first eight characters. Although further matching is later carried out
between the full TP names, it is inefficient to allow the preliminary routing to succeed when in some cases the
later matching will fail.

The next step in the matching of invoking and invokable TPs is the creation of a side information table from the parameters in the
symbolic destination name. Then the invoking TP issues the Allocate call, and an allocation request flows to the partner LU
specified in the side information table, stating the name of the invokable TP that has been requested (also listed in the side
information table).

When an allocation request arrives, the SNA server compares the requested invokable TP name and LU alias to the list of available
invokable TPs (which can include associated LU aliases). The comparison can be modified by registry variables, but by default is
carried out as follows:

Although the TP name requested in the symbolic destination name can be as long as 64 characters, any name received
through a registry or environment variable is limited to eight characters or less. Therefore, only the first eight characters of
TP names are used in comparisons.
The comparison is carried out first on both the TP name and the LU alias. An invokable TP for which there is a match on
both TP name and LU alias will be chosen ahead of a TP for which no LU alias has been configured through a registry or
environment variable. A TP for which no LU alias has been configured can be matched with any request that specifies that
TP name, since there cannot be a mismatch based on LU alias.
The comparison of requested and available TP names is carried out in a specific order:

1. The Host Integration Server or SNA Server first checks for operator-started invokable TPs on the local system (the
local SNA server).

2. If no match is found, the Host Integration Server or SNA Server checks for autostarted invokable TPs on the local
system (the local SNA server).

3. If no match is found, the Host Integration Server or SNA Server checks for operator-started invokable TPs on other
SNA servers or clients.

4. If no match is found, the Host Integration Server or SNA Server checks for autostarted invokable TPs on other SNA
servers or clients.

This comparison can be modified somewhat by registry entries for the SnaServr service. The entries are called
DloadMatchTPOnly and DloadMatchLocalFirst, and are described in the Installation and Configuration section of the
Microsoft Host Integration Server Guide or the earlier Microsoft SNA Server Reference.

If a match is found, the SNA server signals the system containing the requested TP to connect to that SNA server. If no match is
found, the SNA server rejects the incoming request.

For suggestions about specific ways to handle TP names and LU aliases, see Arranging TPs Within an SNA Network.

 Note Because of the way CPI-C works, an allocation request will not flow until local data buffers are full, or a
Confirm or Flush call is made. This may mean that the allocation request does not flow until some time after the
Allocate call is made. Therefore, any allocation failure caused by the rejection of the allocation request at the partner
LU will be observed as the failure of a later call with one of the allocation failure return codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Invokable TPs
The following topics tell how to configure invokable TPs for the various Microsoft® Host Integration Server and SNA Server client
types.

This section contains:

Clients Running Windows 2000 or Windows NT
Clients Running Windows 98 or Windows 95
Clients Running Windows Version 3.x
Clients Running OS/2
Clients Running MS-DOS

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running Windows 2000 or Windows NT
On clients running Microsoft® Windows 2000 or Microsoft® Windows NT®, invokable TPs are configured through the Windows
NT registry.

 Note With Windows 2000 or Windows NT, the recommended method for setting registry variables for autostarted
invokable TPs is to use the sample TP configuration program, TPSETUP. Compile INSTALL.C, the source code for
TPSETUP, for the Windows 2000 and Windows NT environment. When you write an installation program for
autostarted invokable TPs, it is recommended that you add code similar to TPSETUP to the installation program. For
information about TPSETUP, see Sample CPI-C TPs in the SDK.

For clients running Windows 2000 or Windows NT, it is recommended that autostarted invokable TPs be written as Windows NT
services. Be sure to include code like that in TPSETUP in the program that installs your TPs. Among other things, TPSETUP shows
how to use the CreateService function when installing a TP. For important information about how services work under Windows
2000 and Windows NT, see the documentation for Windows 2000 and Windows NT and Microsoft Platform SDK.

The following table lists the registry entries used for the types of invokable TPs that can be run on Windows 2000 and Windows
NT clients:

Type of TP Location i
n registry

Possible registry entries

Autostarted invokable TP running as a service o
n Windows 2000 or Windows NT client

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
TPName

(and subkey
s)

Registry entries created by the CreateService call, including entries
that specify the path, display name, and other characteristics of the s
ervice.

—plus—

Linkage
OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters
SNAServiceType:REG_DWORD:0x5
LocalLU:REG_SZ:LUalias
Parameters:REG_SZ:ParameterList
Timeout:REG_DWORD:number
AcceptNames:REG_SZ:TPNameList
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }(2)

Username1:REG_SZ:Password1(2)
...
UsernameX:REG_SZ:PasswordX(2)

Autostarted invokable TP running as an applica
tion1 on a Windows 2000 or Windows NT clien
t

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
SnaBase
Parameter
s
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 }
PathName:REG_EXPAND_SZ:path
LocalLU:REG_SZ:LUalias
Parameters:REG_SZ:ParameterList
TimeOut:REG_DWORD:number
AcceptNames:REG_SZ:TPNameList
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }(2)

Username1:REG_SZ:Password1(2)
...
UsernameX:REG_SZ:PasswordX(2)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Operator-started invokable TP running as a ser
vice on a Windows 2000 or Windows NT client

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
TPName

(and subkey
s)

Registry entries created by the CreateService call, including entries
that specify the path, display name, and other characteristics of the s
ervice.

—plus—

Linkage
OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters
SNAServiceType:REG_DWORD:0x1A
LocalLU:REG_SZ:LUalias
Timeout:REG_DWORD:number
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }(2)

Username1:REG_SZ:Password1(2)
...
UsernameX:REG_SZ:PasswordX(2)

Operator-started invokable TP running as an a
pplication on a Windows 2000 or Windows NT
client

HKEY_LOC
AL_MACHI
NE
SYSTEM
CurrentCo
ntrolSet
Services
SnaBase
Parameter
s
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:0x1A
LocalLU:REG_SZ:LUalias
TimeOut:REG_DWORD:number
ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }(2)

Username1:REG_SZ:Password12
...
UsernameX:REG_SZ:PasswordX(2)

Notes

1. Before an autostarted TP can be started as an application on a Windows NT-based client, the TPSTART program must be
started. For more information, see Sample CPI-C TPs in the SDK.

2. AlreadyVerified and Username/Password entries are used only if ConversationSecurity is set to YES.

This section contains:

Registry Entries for Clients Running Windows 2000 or Windows NT
Example of Registry Entries for Windows 2000 or Windows NT

Microsoft Host Integration Server 2000

Registry Entries for Clients Running Windows 2000 or Windows
NT
The following list gives details about registry entries for clients running Windows 2000 or Windows NT. For each TP type, the
applicable variables and their locations are shown in Clients Running Windows 2000 or Windows NT.

OtherDependencies:REG_MULTI_SZ:SnaBase
For a TP running as a service, ensures that the SnaBase service will be started before the TP is started. This entry belongs under
the Linkage subkey.

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 | 0x1A }
Indicates the type of TP. Use a value of 0x5 for an autostarted queued TP, 0x6 for an autostarted nonqueued TP, and 0x1A for an
operator-started TP.

Note that the value for an autostarted TP running as a service must be 0x5, because these TPs are always queued, as described
in Invokable TPs.

PathName:REG_EXPAND_SZ:path
For an autostarted TP running as an application, specifies the path and file name of the TP. The data type of REG_EXPAND_SZ
means that the path can contain an expandable data string; for example, %SystemRoot% represents the directory containing the
Windows 2000 or Windows NT system files. Note that for a TP running as a service, an equivalent entry is inserted by the
CreateService call; no additional path entry is needed.

LocalLU:REG_SZ:LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters:REG_SZ:ParameterList
Lists parameters to be used by the TP. Separate parameters with spaces.

Timeout:REG_DWORD:number
Specifies the time, in milliseconds, that an Accept_Conversation will wait before timing out. Specify number in decimal; the
registry editor converts this to hexadecimal before displaying it. The default is infinity (no limit).

AcceptNames:REG_SZ:TPNameList
With Windows NT, used for autostarted TPs only; lists additional names under which the invokable TP can be invoked. Separate
TP names with spaces. The default is none. If an invokable TP does not issue a Specify_Local_TP_Name for each name
configured under AcceptNames in the registry, that TP will fail.

ConversationSecurity:REG_SZ:{ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified:REG_SZ:{ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO.

For a diagram of three TPs in a conversation, where the third TP can be invoked with a password that is already verified by the
second TP, see Communication Between TPs. The following table shows the requirements for using password verification in a
chain of TPs.

First TP (an invoking TP) Second TP (invokable TP that confirms
password and then invokes another TP)

Third and subsequent TPs (invok
able TPs that invoke other TPs)

Does not need registry or environment varia
bles.

ConversationSecurity setting must be YES
.

ConversationSecurity setting must
be YES.

Does not need registry or environment varia
bles.

AlreadyVerified setting can be YES or NO. AlreadyVerified setting must be YE
S.

Symbolic destination name or Set_Conversa
tion_
Security_Type in this TP specifies PROGRA
M for the security type; as a result, the TP pas
ses along the user identifier and password su
pplied in the symbolic destination name (or t
hrough calls(1)).

Symbolic destination name or Set_Convers
ation_
Security_Type in this TP specifies SAME fo
r the security type; as a result, after confirmi
ng the user identifier and password, the TP
passes along the user identifier and an alrea
dy-verified flag.

Symbolic destination name or Set_C
onversation_
Security_Type in this TP specifies S
AME for the security type; as a result,
the TP passes along the user identifie
r as received, along with the already-
verified flag.

Note

1 Set_Conversation_Security_User_ID or Set_Conversation_Security_Password will overwrite the user identifier and password
specified in the symbolic destination name.

If you set AlreadyVerified to NO, this TP cannot join in a chain of conversations where password verification is already done.
(The exception to this is when ConversationSecurity is set to NO, in which case the TP could be the final TP in such a chain, since

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

it performs no checking.)

If you are configuring a TP that sometimes needs to confirm a password and sometimes accepts an already-verified flag, set
AlreadyVerified to YES and configure the UsernameX variable appropriately. In this case, whenever the TP is invoked without the
already-verified flag set, AlreadyVerified is ignored; verification is attempted with the user identifier and password configured for
the TP.

The default for AlreadyVerified is NO. If you set AlreadyVerified to YES, make sure that ConversationSecurity is also set to YES.

Username1:REG_SZ:Password1
...
UsernameX:REG_SZ:PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can each be as many as 10 characters. Both parameters are case-sensitive.

This variable is ignored if conversation security is not activated or if the password has already been verified, as described for the
AlreadyVerified entry.

Microsoft Host Integration Server 2000

Example of Registry Entries for Windows 2000 or Windows NT
For an autostarted invokable TP called BounceTP and running as a service, the following registry entries might be added to a
client running Windows 2000 or Windows NT. The entries would be added to
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services, under the subkeys shown in bold type.

 Note In the following list, the parameters listed directly under the BounceTP key (such as DisplayName and
ErrorControl) are service parameters created when TPSETUP or similar code is run to install the TP. These parameters
should be created by TPSETUP or similar code; they should not be set manually. For more information about TPSETUP,
see Sample CPI-C TPs in the SDK.

BounceTP
DisplayName:REG_SZ:BounceTP
ErrorControl:REG_DWORD:0x1
ImagePath:REG_EXPAND_SZ:c:\sna\system\bouncetp.exe
ObjectName:REG_SZ:LocalSystem
Start:REG_DWORD:0x3
Type:REG_DWORD:0x10

Linkage

OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters

SNAServiceType:REG_DWORD:0x5
LocalLU:REG_SZ:JohnDoe
Parameters:REG_SZ:Arg1 Arg2 Arg3
Timeout:REG_DWORD:0x100
ConversationSecurity:REG_SZ:yes
AlreadyVerified:REG_SZ:no
JohnDoe:REG_SZ:SecretPassword

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running Windows 98 or Windows 95
On clients running Microsoft® Windows® 98 or Microsoft® Windows® 95, invokable TPs are configured through the Windows
98 or Windows 95 registry.

 Note With Windows 98 or Windows 95, the recommended method for setting registry variables for autostarted
invokable TPs is to use the sample TP configuration program, TPSETUP. Compile INSTALL.C, the source code for
TPSETUP, for the Windows 98 or Windows 95 environment. When you write an installation program for autostarted
invokable TPs, it is recommended that you add code similar to TPSETUP to the installation program. For information
about TPSETUP, see Sample CPI-C TPs in the SDK.

The following table lists the registry entries used for the types of invokable TPs that can be run on Windows 98 or Windows 95
clients:

Type of TP Location in regist
ry

Possible registry entries

Autostarted invokable TP running as an application(1) on a Windows 98 o
r Windows 95 client

HKEY_LOCAL_MA
CHINE
SOFTWARE
Microsoft
SnaBase
Parameters
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:{
0x5 | 0x6 }
PathName:REG_EXPAND_SZ:pat
h
LocalLU:REG_SZ:LUalias
Parameters:REG_SZ:ParameterLi
st
TimeOut:REG_DWORD:number
AcceptNames:REG_SZ:TPNameLi
st
ConversationSecurity:REG_SZ:{
YES | NO }
AlreadyVerified:REG_SZ:{ YES |
NO }(2)

Username1:REG_SZ:Password1(2
)
...
UsernameX:REG_SZ:PasswordX(2
)

Operator-started invokable TP running as an application on a Windows 9
8 or Windows 95 client

HKEY_LOCAL_MA
CHINE
SOFTWARE
Microsoft
SnaBase
Parameters
TPs
TPName
Parameters

SNAServiceType:REG_DWORD:0
x1A
LocalLU:REG_SZ:LUalias
TimeOut:REG_DWORD:number
ConversationSecurity:REG_SZ:{
YES | NO }
AlreadyVerified:REG_SZ:{ YES |
NO }(2)

Username1:REG_SZ:Password1(2
)
...
UsernameX:REG_SZ:PasswordX(2
)

Notes

1 Before an autostarted TP can be started as an application on a Windows 98 or Windows 95 client, the TPSTART program must
be started. For more information, see Sample CPI-C TPs in the SDK.

2 AlreadyVerified and Username/Password entries are used only if ConversationSecurity is set to YES.

This section contains:

Registry Entries for Clients Running Windows 98 or Windows 95
Example of Registry Entries for Windows 98 and Windows 95

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Entries for Clients Running Windows 98 or Windows
95
The following list gives details about registry entries for clients running Windows 98 or Windows 95. For each TP type, the
applicable variables and their locations are shown in Clients Running Windows 98 or Windows 95.

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 | 0x1A }
Indicates the type of TP. Use a value of 0x5 for an autostarted queued TP, 0x6 for an autostarted nonqueued TP, and 0x1A for an
operator-started TP.

PathName:REG_EXPAND_SZ:path
For an autostarted TP running as an application, specifies the path and file name of the TP. The data type of REG_EXPAND_SZ
means that the path can contain an expandable data string; for example, %SystemRoot% represents the directory containing the
Windows 98 or Windows 95 system files.

LocalLU:REG_SZ:LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters:REG_SZ:ParameterList
Lists parameters to be used by the TP. Separate parameters with spaces.

Timeout:REG_DWORD:number
Specifies the time, in milliseconds, that an Accept_Conversation will wait before timing out. Specify number in decimal; the
registry editor converts this to hexadecimal before displaying it. The default is infinity (no limit).

AcceptNames:REG_SZ:TPNameList
With Windows 98 or Windows 95, this registry entry is used for autostarted TPs only. This entry lists additional names under
which the invokable TP can be invoked. TP names should be separated with spaces. The default is none. If an invokable TP does
not issue a Specify_Local_TP_Name for each name configured under AcceptNames in the registry, that TP will fail.

ConversationSecurity:REG_SZ:{ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified:REG_SZ:{ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO.

For a diagram of three TPs in a conversation, where the third TP can be invoked with a password that is already verified by the
second TP, see Communication Between TPs. The following table shows the requirements for using password verification in a
chain of TPs.

First TP (an invoking TP) Second TP (invokable TP that confirms
password and then invokes another TP)

Third and subsequent TPs (invok
able TPs that invoke other TPs)

Does not need registry or environment varia
bles.

ConversationSecurity setting must be YES
.

ConversationSecurity setting must
be YES.

Does not need registry or environment varia
bles.

AlreadyVerified setting can be YES or NO. AlreadyVerified setting must be YE
S.

Symbolic destination name or Set_Conversa
tion_
Security_Type in this TP specifies PROGRA
M for the security type; as a result, the TP pas
ses along the user identifier and password su
pplied in the symbolic destination name (or t
hrough calls(1)).

Symbolic destination name or Set_Convers
ation_
Security_Type in this TP specifies SAME fo
r the security type; as a result, after confirmi
ng the user identifier and password, the TP
passes along the user identifier and an alrea
dy-verified flag.

Symbolic destination name or Set_C
onversation_
Security_Type in this TP specifies S
AME for the security type; as a result,
the TP passes along the user identifie
r as received, along with the already-
verified flag.

Note

1. Set_Conversation_Security_User_ID or Set_Conversation_Security_Password will overwrite the user identifier and password
specified in the symbolic destination name.

If you set AlreadyVerified to NO, this TP cannot join in a chain of conversations where password verification is already done.
(The exception to this is when ConversationSecurity is set to NO, in which case the TP could be the final TP in such a chain,
since it performs no checking.)

If you are configuring a TP that sometimes needs to confirm a password and sometimes accepts an already-verified flag, set
AlreadyVerified to YES and configure the UsernameX variable appropriately. In this case, whenever the TP is invoked without
the already-verified flag set, AlreadyVerified is ignored; verification is attempted with the user identifier and password
configured for the TP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The default for AlreadyVerified is NO. If you set AlreadyVerified to YES, make sure that ConversationSecurity is also set to YES.

Username1:REG_SZ:Password1
...
UsernameX:REG_SZ:PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can each be as many as 10 characters. Both parameters are case-sensitive.

This variable is ignored if conversation security is not activated or if the password has already been verified, as described for the
AlreadyVerified entry.

Microsoft Host Integration Server 2000

Example of Registry Entries for Windows 98 and Windows 95
For an autostarted invokable TP called BounceTP and running as a service, the following registry entries might be added to a
Windows 98 or Windows 95 client. The entries would be added to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft, under the
subkeys shown in bold type.

 Note In the following list, the parameters listed directly under the BounceTP key (such as DisplayName and
ErrorControl) are service parameters created when TPSETUP or similar code is run to install the TP. These parameters
should be created by TPSETUP or similar code; they should not be set manually. For more information about TPSETUP,
see Sample CPI-C TPs in the SDK.

BounceTP
DisplayName:REG_SZ:BounceTP
ErrorControl:REG_DWORD:0x1
ImagePath:REG_EXPAND_SZ:c:\sna95\system\bouncetp.exe
ObjectName:REG_SZ:LocalSystem
Start:REG_DWORD:0x3
Type:REG_DWORD:0x10

Parameters

SNAServiceType:REG_DWORD:0x5
LocalLU:REG_SZ:JohnDoe
Parameters:REG_SZ:Arg1 Arg2 Arg3
Timeout:REG_DWORD:0x100
ConversationSecurity:REG_SZ:yes
AlreadyVerified:REG_SZ:no
JohnDoe:REG_SZ:SecretPassword

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running Windows Version 3.x
On clients running Microsoft® Windows® version 3.x, invokable TPs are configured through entries in the WIN.INI file.

 Note With Windows version 3.x, the recommended method for setting environment variables for autostarted
invokable TPs is to use the sample TP configuration program, TPSETUP. Compile INSTALL.C, the source code for
TPSETUP, for the Windows version 3.x environment. When you write an installation program for autostarted invokable
TPs, it is recommended that you add code similar to TPSETUP to the installation program. For information about
TPSETUP, see Sample CPI-C TPs in the SDK.

The following table lists the section headings and environment variables used in the WIN.INI file for invokable TPs on clients
running Windows version 3.x:

Type of TP Section in WIN.INI listing TP
names only

Section and possible environment varia
bles defining TP

Autostarted invokable TP on a client running Wind
ows version 3.x

[SNAServerAutoTPs]
TPName1=SectionName1
...
TPNameX=SectionNameX

[SectionName1]
PathName=path
LocalLU=LUalias
Parameters=ParameterList
TimeOut=number
Queued={ YES | NO }
AcceptNames=TPNameList
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }(1)

Username1=Password1(1)
...
UsernameX=PasswordX(1)

Operator-started invokable TP on a client running
Windows version 3.x

[SNAServerAutoTPs]
TPNameN=SectionNameN
...
TPNameX=SectionNameX

[SectionNameN]
LocalLU=Lualias
TimeOut=number
Queued=OPERATOR
AcceptNames=TPNameList
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }(1)

Username1=Password1(1)
...
UsernameX=PasswordX(1)

Note

1 AlreadyVerified and user name/password lines are used only if ConversationSecurity is set to YES.

This section contains:

Environment Variables for Clients Running Windows Version 3.x
Translating SNA Service TP Names to ASCII for WIN.INI
Example of WIN.INI Lines for an Invokable TP

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Environment Variables for Clients Running Windows Version
3.x
The following list shows the correct form for the sections and entries to add to the WIN.INI file for autostarted invokable TPs on a
client running Windows version 3.x. The section headings are shown enclosed in square brackets; include the brackets when
adding the section to the WIN.INI file.

For each TP type, the applicable variables and their locations are shown in Clients Running Windows Version 3.x.

[SNAServerAutoTPs]
TPNameX=SectionNameX

For all TPs. Associates TPnameX with SectionNameX. Additional lines can follow TPNameX=SectionNameX, each one using the
same syntax to name a different TP and the section containing the information for that TP.

[SectionName]
Forms a section heading for entries applying to one TP; SectionName must match a section name listed under
[SNAServerAutoTPs].

PathName=path
Specifies the full path and file name of the executable file. The default is TPNAME.EXE.

LocalLU=LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters=ParameterList
Lists strings to be passed as command-line parameters for the TP. Separate parameters with spaces. The default is no
parameters.

Timeout=number
Specifies the time in milliseconds that an Accept_Conversation will wait before timing out. The default is infinity (no limit).

Queued={ YES | NO }
Queued=OPERATOR

Specifies the type of TP: YES for an autostarted queued TP, NO for an autostarted nonqueued TP, or OPERATOR for an operator-
started TP (which must always be queued). The default is YES.

AcceptNames=TPNameList
Lists additional names under which the invokable TP can be invoked. Separate TP names with spaces. The default is none. If an
invokable TP does not issue a Specify_Local_TP_Name for each name configured under AcceptNames in the registry, that TP
will fail.

ConversationSecurity={ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified={ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO.

For detailed information about the AlreadyVerified variable, see the description for it under
Registry Entries for Clients Running Windows 2000 or Windows NT.

The default is NO.

Username1=Password1
...
UsernameX=PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can have as many as 10 characters each. Both parameters are case-sensitive. This variable is ignored if conversation security is
not activated or if the password has already been verified, as described for the AlreadyVerified entry.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Translating SNA Service TP Names to ASCII for WIN.INI
For SNA service TPs on Host Integration Server or SNA Server clients running Windows version 3.x, the line naming the TP in the
WIN.INI file must specify the TP name in ASCII. The following paragraphs tell how to convert a TP name to this form. The line
should be placed in the [SNAServerAutoTPs] section of the file, as shown in Clients Running Windows Version 3.x.

An SNA service TP name is normally up to four bytes in length; the first byte is a hexadecimal number in the range 0x00 to 0x3F,
and the remaining bytes are EBCDIC characters. The first byte defines the function class of the TP. Therefore, to convert a service
TP name to an ASCII form, convert the first byte as shown in the following table, and convert the EBCDIC values to ASCII letter
equivalents.

First byte of TP name (hexadecimal number) ASCII character equivalent for WIN.INI
0x07 DDM
0x20 DIA
0x21 SNAD
0x24 FS
0x30 PO
All others UN

For example, a service TP name of 0x21 0xD7 0xD7 is equivalent to SNADPP (0x21 converts to SNAD and each 0xD7 converts to
P).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Example of WIN.INI Lines for an Invokable TP
For autostarted invokable TPs called BounceTP and TestTP on a client running Windows version 3.x, the following WIN.INI lines
might be added:

[SNAServerAutoTPs]
BounceTP=bnceprms
TestTP=testprms

[bnceprms]
PathName=c:\sna\wbounce.exe
LocalLU=Eric
Parameters=/t
timeout=60000
queued=yes

[testprms]
PathName=c:\sna\testtp.exe
LocalLU=LU1
Parameters=/v
timeout=60000
queued=no

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running OS/2
Host Integration Server does not include clients for OS/2 or support for developing CPI-C applications on OS/2. Earlier versions of
SNA Server included SNA clients for OS/2 and support for developing CPI-C applications on OS/2.

On OS/2-based clients, invokable TPs are configured through entries in the SNA.INI file. The following table lists the section
headings and environment variables used:

Type of TP Section in SNA.INI listing TP na
mes only

Section and possible environment variables
defining TP

Autostarted invokable TP on a client runnin
g OS/2

[SNAServerAutoTPs]
TPName1=SectionName1
...
TPNameX=SectionNameX

[SectionName1]
PathName=path
LocalLU=LUalias
Parameters=ParameterList
TimeOut=number
Queued={ YES | NO }
AcceptNames=TPNameList
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }(1)

Username1=Password11
...
UsernameX=PasswordX(1)

Environment=VariableList
NewScreenGroup={ 1 | 0 }
IconFile=path
SessionType=number
PgmControl=number
InitXPos=number
InitYPos=number
InitXSize=number
InitYSize=number

Operator-started invokable TP on a client ru
nning OS/2

[SNAServerAutoTPs]
TPNameN=SectionNameN
...
TPNameX=SectionNameX

[SectionNameN]
LocalLU=LUalias
TimeOut=number
Queued=OPERATOR
AcceptNames=TPNameList
ConversationSecurity={ YES | NO }
AlreadyVerified={ YES | NO }(1)

Username1=Password1(1)
...
UsernameX=PasswordX(1)

Note

1 AlreadyVerified and user name/password lines are used only if ConversationSecurity is set to YES.

This section contains:

Environment Variables for OS/2-Based Clients
Translating SNA Service TP Names to ASCII for SNA.INI

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Environment Variables for OS/2-Based Clients
The following list shows the correct form for the sections and entries to add to the SNA.INI file (located in the root SNA Server
directory) for autostarted invokable TPs on an OS/2-based client. The section headings are shown enclosed in square brackets;
include the brackets when adding the section to the SNA.INI file.

For each TP type, the applicable variables and their locations are shown in Clients Running OS/2.

[SNAServerAutoTPs]
TPNameX=SectionNameX

For all TPs. Associates TPnameX with SectionNameX. Additional lines may follow TPNameX=SectionNameX, each one using the
same syntax to name a different TP and the section containing the information for that TP.

[SectionName]
Forms a section heading for entries applying to one TP; SectionName must match a section name listed under
[SNAServerAutoTPs].

PathName=path
Specifies the full path and file name of the executable file. The default is TPNAME.EXE.

LocalLU=LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters=ParameterList
Lists strings to be passed as command line parameters for the TP. Separate parameters with spaces. The default is no
parameters.

Timeout=number
Specifies the time, in milliseconds, that an Accept_Conversation will wait before timing out. The default is infinity (no limit).

Queued={ YES | NO }
Queued=OPERATOR

Specifies the type of TP: YES for an autostarted queued TP, NO for an autostarted nonqueued TP, or OPERATOR for an operator-
started TP (which must always be queued). The default is YES.

AcceptNames=TPNameList
Lists additional names under which the invokable TP can be invoked. Separate TP names with spaces. The default is none. If an
invokable TP does not issue a Specify_Local_TP_Name for each name configured under AcceptNames in the registry, that TP
will fail.

ConversationSecurity={ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified={ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified. AlreadyVerified
is ignored if ConversationSecurity is set to NO.

For detailed information about the AlreadyVerified variable, see the description for it under
Registry Entries for Clients Running Windows 2000 or Windows NT.

The default is NO.

Username1=Password1
...
UsernameX=PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and password
can have as many as 10 characters each. Both parameters are case-sensitive. This variable is ignored if conversation security is
not activated or if the password has already been verified, as described for the AlreadyVerified entry.

Environment=VariableList
For an autostarted TP, lists the variables to be set in the TP's environment. Separate multiple variables with spaces.

NewScreenGroup={ 1 | 0 }
For an autostarted TP, specifies 1 to indicate that the TP runs in the foreground, or 0 to indicate that the TP runs in the
background. The default is 1 (foreground).

IconFile=path
For an autostarted TP, specifies the full path and file name of the icon file. The default is no icon file.

SessionType=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 0.

PgmControl=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 32768.

InitXPos=number
For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 80.

InitYPos=number

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 80.
InitXSize=number

For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 470.
InitYSize=number

For an autostarted TP, specifies a value used by OS/2; see the note following. The default is 330.

 Note SessionType, PgmControl, InitXPos, InitYPos, InitXSize, and InitYSize are filled directly into the
STARTDATA structure passed to the OS/2 DosStartSession call for the new session.

Microsoft Host Integration Server 2000

Translating SNA Service TP Names to ASCII for SNA.INI
For SNA service TPs on SNA Server clients running OS/2, the line naming the TP in the SNA.INI file must specify the TP name in
ASCII. The following paragraphs tell how to convert a TP name to this form. The line should be placed in the
[SNAServerAutoTPs] section of the file, as shown in Clients Running OS/2.

An SNA service TP name is normally up to four bytes in length; the first byte is a hexadecimal number in the range 0x00 to 0x3F,
and the remaining bytes are EBCDIC characters. The first byte defines the function class of the TP. Therefore, to convert a service
TP name to an ASCII form, convert the first byte as shown in the following table, and convert the EBCDIC values to ASCII letter
equivalents.

First byte of TP name (hexadecimal number)
ASCII character equivalent for SNA.INI

0x07 DDM
0x20 DIA
0x21 SNAD
0x24 FS
0x30 PO
All others UN

For example, a service TP name of 0x21 0xD7 0xD7 is equivalent to SNADPP (0x21 converts to SNAD and each 0xD7 converts to
P).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Clients Running MS-DOS
Host Integration Server and SNA Server do not support invokable TPs on Microsoft® MS-DOS®-based clients.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring Host Integration Server to Support TPs
The following topics describe how the Microsoft® Host Integration Server and the earlier Microsoft® SNA Server configuration
works with invoking and invokable TPs.

This section contains:

Invoking TPs and the SNA Server Configuration
Invokable TPs and the SNA Server Configuration
Arranging TPs Within an SNA Network
Troubleshooting for Invokable TPs

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Invoking TPs and the SNA Server Configuration
For an SNA server to support the beginning of the invoking process, the following parameters must be configured correctly:

If the invoking TP specifies the LU alias that it uses (in a registry or environment variable), that LU alias must match a local
APPC LU alias on the supporting SNA server. If the invoking TP does not specify a local LU alias, one of two methods for
designating a default LU must be carried out on the supporting SNA server:
Assign a default local APPC LU to the user or group that starts the invoking TP (that is, the user or group logged on at the
system from which Initialize_Conversation is issued).

—or—

Designate one or more LUs as members of the default outgoing local APPC LU pool. SNA Server first attempts to determine
the default local APPC LU of the user who started the TP, then attempts to assign an available LU from the default outgoing
local APPC LU pool; if these attempts fail, SNA Server rejects the request.

In most situations, the supporting SNA server must contain an appropriate connection to another system (host or peer).
Sometimes, for testing purposes, the SNA server contains two local LUs paired together (for invoking and invokable TPs
that are in the same domain); in this situation, a connection to a host or peer is not necessary.
The partner LU alias specified in the symbolic destination name must match an LU alias that is paired with the local LU alias
used by the invoking TP.

The preceding parameters support the beginning of the invoking process. For the invoking process to successfully complete,
additional parameters must be configured as described in Invokable TPs and the SNA Server Configuration.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Invokable TPs and the SNA Server Configuration
For an SNA server to receive allocation requests from an invoking TP on another system and route those requests to an invokable
TP, certain parameters must be configured correctly:

The SNA server must have a connection to the system from which the invoking TP's request is sent.
The SNA server must have a remote LU capable of receiving the incoming request. This remote LU can be configured either
explicitly or implicitly.

When configured explicitly, there is an explicit match between a remote LU alias on the SNA server and the alias of the LU
that conveys the invoking TP's request.

When configured implicitly, an implicit incoming remote LU (with its implicit incoming mode) is used. This means that
several items must work together. First, the LU alias specified in the incoming request (the LU alias requested for the
invokable TP) must match a local LU alias on the SNA server receiving the request. Second, the local LU on the server must
have an implicit incoming remote LU assigned to it. The properties of the implicit incoming remote LU will be used for that
LU-LU session. For more details about how an implicit incoming remote LU works, see the Microsoft SNA Server
Administration Guide.

Appropriate local LUs must be defined in the SNA server configuration. For descriptions of several ways to set up these local
LUs, see Arranging TPs Within an SNA Network.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Arranging TPs Within an SNA Network
If your Host Integration Server or SNA Server installation contains multiple systems (clients and/or SNA servers), you can place a
given invokable TP on more than one system. When an invoking request is received in such an installation, there can be a choice
of systems on which to run the invokable TP. You can maintain specific control over this choice; alternatively, by following the
instructions in TP Name Not Unique; Local LU Alias Unspecified, you can allow Host Integration Server or SNA Server to make the
choice randomly to distribute the load.

You can maintain specific control over this choice of system by setting up invokable TPs with unique names, or by setting up each
invokable TP to run only with a specific, unique LU alias. With this arrangement, the information provided by the invoking TP (in
the symbolic destination name) specifies the system on which the invokable TP should run.

You can allow Host Integration Server or SNA Server to make the system choice randomly by setting the DloadMatchLocalFirst
registry entry to NO, as described in the Installation and Configuration section of the Microsoft Host Integration Server Guide or
the earlier Microsoft SNA Server Reference, and using invokable TPs that leave the local LU alias unspecified. Then, when an
incoming request is received, it is routed randomly, rather than preferentially to the local server; in addition, no matter what LU
alias is requested for the invokable TP, there cannot be a mismatch. SNA Server starts one instance of the requested TP, choosing
randomly among the available systems.

The following topics describe some of the possible arrangements that can be made for running TPs.

This section contains:

TP Name Unique for Each TP
TP Name Not Unique; Local LU Alias Unique
TP Name Not Unique; Local LU Alias Unspecified

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TP Name Unique for Each TP
One way to specify the intended system where the invokable TP will run is to use a unique TP name for each invokable TP. In this
arrangement, the invoking TP identifies the intended invokable TP (and system) simply by naming the TP. This makes it
unnecessary for an invokable TP to specify any LU alias in registry or environment variables.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TP Name Not Unique; Local LU Alias Unique
Another way to specify the intended system where the invokable TP will run is to give the same name to multiple invokable TPs,
but associate each TP with a unique local LU alias. To do this, configure each invokable TP (through registry or environment
variables) to use a unique local LU alias. Then set up the invoking TPs so that each one is routed not only to the correct TP name
but also to the correct partner LU alias for the intended invokable TP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TP Name Not Unique; Local LU Alias Unspecified
If it does not matter on which system an invokable TP runs, use the same name for multiple invokable TPs and do not specify an
LU alias in the registry or environment variables for the TPs. In this situation, there are no associated LU aliases in the list of
available invokable TP names on an SNA server. Thus, a request received from an invoking TP cannot cause a mismatch on the LU
alias, and will match according to the TP name.

In this situation, if you set the DloadMatchLocalFirst registry entry to NO, as described in the Installation and Configuration
section of the Microsoft Host Integration Server Guide or the earlier Microsoft SNA Server Reference, the SNA server randomly
routes the request to one of the available TPs. This spreads the processing load among multiple systems and provides hot backup
(the ability to take systems online and offline without disrupting service).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Troubleshooting for Invokable TPs
If there are difficulties with starting an invokable TP, there may be a mismatch between the information for the invokable TP, the
invoking TP, and/or LUs in the SNA Server configuration. That is, there may be a mismatch between the symbolic destination
parameters, the registry or environment variables, and/or LU aliases specified in SNA Server Manager. For details about how to
specify LU aliases in SNA Server Manager, see the Installation and Configuration section of the Microsoft Host Integration Server
Guide or the earlier the Microsoft SNA Server Administration Guide.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Simplifying CPI-C Configuration
There are several features in SNA Server that can simplify configuration for CPI-C:

The implicit incoming remote LU and the implicit incoming mode, which allow SNA Server to accept requests that arrive by
unrecognized remote LUs and modes.
The default local APPC LU and the default remote APPC LU, which allow LU aliases to be associated with user or group
names, simplifying the routing of incoming requests and the configuration of client systems.
The default outgoing local APPC LU pool, which allows LUs to be allocated dynamically to any invoking TP that does not
specify a local LU.
Automatic partnering, which automatically creates LU-LU pairs and assigns modes to the pairs.

For more information about these features, see the Installation and Configuration section of the Microsoft Host Integration Server
Guide or the earlier Microsoft SNA Server Administration Guide.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for CPI-C Automatic Logon
This topic describes the support for automatic logon for CPI-C applications that is available in Microsoft® Host Integration
Server 2000 and in Microsoft® SNA Server version 3.0 with Service Pack 1 or higher. This feature requires specific configuration
by the network administrator: For more information on configuring this feature, see the Installation and Configuration section of
the Host Integration Server Guide or the SNA Server online documentation.

The CPI-C application must be invoked on the LAN side from a client of Host Integration Server or SNA Server. The client must be
logged into a Microsoft® Windows 2000 or Microsoft® Windows NT® domain, but the client application can be running on any
operating system that supports the Host Integration Server or SNA Server CPI-C APIs (Windows 2000, Windows NT, Windows 98,
Windows 95, Windows 3.x or OS/2).

To use this feature, the CPI-C client application is coded to use "program" level security, with a special hard-coded user name of
MS$SAME and password of MS$SAME. When this session allocation flows from client to SNA server, Host Integration Server or
SNA Server looks up the host account and password corresponding to the Windows NT account under which the client is logged
in, and substitutes the host account information into the APPC attach message it sends to the host.

In CPI-C, this is done in three separate function calls:

Call the Set_Conversation_Security_Type function with the conversation_security_type parameter set to
CM_SECURITY_PROGRAM.
Call the Set_Conversation_Security_User_ID function with the security_user_ID parameter set to the MS$SAME string and
the security_user_ID_length parameter set to 7.
Call the Set_Conversation_Security_Password function with the security_password parameter set to the MS$SAME string
and the security_password_length parameter set to 7.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CPI-C Reference
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about the calls, extensions,
and return codes that make up the CPI-C.

This section contains:

CPI-C Calls
Extensions for the Windows Environment
Common Return Codes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CPI-C Calls
This section describes the CPI-C calls. The following information is supplied for each call:

The pseudonym for the call and the actual C function name.
A definition of the call.
A list of the parameters used by the call and the data type for each parameter. The prototype of each function is declared in
the WINCPIC.H file.
A description of each input and output parameter. The parameter names are pseudonyms and the actual names for these
parameters are declared by the application program. The description includes the possible values of the parameter.
The conversation state(s) in which the call can be issued.
The state(s) to which the conversation can change upon return from the call. Conditions that do not cause a state change are
not noted. For example, parameter checks and state checks do not cause a state change.
Additional information describing the use of the call.

Data Types
The data types for the parameters supplied to and received from CPI-C are established as symbolic constants by #define
statements in the WINCPIC.H file. For example, CM_INT32 represents signed long int and CM_PTR represents far *. Using
symbolic constants improves the portability of CPI-C applications.

For ease of understanding, this reference presents the data types in absolute (not #defined) terms.

In writing applications, you should use the symbolic constants from the WINCPIC.H file.

Symbolic Constants
Most parameters supplied to and returned by CPI-C are 32-bit integers. To simplify coding, the values for these parameters are
represented by meaningful symbolic constants, which are established by #define statements in the WINCPIC.H header file. For
example, the value CM_MAPPED_CONVERSATION represents the integer 1. For the sake of readability, use only the symbolic
constants when writing programs.

Strings
All strings are in ASCII format when passed across the CPI-C interface.

Validity of Output Parameters

The parameters returned by CPI-C are valid only if the CPI-C call is executed successfully, as indicated by a return code of CM_OK.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Accept_Conversation
The Accept_Conversation call (function name cmaccp) is issued by the invoked program to accept the incoming conversation
and set certain conversation characteristics. For a list of initial conversation characteristics, see Initial Conversation Characteristics.

Parameters

conversation_ID
Returned parameter. Specifies the identifier for the conversation. It is used by subsequent CPI-C calls and is returned if the
return code is either CM_OK or CM_OPERATION_INCOMPLETE. If return_code is CM_OPERATION_INCOMPLETE, the
conversation_ID can be used by the application to wait for or cancel the conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; there is no incoming conversation (blocking mode only), or no local TP name has been set up.

CM_OPERATION_INCOMPLETE
Primary return code; a nonblocking operation has been started on the conversation but is not complete. The program can issue
Wait_For_Conversation to wait for the operation to complete or Cancel_Conversation to cancel the operation and conversation.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in RESET state when Accept_Conversation is issued.

If the call is successful, the conversation changes to RECEIVE state. If the call fails, the state remains unchanged.

Remarks

Upon successful execution of this call, CPI-C generates an 8-byte conversation identifier. This identifier is a required parameter for
all other CPI-C calls issued by the invoked program on this conversation.

Incoming conversations will be accepted according to the target TP name that they specify, which must match local TP names that
have been set up. Local TP names can be set up by implementation-dependent methods, or by the program calling
Specify_Local_TP_Name. In this way, a program can have more than one local TP name. The program can call Extract_TP_Name to
discover the name specified on the incoming conversation.

The operation is performed in nonblocking mode if the program has called Specify_Local_TP_Name previously; otherwise it is
performed in blocking mode.

CM_ENTRY Accept_Conversation(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Allocate
The Allocate call (function name cmallc) is issued by the invoking program to allocate a conversation with the partner program,
using the current conversation characteristics. CPI-C can also allocate a session between the local LU and partner LU if one does
not already exist.

Parameters

conversation_ID
Supplied parameter. Specifies the conversation identifier. The value of this parameter was returned by Initialize_Conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; this value indicates that a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; a nonblocking operation has been started on the conversation but is not complete. The program can issue
Wait_For_Conversation to wait for the operation to complete or Cancel_Conversation to cancel the operation and conversation.

CM_PARAMETER_ERROR
Primary return code; one of the following occurred:

The mode name derived from the side information or set by Set_Mode_Name is not valid.
The mode name is used by SNA service TPs; the invoking program does not have the authority to use this mode name. An
example is SNASVCMG.
The partner program derived from the side information is an SNA service TP; the local program does not have the
privilege required to allocate a conversation to an SNA service TP.
The partner program is a service TP, which participates in basic conversations, but the conversation is set to
CM_MAPPED_CONVERSATION.
The partner LU name derived from the side information or set by Set_Partner_LU_Name is not valid.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is not valid, or the address of a variable is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

CM_UNSUCCESSFUL
Primary return code; the conversation’s return-control characteristic is set to CM_IMMEDIATE and the local LU did not have an
available contention-winner session.

The following return codes can be generated if the conversation’s return-control type is set to CM_WHEN_SESSION_ALLOCATED.

CM_ALLOCATE_FAILURE_NO_RETRY
Primary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error or
session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

CM_ALLOCATE_FAILURE_RETRY
Primary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

State Changes

The conversation must be in INITIALIZE state when Allocate is issued.

CM_ENTRY Allocate(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state
CM_OK SEND
CM_ALLOCATE_FAILURE_NO_RETRY RESET
CM_ALLOCATE_FAILURE_RETRY RESET
All others No change

Remarks

The type of conversation allocated is based on the conversation type characteristic: mapped or basic.

When the conversation has been allocated by this call, the following conversation characteristics cannot be changed:

Conversation type
Mode name
Partner LU name
Partner program name
Return control
Synchronization level
Conversation security
User identifier
Password

To send the allocation request immediately, the invoking program can issue Flush or Confirm immediately after Allocate.
Otherwise, the allocate request accumulates with other data in the local LU’s send buffer until the buffer is full.

By issuing Confirm after Allocate, the invoking program can immediately determine whether the allocation was successful (if
the conversation synchronization level is set to CM_CONFIRM).

If the partner LU rejects the allocation request generated by Allocate, the error is returned to the invoking program on a
subsequent call.

Microsoft Host Integration Server 2000

Cancel_Conversation
The Cancel_Conversation call (function name cmcanc) cancels any outstanding operation on a conversation (an operation
returned with CM_OPERATION_INCOMPLETE) and the conversation itself.

Parameters

conversation_ID
Returned parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in any state except RESET.

When the return code is CM_OK, the conversation state becomes RESET.

Remarks

Cancel_Conversation can be called while another operation is active for the specified conversation_ID. This allows an application
to end any CPI-C action, but will terminate the conversation. This call can be issued regardless of the current application
processing mode. Any outstanding operations will return with CM_DEALLOCATED_ABEND as the return code.

The conversation is terminated by a Deallocate with deallocate_type set to ABEND_SVC. No log_data is sent. The system may be
unable to do this immediately, but any delay is transparent to the program.

 Note If Cancel_Conversation is called while there are outstanding Specify_Windows_Handle asynchronous calls,
these calls are canceled. The return codes are set to canceled and a completion message is posted.

CM_ENTRY Cancel_Conversation(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Confirm
The Confirm call (function name cmcfm) sends the contents of the local LU’s send buffer and a confirmation request to the
partner program and waits for confirmation. To avoid blocking for clients running Microsoft® Windows® version 3.x, use the
Specify_Windows_Handle call. For Microsoft® Windows 2000, Microsoft® Windows NT®, Windows 98®, and Windows 95®,
run a background thread for all CPI-C communications and preserve the foreground thread for user interface only.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

request_to_send_received
Returned parameter. Provides the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program issued Request_To_Send, which requests the local program to change the conversation to RECEIVE state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program did not issue Request_To_Send. This value is not relevant if return_code is set to
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully. The partner program issued the Confirmed call.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The local program attempted to use Confirm in a conversation with a synchronization level of CM_NONE. The
synchronization level must be CM_CONFIRM.

CM_PROGRAM_STATE_CHECK
Primary return code; one of the following occurred:

The conversation was not in SEND or SEND_PENDING state.
The basic conversation for the local program was in SEND state, and the local program did not finish sending a logical
record.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

CM_CONVERSATION_TYPE_MISMATCH
Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY
Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 TP. The partner program requires one or more
PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID

CM_ENTRY Confirm(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Primary return code; the user identifier or password specified in the allocation request is not accepted by the partner LU.
CM_SYNC LEVEL_NOT_SUPPORTED_PGM

Primary return code; the partner program does not support the synchronization level specified in the allocation request.
CM_TPN_NOT_RECOGNIZED

Primary return code; the partner LU does not recognize the program name specified in the allocation request.
CM_TP_NOT_AVAILABLE_NO_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING
Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.
While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY
Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.
The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY
Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem failure.
Retry the conversation.

CM_DEALLOCATED_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND. If the conversation for
the remote program was in RECEIVE state when the call was issued, information sent by the local program and not yet
received by the remote program is purged.
The partner program terminated normally but did not deallocate the conversation before terminating.

CM_DEALLOCATED_ABEND_SVC
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.
The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the
local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING
Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC. Data sent to the partner program may have been purged.

State Changes

The conversation can be in SEND or SEND_PENDING state when Confirm is issued.

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state
CM_OK
Call was issued in SEND state No change
Call was issued in SEND_PENDING state SEND

CM_PROGRAM_ERROR_PURGING RECEIVE
CM_SVC_ERROR_PURGING RECEIVE
CM_CONVERSATION_TYPE_MISMATCH RESET
CM_PIP_NOT_SPECIFIED_CORRECTLY RESET
CM_SECURITY_NOT_VALID RESET
CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET
CM_TPN_NOT_RECOGNIZED RESET
CM_TP_NOT_AVAILABLE_NO_RETRY RESET
CM_TP_NOT_AVAILABLE_RETRY RESET
CM_RESOURCE_FAILURE_NO_RETRY RESET
CM_RESOURCE_FAILURE_RETRY RESET
CM_DEALLOCATED_ABEND RESET
CM_DEALLOCATED_ABEND_SVC RESET
CM_DEALLOCATED_ABEND_TIMER RESET
All others No change

Remarks

In response to Confirm, the partner program normally issues Confirmed to confirm that it has received the data without error. (If
the partner program encounters an error, it issues Send_Error or uses Deallocate to abnormally deallocate the conversation.)

The program can issue Confirm only if the conversation’s synchronization level is CM_CONFIRM.

Confirm waits for a response from the partner program. A response is generated by one of the following CPI-C calls in the
partner program:

Confirmed

Send_Error

Deallocate with the conversation’s deallocate type set to CM_DEALLOCATE_ABEND

Microsoft Host Integration Server 2000

Confirmed
The Confirmed call (function name cmcfmd) replies to a confirmation request from the partner program. It informs the partner
program that the local program has not detected an error in the received data. Because the program issuing the confirmation
request waits for a confirmation, Confirmed synchronizes the processing of the two programs.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation was not in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state when the
program issued this call.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in one of the following states when the program issues Confirmed:

CONFIRM

CONFIRM_SEND

CONFIRM_DEALLOCATE

The new state is determined by the old state—the state of the conversation when the local program issued Confirmed. The old
state is indicated by the status_received value of the preceding Receive call. The following table summarizes the possible state
changes when return_code is set to CM_OK.

Old state New state
CONFIRM RECEIVE
CONFIRM_SEND SEND
CONFIRM_DEALLOCATE RESET

Other return codes result in no state change.

Remarks

A confirmation request is issued by one of the following calls in the partner program:

Confirm.
Prepare_To_Receive if the prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM or to

CM_ENTRY Confirmed(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversation’s synchronization level is set to CM_CONFIRM.
Deallocate if the deallocate type is set to CM_DEALLOCATE_CONFIRM or to CM_DEALLOCATE_SYNC_LEVEL and the
conversation’s synchronization level is set to CM_CONFIRM.
Send_Data under the following circumstances:

The send type is set to CM_SEND_AND_CONFIRM.

The send type is set to CM_SEND_AND_PREPARE_TO_RECEIVE and the prepare-to-receive type is set to
CM_PREPARE_TO_RECEIVE_CONFIRM.

The send type is set to CM_SEND_AND_PREPARE_TO_RECEIVE, the prepare-to-receive type is set to
CM_PREPARE_TO_RECEIVE_SYNC_LEVEL, and the synchronization level is set to CM_CONFIRM.

The send type is set to CM_SEND_AND_DEALLOCATE and the deallocate type is set to CM_DEALLOCATE_CONFIRM.

The send type is set to CM_SEND_AND_DEALLOCATE, the deallocate type is set to CM_DEALLOCATE_SYNC_LEVEL, and the
synchronization level is set to CM_CONFIRM.

A confirmation request is received by the local program through the status_received parameter of Receive. The local program can
issue Confirmed only if the status_received parameter is set to one of the following values:

CM_CONFIRM_RECEIVED

CM_CONFIRM_SEND_RECEIVED

CM_CONFIRM_DEALLOC_RECEIVED

Microsoft Host Integration Server 2000

Convert_Incoming
The Convert_Incoming call (function name cmcnvi) converts a string of EBCDIC characters into ASCII. Note that the return
conversion can be performed using Convert_Outgoing.

Parameters

string
Supplied parameter. Specifies the EBCDIC string to be converted. The string may contain any of the following characters:

uppercase A-Z
lowercase a-z
0-9
the period (.)
space characters
the special characters < > + - () & * ; : , ' ? / _= ".

string_length characters of this string will be replaced by ASCII equivalents.

string_length
Supplied parameter. Specifies the number of characters to be converted (1 - 32767).

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully and the string parameter now contains the converted ASCII string.

CM_OPERATION_NOT_ACCEPTED
Primary return code; the string_length parameter specified an invalid value.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state.

There is no state change.

Remarks

When data is being received in buffer format in a basic conversation, the data buffer may contain multiple logical records, each
consisting of a two-byte length field (NN) followed by the data. The application must extract and convert each data string
separately (excluding the length field value). The applications must not attempt to convert the whole buffer in one operation,
because this will make the length field values invalid.

CM_ENTRY Convert_Incoming(
 unsigned char FAR *string,
 CM_INT32 FAR *string_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Convert_Outgoing
The Convert_Outgoing call (function name cmcnvo) converts a string of ASCII characters into EBCDIC. Note that the return
conversion can be performed using Convert_Incoming.

Parameters

string
Supplied parameter. Specifies the ASCII string to be converted. The string may contain any of the following characters:

uppercase A-Z
lowercase a-z
0-9
the period (.)
space characters
the special characters < > + - () & * ; : , ' ? / _= ".

string_length characters of this string will be replaced by EBCDIC equivalents.

string_length
Supplied parameter. Specifies the number of characters to be converted (1 - 32767).

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully and the string parameter now contains the converted EBCDIC string.

CM_OPERATION_NOT_ACCEPTED
Primary return code; the string_length parameter specified an invalid value.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state.

There is no state change.

Remarks

When data is being received in buffer format in a basic conversation, the data buffer may contain multiple logical records, each
consisting of a two-byte length field (NN) followed by the data. The application must extract and convert each data string
separately (excluding the length field value). The applications must not attempt to convert the whole buffer in one operation,
because this will make the length field values invalid.

CM_ENTRY Convert_Outgoing(
 unsigned char FAR *string,
 CM_INT32 FAR *string_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Deallocate
The Deallocate call (function name cmdeal) deallocates a conversation between two programs.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully; the conversation is deallocated.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; the following state errors can occur when the deallocate type indicates a normal deallocation
(CM_DEALLOCATE_SYNC_LEVEL, CM_DEALLOCATE_FLUSH, CM_DEALLOCATE_CONFIRM):

The conversation is not in SEND or SEND_PENDING state.
For a basic conversation, the conversation is in SEND state, but the program did not finish sending a logical record.

The following return codes can be returned when the deallocate_type is set to CM_DEALLOCATE_CONFIRM or to
CM_DEALLOCATE_SYNC_LEVEL and the conversation’s synchronization level is set to CM_CONFIRM.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

CM_CONVERSATION_TYPE_MISMATCH
Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY
Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 TP. The partner program requires one or more
PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID
Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC LEVEL_NOT_SUPPORTED_PGM
Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED
Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING

CM_ENTRY Deallocate(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.
While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY
Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.
The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY
Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem failure.
Retry the conversation.

CM_DEALLOCATED_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU did
so because of a remote program abnormal-ending condition. If the conversation for the remote program was in RECEIVE
state when the call was issued, information sent by the local program and not yet received by the remote program is
purged.
The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.
The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the
local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING
Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC. Data sent to the partner program may have been purged.

State Changes

Depending on the value of the conversation’s deallocate type parameter (set by Set_Deallocate_Type), the conversation can be in
one of the states indicated in the following table when the program issues Deallocate:

Deallocate type Allowed state
CM_DEALLOCATE_FLUSH SEND or SEND_PENDING
CM_DEALLOCATE_CONFIRM SEND or SEND_PENDING
CM_DEALLOCATE_SYNC_LEVEL SEND or SEND_PENDING
CM_DEALLOCATE_ABEND Any except RESET

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state
CM_OK RESET
CM_PROGRAM_ERROR_PURGING RECEIVE
CM_SVC_ERROR_PURGING RECEIVE
CM_CONVERSATION_TYPE_MISMATCH RESET
CM_PIP_NOT_SPECIFIED_CORRECTLY RESET
CM_SECURITY_NOT_VALID RESET

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET
CM_TPN_NOT_RECOGNIZED RESET
CM_TP_NOT_AVAILABLE_NO_RETRY RESET
CM_TP_NOT_AVAILABLE_RETRY RESET
CM_RESOURCE_FAILURE_NO_RETRY RESET
CM_RESOURCE_FAILURE_RETRY RESET
CM_DEALLOCATED_ABEND RESET
CM_DEALLOCATED_ABEND_SVC RESET
CM_DEALLOCATED_ABEND_TIMER RESET
All others No change

Remarks

Before deallocating the conversation, this call performs the equivalent of either the Flush or Confirmed call, depending on the
current conversation synchronization level and deallocate type. The deallocate type is set by Set_Deallocate_Type.

The partner program receives the deallocation notification through one of the following parameters:

status_received is CM_CONFIRM_DEALLOC_RECEIVED
return_code is CM_DEALLOCATED_NORMAL
return_code is CM_DEALLOCATED_ABEND

After this call has successfully executed, the conversation_ID is no longer valid.

For a basic conversation, if the conversation’s deallocate type is set to CM_DEALLOCATE_ABEND and the log data length is greater
than zero, the local LU writes the log data (specified by Set_Log_Data) to the local error log and to the partner LU.

After Deallocate has been executed, the log data length is set to zero and the log data is set to null.

Microsoft Host Integration Server 2000

Delete_CPIC_Side_Information
The Delete_CPIC_Side_Information call (function name xcmdsi) deletes an entry from the side information table in memory.
The side information entry is identified through the symbolic destination name.

Parameters

key_lock
Supplied parameter. This parameter is ignored.

sym_dest_name
Supplied parameter. Specifies the symbolic destination name of the entry to be deleted.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the sym_dest_name parameter specified a nonexistent side information entry.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The call is not associated with a conversation and can be in any state.

There is no state change.

Remarks

The side information entry is removed immediately from the side information table in memory.

While this call is being executed, any calls issued by other CPI-C applications that set or extract side information are suspended.
These calls include the following:

Set_CPIC_Side_Information

Extract_CPIC_Side_Information

Initialize_Conversation

CM_ENTRY Delete_CPIC_Side_Information(
 unsigned char FAR *key_lock,
 unsigned char FAR *sym_dest_name,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_Conversation_Security_Type
The Extract_Conversation_Security_Type call (function name xcecst) returns the security type for a specified conversation.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

conversation_security_type
Returned parameter. Specifies the information the partner LU requires to validate access to the invoked program. Possible
values are:

CM_SECURITY_NONE
The invoked program uses no conversation security.

CM_SECURITY_PROGRAM
The invoked program uses conversation security and thus requires a user identifier and password.

CM_SECURITY_SAME
The invoked program, invoked with a valid user identifier and password, in turn invokes another program (as illustrated in
Communication Between TPs). For example, assume that program A invokes program B with a valid user identifier and
password, and program B in turn invokes program C. If program B specifies the value CM_SECURITY_SAME, CPI-C sends the LU
for program C, the user identifier from program A, and an already-verified indicator. This indicator tells program C not to
require the password (if program C is configured to accept an already-verified indicator).

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid, or the address of a variable is invalid.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Conversation_Security_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_security_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_Conversation_Security_User_ID
The Extract_Conversation_Security_User_ID call (function name cmecsu) returns the user identifier being used in a specified
conversation.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

security_user_ID
Returned parameter. Specifies the user identifier that was used to establish the conversation.

security_user_ID_length
Returned parameter. Specifies the length of security_user_ID.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

The security_user_ID value is not padded with spaces. It is meaningful only up to security_user_ID_length.

CM_ENTRY Extract_Conversation_Security_User_ID(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *security_user_ID,
 CM_INT32 FAR *security_user_ID_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_Conversation_State
The Extract_Conversation_State call (function name cmecs) returns the state of the specified conversation.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

conversation_state
Returned parameter. Specifies the conversation state. Possible values are:

CM_INITIALIZE_STATE

CM_SEND_STATE

CM_RECEIVE_STATE

CM_SEND_PENDING_STATE

CM_CONFIRM_STATE

CM_CONFIRM_SEND_STATE

CM_CONFIRM_DEALLOCATE_STATE

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Conversation_State(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_state,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_Conversation_Type
The Extract_Conversation_Type call (function name cmect) returns the conversation type—mapped or basic—of the specified
conversation.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

conversation_type
Returned parameter. Specifies the conversation type. Possible values are:

CM_BASIC_CONVERSATION

CM_MAPPED_CONVERSATION

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Conversation_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_CPIC_Side_Information
The Extract_CPIC_Side_Information call (function name xcmesi) returns the side information for an entry number or symbolic
destination name.

Parameters

entry_number
Supplied parameter. Specifies the number (index) of the side information entry to be returned. The first entry is 1.

The program can look up the side information entry by the symbolic destination name instead. To accomplish this, set the entry
number to zero.

sym_dest_name
Supplied parameter. Specifies the symbolic destination name to search for.

If entry_number is set to a number greater than zero, this parameter is ignored.

side_info_entry
Returned parameter. Specifies the side information entry. For a detailed explanation of the side information entry, see
Set_CPIC_Side_Information.

Each field in the side information structure is left-aligned and padded with spaces on the right as necessary.

side_info_entry_length
Supplied parameter. Always 124.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The entry_number specified a number larger than the maximum number of entries in the side information table or a
number that is less than zero.
The sym_dest_name parameter is invalid and entry_number is set to zero.
The side_info_entry_length parameter is not set to 124.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

This call is not associated with a conversation and can be in any state.

There is no state change.

Remarks

The security password is never returned. If the security user identifier in the side information is not set, the security user identifier
field is returned as all spaces.

CM_ENTRY Extract_CPIC_Side_Information(
 CM_INT32 FAR *entry_number,
 unsigned char FAR *sym_dest_name,
 SIDE_INFO FAR *side_info_entry,
 CM_INT32 FAR *side_info_entry_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_Mode_Name
The Extract_Mode_Name call (function name cmemn) returns the mode name and mode name length for a specified
conversation.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

mode_name
Returned parameter. Specifies the starting address of the mode name.

mode_name_length
Returned parameter. Specifies the length of the mode name.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Mode_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *mode_name,
 CM_INT32 FAR *mode_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_Partner_LU_Name
The Extract_Partner_LU_Name call (function name cmepln) returns the partner LU name and partner LU name length for a
specified conversation. This can be an alias name of up to eight bytes or a fully qualified network name of up to 17 bytes.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

partner_LU_name
Returned parameter. Specifies the variable containing the partner LU name. (The program must supply a pointer to a suitable
variable.)

partner_LU_name_length
Returned parameter. Specifies the length of the partner LU name.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

An invokable CPI-C TP will only receive the fully qualified network name (FQLU) upon successful completion of this function call.
An invokable CPI-C TP is unable to retrieve the alias name using this call.

CM_ENTRY Extract_Partner_LU_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *partner_LU_name,
 CM_INT32 FAR *partner_LU_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_Sync_Level
The Extract_Sync_Level call (function name cmesl) returns the synchronization level for a specified conversation.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

sync_level
Returned parameter. Indicates the synchronization level of the conversation. Possible values are:

CM_NONE
The programs will not perform confirmation processing.

CM_CONFIRM
The programs can perform confirmation processing.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Sync_Level(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *sync_level,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extract_TP_Name
The Extract_TP_Name call (function name cmetpn) returns the TP_name characteristic.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

TP_name
Returned parameter. Specifies the variable containing the TP name.

TP_name_length
Returned parameter. Specifies the length of the TP name.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

For an invoking program, the TP_name characteristic is the value in the side information referenced in the sym_dest_name
parameter of the Initialize_Conversation call. For an invokable program, it is the name specified in the conversation startup
request (which will have been matched with a name specified locally or in a Specify_Local_TP_Name call), and will therefore be
the same as the TP_name characteristic of the partner program.

The name returned can be up to 64 bytes in length.

CM_ENTRY Extract_TP_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *TP_name,
 CM_INT32 FAR *TP_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Flush
The Flush call (function name cmflus) sends the contents of the local LU’s send buffer to the partner LU (and program). If the
send buffer is empty, no action takes place.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation was not in SEND or SEND_PENDING state when the program issued this call.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in SEND or SEND_PENDING state.

If the call completes successfully, (return_code is CM_OK), the conversation is in SEND state.

Other return codes result in no state change.

Remarks

Data processed by Send_Data accumulates in the local LU’s send buffer until one of the following happens:

The local program issues the Flush call or other call that flushes the LU’s send buffer. (Some send types, set by
Set_Send_Type, include flush functionality.)
The buffer is full.

The allocation request generated by Allocate and error information generated by Send_Error are also buffered.

CM_ENTRY Flush(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Initialize_Conversation
The Initialize_Conversation call (function name cminit) is issued by the invoking program to obtain an 8-byte conversation
identifier and to set the initial values for the conversation’s characteristics.

Parameters

conversation_ID
Returned parameter. Specifies the identifier for the conversation. It is used by subsequent CPI-C calls.

sym_dest_name
Supplied parameter. Specifies the symbolic destination name—the name associated with a side information entry loaded from
the configuration file or defined by Set_CPIC_Side_Information calls.

This parameter is an 8-byte ASCII character string. The allowed characters are as follows:

Uppercase letters
Numerals 0 through 9

This parameter can also be set to eight spaces. In this case, the invoking program must issue the following calls before issuing
Allocate:

Set_Mode_Name

Set Partner_LU_Name

Set_TP_Name

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by sym_dest_name does not match a symbolic destination name in the side
information table and is not a space.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation is in RESET state.

If the return_code is CM_OK, the conversation changes to INITIALIZE state. For other return codes, the conversation state remains
unchanged.

Remarks

The initial values are CPI-C defaults or are derived from side information associated with the symbolic destination name. For
more information about initial values and side information, see Initial Conversation Characteristics and Side Information.

Initial values can be changed by the Set_ calls.

If the side information contains an invalid value or a Set_ call sets a conversation characteristic to an invalid value, the error is
returned on the Allocate call.

If a CPIC application attempts to invoke more than one concurrent conversation, only a single Local APPC LU is used by all
conversations. This prevents concurrent conversations across two or more dependent LU6.2 LU's, causing subsequent
Initialize_Conversation (CMALLC)calls to wait for the first conversation to be deallocated.

If the CPIC application needs to invoke more than one concurrent conversation, independent LU6.2 must be used between

CM_ENTRY Initialize_Conversation(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *sym_dest_name,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft® Host Integration Server or Microsoft® SNA Server and the remote system.

Upon successful execution of this call, CPI-C generates a conversation identifier. This identifier is a required parameter for all
other CPI-C calls issued for this conversation by the invoking program.

Under normal circumstances, a CPI-C application cannot invoke two concurrent conversations using two different Local APPC
LUs. A registry key is available that when set forces CPI-C to issue a new TP_STARTED verb on every Initialize_Conversation
(cminit) call. This is necessary to force APPC resource location for each call. The registry key that must be defined to force this
behavior is the following:

\HKLM\CurrentControlSet\Services\SnaBase\Parameters\Client\GETNEWTPID

Microsoft Host Integration Server 2000

Prepare_To_Receive
The Prepare_To_Receive call (function name cmptr) changes the state of the conversation for the local program from SEND to
RECEIVE.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; one of the following occurred:

The conversation state is not SEND or SEND_PENDING.
For a basic conversation, the conversation is in SEND state. However, the program did not finish sending a logical record.

These return codes can occur if the conversation’s prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM or if the
prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversation’s synchronization level is set to
CM_CONFIRM.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

CM_CONVERSATION_TYPE_MISMATCH
Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY
Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 TP. The partner program requires one or more
PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID
Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED
Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_ENTRY Prepare_To_Receive(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CM_PROGRAM_ERROR_PURGING
Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.
While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY
Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.
The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY
Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem failure.
Retry the conversation.

CM_DEALLOCATED_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU did so
because of a remote program abnormal-ending condition. If the conversation for the remote program was in RECEIVE
state when the call was issued, information sent by the local program and not yet received by the remote program is
purged.
The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.
The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the
local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING
Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC. Data sent to the partner program may have been purged.

State Changes

The conversation can be in SEND or SEND_PENDING state.

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state
CM_OK RECEIVE
CM_PROGRAM_ERROR_PURGING RECEIVE
CM_SVC_ERROR_PURGING RECEIVE
CM_CONVERSATION_TYPE_MISMATCH RESET
CM_PIP_NOT_SPECIFIED_CORRECTLY RESET
CM_SECURITY_NOT_VALID RESET
CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET
CM_TPN_NOT_RECOGNIZED RESET
CM_TP_NOT_AVAILABLE_NO_RETRY RESET
CM_TP_NOT_AVAILABLE_RETRY RESET
CM_DEALLOCATED_ABEND RESET
CM_RESOURCE_FAILURE_NO_RETRY RESET

CM_RESOURCE_FAILURE_RETRY RESET
CM_DEALLOCATED_ABEND_SVC RESET
CM_DEALLOCATED_ABEND_TIMER RESET
All others No change

Before changing the conversation state, this call performs the equivalent of one of the following:

The Flush call, sending the contents of the local LU’s send buffer to the partner LU and program, if either of the following
conditions is true:

The conversation’s prepare-to-receive type is set to CM_PREP_TO_RECEIVE_FLUSH.

The conversation’s prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversation’s
synchronization level is set to CM_NONE.

The Confirm call, sending the contents of the local LU’s send buffer and a confirmation request to the partner program, if
either of the following conditions is true:

The conversation’s prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM.

The conversation’s prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversation’s
synchronization level is set to CM_CONFIRM.

The prepare-to-receive type is set by Set_Prepare_To_Receive_Type; the synchronization level is set by Set_Sync_Level.

The conversation cannot change to SEND or SEND_PENDING for the partner program until the partner program receives one of
the following values through the status_received parameter of the Receive call:

CM_SEND_RECEIVED
CM_CONFIRM_SEND_RECEIVED and replies with the Confirmed or Send_Error call

Remarks

After this call has successfully executed, the local program can receive data.

Microsoft Host Integration Server 2000

Receive
The Receive call (function name cmrcv) receives any data that is currently available from the partner program. To avoid blocking
for clients running Microsoft® Windows® version 3.x, use the Specify_Windows_Handle call. For Microsoft® Windows 2000,
Microsoft® Windows NT®, Windows 98®, and Windows 95®, run a background thread for all CPI-C communications and
preserve the foreground thread for user interface only.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

buffer
Returned parameter. Specifies the address of the buffer to contain the data received by the local program.

The buffer contains data if the following conditions are true:

The data_received parameter is set to a value other than CM_NO_DATA_RECEIVED.
The return_code parameter is set to CM_OK or to CM_DEALLOCATED_NORMAL.

requested_length
Supplied parameter. Indicates the maximum number of bytes of data the local program is to receive. The range is from 0
through 32767.

data_received
Returned parameter. Indicates whether the program received data. These codes are not relevant unless return_code is set to
CM_OK or CM_DEALLOCATED_NORMAL. Possible values are listed following the Parameters section.

received_length
Returned parameter. Indicates the number of bytes of data the local program received on this Receive call. If return_code or
data_received indicates that the program received no data, this number is not relevant.

status_received
Returned parameter. Indicates changes in the status of the conversation. These codes are not relevant unless return_code is set
to CM_OK. Possible values are listed following the Parameters section.

request_to_send_received
Returned parameter. Specifies the request-to-send-received indicator. Possible values are listed following the Parameters
section.

return_code
The code returned from this call. Possible values are listed following the Parameters section.

Values returned in the data_received parameter

CM_DATA_RECEIVED
Can be returned for a basic conversation if the conversation’s fill characteristic is set to CM_FILL_BUFFER, indicating that the
program is receiving data independent of its logical format. The local program received data until requested_length or end of
data was reached.

The end of the data is indicated by either a change to another conversation state, based on the return_code, status_received, and
data_received parameters, or an error condition. If the conversation’s receive type is set to CM_RECEIVE_IMMEDIATE, the data
received can be less than requested_length if a smaller amount of data has arrived from the partner program.

CM_COMPLETE_DATA_RECEIVED
In a mapped conversation, indicates that the local program has received a complete data record or the last part of a data record.

In a basic conversation with the fill characteristic set to CM_FILL_LL, this value indicates that the local program has received a

CM_ENTRY Receive(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *buffer,
 CM_INT32 FAR *requested_length,
 CM_INT32 FAR *data_received,
 CM_INT32 FAR *received_length,
 CM_INT32 FAR *status_received,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

complete logical record or the end of a logical record.

CM_INCOMPLETE_DATA_RECEIVED
In a mapped conversation, indicates that the local program has received an incomplete data record. The requested_length
parameter specified a value less than the length of the data record (or less than the remainder of the data record if this is not
the first Receive to read the record). The amount of data received is equal to the requested_length parameter.

In a basic conversation with the fill characteristic set to CM_FILL_LL, this value indicates that the local program has received an
incomplete logical record. The amount of data received is equal to the requested_length parameter. (If the received data was
truncated, the length of the data will be less than requested_length.)

Upon receiving this value, the local program normally reissues Receive to receive the next part of the record.

CM_NO_DATA_RECEIVED
The program did not receive data.

Note that if the return_code parameter is set to CM_OK, status information may be available through the status_received
parameter.

Values returned in the status_received parameter

CM_NO_STATUS_RECEIVED
No conversation status change was received on this call.

CM_SEND_RECEIVED
Indicates, for the partner program, that the conversation has entered RECEIVE state. For the local program, the conversation is
now in SEND state if no data was received on this call, or SEND_PENDING state if data was received on this call.

Upon receiving this value, the local program normally uses Send_Data to begin sending data.

CM_CONFIRM_DEALLOC_RECEIVED
Indicates that the partner program issued Deallocate with confirmation requested. For the local program the conversation is
now in CONFIRM_DEALLOCATE state.

Upon receiving this value, the local program normally issues the Confirmed call.

CM_CONFIRM_RECEIVED
Indicates that the partner program issued the Confirm call. For the local program, the conversation is in CONFIRM state.

Upon receiving this value, the local program normally issues the Confirmed call.

CM_CONFIRM_SEND_RECEIVED
Indicates, for the partner program, that the conversation has entered RECEIVE state and a request for confirmation has been
received by the local program. For the local program, the conversation is now in CONFIRM_SEND state.

The program normally responds by issuing the Confirmed call. Upon successful execution of the Confirmed call, the
conversation changes to SEND state for the local program.

Values returned in the request_to_send_received parameter

CM_REQ_TO_SEND_RECEIVED
The partner program issued the Request_To_Send call, which requests the local program to change the conversation to RECEIVE
state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program did not issue the Request_To_Send call. This value is not relevant if the return_code parameter is set to
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

Values returned in the Return_Code parameter

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_UNSUCCESSFUL
Primary return code; the receive type is set to CM_RECEIVE_IMMEDIATE and no data is immediately available from the partner
program.

CM_DEALLOCATED_NORMAL
Primary return code; the conversation has been deallocated normally. The partner program issued Deallocate with the
conversation’s deallocate type set to CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_SYNC_LEVEL with the synchronization
level of the conversation specified as CM_NONE.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The value specified by requested_length is out of range (greater than 32767).

If the program receives this return code, the other returned parameters are not valid.

CM_PROGRAM_STATE_CHECK
Primary return code; one of the following occurred:

The receive type is set to CM_RECEIVE_AND_WAIT and the conversation state is not RECEIVE, SEND, or SEND_PENDING.
The receive type is set to CM_RECEIVE_IMMEDIATE and the conversation state is not RECEIVE.
In a basic conversation, the conversation is in SEND state, the receive type is set to CM_RECEIVE_AND_WAIT, and the
program did not finish sending a logical record.

If the program receives this return code, the other returned parameters are not valid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

CM_CONVERSATION_TYPE_MISMATCH
Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY
Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 TP. The partner program requires one or more
PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID
Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED
Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_NO_TRUNC
Primary return code; while in SEND state or in SEND_PENDING state with the error direction set to CM_SEND_ERROR, the
partner program issued Send_Error. Data was not truncated.

CM_PROGRAM_ERROR_PURGING
Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.
While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY
Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.
The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY
Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem failure.
Retry the conversation.

CM_DEALLOCATED_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU did so
because of a remote program abnormal-ending condition. If the conversation for the remote program was in RECEIVE
state when the call was issued, information sent by the local program and not yet received by the remote program is
purged.
The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.
The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the
local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING
Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC. Data sent to the partner program may have been purged.

CM_SVC_ERROR_NO_TRUNC
Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC. Data sent to the partner program may have been purged.

CM_PROGRAM_ERROR_TRUNC
Primary return code; in SEND state, before finishing sending a complete logical record, the partner program issued Send_Error.
The local program may have received the first part of the logical record through a Receive call.

CM_SVC_ERROR_TRUNC
Primary return code; while in RECEIVE or CONFIRM state, the partner program or partner LU issued Send_Error with the type
parameter set to SVC before it finished sending a complete logical record. The local program may have received the first part of
the logical record.

State Changes

The conversation can be in RECEIVE, SEND, or SEND_PENDING state.

If receive_type is set to CM_RECEIVE_IMMEDIATE, the conversation must be in RECEIVE state.

Issuing Receive while the conversation is in SEND or SEND_PENDING state causes the local LU to send the information in its
send buffer and a send indicator to the partner program. Based on data_received and status_received the conversation can
change to RECEIVE state for the local program.

The new conversation state is determined by:

The state the conversation is in when the program issues the call.
The return_code parameter.
The data_received and status_received parameters.

If no data is currently available and the receive type (set by Set_Receive_Type) is set to CM_RECEIVE_AND_WAIT, the local
program waits for data to arrive. If the receive type is set to CM_RECEIVE_IMMEDIATE, the local program does not wait.

The process for receiving data is as follows:

The local program issues a Receive call until it finishes receiving a complete unit of data. The local program may need to
issue Receive several times to receive a complete unit of data. The data_received parameter indicates whether the receipt of
data is finished.

The data received can be:

One data record transmitted in a mapped conversation.

One logical record transmitted in a basic conversation with the conversation’s fill characteristic set to CM_FILL_LL.

A buffer of data received independent of its logical-record format in a basic conversation with the fill characteristic set to
CM_FILL_BUFFER.

When a complete unit of data has been received, the local program can manipulate it.

The local program determines the next action to take based on the control information received through status_received.
The local program may have to reissue Receive to receive the control information.

The conversation type is set by Set_Conversation_Type; the fill characteristic is set by Set_Fill.

The following table summarizes the state changes that can occur when Receive is issued with the conversation in RECEIVE state
and return_code is CM_OK.

data_received status_received New state
CM_DATA_RECEIVED CM_NO_STATUS_RECEIVED No change
CM_COMPLETE_DATA_
RECEIVED

CM_NO_STATUS_RECEIVED No change

CM_INCOMPLETE_DATA_
RECEIVED

CM_SEND_RECEIVED SEND_PENDING

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED SEND

If return_code is set to CM_UNSUCCESSFUL, meaning that the receive_type is set to CM_RECEIVE_IMMEDIATE and no data is
available, there is no state change.

The following table summarizes the state changes that can occur when Receive is issued with the conversation in SEND state and
return_code is CM_OK.

data_received status_received New state
CM_DATA_RECEIVED CM_NO_STATUS_RECEIVED RECEIVE
CM_COMPLETE_DATA_
RECEIVED

CM_NO_STATUS_RECEIVED RECEIVE

CM_INCOMPLETE_DATA_
RECEIVED

CM_SEND_RECEIVED SEND_PENDING

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED No change

The following table summarizes the state changes that can occur when Receive is issued with the conversation in
SEND_PENDING state and return_code is CM_OK.

data_received status_received New state
CM_DATA_RECEIVED CM_NO_STATUS_RECEIVED RECEIVE
CM_COMPLETE_DATA_
RECEIVED

CM_NO_STATUS_RECEIVED RECEIVE

CM_INCOMPLETE_DATA_
RECEIVED

CM_SEND_RECEIVED No change

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED SEND

The following topics summarize state changes that can occur when Receive is issued in any allowed state.

Microsoft Host Integration Server 2000

Confirmation
The following table summarizes state changes that occur under the following conditions:

The return_code parameter is CM_OK.
The data_received parameter is set to CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED, or CM_NO_DATA_RECEIVED.
The status_received parameter indicates a change to a CONFIRM state.
status_received New state
CM_CONFIRM_DEALLOC_RECEIVED CONFIRM_DEALLOCATE
CM_CONFIRM_SEND_RECEIVED CONFIRM_SEND
CM_CONFIRM_RECEIVED CONFIRM

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Normal Deallocation
If return_code is set to CM_DEALLOCATED_NORMAL, the conversation changes to RESET state.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ABEND
The following ABEND conditions, indicated by return_code, cause the conversation to change to RESET state:

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_SVC_ERROR_TRUNC

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Errors
The following table summarizes state changes that occur when a data transmission error is encountered.

return_code Old state New state
CM_PROGRAM_ERROR_PURGING RECEIVE No change
CM_PROGRAM_ERROR_NO_TRUNC RECEIVE No change
CM_SVC_ERROR_PURGING SEND RECEIVE
CM_SVC_ERROR_NO_TRUNC SEND_PENDING RECEIVE

If the partner program truncates a logical record, the local program receives notification of the truncation through return_code on
the next Receive call.

If a program issues Receive with requested_length set to zero, the call is executed as usual. However, data_received and
status_received are not set on the same Receive call. (One exception to this situation is the null record sent over a mapped
conversation, described in the next paragraph.)

In a mapped conversation in which data is available from the partner program, data_received is set to
CM_INCOMPLETE_DATA_RECEIVED. If a null record is available (send_length in the Send_Data call issued by the partner program
is set to zero), data_received is set to CM_COMPLETE_RECORD_RECEIVED with received_length set to zero.

In a basic conversation in which data is available and the fill characteristic is set to CM_FILL_LL, data_received is set to
CM_INCOMPLETE_DATA_RECEIVED. If the fill characteristic is set to CM_FILL_BUFFER, data_received is set to
CM_DATA_RECEIVED.

The LU does not automatically perform any conversion between EBCDIC and ASCII on the received string of data before putting it
in buffer. If necessary, the program can use the CSV CONVERT to translate a string from one character set to the other.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Request_To_Send
The Request_To_Send call (function name cmrts) notifies the partner program that the local program wants to send data.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in the RECEIVE, SEND, SEND_PENDING, CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any of the following states: RECEIVE, SEND, SEND_PENDING, CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE.

There is no state change.

In response to this request, the partner program can change the conversation to RECEIVE state by issuing one of the following
calls:

Receive with receive type set to CM_RECEIVE_AND_WAIT
Prepare_To_Receive
Send_Data with send type set to CM_SEND_AND_PREP_TO_RECEIVE

The partner program can also ignore the request to send.

The conversation state changes to SEND for the local program when the local program receives one of the following values
through the status_received parameter of a subsequent Receive call:

CM_SEND_RECEIVED
CM_CONFIRM_SEND_RECEIVED and the local program replies with a Confirmed call

Remarks

The request-to-send notification is received by the partner program through the request_to_send_received parameter of the
following calls:

Confirmed

CM_ENTRY Request_To_Send(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Receive

Send_Data

Send_Error

Test_Request_To_Send_Received_sna_Test_Request_To_Send_Received_cpic

Request-to-send notification is sent to the partner program immediately; CPI-C does not wait until the send buffer fills up or is
flushed. Consequently, the request-to-send notification can arrive out of sequence. For example, if the local program is in SEND
state and issues the Prepare_To_Receive call followed by the Request_To_Send call, the partner program, in RECEIVE state, can
receive the request-to-send notification before it receives the send notification. For this reason, request_to_send can be reported
to a program through the Receive call.

Upon receiving a request-to-send notification, the partner LU retains the notification until the partner issues a call that returns
request_to_send_received. The LU keeps only one request-to-send notification per conversation. Thus the local program can issue
more Request_To_Send calls than are explicitly handled by the partner TP.

Microsoft Host Integration Server 2000

Send_Data
The Send_Data call (function name cmsend) puts data in the local LU’s send buffer for transmission to the partner program.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

buffer
Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU’s send buffer.

send_length
Supplied parameter. Specifies the number of bytes of data to be put in the local LU’s send buffer. The range is from 0 through
32767.

For a mapped conversation, if send_length is set to zero, a null data record is sent to the partner program.

For a basic conversation, if send_length is set to zero, no data is sent. The buffer parameter is not relevant. However, the other
parameters are processed.

request_to_send_received
Returned parameter. Is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program issued the Request_To_Send call, which requests the local program to change the conversation to RECEIVE
state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program did not issue the Request_To_Send call. This value is not relevant if return_code is set to
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The value specified by send_length is out of range (greater than 32767).
This is a basic conversation and the first two bytes of buffer contain an invalid logical record length (0x0000, 0x0001,
0x8000, or 0x8001).

CM_PROGRAM_STATE_CHECK
Primary return code; one of the following occurred:

The conversation state is not SEND or SEND_PENDING.
The basic conversation is in SEND state and send_type is set to CM_SEND_AND_CONFIRM,

CM_ENTRY Send_Data(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *buffer,
 CM_INT32 FAR *send_length,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CM_SEND_AND_DEALLOCATE, or CM_SEND_AND_PREP_TO_RECEIVE. However, the data does not end on a logical record
boundary. This condition is allowed only when deallocate_type is set to CM_DEALLOCATE_ABEND and the send_type is
set to CM_SEND_AND_DEALLOCATE.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

CM_CONVERSATION_TYPE_MISMATCH
Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY
Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 TP. The partner program requires one or more
PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID
Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED
Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING
Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.
While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY
Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.
The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY
Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem failure.
Retry the conversation.

CM_DEALLOCATED_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU did so
because of a remote program abnormal-ending condition. If the conversation for the remote program was in RECEIVE
state when the call was issued, information sent by the local program and not yet received by the remote program is
purged.
The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.
The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type

parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the
local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING
Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC. Data sent to the partner program may have been purged.

State Changes

The conversation must be in SEND or SEND_PENDING state when the program issues this call.

The following tables summarize state changes that are possible when return_code is set to CM_OK.

send_type Old state New state
CM_BUFFER_DATA SEND No change
 SEND_PENDING SEND
CM_SEND_AND_FLUSH SEND No change
 SEND_PENDING SEND
CM_SEND_AND_CONFIRM SEND No change
 SEND_PENDING SEND
CM_SEND_AND_PREP_TO_
RECEIVE

 RECEIVE

CM_SEND_AND_DEALLOCATE RESET

For a return_code value of CM_PROGRAM_ERROR_PURGING or CM_SVC_ERROR_PURGING, the conversation changes to
RECEIVE state. For other non-CM_OK values, the conversation changes to RESET state.

Remarks

The data collected in the local LU’s send buffer is transmitted to the partner LU and partner program when one of the following
occurs:

The send buffer fills up.
The local program issues a Flush, Confirm, or Deallocate call or other call that flushes the LU’s send buffer. (Some send
types, set by Set_Send_Type, include flush functionality.)

The data to be sent can be either:

A complete data record on a mapped conversation. A complete data record is a string of the length specified by the
send_length parameter.
A complete logical record or portion thereof on a basic conversation. A complete logical record is determined by the LL
value. (One logical record can end and a new one begin in the middle of the string of data to be sent.)

The LU does not automatically perform any conversion between ASCII and EBCDIC on the string of data to be sent. If necessary,
the program can use the CSV CONVERT to translate a string from one character set to the other.

Microsoft Host Integration Server 2000

Send_Error
The Send_Error call (function name cmserr) notifies the partner program that the local program has encountered an application-
level error.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

request_to_send_received
Returned parameter. Specifies the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program issued Request_To_Send, which requests the local program to change the conversation to RECEIVE state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program did not issue Request_To_Send. This value is not relevant if return_code is set to
CM_PROGRAM_PARAMETER_CHECK or CM_STATE_CHECK.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

The value of return_code varies depending on the conversation state when the call is issued.

SEND State
If the program issues the call with the conversation in SEND state, the following return codes are possible:

CM_OK
Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED
Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE
Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

CM_CONVERSATION_TYPE_MISMATCH
Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY
Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 TP. The partner program requires one or more
PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID
Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC LEVEL_NOT_SUPPORTED_PGM
Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED
Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_ENTRY Send_Error(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CM_TP_NOT_AVAILABLE_RETRY
Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING
Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.
While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY
Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.
The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY
Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem failure.
Retry the conversation.

CM_DEALLOCATED_ABEND
Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU has
done so because of a remote program abnormal-ending condition. If the conversation for the remote program was in
RECEIVE state when the call was issued, information sent by the local program and not yet received by the remote
program is purged.
The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC
Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.
The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER
Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the
local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING
Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC. Data sent to the partner program may have been purged.

RECEIVE State
If the call is issued in RECEIVE state, the following return codes are possible:

CM_OK
Primary return code; because incoming information is purged when the Send_Error call is issued in RECEIVE state, CM_OK is
generated instead of the following:

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

CM_SVC_ERROR_NO_TRUNC

CM_SVC_ERROR_PURGING

CM_PROGRAM_ERROR_TRUNC

CM_SVC_ERROR_TRUNC (basic conversation only)

CM_PRODUCT_SPECIFIC_ERROR

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

For an explanation of these return codes, see Common Return Codes.

CM_DEALLOCATED_NORMAL
Primary return code; because incoming information is purged when Send_Error is issued in RECEIVE state,
CM_DEALLOCATED_NORMAL is generated instead of the following:

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

SEND_PENDING State
If the call is issued in SEND_PENDING state, the following return codes are possible:

CM_OK (Primary return code; the call executed successfully.)

CM_PRODUCT_SPECIFIC_ERROR

CM_PROGRAM_ERROR_PURGING

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_SVC_ERROR_PURGING

For an explanation of these return codes, see Common Return Codes.

CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE State
If the call is issued in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the following return codes are possible:

CM_OK (Primary return code; the call executed successfully.)

CM_PRODUCT_SPECIFIC_ERROR

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

For an explanation of these return codes, see Common Return Codes.

Other States
Issuing Send_Error with the conversation in RESET or INITIALIZE state is illegal. The following return codes are possible:

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation state is not SEND, RECEIVE, CONFIRM, CONFIRM_SEND, CONFIRM_DEALLOCATE, or
SEND_PENDING.

State Changes

The conversation can be in any state except INITIALIZE or RESET.

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state
CM_OK SEND
CM_CONVERSATION_TYPE_MISMATCH RESET
CM_PIP_NOT_SPECIFIED_CORRECTLY RESET
CM_SECURITY_NOT_VALID RESET
CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET
CM_TPN_NOT_RECOGNIZED RESET
CM_TP_NOT_AVAILABLE_NO_RETRY RESET
CM_TP_NOT_AVAILABLE_RETRY RESET
CM_RESOURCE_FAILURE_RETRY RESET
CM_RESOURCE_FAILURE_NO_RETRY RESET
CM_DEALLOCATED_ABEND RESET
CM_DEALLOCATED_ABEND_PROG RESET
CM_DEALLOCATED_ABEND_SVC RESET
CM_DEALLOCATED_ABEND_TIMER RESET
CM_DEALLOCATED_NORMAL RESET
CM_PROGRAM_ERROR_PURGING RECEIVE
CM_SVC_ERROR_PURGING RECEIVE
All others No change

Upon successful execution of this call, the conversation is in SEND state for the local program and in RECEIVE state for the partner
program.

In a basic conversation, the local program can use Set_Log_Data to specify that error log data be sent to the partner LU and added
to the local error log. If the conversation’s log data length characteristic is greater than zero, the LU formats the data and stores it
in the send buffer.

After Send_Error is completed, the log data length is set to zero and the log data to null.

If the conversation is in RECEIVE state when the program issues Send_Error, incoming data is purged by CPI-C. This data includes:

Data sent by Send_Data.
Confirmation requests.
Deallocation requests if the conversation’s deallocate type is set to CM_DEALLOCATE_CONFIRM or to
CM_DEALLOCATE_SYNC_LEVEL with the synchronization level set to CM_CONFIRM.

CPI-C does not purge an incoming request-to-send indicator.

If the conversation is in SEND_PENDING state, the local program can issue Set_Error_Direction to specify whether the error being
reported resulted from the received data or from the processing of the local program after successfully receiving the data.

Remarks

The local program can use Send_Error for such purposes as informing the partner program of an error encountered in received
data, rejecting a confirmation request, or truncating an incomplete logical record it is sending.

Send_Error flushes the local LU’s send buffer and sends the partner program the contents of the send buffer followed by the
error notification.

The error notification is sent to the partner as one of the following return_code values:

CM_PROGRAM_ERROR_TRUNC
CM_PROGRAM_ERROR_NO_TRUNC
CM_PROGRAM_ERROR_PURGING

Microsoft Host Integration Server 2000

Set_Conversation_Security_Password
The Set_Conversation_Security_Password call (function name cmscsp) is issued by the invoking program to specify the
password required to gain access to the invoked program.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

security_password
Supplied parameter. Specifies the password required to gain access to the partner program. This parameter is a character string
of up to eight ASCII characters and is case-sensitive. It must match the password for the user identifier configured for the
partner program.

The allowed characters are:

Uppercase and lowercase letters.
Numerals 0 through 9.
Special characters, except the space.

If the CPI-C automatic logon feature is to be used, this parameter must be set to the MS$SAME string. See the Remarks section
for details.

security_password_length
Supplied parameter. Specifies the length of security_password. The range is from 0 through 8.

If the CPI-C automatic logon feature is to be used, this parameter must be set to 7. See the Remarks section for details.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The value specified by security_password_length is out of range.

CM_PROGRAM_STATE_CHECK
Primary return code; one of the following occurred:

The conversation is not in INITIALIZE state.
The conversation’s security type is not set to CM_SECURITY_PROGRAM.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call has an effect on the conversation only if the conversation security type is CM_SECURITY_PROGRAM or
CM_SECURITY_SAME. It overrides the initial password from the side information specified by Initialize_Conversation. This call
cannot be issued after Allocate has been issued.

CM_ENTRY Set_Conversation_Security_Password(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *security_password,
 CM_INT32 FAR *security_password_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

An invalid password is not detected until the allocation request, generated by Allocate, is sent to the partner LU. The error is
returned to the invoking program on a subsequent call.

Automatic logon for CPI-C applications is supported by Microsoft® Host Integration Server, Microsoft® SNA Server 4.0, and
Microsoft® SNA Server 3.0 with Service Pack 1 or later. This feature requires specific configuration by the network administrator:
The CPI-C application must be invoked on the LAN side from a client of SNA server. The client must be logged into a Microsoft®
Windows 2000 or Microsoft® Windows NT® domain, but can be any platform that supports Host Integration Server or SNA
server CPI-C APIs.

The client application is coded to use "program" level security, with a special hard-coded CPI-C user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA server, the SNA server looks up the host account and
password corresponding to the Windows 2000 or Windows NT account under which the client is logged in, and substitutes the
host account information into the APPC attach message it sends to the host.

Microsoft Host Integration Server 2000

Set_Conversation_Security_Type
The Set_Conversation_Security_Type call (function name cmscst) is issued by the invoking program to specify the information
the partner LU requires to validate access to the invoked program.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

conversation_security_type
Supplied parameter. Specifies the information the partner LU requires to validate access to the invoked program. Based on the
conversation security established for the invoked program during configuration, use one of the following values:

CM_SECURITY_NONE
To indicate that the invoked program uses no conversation security.

CM_SECURITY_PROGRAM
To indicate that the invoked program uses conversation security and thus requires a user identifier and password.

CM_SECURITY_SAME
To indicate that the user ID is sent on the allocate request to node services in the partner LU. This setting is also used to specify
that the invoked program, invoked with a valid user identifier and password, in turn invokes another program (as illustrated in
Communication Between TPs). For example, assume that program A invokes program B with a valid user identifier and
password, and program B in turn invokes program C. If program B specifies the value CM_SECURITY_SAME, CPI-C will send the
LU for program C, the user identifier from program A, and an already-verified indicator. This indicator tells program C not to
require the password (if program C is configured to accept an already-verified indicator).

When CM_SECURITY_SAME is used, your application must always call Set_Conversation_Security_User_ID and
Set_Conversation_Security_Password to provide values for the security_user_ID and security_password parameters. Depending
on the properties negotiated between SNA server and the peer LU, the Allocate function will send one of 3 kinds of Attach
(FMH-5) messages, in this order of precedence:

1. If the LUs have negotiated "already verified" security, then the Attach sent by SNA server will not include the contents of
the security_password parameter field specified by Set_Conversation_Security_Password.

2. If the LUs have negotiated "persistent verification" security, then the Attach sent by SNA server will include the
security_password parameter specified by Set_Conversation_Security_Password, but only when the Attach is the first for
the specified security_user_ID parameter set by Set_Conversation_Security_User_ID since the start of the LU-LU session,
and will omit the security_password parameter on all subsequent Attaches (issued by your application or any other
application using this LU-LU-mode triplet).

3. Your application cannot tell which mode of security has been negotiated between the LUs, nor can it tell whether the
Allocate function it is issuing is the first for that LU-LU-mode triplet. So your application must always call
Set_Conversation_Security_User_ID and Set_Conversation_Security_Password to set the security_user_ID and
security_password parameters when conversation_security_type is set to CM_SECURITY_SAME.

For more information on persistent verification and already verified security, see the SNA Formats Guide, section "FM Header 5:
Attach (LU 6.2)."

If the CPI-C automatic logon feature is to be used, this parameter must be set to CM_SECURITY_PROGRAM. See the Remarks
section for details.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_ENTRY Set_Conversation_Security_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_security_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID or conversation_security_type is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call overrides the initial security type from the side information specified by Initialize_Conversation. This call cannot be issued
after Allocate has been issued.

If the conversation security type is set to CM_SECURITY_NONE, the user identifier and password are ignored when the
conversation is allocated.

A conversation security type of CM_SECURITY_SAME is intended for use between nodes which have the same set of user IDs and
which accept user validation performed on one node as validating the user for all nodes. A password is not used in this case
except for the initial validation of the user ID.

Automatic logon for CPI-C applications is supported by Microsoft® Host Integration Server, Microsoft® SNA Server 4.0, and
Microsoft® SNA Server 3.0 with Service Pack 1 or later. This feature requires specific configuration by the network administrator:
The CPI-C application must be invoked on the LAN side from a client of SNA server. The client must be logged into a Microsoft®
Windows 2000 or Microsoft® Windows NT® domain, but can be any platform that supports SNA server CPI-C APIs.

The client application is coded to use "program" level security, with a special hard-coded CPI-C user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA server, the SNA server looks up the host account and
password corresponding to the Windows 2000 or Windows NT account under which the client is logged in, and substitutes the
host account information into the APPC attach message it sends to the host.

Microsoft Host Integration Server 2000

Set_Conversation_Security_User_ID
The Set_Conversation_Security_User_ID call (function name cmscsu) is issued by the invoking program to specify the user
identifier required to gain access to the invoked program.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

security_user_ID
Supplied parameter. Specifies the user identifier required to gain access to the partner program. This parameter is a character
string of up to eight ASCII characters and is case-sensitive.

The allowed characters are:

Uppercase and lowercase letters.
Numerals 0 through 9.
Special characters, except the space.

If the CPI-C automatic logon feature is to be used, this parameter must be set to the MS$SAME string. See the Remarks section
for details.

security_user_ID_length
Supplied parameter. Specifies the length of security_user_ID. The range is from 0 through 8.

If the CPI-C automatic logon feature is to be used, this parameter must be set to 7. See the Remarks section for details.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The value specified by security_user_ID_length is out of range.

CM_PROGRAM_STATE_CHECK
Primary return code; one of the following occurred:

The conversation is not in INITIALIZE state.
The conversation’s security type is not set to CM_SECURITY_PROGRAM.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call has an effect on the conversation only if the conversation security type is CM_SECURITY_PROGRAM or

CM_ENTRY Set_Conversation_Security_User_ID(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *security_user_ID,
 CM_INT32 FAR *security_user_ID_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CM_SECURITY_SAME. It overrides the initial user identifier from the side information specified by Initialize_Conversation. This call
cannot be issued after Allocate has been issued.

An invalid user identifier is not detected until the allocation request, generated by Allocate, is sent to the partner LU. The error is
returned to the invoking program on a subsequent call.

Automatic logon for CPI-C applications is supported by Microsoft® Host Integration Server, Microsoft® SNA Server 4.0, and
Microsoft® SNA Server 3.0 with Service Pack 1 or later and by. This feature requires specific configuration by the network
administrator: The CPI-C application must be invoked on the LAN side from a client of SNA server. The client must be logged into
a Microsoft® Windows 2000 or Microsoft® Windows NT® domain, but can be any platform that supports SNA server CPI-C
APIs.

The client application is coded to use "program" level security, with a special hard-coded CPI-C user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA server, the SNA server looks up the host account and
password corresponding to the Windows 2000 or Windows NT account under which the client is logged in, and substitutes the
host account information into the APPC attach message it sends to the host.

Microsoft Host Integration Server 2000

Set_Conversation_Type
The Set_Conversation_Type call (function name cmsct) is issued by the invoking program to define a conversation as being
mapped or basic. This call overrides the default conversation type established by Initialize_Conversation. The default conversation
type is CM_MAPPED_CONVERSATION. This call cannot be issued after Allocate has been issued.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

conversation_type
Supplied parameter. Specifies the type of conversation to be allocated by Allocate. Possible values are:

CM_BASIC_CONVERSATION

CM_MAPPED_CONVERSATION

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID or conversation_type is invalid.
The conversation_type parameter specifies a mapped conversation, but the fill characteristic is set to CM_FILL_BUFFER,
which is incompatible with mapped conversations. Before changing the conversation type to mapped, you must issue the
Set_Fill call to change the fill type to CM_FILL_LL.
The conversation_type parameter specifies a mapped conversation. However, a previous Set_Log_Data call, allowed only
in basic conversations, is still in effect.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

CM_ENTRY Set_Conversation_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_CPIC_Side_Information
The Set_CPIC_Side_Information call (function name xcmssi) adds or replaces a side information entry in memory. A CPI-C side
information entry associates a set of conversation characteristics with a symbolic definition name. This call overrides entries
having the same symbolic destination name.

Parameters

key_lock
Supplied parameter. This parameter is ignored.

side_info_entry
Supplied parameter. Specifies the contents of a side information entry. The following table describes the side_info_entry
structure, which defines the format of the side information entry:
Offset Description Type Length
0 sym_dest_name unsigned char 8 bytes
8 partner_LU_name unsigned char 17 bytes
25 reserved unsigned char 3 bytes
28 TP_name_type signed long int 32 bits
32 TP_name unsigned char 64 bytes
96 mode_name unsigned char 8 bytes
104 conversation_

security_type
signed long int 32 bits

108 security_user_ID unsigned char 8 bytes
116 security_password unsigned char 8 bytes

The allowed characters for sym_dest_name are the uppercase letters (A through Z) and the numerals 0 through 9.

Set_CPIC_Side_Information is the only CPI-C call that lets you specify an SNA service TP as the partner program. The SNA
convention for naming a service TP is up to four characters. The first character is a hexadecimal byte between 0x00 and 0x3F. The
remaining characters are translated from ASCII to EBCDIC.

For the allowed characters for the other fields, see the description of the corresponding Set_ call. For example, for the
mode_name field, see the description of the Set_Mode_Name call.

Each field in the structure must be left-aligned. Pad fields on the right with spaces as necessary.

side_info_entry_length
Supplied parameter. Specifies the length of side_info_entry. It is always 124.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

A value specified in the side_info_entry structure is invalid.
The left character of the side_info_entry contains a space.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state.

CM_ENTRY Set_CPIC_Side_Information(
 unsigned char FAR *key_lock,
 SIDE_INFO FAR *side_info_entry,
 CM_INT32 FAR *side_info_entry_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

There is no state change.

Remarks

Invalid string parameters in the side information (for example, specifying a nonexistent partner LU) are not detected until Allocate
is issued. The error is returned on a call following Allocate.

Microsoft Host Integration Server 2000

Set_Deallocate_Type
The Set_Deallocate_Type call (function name cmsdt) specifies how the conversation is to be deallocated.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

deallocate_type
Supplied parameter. Specifies how to perform the deallocation. Possible values are:

CM_DEALLOCATE_ABEND
Indicates that the conversation is to be deallocated abnormally and unconditionally. A program should specify
CM_DEALLOCATE_ABEND when it encounters an error preventing the successful completion of a transaction.

If the conversation is in SEND state, CPI-C sends the contents of the local LU’s send buffer to the partner program before
deallocating the conversation. If the conversation is in RECEIVE state, incoming data can be purged. For a basic conversation in
SEND state, logical record truncation can occur.

CM_DEALLOCATE_CONFIRM
Is used to send the partner program the contents of the local LU’s send buffer and a request to confirm the deallocation.

This request for deallocation confirmation is sent by Deallocate or by Send_Data with the send type set to
CM_SEND_AND_DEALLOCATE. The conversation is deallocated normally when the partner program issues Confirmed,
responding to the confirmation request.

CM_DEALLOCATE_FLUSH
Is used to send the contents of the local LU’s send buffer to the partner program before deallocating the conversation normally.

CM_DEALLOCATE_SYNC_LEVEL
Uses the conversation’s synchronization level to determine how to deallocate the conversation. A default synchronization level
is established by Initialize_Conversation and can be overridden by Set_Sync_Level.

If the synchronization level of the conversation is CM_NONE, the default, the contents of the local LU’s send buffer are sent to
the partner program and the conversation is deallocated normally.

If the synchronization level of the conversation is CM_CONFIRM, the contents of the local LU’s send buffer and a request to
confirm the deallocation are sent to the partner program. This request for deallocation confirmation is sent by Deallocate or by
Send_Data with the send type set to CM_SEND_AND_DEALLOCATE. The conversation is deallocated normally when the partner
program issues the Confirmed call, responding to the confirmation request.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID or deallocate_type is invalid.
The deallocate_type parameter specifies CM_DEALLOCATE_CONFIRM, but the conversation’s synchronization level is set
to CM_NONE.
The address of a variable is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

CM_ENTRY Set_Deallocate_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *deallocate_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The conversation can be in any state except RESET.

There is no state change.

Remarks

This call overrides the default deallocate type established by Initialize_Conversation or Accept_Conversation. The default
deallocate type is CM_DEALLOCATE_SYNC_LEVEL.

The deallocation instructions specified by this call take effect when Deallocate is issued or when the send type is set to
CM_SEND_AND_DEALLOCATE and Send_Data is issued.

You can set deallocate_type to CM_FLUSH if the synchronization level of the conversation is set to CM_NONE or CM_CONFIRM.

The value CM_DEALLOCATE_FLUSH is functionally the same as CM_DEALLOCATE_SYNC_LEVEL with the conversation’s
synchronization level set to CM_NONE.

The value CM_DEALLOCATE_CONFIRM is functionally the same as CM_DEALLOCATE_SYNC_LEVEL with the conversation’s
synchronization level set to CM_CONFIRM.

Microsoft Host Integration Server 2000

Set_Error_Direction
The Set_Error_Direction call (function name cmsed) specifies whether a program detected an error while receiving data or while
preparing to send data.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

error_direction
Supplied parameter. Specifies the direction in which data was flowing when the program encountered an error. Possible values
are:

CM_RECEIVE_ERROR
An error occurred in the data received from the partner program.

CM_SEND_ERROR
An error occurred while the local program prepared to send data to the partner program.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID or error_direction is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

This call overrides the default error direction established by Initialize_Conversation or Accept_Conversation. The default error
direction is CM_RECEIVE_ERROR.

Error direction is relevant only when a program issues Send_Error in SEND_PENDING state, immediately after issuing Receive and
receiving data (data_received is a value other than CM_NO_DATA_RECEIVED) and a send indicator (status_received is
CM_SEND_RECEIVED).

When the conversation is in SEND_PENDING state, the program issues Send_Error if it detects errors in the received data or if an
error occurred while the local program prepared to send data. The program must supply the error direction information using
Set_Error_Direction before issuing Send_Error because the LU cannot tell which kind of error occurred (receive or send). The
new error direction remains in effect until a subsequent Set_Error_Direction changes it.

When Send_Error is issued, the partner program receives one of the following return codes:

CM_PROGRAM_ERROR_PURGING if error_direction is set to CM_RECEIVE_ERROR
CM_PROGRAM_ERROR_NO_TRUNC if error_direction is set to CM_SEND_ERROR

CM_ENTRY Set_Error_Direction(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *error_direction,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Fill
The Set_Fill call (function name cmsf) specifies whether programs will receive data in the form of logical records or as a specified
length of data. This call is allowed only in basic conversations.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

fill
Supplied parameter. Specifies the form in which programs will receive data. The following are possible choices:

CM_FILL_BUFFER
The local program receives data until the number of bytes specified by the requested_length parameter of the Receive call is
reached or until the end of the data. Data is received without regard for the logical-record format.

CM_FILL_LL
Data is received in logical-record format. The data received can be a complete logical record, a portion of a logical record equal
to the requested_length parameter of the Receive call, or the end of a logical record.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID or fill is invalid.
The current conversation is mapped.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

Set_Fill overrides the default fill established by Initialize_Conversation or Accept_Conversation. The default fill is CM_FILL_LL.

The fill value affects all subsequent Receive calls. It can be changed by reissuing the Set_Fill call.

CM_ENTRY Set_Fill(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *fill,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Log_Data
The Set_Log_Data call (function name cmsld) specifies a log message (log data) and its length to be sent to the partner LU. This
call is allowed only in basic conversations. It overrides the default log data, which is null, and the default log data length, which is
zero.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

log_data
Supplied parameter. Specifies the starting address of the data to be sent to the partner LU. It can contain up to 512 ASCII
characters. The allowed characters are:

Uppercase and lowercase letters.
Numerals 0 through 9.
Special characters.
The space.

log_data_length
Supplied parameter. Specifies the length of the log data. The range is from 0 through 512 bytes.

A length of 0 indicates that there is no log data, and the log_data parameter is ignored.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The conversation type is set to mapped.
The value specified by log_data_length is out of range (greater than 512 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

The log data specified by Set_Log_Data is sent to the partner LU when the local program issues one of the following calls:

Send_Error
Deallocate with the conversation’s deallocate type set to CM_DEALLOCATE_ABEND
Send_Data with the conversation’s send type set to CM_SEND_AND_DEALLOCATE and the deallocate type set to
CM_DEALLOCATE_ABEND

After sending the log data to the partner LU, the local LU resets the log data to null and the log data length to zero.

CM_ENTRY Set_Log_Data(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *log_data,
 CM_INT32 FAR *log_data_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CPI-C automatically converts the log data from ASCII to other encoding standards, such as EBCDIC, as required.

Microsoft Host Integration Server 2000

Set_Mode_Name
The Set_Mode_Name call (function name cmsmn) is issued by the invoking program to specify the mode name for a
conversation. This call overrides the system-defined mode name derived from the side information when the
Initialize_Conversation call was issued. This call cannot be issued after Allocate has been issued. Issuing this call has no effect on
the side information itself.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

mode_name
Supplied parameter. Specifies the starting address of the mode name (the name of a set of networking characteristics defined
during configuration). The mode name can contain up to eight ASCII characters. The allowed characters are:

Uppercase letters.
Numerals 0 through 9.

The value of mode_name must match the name of a mode associated with the partner LU during configuration. The mode
name cannot be SNASVCMG or CPSVCMG.

mode_name_length
Supplied parameter. Specifies the length of the mode name. The range is from 0 through 8 bytes

If mode_name_length is set to zero, Set_Mode_Name is ignored.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The value specified by mode_name_length is out of range (greater than 8 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

Specifying an invalid value for mode_name is not detected until Allocate is issued.

CM_ENTRY Set_Mode_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *mode_name,
 CM_INT32 FAR *mode_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Partner_LU_Name
The Set_Partner_LU_Name call (function name cmspln) is issued by the invoking program to specify the partner LU name. This
call overrides the partner LU name derived from the side information when the Initialize_Conversation call was issued. This call
cannot be issued after Allocate has been issued. Issuing this call has no effect on the side information itself.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

partner_LU_name
Supplied parameter. Specifies the starting address of the partner LU name. The mode name can contain up to 17 ASCII
characters. The allowed characters are:

Uppercase letters.
Numerals 0 through 9.

The partner LU name can be either:

An alias consisting of one through eight characters.
A fully qualified network name consisting of from 2 through 17 characters. A period separates the network identifier
(which can be from zero through eight characters) from the network LU name (which can be from one through eight
characters). If the network identifier is zero characters long, the period is still required.

The partner LU name must match the name of a partner LU established during configuration.

partner_LU_name_length
Supplied parameter. Specifies the length of the partner LU name. The range is from 1 through 17.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The value specified by partner_LU_name_length is out of range (greater than 17 or less than 1).

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

Specifying an invalid value for partner_LU_name is not detected until Allocate is issued.

CM_ENTRY Set_Partner_LU_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *partner_LU_name,
 CM_INT32 FAR *partner_LU_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Prepare_To_Receive_Type
The Set_Prepare_To_Receive_Type call (function name cmsptr) specifies how the subsequent Prepare_To_Receive calls will be
executed. It overrides the default prepare-to-receive processing established by Initialize_Conversation or Accept_Conversation. By
default, the prepare-to-receive processing is based on the synchronization level of the conversation.

The prepare-to-receive type affects all subsequent Prepare_To_Receive calls. It can be changed by reissuing
Set_Prepare_To_Receive_Type.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

prepare_to_receive_type
Supplied parameter. Specifies how subsequent Prepare_To_Receive calls will be executed. Possible values are:

CM_PREP_TO_RECEIVE_CONFIRM
Is used to send the partner program the contents of the LU’s send buffer and a confirmation request. Upon receipt of
confirmation, the conversation changes to RECEIVE state.

CM_PREP_TO_RECEIVE_FLUSH
Is used to send the partner program the contents of the local LU’s send buffer and changes the conversation to RECEIVE state.

CM_PREP_TO_RECEIVE_SYNC_LEVEL
Is used by the conversation’s synchronization level to determine prepare-to-receive processing. A default synchronization level
is established by Initialize_Conversation and can be overridden by Set_Sync_Level.

If the synchronization level of the conversation is CM_NONE, the default, the contents of the local LU’s send buffer are sent to
the partner program and the conversation changes to RECEIVE state. If the synchronization level of the conversation is
CM_CONFIRM, the contents of the local LU’s send buffer and a request for confirmation are sent to the partner program. The
conversation changes to RECEIVE state when the partner program issues Confirmed, responding to the confirmation request.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by prepare_to_receive_type or conversation_ID is invalid.
The prepare_to_receive_type parameter is set to CM_PREP_TO_RECEIVE_CONFIRM, but the conversation’s
synchronization level is set to CM_NONE.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Set_Prepare_To_Receive_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *prepare_to_receive_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Processing_Mode
The Set_Processing_Mode call (function name cmspm) specifies for the conversation whether subsequent calls will be returned
when the operation they have requested is complete (blocking) or immediately after the operation is initiated (nonblocking).

 Note A program is notified of the completion of nonblocking calls when it issues Wait_For_Conversation or
through a Windows message sent to a WndProc identified by the hWnd in the Specify_Windows_Handle call.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

receive_type
Supplied parameter. Specifies whether subsequent calls on the conversation will be blocking or nonblocking. Possible values
are:

CM_BLOCKING
Subsequent calls will return only when the operation is complete.

CM_NON_BLOCKING
Subsequent calls will return immediately once the operation has been initiated.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the previous incomplete operation on the conversation has not yet completed.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID or processing_mode is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Set_Processing_Mode(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *receive_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Receive_Type
The Set_Receive_Type call (function name cmsrt) specifies how the program will receive data on subsequent Receive calls. It
overrides the default receive type established by the Initialize_Conversation or Accept_Conversation call. By default, the program
waits for data to arrive if it is not available when the Receive call is issued.

The receive type value affects all subsequent Receive calls. It can be changed by reissuing Set_Receive_Type.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

receive_type
Supplied parameter. Specifies how data is to be received by the program on the subsequent Receive calls. Possible values are:

CM_RECEIVE_AND_WAIT
The local program receives any data that is currently available from the partner program. If no data is currently available, the
local program waits for data to arrive.

CM_RECEIVE_IMMEDIATE
The local program receives any data currently available from the partner program. If no data is available, the local program
does not wait.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID or receive_type is invalid, or the address of a variable is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Set_Receive_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *receive_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Return_Control
The Set_Return_Control call (function name cmsrc) is issued by the invoking program to specify when the local LU, acting on
the session request from the local program’s Allocate call, should return control to the local program.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

return_control
Supplied parameter. Specifies when the local LU, acting on the Allocate call, should return control to the local program. The
following are allowed values:

CM_IMMEDIATE
The LU allocates a contention-winner session, if one is immediately available, and returns control to the program.

CM_WHEN_SESSION_ALLOCATED
The LU does not return control to the program until it allocates a session or encounters errors. If a session is not available, the
program waits for one. (If the session limit is zero, the LU returns control immediately.)

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID or return_control is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call overrides the default return control established by Initialize_Conversation. By default, control is returned when the
session is allocated. This call cannot be issued after the Allocate call has been issued.

For further information about sessions, see Writing CPI-C Applications.

If the LU is unable to allocate a session, the notification is returned on the Allocate call.

CM_ENTRY Set_Return_Control(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_control,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_Send_Type
The Set_Send_Type call (function name cmsst) specifies how data will be sent by the next Send_Data call. It overrides the default
send type established by Initialize_Conversation or Accept_Conversation. The default send type is CM_BUFFER_DATA, indicating
that data only (and no control information) is to be sent.

The send_type value affects all subsequent Send_Data calls. It can be changed by reissuing Set_Send_Type.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

send_type
Supplied parameter. Specifies how data is sent by the next Send_Data call. Possible values are:

CM_BUFFER_DATA
The data pointed to by Send_Data is stored in a buffer until the buffer fills up or is flushed.

CM_SEND_AND_FLUSH
The data pointed to by Send_Data is to be sent immediately.

CM_SEND_AND_CONFIRM
The data is to be sent immediately with a request for confirmation.

CM_SEND_AND_PREP_TO_RECEIVE
The data is to be sent immediately along with notification to the partner program that the conversation state for the sending
program is changing to RECEIVE.

CM_SEND_AND_DEALLOCATE
The data is to be sent immediately along with deallocation notification.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID or send_type is invalid.
The send_type parameter is set to CM_SEND_AND_CONFIRM, but the conversation’s synchronization level is set to
CM_NONE.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

The send_type values that cause additional information to be sent with the data pointed to by Send_Data let you economize on
the number of calls issued. The following table summarizes Send_Data equivalences.

Send_Data with send_type set to this value Equates to Send_Data with send_type set to CM_BUFFER_DATA followed by
CM_SEND_AND_FLUSH Flush
CM_SEND_AND_CONFIRM Confirm
CM_SEND_AND_PREP_TO_RECEIVE Prepare_To_Receive

CM_ENTRY Set_Send_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *send_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CM_SEND_AND_DEALLOCATE Deallocate

Microsoft Host Integration Server 2000

Set_Sync_Level
The Set_Sync_Level call (function name cmssl) is issued by the invoking program to specify the synchronization level of the
conversation. The synchronization level determines whether the programs synchronize their processing through the Confirm and
Confirmed calls.

This call overrides the synchronization level established by the Initialize_Conversation call. The default synchronization level is
CM_NONE, indicating no synchronization. This call cannot be issued after the Allocate call has been issued.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

sync_level
Supplied parameter. Specifies the synchronization level of the conversation. Possible values are:

CM_NONE
The programs will not perform confirmation processing.

CM_CONFIRM
The programs can perform confirmation processing.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID or sync_level is invalid.
The sync_level parameter specifies CM_NONE but one of the following has occurred: the send_type parameter is set to
CM_SEND_AND_CONFIRM, or the prepare_to_receive_type parameter is set to CM_PREP_TO_RECEIVE_CONFIRM, or the
deallocate_type is set to CM_DEALLOCATE_CONFIRM.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

CM_ENTRY Set_Sync_Level(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *sync_level,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Set_TP_Name
The Set_TP_Name call (function name cmstpn) is issued by the invoking program to specify the partner (invokable) program
name. This call overrides the partner program name derived from the side information when the Initialize_Conversation call was
issued. This call cannot be issued after the Allocate call has been issued. Issuing this call has no effect on the side information
itself.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

TP_name
Supplied parameter. Specifies the starting address of the partner program name. The program name can contain up to 64 ASCII
characters. The allowed characters are:

Uppercase and lowercase letters.
Numerals 0 through 9.
Special characters, except the space.

You cannot use Set_TP_Name to specify the name of an SNA service TP. You can, however, use Set_CPIC_Side_Information to
do this.

Double-byte character sets, such as Kanji, are not supported.

TP_name_length
Supplied parameter. Specifies the length of the partner program name. The range is from 1 through 64.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.
The value specified by TP_name_length is out of range (greater than 64 or less than 1).
The address of a variable is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

CM_ENTRY Set_TP_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *TP_name,
 CM_INT32 FAR *TP_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Specify_Local_TP_Name
The Specify_Local_TP_Name call (function name cmsltp) is issued by the program to indicate that it is able to accept incoming
conversations that are directed to the name given.

Parameters

TP_name
Supplied parameter. Specifies the starting address of the local TP name. The program name can contain up to 64 ASCII
characters. The allowed characters are:

Uppercase and lowercase letters.
Numerals 0 through 9.
Special characters, except the space.

You cannot use Specify_Local_TP_Name to specify the name of an SNA service TP.

Double-byte character sets, such as Kanji, are not supported.

TP_name_length
Supplied parameter. Specifies the length of the local program name. The range is from 1 through 64.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; one of the following occurred:

The TP_name supplied is invalid.
The value specified by TP_name_length is out of range (greater than 64 or less than 1).

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The call is not associated with a particular conversation, and so no state restrictions apply.

There is no state change.

Remarks

A program can issue this call more than once to handle incoming conversations with more than one TP name. The program can
discover the actual name on the incoming conversation by calling Extract_TP_Name.

CM_ENTRY Specify_Local_TP_Name(
 unsigned char FAR *TP_name,
 CM_INT32 FAR *TP_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Specify_Windows_Handle
The Specify_Windows_Handle call (function name xchwnd) sets the Windows handle to which a message is sent on
completion of an operation in nonblocking mode.

Parameters

hwndNotify
Supplied parameter. Specifies the Windows handle to be notified when the outstanding operation completes.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The Windows handle is invalid.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The state change is dependent on the operation that completed and its return code.

Remarks

An application can set the processing mode by calling Set_Processing_Mode. If the Windows handle is set to NULL, or this call is
never issued, then the application must call Wait_For_Conversation to be notified when the outstanding operation completes.

When an asynchronous operation is complete, the application’s window hwndNotify receives the message returned by
RegisterWindowMessage with "WinAsyncCPIC" as the input string. The wParam value contains the conversation_return_code
from the operation that is completing. Its values will depend on which operation was originally issued. The lParam argument
contains the CM_PTR to the conversation_ID specified in the original function call.

CM_ENTRY Specify_Windows_Handle(
 HWND hwndNotify,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Test_Request_To_Send_Received
The Test_Request_To_Send_Received call (function name cmtrts) determines whether a request-to-send notification has been
received from the partner program.

Parameters

conversation_ID
Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

request_to_send_received
Returned parameter. The request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program issued Request_To_Send, which requests the local program to change the conversation to RECEIVE state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program did not issue Request_To_Send. This value is not relevant if return_code contains a value other than
CM_OK.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
Primary return code; the value specified by conversation_ID is invalid, or the address of a variable is invalid.

CM_PROGRAM_STATE_CHECK
Primary return code; the conversation is in a state other than SEND, RECEIVE, or SEND_PENDING.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error occurred and has been logged in the product’s error log.

State Changes

The conversation must be in SEND, RECEIVE, or SEND_PENDING state.

There is no state change.

CM_ENTRY Test_Request_To_Send_Received(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Wait_For_Conversation
The Wait_For_Conversation call (function name cmwait) waits for an operation to complete that has been initiated when the
processing_mode conversation characteristic was set to CM_NON_BLOCKING and CM_OPERATION_INCOMPLETE was returned in
the return_code parameter.

Parameters

conversation_ID
Returned parameter. Specifies the identifier for the conversation on which the operation completed. The value of this parameter
was returned by Initialize_Conversation or Accept_Conversation.

conversation_return_code
Returned parameter. Specifies the return_code from the operation that is completing. Its values will depend on which operation
was originally issued.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
Primary return code; the call executed successfully.

CM_SYSTEM_EVENT
Primary return code; the wait completed not because the operation completed but because some system event occurred.

CM_PROGRAM_STATE_CHECK
Primary return code; the program has no incomplete operation outstanding.

CM_PRODUCT_SPECIFIC_ERROR
Primary return code; a product-specific error has occurred and has been logged in the product’s error log.

State Changes

The state change is dependent on the operation that completed and its return code.

Remarks

The program must have an incomplete operation outstanding on some conversation.

See Also

Set_Processing_Mode, Specify_Windows_Handle

CM_ENTRY Wait_For_Conversation(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_return_code,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CPI-C Functions Not Supported
The Windows CPI-C implementation does not support the following CPI-C 1.2 functions:

CPI-C Function Function Name
Extract_Conversation_Context cmectx
Extract_Maximum_Buffer_Size cmembs
Extract_Secondary_Information cmesi
Extract_Send_Receive_Mode cmesrm
Extract_TP_ID xceti
Initialize_Conversation_For_TP xcinct
Initialize_For_Incoming cminic
Receive_Expedited cmrcvx
Release_Local_TP_Name cmrltp
Send_Expedited cmsndx
Set_Queue_Callback_Function cmsqcf
Set_Queue_Processing_Mode cmsqpm
Set_Send_Receive_Mode cmssrm
Start_TP xcstp
Wait_For_Completion cmwcmp
End_TP xcendt

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Extensions for the Windows Environment
This section describes API extensions to Windows CPI-C that allow nonblocking or asynchronous verb completion. Asynchronous
verbs return control to the program immediately, without waiting for full execution, and must notify the application later when
the verb has been completed. An application is also notified in response to the completion of a Wait_For_Conversation call. In
contrast, synchronous verbs block—the function call does not return until the call has completed.

Under Microsoft® Windows® 2000, Microsoft® Windows NT®, Microsoft Windows 98, and Microsoft Windows 95, two
methods are available for handling asynchronous verb completion:

Message posting using window handles.
Waiting on Win32® events.

The first method uses messages posted to a window handle to notify an application of verb completion. This method using
window handles and messages is also supported on Windows 3.x. There is one such window for each CPI-C application. Each CPI-
C conversation can have one asynchronous verb outstanding at any time. When a verb completes, the posting to the window
takes as parameters the CPI-C conversation identifier of the verb that has completed, and the return code of the verb.

The extensions using window handles and message posting described in this section have been designed for all implementations
and versions of Microsoft Windows from version 3.0 through the latest versions of Windows 2000, Windows NT, Windows 98,
and Windows 95. They provide compatibility for Windows programming and optimum application performance in the 16-bit
operating environment.

A second method using Win32 events for notification is supported on Microsoft® Host Integration Server and Microsoft® SNA
Server version 3.0 and later. The extensions using Win32 events described in this section (WinCPICSetEvent and
WinCPICExtractEvent) operate only on Windows 2000, Windows NT, Windows 98, and Windows 95, and offer the optimum
application performance in the 32-bit operating environment. If an event has been registered with the conversation, then an
application can call the Win32 WaitForSingleObject or WaitForMultipleObjects function to wait to be notified of the
completion of the verb.

Windows CPI-C allows multithreaded Windows-based processes. Multithreading is the running of several processes in rapid
sequence within a single program. A process contains one or more threads of execution. The 16-bit Windows environment is not
multithreaded. In this instance, a task corresponds to a process with a single thread. All references to threads in this document
refer to actual threads in multithreaded Windows environments. Using Win32 events is a common technique used by a
multithreaded application that can dedicate a thread or several threads to handle event handling.

The extension descriptions in this section provide a definition of the function, syntax, return values, and remarks for using these
Windows extensions in CPI-C programs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCPICCleanup
The WinCPICCleanup function terminates and deregisters an application from a Windows CPI-C implementation.

Return Values

The return value specifies whether the deregistration was successful. If the value is not zero, the application was successfully
deregistered. The application was not deregistered if a value of zero is returned.

Remarks

Use WinCPICCleanup to indicate deregistration of a Windows CPI-C application from a Windows CPI-C implementation.

BOOL WINAPI WinCPICCleanup(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCPICExtractEvent
The WinCPICExtractEvent function provides a method for an application to determine the event handle being used for a CPI-C
conversation.

Parameters

conversation_ID
Specifies the identifier for the conversation for which this event is used. This parameter is returned by the initial
Accept_Conversation call.

event_handle
Returned parameter. The handle of the event being used by this conversation. If no handle has been registered, this parameter
returns as a NULL.

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
The function executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One or more of the parameters passed to this function are invalid.

Remarks

When a verb is issued on a nonblocking conversation, it returns CM_OPERATION_INCOMPLETE if it is going to complete
asynchronously. If an event has been registered with the conversation, then the application can call WaitForSingleObject or
WaitForMultipleObjects to be notified of the completion of the verb. WinCPICExtractEvent allows a CPI-C application to
determine this event handle. When the verb has completed, the application must call Wait_for_Conversation to determine the
return code for the asynchronous verb. The Cancel_Conversation function can be called to cancel an operation and conversation.

If no event has been registered, then the asynchronous verb completes as it does at present, which is by posting a message to the
window that the application has registered with the CPI-C library.

VOID WINAPI WinCPICExtractEvent(
 unsigned char FAR *conversation_ID,
 HANDLE FAR *event_handle,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCPICIsBlocking
The WinCPICIsBlocking function determines if a task is executing while waiting for a previous blocking call to finish.

Return Values

The return value specifies the outcome of the function. If the value is not zero, there is an outstanding blocking call awaiting
completion. A value of zero indicates the absence of an outstanding blocking call.

Remarks

This call does not infer any information about a particular conversation; it is only intended to provide help to an application
written to use the CM_BLOCKING characteristic of Set_Processing_Mode. WinCPICIsBlocking serves the same purpose as
InSendMessage in the Microsoft® Windows® API. Applications targeted at Windows version 3.x that support multiple
conversations must specify CM_NONBLOCKING in Set_Processing_Mode so they can support multiple outstanding operations
simultaneously. Applications are still limited to one outstanding operation per conversation in all environments.

Although a call issued on a blocking function appears to an application as though it blocks, the Windows CPI-C DLL has to
relinquish the processor to allow other applications to run. This means that it is possible for the application that issued the
blocking call to be re-entered, depending on the message(s) it receives. In this instance, WinCPICIsBlocking can be used to
determine whether the application task currently has been re-entered while waiting for an outstanding blocking call to finish.
Note that Windows CPI-C prohibits more than one outstanding blocking call per thread.

See Also

Specify_Windows_Handle, WinCPICSetBlockingHook, WinCPICUnhookBlockingHook

BOOL WINAPI WinCPICIsBlocking(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCPICSetBlockingHook
The WinCPICSetBlockingHook function allows a Windows CPI-C implementation to block CPI-C function calls by means of a
new function. This call is used by Microsoft® Windows® version 3.x applications to make blocking calls without blocking the rest
of the system. By default in the Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows 98, and Microsoft®
Windows 95 systems, blocking calls suspend the calling application’s thread until the request is finished. Therefore, if a single-
threaded application is targeted at both the Windows version 3.x system and the Windows 2000, Windows NT, Windows 98, and
Windows 95 systems, and relies on this functionality, it should register a blocking hook even if the default hook will suffice.

Parameters

lpBlockFunc
Specifies the procedure instance address of the blocking function to be installed.

Return Values

The return value points to the procedure instance of the previously installed blocking function. The application or library that calls
WinCPICSetBlockingHook should save this return value so that it can be restored if needed. (If nesting is not important, the
application can simply discard the value returned by WinCPICSetBlockingHook and eventually use
WinCPICUnhookBlockingHook to restore the default mechanism.)

Remarks

A Windows CPI-C implementation has a default mechanism by which blocking CPI-C functions are implemented. This function
gives the application the ability to execute its own function at blocking time in place of the default function.

The default blocking function is equivalent to:

The WinCPICSetBlockingHook function is provided to support applications that require more complex message processing—
for example, those employing the multiple document interface (MDI) model or applications with Menu accelerators
(TranslateAccelerator).

Blocking functions must return FALSE in response to a WM_QUIT message so Windows CPI-C can return control to the
application to process the message and terminate gracefully. Otherwise, the function should return TRUE.

See Also

Set_Processing_Mode, Specify_Windows_Handle

FARPROC WINAPI WinCPICSetBlockingHook(
 FARPROC lpBlockFunc
);

BOOL DefaultBlockingHook (void) {
 MSG msg;
 /* get the next message if any */
 if (PeekMessage (&msg,0,0,PM_NOREMOVE)) {
 if (msg.message = = WM_QUIT)
 return FALSE; // let app process WM_QUIT
 PeekMessage (&msg,0,0,PM_REMOVE) ;
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 /* TRUE if no WM_QUIT received */
 return TRUE;
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCPICSetEvent
The WinCPICSetEvent function associates an event handle with a verb completion.

Parameters

conversation_ID
Specifies the identifier for the conversation for which this event is used. This parameter is returned by the initial
Accept_Conversation call.

event_handle
The handle of the event that is to be cleared when an asynchronous verb on the conversation completes. This parameter can
replace an already-defined event or remove an already-defined event (by having NULL as the parameter).

return_code
The code returned from this call. The valid return codes are listed below.

Return Codes

CM_OK
The function executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One or more of the parameters passed to this function are invalid.

CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation is incomplete and the WinCPICSetEvent call was not
accepted.

Remarks

When a verb is issued on a nonblocking conversation, it returns CM_OPERATION_INCOMPLETE if it is going to complete
asynchronously. If an event has been registered with the conversation, then the application can call WaitForSingleObject or
WaitForMultipleObjects to be notified of the completion of the verb. When the verb has completed, the application must call
Wait_for_Conversation to determine the return code for the asynchronous verb.

It is the responsibility of the application to reset the event, as it is with other APIs.

See also

Cancel_Conversation

VOID WINAPI WinCPICSetEvent(
 unsigned char FAR * conversation_ID,
 HANDLE FAR * event_handle,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinCPICStartup
The WinCPICStartup function allows an application to specify the version of Windows CPI-C required and to retrieve details of
the specific Windows CPI-C implementation. This function must be called by an application to register itself with a Windows CPI-C
implementation before issuing any further Windows CPI-C calls.

Parameters

wVersionRequired
Specifies the version of Windows CPI-C support required. The high-order byte specifies the minor version (revision) number;
the low-order byte specifies the major version number.

lpwcpicdata
A pointer to the CPI-C data structure. The CPICDATA structure is defined as follows:

where WCPIDESCRIPTION is defined to 127 and the structure members are as follows:

wVersion

The version of Windows CPI-C supported. The high-order byte specifies the minor version (revision) number; the low-order byte
specifies the major version number.

szDescription

The description string describing the CPI-C version supported.

Return Values

The return value specifies whether the application was registered successfully and whether the Windows CPI-C implementation
can support the specified version number. If the value is zero, it was registered successfully. Otherwise, the return value is one of
the following:

WCPICSYSNOTRERADY
The underlying network subsystem is not ready for network communication.

WCPICVERNOTSUPPORTED
The version of Windows CPI-C support requested is not provided by this particular Windows CPI-C implementation.

WCPICINVALID
The Windows CPI-C version specified by the application is not supported by this DLL.

Remarks

To support future Windows CPI-C implementations and applications that may have functionality differences from Windows CPI-C
version 1.0, a negotiation takes place in WinCPICStartup. An application passes to WinCPICStartup the Windows CPI-C version
that it can use. If this version is lower than the lowest version supported by the Windows CPI-C DLL, the DLL cannot support the
application and the WinCPICStartup call fails. If the version is not lower, however, the call succeeds and returns the highest
version of Windows CPI-C supported by the DLL. If this version is lower than the lowest version supported by the application, the
application either fails its initialization or attempts to find another Windows CPI-C DLL on the system.

This negotiation allows both a Windows CPI-C DLL and a Windows CPI-C application to support a range of Windows CPI-C
versions. An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinCPICStartup works in conjunction with different application and DLL versions.

Application versions DLL versions To WinCPICStartup From WinCPICStartup Result
1.0 1.0 1.0 1.0 Use 1.0
1.0, 2.0 1.0 2.0 1.0 Use 1.0
1.0 1.0, 2.0 1.0 2.0 Use 1.0

INT WINAPI WinCPICStartup(
 WORD wVersionRequired,
 LPWCPICDATA lpwcpicdata
);

typedef struct {
....WORD wVersion;
 char szDescription[WCPICDESCRIPTION_LEN+1];
} CPICDATA, FAR * LPWCPICDATA;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

1.0 2.0, 3.0 1.0 WCPICINVALID Fail
2.0, 3.0 1.0 3.0 1.0 App Fails
1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

Details of the actual Windows CPI-C implementation are described in the WHLLDATA structure defined as follows:

Having made its last Windows CPI-C call, an application should call the WinCPICCleanup routine.

Each Windows CPI-C implementation must make a WinCPICStartup call before issuing any other Windows CPI-C calls.

typedef struct tagWCPICDATA { WORD wVersion;
 char szDescription[WHLLDESCRIPTION_LEN+1];
 } WCPICDATA, FAR *LPWCPICDATA;

Microsoft Host Integration Server 2000

WinCPICUnhookBlockingHook
The WinCPICUnhookBlockingHook function removes any previous blocking hook that has been installed and reinstalls the
default blocking mechanism.

Return Values

The return value specifies the outcome of the function. It is not zero if the default mechanism is successfully reinstalled. The value
is zero if the mechanism did not reinstall.

See also

WinCPICSetBlockingHook

BOOL WINAPI WinCPICUnhookBlockingHook(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Common Return Codes
This section describes the return codes for CPI-C calls. The return codes are listed in integer order.

Call-specific return codes are described for the individual calls in CPI-C Calls.

0

CM_OK
The call executed successfully.

1

CM_ALLOCATION_FAILURE_NO_RETRY
The conversation cannot be allocated because of a permanent condition, such as a configuration error or session protocol error.
To determine the error, the system administrator should examine the error log file. Do not retry the allocation until the error has
been corrected.

2

CM_ALLOCATION_FAILURE_RETRY
The conversation could not be allocated because of a temporary condition, such as a link failure. The reason for the failure is
logged in the system error log. Retry the allocation.

3

CM_CONVERSATION_TYPE_MISMATCH
The partner LU or program does not support the conversation type (basic or mapped) specified in the allocation request.

5

CM_PIP_NOT_SPECIFIED_CORRECTLY
The allocation request was rejected by a non-CPI-C LU 6.2 TP. The partner program requires one or more PIP data variables,
which are not supported by CPI-C.

6

CM_SECURITY_NOT_VALID
The user identifier or password specified in the allocation request was not accepted by the partner LU.

8

CM_SYNC_LVL_NOT_SUPPORTED_PGM
The partner program does not support the synchronization level specified in the allocation request.

9

CM_TPN_NOT_RECOGNIZED
The partner LU does not recognize the program name specified in the allocation request.

10

CM_TP_NOT_AVAILABLE_NO_RETRY
The partner LU cannot start the program specified in the allocation request because of a permanent condition. The reason for
the error may be logged on the remote node. Do not retry the allocation until the error has been corrected.

11

CM_TP_NOT_AVAILABLE_RETRY
The partner LU cannot start the program specified in the allocation request because of a temporary condition. The reason for
the error may be logged on the remote node. Retry the allocation.

17

CM_DEALLOCATED_ABEND
The conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND. If the conversation for
the remote program was in RECEIVE state when the call was issued, information sent by the local program and not yet
received by the remote program is purged.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The partner program terminated normally but did not deallocate the conversation before terminating.

18

CM_DEALLOCATED_NORMAL
This return code does not indicate an error.

The partner program issued the Deallocate call with deallocate_type set to one of the following:

CM_DEALLOCATE_FLUSH.
CM_DEALLOCATE_SYNC_LEVEL with the synchronization level of the conversation specified as CM_NONE.

19

CM_PARAMETER_ERROR
The local program specified an invalid argument in one of its parameters.

20

CM_PRODUCT_SPECIFIC_ERROR
A product-specific error occurred and has been logged in the product’s error log.

21

CM_PROGRAM_ERROR_NO_TRUNC
While in SEND state or in SEND-PENDING state with the error direction set to CM_SEND_ERROR, the partner program issued
Send_Error. Data was not truncated.

22

CM_PROGRAM_ERROR_PURGING
One of the following occurred:

•While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.
•While in SEND-PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

23

CM_PROGRAM_ERROR_TRUNC (for a basic conversation)
In SEND state, before finishing sending a complete logical record, the partner program issued Send_Error. The local program
may have received the first part of the logical record through a Receive call.

24

CM_PROGRAM_PARAMETER_CHECK
A parameter or the address of a variable is invalid. For details, see individual calls in CPI-C Calls.

25

CM_PROGRAM_STATE_CHECK
The call was not issued in an allowed conversation state. For details, see individual calls in CPI-C Calls.

26

CM_RESOURCE_FAILURE_NO_RETRY
One of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.
The partner program did not deallocate the conversation before terminating normally.

27

CM_RESOURCE_FAILURE_RETRY
The conversation was terminated prematurely because of a temporary condition, such as modem failure. Retry the
conversation.

28

CM_UNSUCCESSFUL

The verb issued by the local program was not executed successfully.

30

CM_DEALLOCATED_ABEND_SVC
The conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.
The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

31

CM_DEALLOCATED_ABEND_TIMER
The conversation has been deallocated because the partner program issued Deallocate with the type parameter set to
ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the local program,
data sent by the local program and not yet received by the partner program is purged.

32

CM_SVC_ERROR_NO_TRUNC (for a basic conversation)
While in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to SVC. Data was not
truncated.

33

CM_SVC_ERROR_PURGING
While in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to SVC. Data sent to the
partner program may have been purged.

34

CM_SVC_ERROR_TRUNC (for a basic conversation)
While in RECEIVE or CONFIRM state, the partner program or partner LU issued Send_Error with the type parameter set to SVC
before it finished sending a complete logical record. The local program may have received the first part of the logical record.

35

CM_OPERATION_INCOMPLETE
The operation has not completed and is still in progress. The program can issue Wait_For_Conversation to await the completion
of the operation, or Cancel_Conversation to cancel the operation and conversation. If Specify_Windows_Handle has been called,
the application should wait for notification by a windows message and not call Wait_For_Conversation.

36

CM_SYSTEM_EVENT
This error code is not used by Microsoft® Host Integration Server or Microsoft® SNA Server.

37

CM_OPERATION_NOT_ACCEPTED
A previous operation on this conversation is incomplete.

Microsoft Host Integration Server 2000

CPI-C Sample Applications
This section of the Microsoft® Host Integration Server 2000 Developer's Guide describes the sample programs that implement
the CPI-C.

This section contains:

Sample CPI-C TPs in the SDK

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample CPI-C TPs in the SDK
The source code for several sample programs that illustrate using CPI-C for transaction programs (TPs) are included on the
Microsoft® Host Integration Server 2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. These
sample programs are located in the \SDK\Samples\SNA subdirectory on the Host Integration Server 2000 CD-ROM (these
samples are located under the \SDK\SAMPLES folder on earlier versions of SNA Server). These files are copied to your hard drive
during Host Integration Server software or Host Integration Client software installation when the Host Integration Server
Software Development Kit option is selected. These samples are installed in the Samples\SNA subdirectory below where the Host
Integration Server SDK software is installed (C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\Sna subdirectory
below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files:

Sample TP program Description
APING and APINGD Sample programs that provide a simple test for end-to-end connectivity. These samples are located i

n the \SDK\Samples\SNA\aping folder on the CD-ROM.
Multithreaded APINGD A multithreaded connectivity test that illustrates nonqueued behavior in Microsoft® Window 2000,

Microsoft® Window NT®, Microsoft® Windows® 98, and Microsoft® Windows® 95. This sample i
s located in the \SDK\Samples\SNA\mping folder on the CD-ROM.

CPI-C Send and Receive TPs A pair of simple CPI-C TPs that illustrate the use of asynchronous CPI-C calls. These samples are locat
ed in the \SDK\Samples\SNA\cpic folder on the CD-ROM.

AREXEC and AREXECD A pair of TPs that execute commands on a remote computer and send the output back across the con
nection. These samples are located in the \SDK\Samples\SNA\arexec folder on the CD-ROM.

AREMOTE A sample client and server program using APPC that enables you to invoke and control a text-mode
program from another computer. This sample using APPC was based a Win32® sample program th
at originally used named pipes. These samples are located in the \SDK\Samples\SNA\aremote folder
on the CD-ROM.

In addition to these TPs, the following supplemental programs are included on the Host Integration Server 2000 CD-ROM.

Supple
mental
progra
m

Description

TPSETUP A sample installation program, demonstrating an interface that assists in configuring autostarted invokable TPs. This sa
mple is located in the \SDK\Samples\SNA\tpsetup folder on the CD-ROM.

TPSTART A program required for the automatic startup of invokable TPs that run as applications under Microsoft® Window 2000
or Window NT. TPSTART is not required if the TP has been written as a Window 2000 or Window NT service. TPSTART i
s also unnecessary under Window 98 and Window 95. TPSTART is installed by Host Integration Server 2000 Setup in th
e System folder of the Host Integration Server 2000 root directory. This sample is located in the \SDK\Samples\SNA\tps
tart folder on the CD-ROM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Building the TPs
The CPI-C samples are designed to be built using Microsoft® Visual C/C++ 6.0 or later using the command-line compiler or
using the Microsoft® Visual Studio .NET interactive development environment (IDE).

To build the CPI-C samples installed from the Host Integration Server CD-ROM, set the following environment variables:

Variabl
e

Description

ISVLIBS The directory containing the Microsoft® Host Integration Server 2000 LIB files for Microsoft® Windows 2000, Microsoft
® Window NT®, Microsoft® Windows® 98, and Microsoft® Windows® 95.

ISVINCS The directory containing the Host Integration Server 2000 header files.
SAMPLE
ROOT

The root directory where the sample code provided as part of the SDK has been installed on a local hard disk.

For example, if you installed the Host Integration Server SDK directory to the default location
(C:\Program Files\Host Integration Server SDK), use the following lines to set the variables (assumes Intel binaries are being
produced for Windows 2000, Windows NT on I386, Windows 98, or Windows 95) :

Change to each subdirectory and run NMAKE on the .MAK file in each directory. For example, for the APING and APINGD sample,
change to the aping subdirectory and type the following:

nmake -f makeping.mak

Note that Windows NT on DEC Alpha is not supported by the Host Integration Server SDK. If you wish to build these samples on
Windows NT 4.0 for DEC Alpha, the earlier SNA Server 4.0 SDK will be required for accessing the Windows NT import libraries for
DEC Alpha under the \SDK\LIB\WINNT\ALPHA folder.

To build the CPI-C samples installed as part of the MSDN Platform SDK using the command-line compiler, set up your build
environment as follows:

Run VCVARS32.bat (for VS6) or VSVARS32.bat (for VS.NET) from the Visual Studio bin directory. The default location of this
file is C:\Program Files\Microsoft Visual Studio\VC98\Bin (for VS6) or C:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools (for VS.NET)

To build all the SNA samples, open an MS-DOS Command Prompt window, navigate to the SNA subdirectory, and invoke
NMAKE. This will recursively invoke NMAKE and build all of the SNA samples including the APPC samples.

To build a specific sample (APING or APINGD, for example) using the command-line compiler, open an MS-DOS Command
Prompt window, navigate to the appropriate subdirectory (SNA\aping, for example), and invoke NMAKE.

To build a specific sample (APING, for example) using the Visual Studio .NET IDE, start Microsoft Visual Studio .NET 7.0 and open
the appropriate Visual C++ 7.0 project file (SNA\aping\aping.vcproj, for example) from the File menu. Select a configuration and
build the sample from the Build menu. Each VC7 project file has two configurations, one for a DEBUG build and one for a RETAIL
build.

ISVLIBS=C:\Program Files\Host Integration Server SDK\LIB
ISVINCS=C:\Program Files\Host Integration Server SDK\Include
SAMPLEROOT=C:\Program Files\Host Integration Server SDK\Samples\SNA

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TPSETUP
The TPSETUP sample program simplifies the setting of registry or environment variables needed by autostarted invokable TPs.
Without an interface provided by TPSETUP, configuring such variables can be complicated and prone to errors. Therefore, it is
recommended that you use code like TPSETUP in installation programs for autostarted invokable TPs.

Operation

The source code for TPSETUP, contained in INSTALL.C, can be compiled to work in the Window 2000, Window NT, Window 98,
and Window 95 environment or in the Windows version 3.x environment. TPSETUP has been constructed so that the program
responds correctly in each environment.

For clients running Window 2000 and Window NT, it is recommended that autostarted invokable TPs be written as Window 2000
or Window NT services. For the installation program for such TPs, study the code in INSTALL.C. For example, use the
CreateService function or similar code when installing a TP that will run as a service under Window 2000 or Window NT. For
important information about how services work under Window 2000 and Window NT, see the documentation included with the
Platform SDK for Window 2000, Window NT, and Win32®.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TPSTART
An autostarted TP that runs as an application under Window 2000 or Window NT requires the support of the TPSTART program,
which is installed with the Host Integration Server 2000 software in the System subdirectory of the Host Integration Server 2000
root directory. Therefore, the TPSTART program must be started on a Window 2000-based or Window NT-based client before an
autostarted TP can start as an application. Starting TPSTART can be accomplished by using standard Window 2000 or Window NT
methods, such as including TPSTART in the Startup group on the client.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

APING and APINGD
The sample code for APING and APINGD is ported from code on the IBM APPC/CPI-C disk. These samples are used to test end-to-
end connectivity; and simply show that the configuration is correct by exchanging bytes of data across the link. APING is the client
or invoking (local) half and attempts to contact APINGD (the APPC/CPI-C ping daemon or server), which is written here as a
Window 2000 or Window NT service so it can be installed as an invokable TP on the remote computer.

Setup

To set up APING and APINGD

1. Create an appropriate APPC LU-LU-mode triplet (for example, LUPING-LUPINGD-#INTER).
2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The TP name for APINGD is

APINGD.)
3. Assign the local APPC LU to the APING TP, either by using a registry entry of APING:REG_SZ:LocalLUAlias in the

SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
APING.

Input and Output

APING is a console application. The syntax of its command line is

aping [-ssize] [-iiterations] [-cpackets] [-mmode] [-ttpname] PartnerLUName

aping [-ssize] [-iiterations] [-cpackets] SymbolicDestinationName

where

-ssize
Specifies the size, in bytes, of the packet transmitted. The default is 100 bytes.

-iiterations
Specifies the number of iterations to carry out. The default is 2.

-cpackets
Specifies the number of consecutive packets sent by each side. The default is 1.

-mmode
Specifies the mode name. The default is #INTER.

-ttpname
Specifies the TP name of the TP to start on the remote server. The default is APINGD.

PartnerLUName
Specifies the partner LU name of the destination.

SymbolicDestinationName
Specifies the symbolic destination name of the destination.

Output goes to stdout and stderr, and details the data rates and timings for each iteration.

Operation

Note that with APINGD, Specify_Local_TP_Name is used to set the local TP name, so Wait_For_Conversation must be used to wait
for the Accept_Conversation call to complete, because it will return asynchronously.

The code at the end of APINGD.C is a stub for making any TP into a Window 2000 or Window NT service. There are three routines
that are needed: main, ServiceMain, and ControlHandler. See the comments in the file for details of how these work. The
TPStart routine is the entry point of the TP proper.

In particular, note that in response to the SERVICE_CONTROL_STOP or SERVICE_CONTROL_SHUTDOWN messages in the
ControlHandler routine, action should normally be taken to stop the service, but because each run does not last long with these
samples, no code is included to take such an action.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Multithreaded APINGD
The version of MPINGD provided in the sample code illustrates how to achieve nonqueued behavior from an invokable TP in
Window 2000, Window NT, Window 98, or Window 95. This means that multiple copies of APING can talk to the same copy of
MPINGD at the same time. However, you cannot run multiple copies of a Window 2000 or Window NT service. The features are
achieved by always having a thread with an Accept_Conversation outstanding, so that any incoming attach for MPINGD will
always be satisfied immediately.

Setup

Setup requirements for MPINGD are the same as for the single-threaded version, APINGD. The remote LU and mode that you use
should support parallel sessions so that more than one conversation at a time is possible.

Input and Output

The input and output for MPINGD are the same as for the single-threaded version, APINGD.

Operation

The operation of MPINGD is similar to that of the single-threaded version, APINGD. The same three routines are used (main,
ServiceMain and ControlHandler). ServiceMain calls the TPStart routine. This routine must not return until the service is
ready to terminate.

The TPStart routine does some initialization, creates the first conversation thread, and then waits on an event created by the
ServiceMain routine. This event is set when the service control manager issues an order to STOP or SHUTDOWN. When the
event is set, it calls WinCPICCleanup, which will cancel any active conversations and return outstanding Accept_Conversation calls,
thus making all conversation threads exit. It then marks the service as STOPPED.

The ThreadStart routine is the entry point for each of the conversation threads. It issues Accept_Conversation and
Wait_For_Conversation, and when this completes, it creates another thread to wait for the next attach while the existing thread
services the first attach.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CPI-C Send and Receive TPs
These TPs are CPI-C versions of the APPC send and receive TPs. The sample code illustrates the use of asynchronous CPI-C calls.

Setup

To set up the send and receive TPs

1. Create an appropriate APPC LU-LU-mode triplet.
2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The default symbolic

destination name is CPICRECV.)
3. Assign the local APPC LU to the CPICSEND TP, either by using a registry entry of CPICSEND:REG_SZ:LocalLUAlias in the

SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
CPICSEND.

For example, use SENDLU-RECVLU-#INTER as your LU-LU-mode triplet. Then create a CPI-C symbolic destination name
CPICRECV containing the application TP name CPICRECV, the partner LU alias RECVLU, and the mode name #INTER. Finally, add
the intended user to the users list, and assign SENDLU as the user’s default local APPC LU.

Input and Output

CPICSEND and CPICRECV use the files Cpicsend.cfg and Cpicrecv.cfg for input. These files should be placed in the folder that
contains the TP executable file. These files are similar to the input files for the APPC send and receive TPs.

The following entries are for CPICSEND only:

Line Defa
ult V
alue

Description

ResultFil
e =

C:\Cpi
csend.
out

The filename where the timings results will be stored.

NumSen
ds =

2 The number of Send_Data calls per conversation.

SendSiz
e =

1024 The size of data sent each time in bytes .

Confirm
Every =

1 The number of Send_Data calls between Confirm calls. If ConfirmEvery=0, then CPICSEND will not issue CONFI
RM verbs.

SymDes
tName
=

CPICR
ECV

The symbolic destination name.

NumCo
nversati
ons =

1 The number of conversations. This setting must be the same for CPICSEND and CPICRECV (they do not negotiate
the number). If this value is zero, then the TPs will do an infinite number of conversations.

WaitMo
de=

No Yes, No, or Block.

If WaitMode=No, the verbs are completed through posted windows messages. The TPs issue
Specify_Windows_Handle with a window handle so that Windows CPI-C will post completion messages to this wi
ndow handle.

If WaitMode=Yes, verbs are non-blocking and completed using asynchronous call completion. In this case, the TP
s issue Specify_Windows_Handle with NULL so that the TPs must then issue a Wait_For_Conversation call to w
ait for the asynchronous call to complete.

If WaitMode=Block, all verbs are blocking.

The following entries are for CPICRECV only:

Line Defa
ult V
alue

Description

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

ResultFil
e =

C:\Cpi
crecv.
out

The filename where the timings results will be stored.

LocalTP
Name =

CPIC
RECV

The local TP name to use on the Specify_Local_TP_Name call.

NumCo
nversati
ons =

1 The number of conversations. This setting must be the same for CPICSEND and CPICRECV (they do not negotiate
the number). If this value is zero, then the TPs will do an infinite number of conversations.

WaitMo
de=

No Yes, No, or Block.

If WaitMode=No, the verbs are completed through posted windows messages. The TPs issue
Specify_Windows_Handle with a window handle so that Windows CPI-C will post completion messages to this wi
ndow handle.

If WaitMode=Yes, verbs are non-blocking and completed using asynchronous call completion. In this case, the TP
s issue Specify_Windows_Handle with NULL so that the TPs must then issue a Wait_For_Conversation call to w
ait for the asynchronous call to complete.

If WaitMode=Block, all verbs are blocking.

As with CPICSEND, CPICRECV produces C:\Cpicrecv.out (by default) with timings of the conversations in it.

Operation

CPICRECV should be started first; it issues Specify_Local_TP_Name to set its local TP name, and then Accept_Conversation to
accept a conversation (note that because Specify_Local_TP_Name is issued, the Accept_Conversation will complete
asynchronously).

Both TPs issue Specify_Windows_Handle during initialization to set either the window handle or NULL CPICSEND calls
Set_Processing_Mode after completion of Initialize_Conversation to set the processing mode to nonblocking for this conversation.

After each call is issued, the return code is checked; if it is not CM_OPERATION_INCOMPLETE, the call has already completed, so
an ASYNC_COMPLETE message is posted to trigger the next call. If WaitMode is set to YES and the issued call did not complete
immediately, then a Wait_For_Conversation call is issued to wait for call completion, at which point an ASYNC_COMPLETE
message is posted. If WaitMode is set to NO and the issued call did not complete immediately, then Windows CPI-C detects call
completion and posts an ASYNC_COMPLETE message. The receipt of the ASYNC_COMPLETE message triggers the next call to be
issued.

For CPICSEND, each conversation consists of an Allocate call, followed by a given number of Send_Data calls of given size and
interspersed with Confirm calls at a given interval, followed by a Deallocate.

CPICRECV issues Receive on completion of the Accept_Conversation, and then issues either Receive or Confirmed according to
the return from the previous Receive.

At any stage, if the TPs encounter an error, they terminate. Use CPI-C API tracing to diagnose problems with the configuration.

Both TPs are built from a single source-code file, CPICSR.C. CPICSEND is compiled only if CPICSEND macro is #defined. This
macro is normally defined using the -DCPICSEND option on the command line to the C compiler.

The TPs run as Window 2000, Window NT, Windows 98, or Window 95 applications with a minimized window, the title of which
displays the status. When the WndProc of this window, TPWndProc, receives the WM_CREATE message for the window, it triggers
the issuing of the first call. When TPWndProc receives an ASYNC_COMPLETE message from Windows CPI-C, it triggers the
issuing of the next call, dependent on what the previous call was. When the window is closed, WinCPICCleanup is issued to
terminate any active conversations.

Microsoft Host Integration Server 2000

AREXEC and AREXECD
The sample code for these two TPs provides the ability to execute commands on a remote computer and to send the output back
across the connection to the invoking TP.

Setup

To set up AREXEC and AREXECD

1. Create an appropriate APPC LU-LU-mode triplet.
2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The TP name for AREXECD is

AREXECD.)
3. Assign the local APPC LU to the AREXEC TP, either by using a registry entry of AREXEC:REG_SZ:LocalLUAlias in the

SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
AREXEC.

Input and Output

AREXEC is a console application. The syntax of its command line is

arexec [-mmode] [-ttpname] destination command

where

-mmode
Specifies the mode name. The default is #INTER.

-ttpname
Specifies the TP name.

destination
Specifies the destination. Can be either a symbolic destination name or a partner LU name.

command
Specifies the command string to execute on the remote computer.

The stdout and stderr from the command executed at the remote end is sent across the link and printed to stdout on the
invoking end.

Operation

The AREXECD program is a Window 2000 or Window NT service, using the same routines in APING, APINGD and multithreaded
APINGD. The execution of the command and sending back of data are done in the routine execute_and_send_output in
CPICPORT.C. This sample creates a named pipe and connects to the read end of the pipe. It then creates a process to run the
command and gives that process a handle to the write end of the pipe as its stdout and stderr. Then the data is read from the
pipe, and Send_Data is used to send it across the link.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AREMOTE
The sample code for this TP provides the ability to control a text-mode program on a remote computer. AREMOTE is a Win32
console application that implements a client and a server. The AREMOTE server is invoked with the name of the text-mode
program that the client wishes to control remotely. The AREMOTE client redirects stdin (keyboard input) from the client to the
AREMOTE server. In turn, the AREMOTE server redirects stdin and stderr from the program being controlled back to the
AREMOTE client.

Setup

To set up AREMOTE

1. Create an appropriate APPC LU-LU-mode triplet.
2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The TP name for AREMOTE is

AREMOTE.)
3. Assign the local APPC LU to the AREMOTE TP, either by using a registry entry of AREMOTE:REG_SZ:LocalLUAlias in the

SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
AREMOTE.

Input and Output

The syntax of the command line to start the client end of AREMOTE is as follows:

aremote /C ServerLU [/T TPName] [/P TPName] [/L LocalLU]
[/M Modename] [/N Lines] [/F Color] [/B Color]

where

/C
Specifies the client mode.

ServerLU
Specifies the SNA LU for connecting to the server.

/T TPName
Specifies the TP name that the server is using. The default is AREMOTE.

/P TPName
Specifies the TP name that the client is using. The default is AREMOTC.

/L LocalLU
Specifies the LU name for the local TP to use. The default is AREMOTE.

/M Modename
Specifies the mode name. The default is #INTER.

/N Lines
Specifies the number of lines to get.

/F Color
Specifies the foreground color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen, lcyan,
lred, lpurple, lyellow, and lwhite.

/B Color
Specifies the background color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen, lcyan,
lred, lpurple, lyellow, and lwhite.

The syntax of the command line to start the server end of AREMOTE is as follows:

aremote /S Cmd [/T TPName] [/M Modename] [/F Color] [/B Color]

where

/S
Specifies the server mode.

Cmd
Specifies a text-mode program that you want to control from another computer.

/T TPName
Specifies the TP name that the server is using. The default is AREMOTE.

/M Modename
Specifies the mode name. The default is #INTER.

/F Color
Specifies the foreground color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen, lcyan,

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lred, lpurple, lyellow, and lwhite.
/B Color

Specifies the background color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen, lcyan,
lred, lpurple, lyellow, and lwhite.

The stdout and stderr from the command run at the remote end is sent across the link and printed to stdout on the client. The
stdin from the client is sent across the link and becomes the stdin for the command run at the remote end.

The APPC remote installer (ARSETUP) included with this sample brings up a dialog box that prompts for TP configuration
information. The information is then placed in the registry under Window 2000, Window NT, Window 98, and Window 95 or in
the Win.ini file under Windows 3.x. The WIN32 compiler flag specifies that the Win32 version of ARSETUP should be built for use
on Window 2000, Window NT, Window 98, and Window 95. The WINDOWS flag specifies that the Windows 3.x version of
ARSETUP should be built.

Operation

The AREMOTE server can also be configured to run as a Window 2000 or Window NT service using the ARSETUP sample utility
included in the same folder on the CD-ROM.

The AREMOTE client can exit by inputting the following character sequences:

%cQ : Quit but leave the AREMOTE server running.

%cK : Exit and stop the AREMOTE server.

Other special client commands include the following:

%cM : Send a message to the AREMOTE server.

%cP : Show a popup on the AREMOTE server.

%cS : Report the status of the AREMOTE server.

%cH : Provide help describing these special client commands.

Microsoft Host Integration Server 2000

LUA Applications
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop C-
language applications that use the conventional Logical Unit Application programming interface (LUA) to exchange data in a
Systems Network Architecture (SNA) environment.

This section contains:

About the LUA Guide
LUA Programmer's Guide
LUA Reference
LUA Sample Applications

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

About the LUA Guide
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop C-
language applications that use the conventional Logical Unit Application programming interface (LUA) to exchange data in a
Systems Network Architecture (SNA) environment.

This implementation of LUA is compatible with the Request Unit Interface (RUI) and the Session Level Interface (SLI) of LUA for
the Microsoft® Windows NT® and Microsoft Windows 95 operating systems, the Windows graphical environment, and the IBM
Extended Services for OS/2 version 1.0.

This guide provides conceptual information and detailed reference information.

To use this guide effectively, you should be familiar with:

Microsoft Host Integration Server 2000
One of the following operating environments:

Microsoft Windows® 2000
Microsoft Windows NT®
Microsoft Windows 98
Microsoft Windows 95

SNA concepts

This guide provides conceptual information and detailed reference information. Before reading it, you should be familiar with:

General concepts for the communications software you have installed. (Refer to your product documentation for
information.)
SNA concepts.
Microsoft C version 5.1 or later.
One of the following operating environments:

Microsoft Windows NT

Microsoft Windows 95 or Windows 98

Microsoft Windows version 3.0 or later

This section contains

Operating Systems Support for LUA Development

Finding Further Information

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Operating Systems Support for LUA Development
This section of the guide contains information relating to following operating systems:

Microsoft® Windows® 2000

Microsoft Windows NT®

Microsoft Windows® 98

Microsoft Windows® 95

Microsoft Windows version 3.x

Microsoft MS-DOS®

OS/2 (with IBM Extended Services for OS/2 version 1.0)

Microsoft Host Integration Server 2000 supports the development of LUA applications for Windows 2000, Windows NT, Windows
98, and Windows 95. Under these operating systems, support for LUA applications is provided only for the Win32® subsystem.

The previous Microsoft SNA Server product also supported the development of LUA applications for Windows 3.x and OS/2. Most
LUA applications developed for Windows 3.x and OS/2 with SNA Server can be used with Host Integration Server 2000. The
Windows 3.x, MS-DOS, and OS/2 interface is described here for completeness, but Windows 3.x, MS-DOS, or OS/2 LUA
application development is not supported using Host Integration Server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Finding Further Information
This guide does not provide a detailed explanation of products, architectures, or standards other than those directly pertaining to
Windows LUA. For information on specific operating environments, refer to your system documentation. For information about
SNA, refer to your system network documentation.

For information about SNA architecture, refer to your system network documentation.

The following documents provide additional information about Host Integration Server application programming interfaces (APIs)
based on SNA architecture:

APPC Applications section of the Microsoft Host Integration Server Developer's Guide
CPI-C Applications section of the Microsoft Host Integration Server Developer's Guide

For more information about SNA and about 3270 information display systems, see the following manuals:

IBM 3270 Information Display System: 3274 Control Unit Description and Programmer’s Guide

IBM 3270 Information Display System: Color and Programmed Symbols

IBM 3270 Information Display System: 3274 Control Unit Display Station: Operator’s Guide

IBM Systems Network Architecture: Technical Overview

IBM Systems Network Architecture: Concepts and Products

IBM Advanced Communications Function Products Installation Guide

IBM Installation and Resource Definition

IBM 9370 LAN Token Ring Support

IBM SNA Format and Protocol Reference Manual: Architectural Logic

For background information about logical unit (LU) 6.2, Advanced Program-to-Program Communications (APPC), and/or the
Common Programming Interface for Communications (CPI-C), see the following manuals:

IBM Systems Network Architecture: Introduction to APPC

IBM Systems Network Architecture: Transaction Programmer’s Reference Manual for LU Type 6.2

IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2

IBM SNA: Formats

IBM SNA: Technical Overview

IBM SNA: ACF/VTAM Programming for LU Type 6.2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Programmer's Guide
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides the programmatic techniques and
procedures for creating applications with the Logical Unit Application programming interface (LUA).

This section contains:

LUA Concepts
Writing LUA Applications
Support for LUA Single Sign-On

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Concepts
The conventional Logical Unit Application (LUA) programming interface is an application programming interface (API) that allows
you to write LUA applications to communicate with host applications.

The interface is provided at the request/response unit and session levels, allowing programmable control over the Systems
Network Architecture (SNA) messages sent between your communications software and the host. It can be used to communicate
with any of the logical unit types 0, 1, 2, or 3 at the host; the application must send the appropriate SNA messages as required by
the host.

For example, you can use LUA to write a 3270 emulation program that communicates with a host 3270 application.

This section contains:

Windows LUA Overview
LUs and Sessions
Configuring for LUA
LUA Verb Summary
A Sample LUA Communication Sequence

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Windows LUA Overview
To provide one common API to port applications from various operating environments to Microsoft® Windows® 2000, Windows
NT®, Windows 98, Windows 95, and Windows version 3.x, a Windows SNA standard was created. As a direct result of this work,
Windows LUA was developed. The LUA verbs, routines, and information presented in this guide represent an evolving Windows
LUA that is based on IBM Extended Services for OS/2 version 1.0 and includes a set of Windows extensions.

The use of the Windows LUA interface on Windows 2000, Windows NT, Windows 98, Windows 95, and OS/2 will cause additional
threads to be created within the calling process. These other threads perform interprocess communication with the SNA Server
service over the LAN interface that the client is configured to use (TCP/IP, IPX/SPX, or named pipes, for example).

If an application using Windows LUA is running on Windows 2000 or Windows NT, stopping the SNABASE service will cause the
application to be unloaded from memory.

This section contains:

Windows LUA Asynchronous Support
Before Using Windows LUA
Using LUA and Asynchronous Verb Completion

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Windows LUA Asynchronous Support
Asynchronous verb completion returns immediately from issuing an initial verb (before results have been received) so the
application can continue with other processes. A program that issues a verb and does not regain control until the operation
completes cannot perform any other operations. This synchronous type of operation, called blocking, is not suited to a server
application designed to handle multiple requests from many clients.

By design, LUA is asynchronous and uses semaphores for notification messages. Semaphores work well for the Windows 2000,
Windows NT, Windows 98, Windows 95, and OS/2 systems, and the Windows extensions built into Windows LUA also allow
asynchronous support for Windows version 3.x applications in the LUA interface. Windows LUA provides the following functions
for issuing the Request Unit Interface (RUI) and Session Level Interface (SLI) verbs:

RUI

SLI

WinRUI

WinSLI

WinRUI and WinSLI provide asynchronous message notification for all Windows-based RUI and SLI verbs, while RUI and SLI
provide support for event notification. Windows version 3.x applications use WinRUI and WinSLI for asynchronous message
notification.

Asynchronous support allows you to be notified of verb completion based on a window handle. You can register a window handle
using the RegisterWindowsMessage function with "WinRUI" or "WinSLI" as the string. You then issue a verb using the WinRUI or
WINSLI function and passing a window handle. When the LUA verb conversation completes, a message is posted to the window
handle that you passed, notifying you that the verb is complete.

The only other Windows extension functions required for Windows LUA are for initialization (WinRUIStartup or WinSLIStartup)
and termination (WinRUICleanup or WinSLICleanup) purposes. Depending on your application, other Windows extensions may
be useful, but they are not required. A complete description of all Windows LUA verbs, routines, and extensions is provided in
LUA RUI Verbs, LUA SLI Verbs, and LUA Extensions for the Windows Environment.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Before Using Windows LUA
The following Windows extensions are of particular importance and should be reviewed before using the LUA API and this
version of Host Integration Server or the earlier SNA Server product:

RUI

Provides event notification for all RUI verbs. The application must provide a handle to an event in the lua_post_handle
member of the verb control block (VCB). The event must be in the not-signaled state. When the asynchronous operation is
complete, the application is notified through the signaling of the event. Upon signaling of the event, examine the primary
return code and secondary return code for any error conditions.

SLI

Provides event notification for all SLI verbs. The application must provide a handle to an event in the lua_post_handle
member of the VCB. The event must be in the not-signaled state. When the asynchronous operation is complete, the
application is notified through the signaling of the event. Upon signaling of the event, examine the primary return code and
secondary return code for any error conditions.

WinRUI

Provides asynchronous notification for all Windows-based RUI verbs. When the asynchronous operation is complete, the
application’s window hWnd receives the message returned by RegisterWindowMessage with "WinRUI" as the input
string. The lParam argument of the message contains the address of the VCB being posted as complete. The wParam
argument of the message is undefined.

An application must call WinRUIStartup for initialization before calling WinRUI.

WinRUICleanup

An application must call this function when finished using RUI verbs to deregister itself from the Windows LUA
implementation. This function terminates and deregisters an application from a Windows LUA implementation.

WinRUIStartup

An application must call this function to register itself with a Windows LUA implementation before issuing any further
Windows LUA calls using RUI verbs. This function allows an application to specify the version of Windows LUA required and
to retrieve details of the specific LUA implementation.

WinSLI

Provides asynchronous notification for all Windows-based SLI verbs. When the asynchronous operation is complete, the
application’s window hWnd receives the message returned by RegisterWindowMessage with "WinSLI" as the input string.
The lParam argument of the message contains the address of the VCB being posted as complete. The wParam argument of
the message is undefined.

An application must call WinSLIStartup for initialization before calling WinSLI.

WinSLICleanup

An application must call this function when finished using SLI verbs to deregister itself from the Windows LUA
implementation. This function terminates and deregisters an application from a Windows LUA implementation.

WinSLIStartup

An application must call this function to register itself with a Windows LUA implementation before issuing any further
Windows LUA calls using SLI verbs. This function allows an application to specify the version of Windows LUA required and
to retrieve details of the specific LUA implementation.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using LUA and Asynchronous Verb Completion
Host Integration Server and SNA Server permit one outstanding Windows SNA asynchronous call per connection and one
blocking verb per thread. When the asynchronous verb completes, LUA does the following depending on your environment:

For a Windows 2000, Windows NT, Windows 98, or Windows 95 system, two types of notification are possible. The
preferred type is the event method, in which the LUA application issues WaitForSingleObject/WaitForMultipleObject.
The application can also post the "WinRUI”/”WinSLI" notification message to the window handle of the WinRUI/WinSLI
message.
For a Windows version 3.x system, LUA notifies the completion of an asynchronous request by posting the
"WinRUI”/”WinSLI" notification message to the window handle of the WinRUI/WinSLI message. A window handle has been
added as the first parameter passed to the WinRUI and WinSLI functions.
For OS/2, LUA notifies the completion of an asynchronous request by posting a message to the application’s Window
procedure or by clearing a semaphore/event. Additionally, the application can use system queues for asynchronous verbs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUs and Sessions
The following figure shows the SNA components required for LUA communications.

An LUA application uses a local LU, which uses Host Integration Server or SNA Server to communicate with the host system.
There are three progressive sessions when Host Integration Server or SNA Server connects to the host node:

The PU-SSCP session, between the Host Integration Server or SNA Server physical unit (PU) and the host’s system services
control point (SSCP); this is used mainly for diagnostic information. LUA communications require only the capabilities of PU
2.0; Host Integration Server or SNA Server provides these capabilities, plus the additional capabilities included in PU 2.1.
The SSCP-LU session, between the LUA LU at the personal computer (PC) and the SSCP; this is used for controlling the LU.
The LU-LU session, between the LUA LU at the PC and the host LU; this is used for data transfer between the PC and the
host application.

LUA allows applications to send and receive data on the SSCP-LU session and on the LU-LU session. An LUA application can send
data on this session using the common service verb TRANSFER_MS_DATA. LUA does not provide access to the PU-SSCP session.

The SSCP and LU sessions each provide two priorities of messages, normal and expedited. Expedited messages take precedence
over other messages waiting to be transmitted on the same session. There are, therefore, four different flows on which a message
can be sent or received:

SSCP session (expedited flow)
LU session (expedited flow)
SSCP session (normal flow)
LU session (normal flow)

The LU session normal flow carries most of the data; the other flows are used only for control purposes.

 Note The implementation of LUA in Host Integration Server or SNA Server does not allow applications to send
data on the SSCP expedited flow and does not return data to an application on this flow.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuring for LUA
The Host Integration Server or SNA Server configuration file, which is set up and maintained by the system administrator,
contains information that is required for LUA applications to communicate. An LUA LU is configured by the link service to use a
connection to the host, and is given an LU number that matches that of an LU on the host.

The configuration can include LUA LU pools. A pool is a group of LUs with similar characteristics, and it allows an application to
use any free LU from the pool. This feature can be used to allocate LUs on a first-come, first-served basis when there are more
applications than LUs available, or to provide a choice of LUs on different connections.

The following communications components are configured for use with an LUA application.

Compo
nent

Description

Link ser
vice

A link service for communicating with the host. This component is normally configured by the setup program during Ho
st Integration Server or SNA Server installation.

Connect
ion

A connection to the host that uses the link service.

Local no
de

A local node that owns the connection. This component is configured automatically.

LUA LU An LUA LU on the local node, configured to use the connection, with an LU number that matches an LU on the host.
LUA LU
pool (op
tional)

If necessary, you can configure more than one LUA LU for the application, and group the LUs into a pool. This means tha
t an application can specify the pool rather than a specific LU when issuing the RUI_INIT verb to start a session. Host Inte
gration Server or SNA Server use this name in one of the following ways:

If the name supplied is the name of an LU that is not in a pool, a session is assigned using that LU if it is available (that is,
if it is not already in use by an LUA application).

If the name supplied is the name of an LU pool, or the name of any LU within the pool, a session is assigned using the fir
st available LU in the pool (if one is available). Note that this may not be the LU whose name was specified by the RUI_IN
IT verb.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Verb Summary
LUA application programs can establish and use SNA sessions with either the RUI API or the SLI API. If an LUA application
establishes an SNA session using RUI_INIT, it cannot issue any SLI verbs for that session. Likewise, if an LUA application
establishes an SNA session using SLI_OPEN, it cannot issue any RUI verbs for that session.

Following is a brief summary of each LUA verb or user-supplied routine. Each verb supplies parameters to LUA, which performs
the desired function and returns parameters to the application.

RUI_BID
Allows the application to determine when information from the host is available to be read.

RUI_INIT
Sets up the SSCP-LU session for an LUA application.

RUI_PURGE
Cancels an outstanding RUI_READ.

RUI_READ
Receives data or status information sent from the host to the LUA application’s LU, on either the SSCP session or the LU
session.

RUI_TERM
Ends the SSCP session for an LUA application. It also terminates the LU session if it is active.

RUI_WRITE
Sends data to the host on either the SSCP session or the LU session.

SLI_BID
Notifies the SLI application that a message is waiting to be read using SLI_RECEIVE. It also provides the current status of the
session to the LUA application.

SLI_BIND_ROUTINE
An optional, user-supplied exit routine that notifies the LUA application that a BIND request has come from the host. It allows
the routine to examine the request and formulate a response.

SLI_CLOSE
Ends a session opened with SLI_OPEN.

SLI_OPEN
Transfers control of the specified LU to the LUA application. It establishes a session between the SSCP and the specified LU, as
well as an LU-LU session.

SLI_PURGE
Cancels SLI_RECEIVE verbs issued with a wait condition.

SLI_RECEIVE
Receives responses, SNA commands, and data into an LUA application’s buffer. It also provides the current status of the session
to the LUA application.

SLI_SEND
Sends responses, SNA commands, and data from an LUA application to a host LU.

SLI_STSN_ROUTINE
An optional, user-supplied exit routine that notifies the LUA application that a set and test sequence number (STSN) command
has come from the host. It allows the routine to examine the request and formulate a response.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

A Sample LUA Communication Sequence
This section illustrates how RUI and SLI verbs are used for an LUA communication sequence. The two figures illustrate the LUA
verbs used to start a session, to exchange data, and to end the session, as well as the SNA messages sent and received. The arrows
indicate the direction in which SNA messages flow.

Communication Sequence Using RUI Verbs

In the example shown here, the application performs the following tasks:

Issues an RUI_INIT verb to establish the SSCP session. (RUI_INIT does not complete until the LUA application has received
an ACTLU message from the host and sent a positive response; however, these messages are handled by Host Integration
Server or SNA Server and are not exposed to the LUA application.)
Sends an INITSELF message to the SSCP to request a BIND and reads the response.
Reads a BIND message from the host and writes the response. This establishes the LU session.
Reads an SDT message from the host, which indicates that initialization is complete and data transfer can begin.
Sends a chain of data consisting of three RUs (the last indicates that a definite response is required) and reads the response.
Reads a chain of data consisting of three RUs and writes the response.
Reads an UNBIND message from the host and writes the response. This terminates the LU session.
Issues RUI_TERM to terminate the SSCP session. (Host Integration Server or SNA Server sends a NOTIFY message to the
host and waits for a positive response; however, these messages are handled by Host Integration Server or SNA Server and
are not exposed to the LUA application.)

Communication Sequence Using SLI Verbs

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the example shown here, the application performs the following tasks:

Issues an SLI_OPEN verb to establish the SSCP session.
Sends an INITSELF message to the SSCP to request a BIND and reads the response.
Reads a BIND message from the host and writes the response. This establishes the LU session.
Reads an SDT message from the host, which indicates that initialization is complete and data transfer can begin.

 Note INITSELF, BIND, and SDT messages are handled by Host Integration Server or SNA Server if the
application is using SLI. The SLI_OPEN does not return until Host Integration Server or SNA Server has sent an
SDT and response.

Issues SLI_SEND and SLI_RECEIVE to transfer data, SNA commands, or SNA responses between the host and the application.
Issues SLI_CLOSE to terminate the SSCP session. (Host Integration Server or SNA Server sends a NOTIFY message to the
host and waits for a positive response; however, these messages are handled by Host Integration Server or SNA Server and
are not exposed to the LUA application.)

Microsoft Host Integration Server 2000

Writing LUA Applications
The information contained in this section will help you write LUA application programs for use with Microsoft® Host Integration
Server or Microsoft SNA Server. The following topics are covered:

LUA verbs and verb-control blocks
Synchronous and asynchronous verb completion
Compiling and linking an LUA application
Resetting LUA LUs
Multiple processes and multiple sessions
Writing portable applications
Programming techniques for LUA pools
Microsoft® Windows® 2000, Microsoft Windows NT®, Microsoft Windows 98, Microsoft Windows 95, Microsoft Windows
3.x, Microsoft MS-DOS®, and OS/2 system considerations
SNA considerations

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using LUA Verbs
This implementation of LUA is available to applications written in Microsoft® C version 5.1 or later. Applications access all LUA
functions on Microsoft® Windows® 2000, Microsoft Windows NT®, Microsoft Windows 98, Microsoft Windows 95, and
Microsoft Windows 3.x by issuing verbs using the external C functions RUI, SLI, WinRUI, and WinSLI.

Symbolic constants are defined in the WINLUA.H header file for many parameter values. Refer to the WINLUA.H file (contained in
the Microsoft Host Integration Server or Microsoft SNA Server SDK) for a list of LUA constants.

You should use the symbolic constant and not the hexadecimal value when setting values for supplied parameters, or when
testing values of returned parameters.

Parameters marked as reserved should always be set to zero.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RUI and SLI Definitions
The definitions of the RUI and SLI functions are as follows:

void WINAPI RUI(struct LUA_VERB_RECORD FAR * verb);

void WINAPI SLI(struct LUA_VERB_RECORD FAR * verb);

int WINAPI WinRUI(HWND handle, struct LUA_VERB_RECORD FAR * verb);

int WINAPI WinSLI(HWND handle, struct LUA_VERB_RECORD FAR * verb);

The WINLUA.H header file supplied with your Host Integration Server or SNA Server SDK includes prototypes of these functions.

The only parameter passed to the RUI or SLI function is the address of a verb control block (VCB). The VCB is a structure made up
of variables that:

Identify the LUA verb to be executed.
Supply information used by the verb.
Contain information returned by the verb when execution is complete.

The parameters passed to the WinRUI or WinSLI function are a window handle and the address of a VCB. The window handle is
used for message notification when the issued verb has completed.

The VCB structure is declared in the WINLUA.H header file. See The LUA VCB Format for general VCB information. For verb-
specific VCB information, see the reference documentation for each verb.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Issuing an LUA Verb
The following procedure is required to issue an LUA verb. In this example, the verb issued is RUI_INIT.

To issue an LUA verb

1. Create a variable for the VCB structure. For example:

2. The LUA_VERB_RECORD structure is declared in the WINLUA.H header file.
3. Clear (set to zero) the variables within the VCB:

LUA requires that all reserved parameters, and all parameters not required by the verb being issued, must be set to zero.
The simplest way to do this is to set the entire VCB to zeros before setting the parameters required for this particular verb.

4. Assign values to the VCB parameters that supply information to LUA:

The values LUA_VERB_RUI and LUA_OPCODE_RUI_INIT are symbolic constants. These constants are defined in the
WINLUA.H header file in the SNA Server SDK. To ensure portability between different systems, use symbolic constants and
not integer values.

5. Invoke LUA. The only parameter is a pointer to the address of the structure containing the VCB for the desired verb.

6. Check the asynchronous flag (rui_init.common.lua_flag2.async) to determine whether the verb completed
asynchronously. If events are being used and the verb did complete asynchronously, wait for the event to complete.

Do not check the return code; it may have changed from LUA_IN_PROGRESS to LUA_OK by the time you check it.

7. Check the variables returned by LUA.

#include <winlua.h>
 .
 .
struct LUA_VERB_RECORD rui_init;

memset(&rui_init, 0, sizeof(rui_init));

rui_init.common.lua_verb = LUA_VERB_RUI;
rui_init.common.lua_verb_length = sizeof(struct LUA_COMMON);
rui_init.common.lua_opcode = LUA_OPCODE_RUI_INIT;
memcpy (rui_init.common.lua_luname, "THISLU ", 8);

RUI(&rui_init);

if (rui_init.common.lua_flag2.async)
{
/* verb will complete asynchronously so continue
with other processing */
/* then wait */
WaitForSingleObject (...)
}

if(rui_init.common.lua_prim_rc == LUA_OK)
{
/* Init OK */
 .

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 .
}
else
{
/* Do error routine */
 .
 .
}

Microsoft Host Integration Server 2000

The LUA VCB Format
The LUA verb control block (VCB) is called LUA_VERB_RECORD. It is a structure with two parts:

A structure, LUA_COMMON, which is used for all the LUA verbs.
A union, LUA_SPECIFIC, which is used only by RUI_BID, SLI_BID, SLI_OPEN, and SLI_SEND.

The following topics describe the VCB and its parts.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA_VERB_RECORD
The LUA VCB structure is as follows:

typedef struct LUA_VERB_RECORD {

struct LUA_COMMON common;

union LUA_SPECIFIC specific;

} LUA_VERB_RECORD;

To access parameters in the common part of the VCB, you need to include the structure member name common. For example,
when using a verb record structure named Lua_Verb, you access its lua_prim_rc member as Lua_Verb.common.lua_prim_rc.

To access parameters in the specific part of the VCB, you need to include the union member name specific. For example, when
issuing RUI_BID using a verb record structure named Lua_Verb, you access its lua_peek_data member as
Lua_Verb.specific.lua_peek_data.

For a complete listing of the structures and related values in the LUA VCB, see LUA Verb Control Blocks.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA_COMMON
The following structure lists the common data structure parameters used by all the LUA verbs.

struct LUA_COMMON {
unsigned short lua_verb;
unsigned short lua_verb_length;
unsigned short lua_prim_rc;
unsigned long lua_sec_rc;
unsigned short lua_opcode;
unsigned long lua_correlator;
unsigned char lua_luname[8];
unsigned short lua_extension_list_offset;
unsigned short lua_cobol_offset;
unsigned long lua_sid;
unsigned short lua_max_length;
unsigned short lua_data_length;
char FAR * lua_data_ptr;
unsigned long lua_post_handle;
struct LUA_TH lua_th;
struct LUA_RH lua_rh;
struct LUA_FLAG1 lua_flag1;
unsigned char lua_message_type;
struct LUA_FLAG2 lua_flag2;
unsigned char lua_resv56[7];
unsigned char lua_encr_decr_option;
} LUA_COMMON;

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs or LUA_VERB_SLI for SLI verbs. For both of these
macros the value is 0x5200.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued, for example,
LUA_OPCODE_RUI_BID for the RUI_BID verb.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_OPEN and RUI_INIT require this parameter. Other Windows LUA verbs only require this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Specifies the offset from the start of the VCB to the extension list of user-supplied dynamic-link libraries (DLLs). Not used by
RUI in Host Integration Server or SNA Server and should be set to zero.

lua_cobol_offset
Offset of the Cobol extension. Not used by LUA in Host Integration Server or SNA Server and should be zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Specifies the length of received buffer for RUI_READ and SLI_RECEIVE. For other RUI and SLI verbs, it is not used and should be

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

set to zero.
lua_data_length

Returned parameter. Specifies the length of data returned in lua_peek_data for the RUI_BID verb.
lua_data_ptr

Pointer to the application-supplied buffer that contains the data to be sent for SLI_SEND and RUI_WRITE or that will receive data
for SLI_RECEIVE and RUI_READ. For other RUI and SLI verbs, this parameter is not used and should be set to zero.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various subparameters are
set for write functions and returned for read and bid functions.

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits.

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions.

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits.

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is used
by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs this parameter is not used and
should be set to zero.

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. This is a returned parameter for RUI_INIT and

SLI_OPEN and a supplied parameter for SLI_SEND. For other LUA verbs this variable is not used and should be set to zero.

Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. This parameter is returned by RUI_BID, RUI_READ,
RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs this parameter is not used and should be set to zero.

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Supplied parameter. Reserved field used by SLI_OPEN and RUI_INIT. For all other LUA verbs, this parameter is reserved and
should be set to zero.

lua_encr_decr_option
Field for cryptography options. On RUI_INIT, only the following are supported:

lua_encr_decr_option = 0
lua_encr_decr_option = 128

For all other LUA verbs, this parameter is reserved and should be set to zero.

Microsoft Host Integration Server 2000

LUA_SPECIFIC
The following union shows the specific data structure that is included for functions that use the LUA_SPECIFIC part of a verb
control block. The only LUA verbs that use this union are RUI_BID, SLI_BID, SLI_OPEN, and SLI_SEND.

union LUA_SPECIFIC {
struct SLI_OPEN open;
unsigned char lua_sequence_number[2];
unsigned char lua_peek_data[12];
} LUA_SPECIFIC;

Members

open
The union member of LUA_SPECIFIC used by the SLI_OPEN verb.

lua_sequence_number
The union member of LUA_SPECIFIC used by the SLI_SEND verb. Returned parameter. Sequence number of the RU to the
host.

lua_peek_data
The union member of LUA_SPECIFIC used by the RUI_BID and SLI_BID verbs. Returned parameter. Contains up to 12 bytes of
the data waiting to be read.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA_SPECIFIC.SLI_OPEN
The following structure shows the SLI_OPEN fields of the LUA SPECIFIC union member for the SLI_OPEN verb.

struct SLI_OPEN {
unsigned char lua_init_type;
unsigned char lua_resv65;
unsigned short lua_wait;
struct LUA_EXT_ENTRY lua_open_extension[3];
unsigned char lua_ending_delim;
} SLI_OPEN;

Members

lua_init_type
Type of session initiation.

lua_resv65
Reserved field.

lua_wait
Secondary retry wait time.

lua_open_extension
Supplied parameter. Specifies any user-supplied dynamic-link libraries (DLLs) used to process specific LUA messages.

lua_ending_delim
Extension list delimiter.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA_EXT_ENTRY
The following structure shows the LUA_EXT_ENTRY fields of the LUA SPECIFIC.SLI_OPEN union member for the SLI_OPEN verb.

struct LUA_EXT_ENTRY {
unsigned char lua_routine_type;
unsigned char lua_module_name[9];
unsigned char lua_procedure_name[33];
};

Members

lua_routine_type
Extension routine type.

lua_module_name
Extension DLL module name.

lua_procedure_name
Procedure name to call in the extension DLL module.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Synchronous and Asynchronous Verb Completion
LUA verbs can complete execution either synchronously or asynchronously.

Synchronous Verb Completion
When LUA is able to complete all the processing for a verb as soon as it is issued, the verb has completed synchronously. When
this happens, the primary return code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set to zero.
Note that the value of the lua_flag2.async bit should be tested, not the primary return code being not equal to
LUA_IN_PROGRESS. (See individual verb descriptions for information on these returned parameters.)

Asynchronous Verb Completion
Some LUA verbs (for example, RUI_PURGE) complete quickly after local processing; however, most verbs take some time to
complete because they require messages to be sent to and received from the local node or the host application.

When LUA must wait for information from the remote LU or from the local node before it can complete a verb, the verb
completes asynchronously.

When this happens, the lua_flag2.async bit is set to 1. The primary return code is also normally set to LUA_IN_PROGRESS, but
this value cannot be relied on. The value of the lua_flag2.async bit should be tested. The application can now perform other
processing, or wait for notification from LUA that the verb has completed. LUA issues this notification by setting the primary
return code to its final value and leaving lua_flag2.async set to 1.

When the verb completes, LUA does the following depending on your environment:

For a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft® Windows® 95
system, two types of notification are possible. The LUA application either:

Issues WaitForSingleObject or WaitForMultipleObject.

—or—

Posts the "WinRUI”/”WinSLI" notification message to the window handle of the WinRUI/WinSLI message.

The event method using WaitForSingleObject or WaitForMultipleObject is the preferred way to receive asynchronous
notification on Windows 2000, Windows NT, Windows 98, or Windows 95.

In the Windows environment, it notifies the completion of an asynchronous request by posting the "WinRUI”/”WinSLI"
notification message to the window handle of the WinRUI/WinSLI message. A window handle has been added as the first
parameter passed to the WinRUI and WinSLI entry points.
For OS/2, it notifies the completion of an asynchronous request by posting a message to the application’s Window
procedure or by clearing a semaphore/event. Additionally, the application can use system queues for asynchronous verbs.

Note that if the verb completes synchronously, LUA does not clear the semaphore.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Compiling and Linking an LUA Application
Use the following procedure to compile and link a LUA application.

To compile and link an LUA application for use with Host Integration Server or SNA Server

1. Update the path statement to include the directory containing the LUA application.
2. Set any required environmental variables.
3. Compile the application, including the WINLUA.H header file provided in the Microsoft® Host Integration Server or

Microsoft® SNA Server SDK, to produce the .OBJ files.
4. Link the application with the WINLUA.LIB library to produce an .EXE file.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Resetting LUA LUs
Both Microsoft® Host Integration Server and Microsoft® SNA Server provide a facility for resetting LUA LUs or forcing off LUA
applications, which is useful if an application has become deadlocked or is looping.

The NetView command deactivate-oldlu can also be used to reset an LUA LU. These facilities interact with the LUA application
as described in the following paragraphs.

When an LUA LU is reset through Host Integration Server or SNA Server or by using the deactivate-oldlu command, Host
Integration Server or SNA Server sends an UNBIND message to the application (as though the host had issued it).

The UNBIND message sent to the application is 0x32 0x0E, indicating a recoverable LU failure, and is returned to the application
on a subsequent RUI_READ. The LU session is terminated, but the SSCP session remains active (that is, the LU is returned to the
same state as if RUI_INIT has just completed).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Multiple Processes and Multiple Sessions Using LUA
Two processes cannot use the same LUA session. Only the process that issues RUI_INIT can use the session that is started by the
verb. Before another process can use LUA, it must issue RUI_INIT to obtain a new session. However, different threads of the same
process can issue verbs for the same LUA session.

A single process can simultaneously use more than one LUA session by issuing multiple RUI_INIT verbs. Win32 processes
support for up to 15,000 sessions for applications based on the Microsoft® Windows 2000, Microsoft® Windows NT®,
Microsoft® Windows® 98, and Microsoft® Windows® 95. Processes on OS/2 systems support up to 512 sessions. Processes on
Microsoft® Windows 3.x support up to 16 sessions. Each session must use a different LU. Two or more sessions can use the same
pool, but the lua_luname member (which is either the name of the pool or the name of an LU within the pool) must be different
for each RUI_INIT.

Two or more instances of the same LUA application can run as different processes, but they must use different LUs. This can be
done by using LU pools; the two processes can specify the same pool, but are allocated different LUs from that pool.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Techniques for LUA Pools
When working with an LUA LU pool, specify the pool name at the beginning of the conversation and then use the lua_sid
member (not the pool name) with subsequent calls. This is necessary because the lua_sid member is a unique identifier, but the
pool name is not, because a pool is designed to supply LUs for multiple conversations.

When using RUI_INIT or SLI_OPEN with an LUA pool, specify the pool name with the lua_luname member. For subsequent calls
in the same conversation, use the lua_sid member returned from RUI_INIT or SLI_OPEN to specify the conversation.

Also note that on completion of RUI_INIT or SLI_OPEN, the lua_luname member contains the actual name of the LU used. This
allows you to create code for a display for the user, showing the actual LU name used in a particular conversation.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Writing Portable LUA Applications
Use the following guidelines for writing LUA applications that are portable to other environments:

the symbolic constant names for parameter values and return codes, not the numeric values shown in the WINLUA.H file.
(See the WINLUA.H file in the Microsoft® Host Integration Server or Microsoft® SNA Server SDK for more information.)
When accessing SNA sense codes in a data buffer, use the symbolic constants rather than the numeric values; this ensures
that the byte storage order is correct for your particular system. You should use memcpy to set the values, and memcmp
to test them. For example:

memcpy (this_verb.common.lua_data_ptr, LUA_INCORRECT_REQ_CODE, 4);

if (memcmp (this_verb.common.lua_data_ptr,
LUA_INCORRECT_REQ_CODE, 4) == 0)
{
.....
}

Ensure that any parameters shown as reserved are set to zero.
Set the lua_verb_length parameter as described in the verb description.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA System Considerations
This section provides specific information about developing LUA applications for the following operating systems:

LUA Considerations on Microsoft Windows 2000, Windows NT, Windows 98, and Windows 95
LUA Considerations on Microsoft Windows 3.x
LUA Considerations on Microsoft MS-DOS
LUA Considerations on OS/2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Considerations on Microsoft Windows 2000, Windows NT,
Windows 98, and Windows 95
This section summarizes information for developing Win32® LUA applications for Microsoft® Windows 2000, Microsoft®
Windows NT®, Microsoft® Windows® 98, or Microsoft® Windows® 95.

Byte ordering
The values of constants defined in the WINLUA.H file are dependent on the byte ordering of the hardware used. Macros are
used to set the constants to the correct value.

Currently, the include files in the Windows 2000 or Windows NT system use the i386 macro (Windows NT also uses the ALPHA,
MIPS, and PPC macros) to indicate the hardware. These same macros are used by Microsoft® Host Integration Server or
Microsoft® SNA Server, along with the Win32 macro, to indicate the byte ordering needs. The macros must be defined in the
application or on the command line when building the application.

For example, the primary return code of LUA_PARAMETER_CHECK is defined to have a value of 0x0001. Depending on the
environment, the constant LUA_PARAMETER_CHECK may or may not be 0x0001. Some formats define the value as it appears in
memory; others define it as a 2-byte variable. Because it cannot be assumed that an application will always use provided
constants rather than hardwired values, a macro can be defined to swap the bytes. The following example shows how the macro
can be used:

Events
To receive data asynchronously, an event handle is passed in the semaphore field of the VCB. This event must be in the
nonsignaled state when passed to LUA, and the handle must have EVENT_MODIFY_STATE access to the event.

Library names
To support the coexistence of Win16 and Win32 API libraries on the same computer, the Win32 DLL names have been changed
from the names used by Win16 API libraries. Win32 stub DLL libraries using the old names are supplied with Host Integration
Server or SNA Server so that older applications are still supported.
Old DLL names New DLL names
WINRUI.DLL WINRUI32.DLL
WINSLI.DLL WINSLI32.DLL

The old DLL names should be used for Win32-based applications that are required to run on SNA Server version 2.0. The new
DLL names should be used for Win32-based applications that are intended to run only on Host Integration Server or on SNA
Server version 2.1 or later.

If you intend your Win32-based application to be used with SNA Server version 2.0, you should link with the libraries included
with SNA Server version 2.0. Otherwise, use the libraries provided with Host Integration Server or with SNA Server version 2.1
or later.

Load-time linking
To be dynamically linked to LUA at load time, you must do one of the following at link time:

Insert the following IMPORTS statements in the definition (.DEF) file used to link the application:

(For RUI)

(For SLI)

#define LUA_PARAMETER_CHECK LUA_FLIPI (0X0001)

IMPORTS WINRUI.RUI
IMPORTS WINRUI WinRUI
IMPORTS WINRUI.WinRUIStartup
IMPORTS WINRUI.WinRUICleanup

IMPORTS WINSLI.SLI
IMPORTS WINSLI.WinSLI
IMPORTS WINSLI.WinSLIStartup

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Link the application to WINRUI.LIB (for RUI) or WINSLI.LIB (for SLI), which contain the entry-point linkage information.

Multiple threads
An LUA application can have multiple threads that issue verbs. LUA for the Win32 system makes provisions for multithreading
processes on Windows 2000, Windows NT, Windows 98, and Windows 95. A process contains one or more threads of
execution. All references to threads refer to actual threads in a multithreaded Windows 2000, Windows NT, Windows 98, or
Windows 95 environment.

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or DWORD boundaries, whichever is smaller. As a result, DWORDs are aligned on
DWORD boundaries, WORDs are aligned on WORD boundaries, and BYTEs are aligned on BYTE boundaries. This means, for
example, that there is a 2-byte gap between the primary and secondary return codes. Therefore, the elements in a VCB should
only be accessed using the structures provided.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers. For compatibility
with the supplied LUA libraries, make sure to use an equivalent structure and union member packing option when using other
C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft compilers.

Registering and deregistering applications
All LUA applications for the Windows 2000, Windows NT, Windows 98, or Windows 95 system must call the Windows SNA
extension WinRUIStartup or WinSLIStartup at the beginning of the session to register the application and WinRUICleanup or
WinSLICleanup at the end of the session to deregister the application.

Restrictions on 3270-style LUs
A Windows 2000, Windows NT, Windows 98, or Windows 95 process cannot access 3270-style LUs from both the Function
Management Interface (FMI) and LUA APIs at the same time. However, the process can use the LUA APIs to access LUA LUs
while using FMI APIs to access 3270-style LUs.

Run-time linking
For an application to be dynamically linked to LUA at run time, it must issue the following calls:

LoadLibrary to load the specified library module for Windows LUA. That is, WINRUI.DLL or WINRUI32.DLL (for RUI), and
WINSLI.DLL or WINSLI32.DLL (for SLI).
GetProcAddress to retrieve the address of the LUA function entry points exported by the DLL. For RUI, the function entry
points are RUI, WinRUI, WinRUIStartup, and WinRUICleanup. For SLI, the function entry points are SLI, WinSLI,
WinSLIStartup, and WinSLICleanup.

IMPORTS WINSLI.WinSLICleanup

Microsoft Host Integration Server 2000

LUA Considerations on Microsoft Windows 3.x
This section summarizes information for developing LUA applications on a Microsoft® Windows® version 3.x system.

Load-time linking
To be dynamically linked to LUA at load time, you must do one of the following at link time:

Insert the following IMPORTS statements in the definition (.DEF) file used to link the application:

(For RUI)

(For SLI)

Link the application to WINRUI.LIB (for RUI) or WINSLI.LIB (for SLI), which contain the entry-point linkage information.

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or WORD (2-byte) boundaries, whichever is smaller. As a result, DWORDs and WORDs
are aligned on WORD boundaries and BYTEs are aligned on BYTE boundaries. For portability to Win32, VCBs should be
accessed using the structures provided since the alignment of structure members differs.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers producing 16-bit
code. For compatibility with the supplied LUA libraries, make sure to use an equivalent structure and union member packing
option when using other C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft
compilers.

Registering and deregistering applications
All Windows LUA applications must call the Windows SNA extension function WinRUIStartup or WinSLIStartup at the beginning
of the session to register the application and WinRUICleanup or WinSLICleanup at the end of the session to deregister the
application.

Run-time linking
For an application to be dynamically linked to LUA at run time, it must issue the following calls:

Call the LoadLibrary function to dynamically load the WINRUI.DLL (for RUI) or WINSLI.DLL (for SLI) library module for
Windows LUA.
Call the GetProcAddress function to retrieve the address of each LUA function entry point that will be called in the DLL.
For RUI, the function entry points are RUI, WinRUI, WinRUIStartup, and WinRUICleanup. For SLI, the function entry points
are SLI, WinSLI, WinSLIStartup, and WinSLICleanup.

Simultaneous sessions
An application can participate in as many as 16 sessions simultaneously in the Windows environment. However, if multiple LUA
applications are active at the same time, the total number of sessions cannot exceed 16.

IMPORTS WINRUI.RUI
IMPORTS WINRUI WinRUI
IMPORTS WINRUI.WinRUIStartup
IMPORTS WINRUI.WinRUICleanup

IMPORTS WINSLI.SLI
IMPORTS WINSLI.WinSLI
IMPORTS WINSLI.WinSLIStartup
IMPORTS WINSLI.WinSLICleanup

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Considerations on Microsoft MS-DOS
This section summarizes information for developing LUA applications on a Microsoft® MS-DOS® system. Only RUI is supported
on MS-DOS; SLI is not supported on MS-DOS.

Implementing semaphores
RUI signals that an asynchronous verb has completed by setting lua_post_handle to zero. For example:

/*Set lua_post_handle to non-zero value */

rui_innit.common.lua_post_handle = 1l ;

/*Issue RUI verb */

RUI (&rui_init) ;

/*Check to see if verb will complete asynchronously */

if (rui_init.common.lua_flag2.async)

{

/*Verb will complete asynchronously */

To wait for the verb to complete, loop until lua_post_handle is cleared. For example:

while (rui_init.common.lua_post_handle != 0)

{

/* The application is free to do other work in this loop */

}

/* The loop has exited, so the verb completed */

Keep in mind the following guidelines:

The application should set lua_post_handle to zero before it issues a verb.
A single MS-DOS application can run up to 16 sessions, but memory limitations can cause problems if the application
sends anything except very small RUs. A more realistic limit is two to three sessions per application.

Load-time linking
To be dynamically linked to LUA at load time, you must link the application to DOSACS.LIB, which contains the entry-point
linkage information.

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or WORD (2-byte) boundaries, whichever is smaller. As a result, DWORDs and WORDs
are aligned on WORD boundaries and BYTEs are aligned on BYTE boundaries. For portability to Win32, VCBs should be
accessed using the structures provided since the alignment of structure members differs.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers producing 16-bit
code. For compatibility with the supplied LUA libraries, make sure to use an equivalent structure and union member packing
option when using other C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft
compilers.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Considerations on OS/2
This section summarizes information for developing LUA applications on OS/2.

This implementation of LUA is binary-compatible with the implementation of the RUI and SLI interfaces in IBM Extended Services
(ES) for OS/2 version 1.0 LUA. Therefore, there are no migration steps for IBM ES for OS/2 version 1.0 applications. However, if
you recompile an IBM ES for OS/2 version 1.0 LUA application for use with LUA, include the WINLUA.H header file provided in the
SNA Server SDK to ensure complete platform compatibility.

Note that this LUA implementation does not support user-defined encryption and decryption routines.

Critical sections
Exercise great caution when using critical sections, which are the parts of a program that must run without interruption. An
application must not issue an LUA verb within a critical section.

Data segments
Data is sent from and received in data buffers established by the application. A data buffer must reside on an unnamed shared
data segment and must fit entirely within the data segment. Many data buffers can reside on the same data segment.

The data segment for the VCB must have read and write attributes. It can be one of the following:

A variable (not a local variable because LUA will copy data to it on completion of the verb).
Allocated dynamically using DosAllocSeg or DosSubAlloc.

Load-time linking
For an application to be dynamically linked to LUA at load time, you must do one of the following at link time:

Insert the following IMPORTS statement in the definition (.DEF) file used to link the application:

(For RUI)

(For SLI)

Link the application to ACSRUI.LIB (for RUI) or ACSSLI.LIB (for SLI), which contain the entry-point linkage information for
various APIs.

Multiple threads
An application session can have multiple threads that issue verbs. However, the same thread of an application cannot issue two
verbs simultaneously. If LUA is executing a verb and the same thread of the application issues a verb, LUA returns the
LUA_UNSUCCESSFUL return code to the later verb and leaves it unexecuted.

OS/2 exception TRAP 000D
The OS/2 exception TRAP 000D is issued when LUA is unable to pass a return code to the application for one of the following
reasons:

The data segment containing the VCB is not read/writable.
The VCB is fewer than 10 bytes in length.
The semaphore supplied through the lua_post_handle parameter is neither a valid RAM or OS/2 system semaphore nor
a pointer to a location within a writable segment.

Packing
For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or WORD (2-byte) boundaries, whichever is smaller. As a result, DWORDs and WORDS
are aligned on WORD boundaries and BYTEs are aligned on BYTE boundaries. For portability to Win32, VCBs should be
accessed using the structures provided since the alignment of structure members differs.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers producing 16-bit
code. For compatibility with the supplied LUA libraries, make sure to use an equivalent structure and union member packing

IMPORTS RUI.RUI

IMPORTS SLI.SLI

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

option when using other C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft
compilers.

Process support
A single RUI or SLI LU can be used by only a single process. A single process can act as multiple RUI/SLI applications and have
sessions using multiple LUs.

Run-time linking
For an application to be dynamically linked to LUA at run time, it must issue the following calls:

Call the DosLoadModule function to dynamically load the ACSRUI.DLL (for RUI) or ACSSLI.DLL (for SLI) library module
for LUA.
Call the DosGetProcAddr function to set the entry point RUI or SLI to the dynamic-link library.

Unlinking (the DosFreeModule call) is not supported.

Simultaneous sessions
On Windows 2000, Windows NT, Windows 98, and Windows 95, an application can participate in as many as 15,000 sessions
simultaneously. In the Windows 3.x environment, an application can participate in as many as 16 sessions simultaneously. In
OS/2, an application can participate in as many as 512 sessions simultaneously.

Stack size
The recommended stack size for an application is at least 3000 bytes.

When executing a verb, LUA uses the calling application’s stack. The combination of OS/2 and LUA requires 2560 bytes of stack
space, and the application requires additional stack space for its variables.

VCB segment
The segment containing the VCB must be a writable segment. All reserved and unused fields in the VCB should be set to 0x00.

Microsoft Host Integration Server 2000

SNA Considerations Using LUA
This section explains SNA information you need to consider when writing LUA applications.

BIND checking
During initialization of the LU session, the host sends to the LUA application a BIND message that contains information such as
RU sizes for use by the LU session. Microsoft® Host Integration Server or Microsoft® SNA Server returns this message to the
LUA application on RUI_READ. The LUA application must verify that the parameters specified on the BIND are suitable. The
application has the following options:

It can accept the BIND as it is, by issuing RUI_WRITE containing an OK response to the BIND. No additional BIND data can
be sent on the response.
It can try to negotiate one or more BIND parameters (this is only permitted if the BIND is negotiable). To do this, the
application issues RUI_WRITE containing an OK response, but including the modified BIND as data.
It can reject the BIND by issuing RUI_WRITE containing a negative response, using an appropriate SNA sense code as
data.

Note that validating the BIND parameters, and ensuring that all messages sent are consistent with them, is the responsibility of
the LUA application. However, the following two restrictions apply:

Host Integration Server or SNA Server rejects any RUI_WRITE that specifies an RU length greater than the size specified
on the BIND.
Host Integration Server or SNA Server requires the BIND to specify that the secondary LU is the contention winner and
that error recovery is the responsibility of the contention loser.

 Note For SLI, an application must specify that it will use SLI_BIND_ROUTINE on the SLI_OPEN if it will do any
BIND checking.

Courtesy acknowledgments
Host Integration Server or SNA Server keeps a record of requests received from the host in order to correlate any response sent
by the application with the appropriate request. When the application sends a response, Host Integration Server or SNA Server
correlates the response with the data from the original request, and can then free the storage associated with it.

If the host specifies exception response only (a negative response can be sent but a positive response should not be sent), Host
Integration Server or SNA Server must still keep a record of the request in case the application subsequently sends a negative
response. If the application does not send a response, the storage associated with this request cannot be freed.

Because of this, Host Integration Server or SNA Server allows the LUA application to issue a positive response to an exception-
response-only request from the host (this is known as a courtesy acknowledgment). The response is not sent to the host, but is
used by LUA to clear the storage associated with the request.

Note that the application does not need to send a courtesy acknowledgment for each exception-response-only request. For
efficiency, the application can respond less frequently. The node treats a courtesy acknowledgment as an implicit
acknowledgment for all prior pending requests.

Distinguishing SNA sense codes from other secondary return codes
A secondary return code that is not a sense code always contains a value of zero in its first two bytes.

An SNA sense code always contains a nonzero value in its first two bytes; the first byte gives the sense code category and the
second identifies a particular sense code within that category. (The third and fourth bytes can contain additional information or
can be zero.)

Information on SNA sense codes
If you need information on a returned sense code, see Sense Codes in the SNA Formats document. The sense codes are listed in
numerical order by category.

Negative responses and SNA sense codes
SNA sense codes can be returned to an LUA application in the following cases:

When the host sends a negative response to a request from the LUA application, it includes an SNA sense code indicating
the reason for the negative response. This is reported to the application on a subsequent RUI_READ or SLI_RECEIVE with
the following information:
Primary return code LUA_OK
Request/response indicator, response type indicator, and sense data
included indicator

All set to 1, indicating a negative response that inclu
des sense data.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Data returned The SNA sense code.
When Host Integration Server or SNA Server receives invalid data from the host, it generally sends a negative response to
the host and does not pass the invalid data to the LUA application. This is reported to the application on a subsequent
RUI_READ, SLI_RECEIVE, RUI_BID, or SLI_BID with the following information:
Primary return code LUA_NEGATIVE_RESPONSE
Secondary return code The SNA sense code sent to the host.
In some cases, Host Integration Server or SNA Server detects that data supplied by the host is invalid, but cannot
determine the correct sense code to send. In this case, it passes the invalid data in an exception request (EXR) to the LUA
application on RUI_READ or SLI_RECEIVE with the following information:
Request/response indicator Set to 0, indicating a request.
Sense data included indicat
or

Set to 1, indicating that sense data is included. (This indicator is normally used only for a resp
onse.)

Message data A suggested SNA sense code.

The application must then send a negative response to the message; it can use the sense code suggested by Host
Integration Server or SNA Server, or it can alter the sense code.

Host Integration Server or SNA Server can send a sense code to the application to indicate that data supplied by the
application was invalid. This is reported to the application on RUI_WRITE or SLI_SEND with the following information:
Primary return code LUA_UNSUCCESSFUL
Secondary return code SNA sense code.

The sense codes that can be returned as secondary return codes on LUA verbs are listed in the WINLUA.H header file; see
the Host Integration Server or SNA SDK for this file.

Pacing
Pacing is handled by the LUA interface; an LUA application does not need to control pacing and should never set the pacing
indicator flag.

If pacing is being used on data sent from the LUA application to the host (this is determined by the BIND), RUI_WRITE or
SLI_SEND may take some time to complete. This is because LUA has to wait for a pacing response from the host before it can
send more data.

If an LUA application transfers large quantities of data in one direction, either to the host or from the host (for example, a file
transfer application), then the host configuration should specify that pacing is used in that direction. This ensures that the node
receiving the data is not flooded with data and does not run out of data storage.

Purging data to end of chain
When the host sends a chain of request units to an LUA application, the application can wait until the last RU in the chain is
received before sending a response, or it can send a negative response to an RU that is not the last in the chain. If a negative
response is sent midchain, LUA purges all subsequent RUs from this chain and does not send them to the application.

When LUA receives the last RU in the chain, it indicates this to the application by setting the primary return code of RUI_READ
or RUI_BID to LUA_NEGATIVE_RESPONSE with a zero secondary return code.

Note that the host can terminate the chain by sending a message such as CANCEL while in midchain. In this case, the CANCEL
message is returned to the application on RUI_READ. The LUA_NEGATIVE_RESPONSE return code is not used.

Segmentation
Segmentation of RUs is handled by the LUA interface. LUA always passes complete RUs to the application, and the application
should pass complete RUs to LUA.

Microsoft Host Integration Server 2000

Support for LUA Single Sign-On
This section describes the LUA application support for single sign-on using 3270 display sessions that is available in Microsoft®
Host Integration Server 2000 and in Microsoft® SNA Server version 3.0 with Service Pack 1 or higher.

Over 3270 LUs, a single sign-on feature for LUA applications is supported to automate the overall logon process. When
configured for this feature, Host Integration Server or SNA Server automatically replaces special keywords in the data stream with
the actual host user name and password at appropriate points in the session.

Note that single sign-on is not supported over LUA LUs.

To open 3270 LUs from an LUA application using RUI, the lua_resv56[1] field must be set to a non-zero value when this verb
control block is passed to RUI_INIT. To open 3270 LUs from an LUA application using SLI, the lua_resv56[2] field must be set to a
non-zero value when this verb control block is passed to SLI_OPEN. Please see the reference sections on RUI_INIT and SLI_OPEN
for details.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Prerequisites for LUA Single Sign-On
In preparation for using LUA single sign-on over 3270 LUs, the system administrator must define a host security domain
containing host connections. This host security domain must be initially created or modified to enable the single sign-on feature.
The system administrator must enable a user’s Microsoft® Windows 2000 or Microsoft® Windows NT® account in the host
security domain and either the administrator or the user must establish a mapped host account for the Windows 2000 or
Windows NT domain user name.

The user must be logged on to a Windows 2000 or Windows NT domain with a user name and password. Note that this single
sign-on feature is only supported over 3270 LUs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings Used for LUA Single Sign-On
The LUA single sign-on feature depends on Host Integration Server or SNA Server scanning 3270 LUs used in the logon process
for special keywords that are defined in the registry on the computer running Host Integration Server or SNA Server. The values
for these special keywords can be defined by the system administrator on the computer running Host Integration Server or SNA
Server.

The registry settings used by the LUA single sign-on process are located under the
HKEY_LOCAL_MACHINE\CurrentControlSet\Services registry node. Installed under the SNASERVR\PARAMETERS subkey
are the following entries:

3270SSOPadByte
This entry should be set to an ASCIIZ string to use as the character for padding replacement text in the user name or password
if these strings are shorter than the length of the special tag strings defined below. The default value for this pad character is the
ASCII space character.

3270SSOPostReplaceCount
This entry should be set to a DWORD that represents the number of message chains of RUs to scan after replacement of text for
user name or password. The default value for this number is 10.

3270SSOPrefix
This entry should be set to an ASCIIZ string to use as the special prefix tag string in combination with the user name and
password tags. The default value of this string is MS$.

3270SSOPwdTag
This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special host password string that will be replaced. The default value of this string is SAMEP, so the default host
password string that is scanned for and replaced is MS$SAMEP. Note that length of the password string that is scanned for
(MS$SAMEP, for example) determines the maximum length of the password string that can sent to the host using single sign-
on. This limit occurs because the password substitution cannot change the length of the data message
Note that the value of this string must be different from the value of the 3270SSOUserTag entry for single sign-on to function
properly.

3270SSOReplaceCount
A DWORD value that affects the timeout value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries. The
timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceCount registry entry is defined and the 3270SSOReplaceTimer registry entry is not defined, the node
counts this number of RUs (on PLU-SLU session only) before timeout occurs. If both the 3270SSOReplaceCount and
3270SSOReplaceTimer registry entries are defined, the value for 3270SSOReplaceCount will be used to determine when a
timeout will occur. By default, this key is not defined and the node defaults to a timeout of 30 seconds.

3270SSOReplaceTimer
A DWORD value that affects the timeout value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries. The
timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceTimer registry entry is defined and 3270SSOReplaceCount is not defined, the node uses this value in
seconds before timeout occurs. If both the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries are defined,
the value for 3270SSOReplaceCount will be used to determine when a timeout will occur. By default, this key is not defined
and the node defaults to a timeout of 30 seconds.

3270SSOUserTag
This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special user name string that will be replaced. The default value of this string is SAMEU, so the default user name
string that is scanned for and replaced is MS$SAMEU. Note that length of the user name string that is scanned for (MS$SAMEU,
for example) determines the maximum length of the user name string that can sent to the host using single sign-on. This limit
occurs because the user name substitution cannot change the length of the data message
Note that the value of this string must be different from the value of the 3270SSOPwdTag entry for single sign-on to function
properly.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA User Name and Password Replacement
The SNA node on the host monitors the inbound session for a replacement sequence consisting of the 3270SSOPrefix string
immediately followed by one of the strings 3270SSOUserTag or 3270SSOPwdTag. Thus, the default user name string that
would be scanned for and replaced is MS$SAMEU. When this string is found in the inbound session data, the node looks up the
corresponding information (host user name in the current host security domain) and overwrites MS$SAMEU with this
information. The same process occurs for the password string that would be scanned for and replaced, which defaults to
MS$SAMEP.

Note that this operation cannot change the length of the data message. If the actual user name or password that is retrieved from
the current host security domain is shorter than the replacement sequence, it is padded out with the first character of the
3270SSOPadByte string used as a padding character. If the actual host user name or password string is longer than the string
that is scanned for, these strings are truncated to the length of the scanned string so that the data message length is not affected.

Note that since the user name and password can be sent in any order, the registry string values for the 3270SSOUserTag and
3270SSOPwdTag entries must be different for single sign-on to function properly.

The SNA node monitors the SSCP-LU session for these special tag strings at all times and replaces all occurrences of these strings
with corresponding looked-up data. On the LU-LU session, the node starts monitoring at start of session (BIND). The node stops
monitoring when it has received 3270SSOPostReplaceCount chains of RUs without seeing a substitution tag. The node will not
restart monitoring until it receives an UNBIND–BIND sequence for that session.

Note that the node considers the sequence:

as a continuation of the same LU-LU session and does not restart monitoring on receipt of the second BIND. This sequence is
often used by host session managers handing off a session to an application subsystem, and is considered a single terminal
session.

User IDs and passwords will be substituted in each chain on the LU-SSCP and PLU-SLU sessions until the node has received
3270SSOPostReplaceCount chains of RUs without seeing a substitution tag or a timer expires. By default the timer is set to 30
seconds, but this behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer
registry entries. The timer is started when the OPEN SSCP is received by the node. After the timer expires, the node will stop
scanning messages for the 3270 replacements strings for the user ID and password. If the replacement strings arrive after the
timer expires, the replacement strings will be sent to the host unmodified causing the signon to fail. The application will not
receive any notification that the timer has expired. The only indication of a problem will likely be that the signon to the host
session has failed.

Note that all strings are specified in the registry in ASCII, but the node translates them to EBCDIC through AE character mapping
before scanning for a match.

BIND, data, UNBIND(BIND FORTHCOMING), BIND …

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Reference
This section of the Microsoft® Host Integration Server 2000 Developer's Guide lists the verbs, extensions, control blocks, and
return codes that describe the Logical Unit Application programming interface (LUA).

This section contains:

LUA RUI Verbs
LUA SLI Verbs
LUA Extensions for the Windows Environment
SNA Server Enhancement to the Windows LUA Environment
LUA Verb Control Blocks
LUA Common Return Codes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA RUI Verbs
This section describes the LUA Request Unit Interface (RUI) verbs. It provides the following information for each RUI verb:

Details of the LUA verb control block (VCB) structure.
A description of the verb and its purpose.
Parameters (VCB structure members) supplied to and returned by LUA. The description of each parameter includes
information on the valid values for that parameter.
Interaction with other verbs.

There are six RUI verbs:

RUI_BID
Notifies the RUI application that a message is waiting to be read using RUI_READ.

RUI_INIT
Transfers control of the specified LU to the LUA application and establishes a session between the system services control point
(SSCP) and the specified LU.

RUI_PURGE
Cancels a previous RUI_READ.

RUI_READ
Receives responses, SNA commands, and data into an LUA application’s buffer.

RUI_TERM
Ends both the LU session and the SSCP session for a given LUA LU.

RUI_WRITE
Sends an SNA RU from the LUA application to the host over either the LU session or the SSCP session, and sends responses,
SNA commands, and data from an LUA application to the host LU.

The verb descriptions in this section include parameter values specific to each verb. For a complete description of the VCB
structure for both RUI and SLI verbs, see LUA Verb Control Blocks.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RUI_BID
The RUI_BID verb notifies the RUI application that a message is waiting to be read using RUI_READ.

The following structure describes the LUA_COMMON member of the VCB used by RUI_BID.

The following union describes the LUA_SPECIFIC member of the VCB used by RUI_BID. Other union members are omitted for
clarity.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued, LUA_OPCODE_RUI_BID.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_BID only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by RUI in Microsoft® Host Integration Server or Microsoft® SNA Server and should be set to zero.

lua_cobol_offset
Not used by LUA in Host Integration Server or SNA Server and should be zero.

lua_sid

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

union LUA_SPECIFIC {
 unsigned char lua_peek_data[12];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this parameter
to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions, set the lua_sid
parameter to zero.

lua_max_length
Not used by RUI_BID and should be set to zero.

lua_data_length
Returned parameter. Specifies the length of data returned in lua_peek_data for RUI_BID.

lua_data_ptr
Pointer to the application-supplied buffer that contains the data to be sent for SLI_SEND and RUI_WRITE or that will receive data
for SLI_RECEIVE and RUI_READ. For other RUI and SLI verbs, this parameter is not used and should be set to zero.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are set for
write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions. Its subparameters are as follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segment
LUA_RH_NC (0x20) Network control
LUA_RH_DFC (0x40) Data flow control
LUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters are
as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type
Returned parameter. Specifies the type of SNA message indicated to RUI_BID. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Reserved and should be set to zero.

lua_peek_data
The union member of LUA_SPECIFIC used by the RUI_BID and SLI_BID verbs. Returned parameter. Contains up to 12 bytes of
the data waiting to be read.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_CANCELED
Primary return code; the verb did not complete successfully because it was canceled by another verb.

LUA_TERMINATED

Secondary return code; RUI_TERM was issued while this verb was pending.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BID_ALREADY_ENABLED

Secondary return code; RUI_BID was rejected because a previous RUI_BID was already outstanding. Only one RUI_BID can be
outstanding at any one time.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows 2000, Windows NT, Windows 98, or Windows 95 system using events as the
asynchronous posting method, the Windows LUA VCB does not contain a valid event handle.

For a Windows version 3.x system, the Windows LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the Windows LUA VCB does not contain a valid semaphore or queue handle, which is needed when the verb
completes asynchronously.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record, or a parameter not used by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on this verb.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_INVALID_PROCESS

Secondary return code; the process that issued this verb was not the same process that issued RUI_INIT for this session. Only
the process that started a session can issue verbs on that session.

LUA_NEGATIVE_RSP
Primary return code; LUA detected an error in the data received from the host. Instead of passing the received message to the
application on RUI_READ, LUA discards the message (and the rest of the chain if it is in a chain), and sends a negative response
to the host.

LUA informs the application on a subsequent RUI_READ or RUI_BID that a negative response was sent.

The secondary return code contains the sense code sent to the host on the negative response. See
SNA Considerations Using LUA for information on interpreting the sense code values that can be returned.

A zero secondary return code indicates that, following a previous RUI_WRITE of a negative response to a message in the middle
of a chain, LUA has now received and discarded all messages from this chain.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_SESSION_FAILURE
Primary return code; a required Host Integration Server or SNA Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session has failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_BID is used by applications that require notification that a message is waiting to be read. This allows the application to
determine how it will handle the message before issuing RUI_READ.

When a message is available, RUI_BID returns with details of the message flow on which it was received, the message type, the
TH and RH of the message, and up to 12 bytes of message data.

The main difference between RUI_BID and RUI_READ is that RUI_BID allows the application to check the data without removing
it from the incoming message queue, so it can be left and accessed later. RUI_READ removes the message from the queue, so
when the application reads the data it must also process it.

Note the following when using RUI_BID:

RUI_INIT must complete successfully before this verb is issued.
Only one RUI_BID can be outstanding at any one time.
After RUI_BID has completed successfully, it can be reissued by setting lua_flag1.bid_enable on a subsequent RUI_READ.
If the verb is reissued in this way, the application must not free or modify the storage associated with the RUI_BID record.
If a message arrives from the host when RUI_READ and RUI_BID are both outstanding, RUI_READ completes and RUI_BID
is left in progress.

Each message that arrives is bid only once. After RUI_BID indicates that data is waiting on a particular session flow, the
application issues RUI_READ to receive the data. Any subsequent RUI_BID does not report data arriving on that session flow until

the message that was bid has been accepted by issuing RUI_READ.

In general, the lua_data_length parameter returned on this verb indicates only the length of data in lua_peek_data, not the total
length of data on the waiting message (except when a value of less than 12 is returned). The application should ensure that the
data length on RUI_READ that accepts the data is sufficient to contain the message.

See also

RUI_INIT, RUI_READ, RUI_TERM, RUI_WRITE, SLI_OPEN

Microsoft Host Integration Server 2000

RUI_INIT
The RUI_INIT verb transfers control of the specified LU to the Windows LUA application. RUI_INIT establishes a session between
the SSCP and the specified LU.

 Note For 3270 emulator users, a Microsoft® Host Integration Server or Microsoft® SNA Server extension has
been added that allows you to use 3270 LUs rather than the LUA LUs. For more information, see Remarks in this topic.

The following structure describes the LUA_COMMON member of the VCB used by RUI_INIT.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued, LUA_OPCODE_RUI_INIT.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_INIT requires this parameter.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by RUI in Microsoft® Host Integration Server or Microsoft® SNA Server and should be set to zero.

lua_cobol_offset
Not used by LUA in Host Integration Server or SNA Server and should be zero.

lua_sid
Returned parameter. Specifies the session identifier.

lua_max_length
Not used by RUI_INIT and should be set to zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_data_length
Not used by RUI_INIT and should be set to zero.

lua_data_ptr
Not used by RUI_INIT and should be set to zero.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Not used by RUI_INIT and should be set to zero.

lua_rh
Not used by RUI_INIT and should be set to zero.

lua_flag1
Not used by RUI_INIT and should be set to zero.

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. This is a returned parameter for RUI_INIT. Possible
values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1. (Note that RUI_INIT always completes
asynchronously unless it returns an error such as LUA_PARAMETER_CHECK.)

lua_resv56
Supplied parameter. A reserved field used by RUI_INIT and SLI_OPEN. All other reserved fields in the array must be left blank.
See the discussion of these Host Integration Server or SNA Server extensions in the Remarks section.

lua_resv56[1]

Supplied parameter. Indicates whether an RUI application can access LUs configured as 3270 LUs, in addition to LUA LUs. If this
parameter is nonzero, 3270 LUs can be accessed.

lua_resv56[2]

Supplied parameter. Indicates whether the RUI library will release the LU when the LU-SSCP session or connection goes away. If
this parameter is nonzero, the LU will not be released.

lua_resv56[3]

Supplied parameter. Indicates whether incomplete reads are supported. If this parameter is set to a nonzero value, incomplete
or truncated reads are supported. See the remarks for RUI_READ for more details.

lua_resv56[4]

Supplied parameter. Indicates whether the RUI library will allow the application to keep hold of the LU if it is recycled at the
host. If this parameter is nonzero, the application can keep hold of the LU.

lua_encr_decr_option
Field for cryptography options. On RUI_INIT, only the following are supported:

lua_encr_decr_option = 0
lua_encr_decr_option = 128

Values from 1 through 127 are not supported.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_CANCELED
Primary return code; the verb did not complete successfully because it was canceled by another verb.

LUA_TERMINATED

Secondary return code; RUI_TERM was issued before RUI_INIT completed.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; the lua_luname parameter did not match any LUA LU name or LU pool name in the configuration file.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows 2000, Windows NT, Windows 98, or Windows 95 system using events as the
asynchronous posting method, the Windows LUA VCB does not contain a valid event handle.

For a Windows version 3.x system, the Windows LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the Windows LUA VCB does not contain a valid semaphore or queue handle, which is needed when the verb
completes asynchronously.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record, or a parameter not used by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_DUPLICATE_RUI_INIT

Secondary return code; the lua_luname parameter specified an LU name or LU pool name already in use by this application (or
for which this application already has RUI_INIT in progress).

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_COMMAND_COUNT_ERROR

Secondary return code, which indicates one of the following errors occurred:

The verb could not be issued because the application had already reached its maximum number of active sessions. On Windows
2000, Windows NT, Windows 98, and Windows 95, an application can have as many as 15,000 sessions active at any time. In
the Windows 3.x environment, an application can have as many as 16 sessions active at any time. In OS/2, an application can
have as many as 512 sessions active at any time.

The verb specified the name of an LU pool or the name of an LU in a pool, but all the LUs in the pool are in use.

LUA_ENCR_DECR_LOAD_ERROR

Secondary return code; the verb specified a value for lua_encr_decr_option other than 0 or 128.

LUA_INVALID_PROCESS

Secondary return code; the LU specified by lua_luname is in use by another process.

LUA_LINK_NOT_STARTED

Secondary return code; the connection to the host has not been started; none of the link services it could use are active.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_SESSION_FAILURE
Primary return code; a required Host Integration Server or SNA Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

This verb must be the first LUA verb issued for the session. Until this verb has completed successfully, the only other LUA verb
that can be issued for this session is RUI_TERM (which terminates a pending RUI_INIT).

All other verbs issued on this session must identify the session using one of the following parameters from this verb:

The session identifier, returned to the application in lua_sid.
The LU name or LU pool name, supplied by the application in the lua_luname parameter.

RUI_INIT completes after an ACTLU message is received from the host. If necessary, the verb waits indefinitely. If an ACTLU has
already been received prior to RUI_INIT, LUA sends a NOTIFY to the host to inform it that the LU is ready for use. Note that
neither ACTLU nor NOTIFY is visible to the LUA application.

After RUI_INIT has completed successfully, this session uses the LU for which the session was started. No other LUA session
(from this or any other application) can use the LU until RUI_TERM is issued, or until an LUA_SESSION_FAILURE primary return
code is received.

Using 3270 LUs
To provide 3270 emulator users the ability to use the Emulator Interface Specification (EIS) configuration call with the RUI API, a
Host Integration Server or SNA Server extension has been added to the RUI. This extension allows you to use 3270 LUs rather
than LUA LUs. If an application sets lua_resv56[1] to a nonzero value on the RUI_INIT call then 3270 LUs can be used.

Don't Release the LU
If an application sets lua_resv56[2] to a nonzero value on the RUI_INIT call then the RUI library will not release the LU when the
LU-SSCP session or connection goes away. When this Host Integration Server or SNA Server extension is enabled, the application
does not have to issue a new RUI_INIT after a session failure or connection failure. When the LU-SSCP session comes back up
(the application can use WinRUIGetLastInitStatus to detect this), the application can start using it again.

Support Chunking on this Session
If an application sets lua_resv56[3] to a nonzero value on the RUI_INIT session establishment, this enables a Host Integration
Server or SNA Server extension that can change the behavior of RUI_READ. The default behavior for an RUI_READ call is to
truncate data (discarding any data remaining) if the application's data buffer is not large enough for receive all of the data in the
RU, returning an error code. When lua_resv56[3] is set to a nonzero value on the RUI_INIT call, then an RUI_READ issued where
the application's data buffer is not large enough will not result in the RU data being discarded. The RUI_READ verb will return
success (LUA_OK) for the primary return code and LUA_DATA_INCOMPLETE for the secondary return code. Subsequent
RUI_READ requests can then be issued to retrieve the data that exceeded the application's data buffer.

Ignore DACTLUs
If an application sets lua_resv56[4] to a nonzero value on the RUI_INIT session establishment, this enables a Host Integration
Server or SNA Server extension and the RUI library will allow the application to keep hold of the LU if it is recycled at the host
(that is, deactivated and reactivated).

 Note All other reserved fields must be left blank.

For more information, see the description of the sepdcrec function in the section of the SDK documentation on the 3270 Emulator
Interface Specification..

Encryption
Session-level cryptography is implemented through Cryptography Verification (CRV) requests; RUI applications must perform all
necessary processing of these requests. For all interfaces other than RUI, CRV requests are rejected with a negative response by
the Host Integration Server or SNA Server.

For RUI_INIT, the following options are supported:

lua_encr_decr_option = 0
lua_encr_decr_option = 128

Values from 1 through 127 (ACSRENCR and ACSROECR routines) are not supported.

The sending application is responsible for padding data to a multiple of eight bytes and for setting the padded data indicator bit in
the RH as well as for encryption. The receiving application is responsible for removing the padding after decryption.

See also

RUI_INIT, RUI_TERM, SLI_OPEN

Microsoft Host Integration Server 2000

RUI_PURGE
The RUI_PURGE verb cancels a previous RUI_READ.

The following structure describes the LUA_COMMON member of the VCB used by RUI_PURGE.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_PURGE.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_PURGE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by RUI in Microsoft® Host Integration Server or Microsoft® SNA Server and should be set to zero.

lua_cobol_offset
Not used by LUA in Host Integration Server or SNA Server and should be zero.

lua_sid
Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this parameter
to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions, set the lua_sid
parameter to zero.

lua_max_length
Not used by RUI_PURGE and should be set to zero.

lua_data_length

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Not used by RUI_PURGE and should be set to zero.
lua_data_ptr

Points to the location of the RUI_READ verb’s VCB that is to be canceled.
lua_post_handle

Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Not used by RUI_PURGE and should be set to zero.

lua_rh
Not used by RUI_PURGE and should be set to zero.

lua_flag1
Not used by RUI_PURGE and should be set to zero.

lua_message_type
Not used by RUI_PURGE and should be set to zero.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Reserved and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_CANCELED
Primary return code; the verb did not complete successfully because it was canceled by another verb.

LUA_TERMINATED

Secondary return code; RUI_TERM was issued while RUI_PURGE was pending.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter was set to null.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows 2000, Windows NT, Windows 98, or Windows 95 system using events as the
asynchronous posting method, the Windows LUA VCB does not contain a valid event handle.

For a Windows version 3.x system, the Windows LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the Windows LUA VCB does not contain a valid semaphore or queue handle, which is needed when the verb
completes asynchronously.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record, or a parameter not used by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on this verb.

LUA_UNSUCCESSFUL
Primary return code; the verb supplied was valid, but the verb did not complete successfully.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this session.
Only the process that started a session can issue verbs on that session.

LUA_NO_READ_TO_PURGE

Secondary return code; either lua_data_ptr did not contain a pointer to an RUI_READ VCB, or RUI_READ completed before
RUI_PURGE was issued.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node was broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_SESSION_FAILURE
Primary return code; a required Host Integration Server or SNA Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_READ can wait indefinitely if it is sent without using the lua_flag1.nowait (immediate return) option and no data is available
on the specified flow; RUI_PURGE forces the waiting verb to return (with the primary return code LUA_CANCELED).

This verb is used only when RUI_READ has been issued and is pending completion (that is, the primary return code is
LUA_IN_PROGRESS).

See also

RUI_INIT, RUI_READ, RUI_TERM, RUI_WRITE, SLI_OPEN, SLI_PURGE, SLI_RECEIVE, SLI_SEND

Microsoft Host Integration Server 2000

RUI_READ
The RUI_READ verb receives responses, SNA commands, and data into a Windows LUA application’s buffer.

The following structure describes the LUA_COMMON member of the VCB used by RUI_READ.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_READ.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_READ only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by RUI in Microsoft® Host Integration Server or Microsoft® SNA Server and should be set to zero.

lua_cobol_offset
Not used by LUA in Host Integration Server or SNA Server and should be zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Specifies the length of received buffer for RUI_READ and SLI_RECEIVE. Not used by other RUI and SLI verbs and should be set
to zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_data_length
Returned parameter. Specifies the length of data returned in lua_peek_data for the RUI_BID verb.

lua_data_ptr
Pointer to the application-supplied buffer that is to receive the data from an RUI_READ verb. Both SNA commands and data are
placed in this buffer, and they can be in an EBCDIC format.

When RUI_READ is issued, this parameter points to the location to receive the data from the host.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various subparameters are
set for write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions. Its subparameters are as follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segment
LUA_RH_NC (0x20) Network control
LUA_RH_DFC (0x40) Data flow control
LUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters are
as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set lua_flag1.nowait to 1 to indicate that you want RUI_READ to return immediately whether or not data is available to be
read, or set it to zero if you want the verb to wait for data before returning.

Set lua_flag1.bid_enable to 1 to re-enable the most recent RUI_BID (equivalent to issuing RUI_BID again with exactly the
same parameters as before), or set it to zero if you do not want to re-enable RUI_BID. Note that re-enabling the previous
RUI_BID reuses the VCB originally allocated for it, so this VCB must not have been freed or modified.

Set one or more of the following flags to 1 to indicate from which message flow to read data:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available is returned. The order of priorities (highest first) is: SSCP
expedited, LU expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2 group is set to indicate from which flow
the data was read.

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. Returned parameter. Specifies the type of SNA
message indicated to RUI_READ. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Reserved and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_DATA_INCOMPLETE

Secondary return code; RUI_READ was not able to return all of the data received because the application's data buffer
(indicated by lua_max_length) was not large enough. Subsequent RUI_READ requests can be issued to retrieve the remaining
RUI data.

Note that this is not the default behavior for RUI_READ and is only enabled when lua_resv56[3] is set to a nonzero value in the
verb control block when calling RUI_INIT during session establishment. See Remarks for more details.

LUA_CANCELED
Primary return code; the verb did not complete successfully because it was canceled by another verb or by an internal error.

LUA_PURGED

Secondary return code; RUI_READ has been canceled by RUI_PURGE.

LUA_TERMINATED

Secondary return code; RUI_TERM was issued while RUI_READ was pending.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter contained an invalid value.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BID_ALREADY_ENABLED

Secondary return code; lua_flag1.bid_enable was set to re-enable RUI_BID but the previous RUI_BID was still in progress.

LUA_DUPLICATE_READ_FLOW

Secondary return code; the flow flags in the lua_flag1 group specified one or more session flows for which RUI_READ was
already outstanding. Only one RUI_READ at a time can be waiting on each session flow.

LUA_INVALID_FLOW

Secondary return code; none of the lua_flag1 flow flags was set. At least one of these flags must be set to 1, to indicate from
which flow or flows to read.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows 2000, Windows NT, Windows 98, or Windows 95 system using events as the
asynchronous posting method, the Windows LUA VCB does not contain a valid event handle.

For a Windows version 3.x system, the Windows LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the Windows LUA VCB does not contain a valid semaphore or queue handle, which is needed when the verb
completes asynchronously.

LUA_NO_PREVIOUS_BID_ENABLED

Secondary return code; lua_flag1.bid_enable was set to re-enable RUI_BID, but there was no previous RUI_BID that could be
enabled. (See Remarks for more information.)

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record or a parameter not used by this verb was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on RUI_READ.

LUA_NEGATIVE_RSP
Primary return code; indicates one of the following two cases, which can be distinguished by the secondary return code:

LUA detected an error in the data received from the host. Instead of passing the received message to the application on
RUI_READ, LUA discards the message (and the rest of the chain if it is in a chain), and sends a negative response to the
host. LUA informs the application on a subsequent RUI_READ or RUI_BID that a negative response was sent.
The LUA application previously sent a negative response to a message in the middle of a chain. LUA has purged
subsequent messages in this chain, and is now reporting to the application that all messages from the chain have been
received and purged.

LUA_SEC_RC

Secondary return code; this parameter is a nonzero secondary return code containing the sense code sent to the host on the
negative response. This indicates that LUA detected an error in the host data and sent a negative response to the host. See
SNA Considerations Using LUA for information on interpreting the sense code values that may be returned.

A secondary return code of zero indicates that, following a previous RUI_WRITE of a negative response to a message in the
middle of a chain, LUA has now received and discarded all messages from this chain.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_DATA_TRUNCATED

Secondary return code; the lua_data_length parameter was smaller than the actual length of data received on the message.
Only lua_data_length bytes of data were returned to the verb; the remaining data was discarded. Additional parameters are
also returned if this secondary return code is obtained.

LUA_NO_DATA

Secondary return code; lua_flag1.nowait was set to indicate immediate return without waiting for data, and no data was
currently available on the specified session flow or flows.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this session.
Only the process that started a session can issue verbs on that session.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node was broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_SESSION_FAILURE
Primary return code; a required Host Integration Server or SNA Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_INIT must have completed successfully before RUI_READ is issued.

While an existing RUI_READ is pending, you can issue another RUI_READ only if it specifies a different session flow or flows
from pending RUI_READ verbs; that is, you cannot have more than one RUI_READ outstanding for the same session flow.

You can specify a particular message flow (LU normal, LU expedited, SSCP normal, or SSCP expedited) from which to read data, or
you can specify more than one message flow. You can have multiple RUI_READ verbs outstanding, provided that no two of them
specify the same flow.

Data is received by the application on one of four session flows. The four session flows, from highest to lowest priority are:

SSCP expedited
LU expedited
SSCP normal
LU normal

The data flow type that RUI_READ is to process is specified in the lua_flag1 parameter. The application can also specify whether
it wants to look at more than one type of data flow. When multiple flow bits are set, the highest priority is received first. When
RUI_READ completes processing, lua_flag2 indicates the specific type of flow for which data has been received by the Windows
LUA application.

If RUI_BID successfully completes before an RUI_READ is issued, the Windows LUA interface can be instructed to reuse the last
RUI_BID verb’s VCB. To do this, issue the RUI_READ with lua_flag1.bid_enable set.

The lua_flag1.bid_enable parameter can be used only if the following are true:

RUI_BID has already been issued successfully and has completed.
The storage allocated for RUI_BID has not been freed or modified.
No other RUI_BID is pending.

When using lua_flag1.bid_enable, the RUI_BID storage must not be freed because the last RUI_BID verb’s VCB is used. Also,
when using lua_flag1.bid_enable, the successful completion of RUI_BID will be posted.

If RUI_READ is issued with lua_flag1.nowait when no data is available to receive, LUA_NO_DATA will be the secondary return
code set by the Windows LUA interface.

If the data received is longer than lua_max_length, it is truncated; and only lua_max_length bytes of data are returned. The
primary return code LUA_UNSUCCESSFUL and the secondary return code LUA_DATA_TRUNCATED are also returned. The RUI
library returns as much data as possible to the application's data buffer, but the remaining data in the RUI is discarded and cannot
be extracted on subsequent RUI_READ requests. This forces the RUI application to allocate an RUI_READ data buffer large
enough to handle the full RU size.

This default behavior can be changed by setting the value of lua_resv56[3] to a nonzero value in the verb control block when
calling RUI_INIT during session establishment. In this case, if the data received is longer than lua_max_length, an RUI_READ
request will return a primary return code of LUA_OK and a secondary return code of LUA_DATA_INCOMPLETE. An RUI application
can then issue new RUI_READ calls and receive the remainder of the data. Note that this enhancement has not been adopted as
part of the Microsoft Windows Open Services Architecture (WOSA) LUA API standard and differs from the implementation of RUI
by IBM.

After a message has been read using RUI_READ, it is removed from the incoming message queue and cannot be accessed again.
(Note that RUI_BID can be used as a nondestructive read; that is, the application can use it to check the type of data available, but
the data remains on the incoming queue and does not need to be used immediately.)

Pacing can be used on the primary-to-secondary half-session (this is specified in the host configuration), to protect the LUA
application from being flooded with messages. If the LUA application is slow to read messages, Host Integration Server or SNA
Server delays the sending of pacing responses to the host to slow it down.

See also

RUI_BID, RUI_INIT, RUI_TERM, RUI_WRITE, SLI_OPEN, SLI_PURGE, SLI_RECEIVE, SLI_SEND

Microsoft Host Integration Server 2000

RUI_TERM
The RUI_TERM verb ends both the LU session and the SSCP session for a given LUA LU.

The following structure describes the LUA_COMMON member of the VCB used by RUI_TERM.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_TERM.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_TERM only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by RUI in Microsoft® Host Integration Server or Microsoft® SNA Server and should be set to zero.

lua_cobol_offset
Not used by LUA in Host Integration Server or SNA Server and should be set to zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Not used by RUI_TERM and should be set to zero.

lua_data_length

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Not used by RUI_TERM and should be set to zero.
lua_data_ptr

Not used by RUI_TERM and should be set to zero.
lua_post_handle

Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Not used by RUI_TERM and should be set to zero.

lua_rh
Not used by RUI_TERM and should be set to zero.

lua_flag1
Not used by RUI_TERM and should be set to zero.

lua_message_type
Not used by RUI_TERM and should be set to zero.

lua_flag2
Not used by RUI_TERM and should be set to zero.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Reserved and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows 2000, Windows NT, Windows 98, or Windows 95 system using events as the
asynchronous posting method, the Windows LUA VCB does not contain a valid event handle.

For a Windows version 3.x system, the Windows LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the Windows LUA VCB does not contain a valid semaphore or queue handle, which is needed when the verb
completes asynchronously.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record or a parameter not used by this verb was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on RUI_TERM.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_COMMAND_COUNT_ERROR

Secondary return code; RUI_TERM was already pending when the verb was issued.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this session.
Only the process that started a session can issue verbs on that session.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node was broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_SESSION_FAILURE
Primary return code; a required Host Integration Server or SNA Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

This verb can be issued at any time after RUI_INIT has been issued (whether or not it has completed). If any other LUA verb is
pending when RUI_TERM is issued, no further processing on the pending verb takes place, and it returns with a primary return
code of LUA_CANCELED.

After this verb has completed, no other LUA verb can be issued for this session.

See also

RUI_INIT, SLI_OPEN

Microsoft Host Integration Server 2000

RUI_WRITE
The RUI_WRITE verb sends an SNA request or response unit from the LUA application to the host over either the LU session or
the SSCP session, and sends responses, SNA commands, and data from a Windows LUA application to the host LU.

The following structure describes the LUA_COMMON member of the VCB used by RUI_WRITE.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_WRITE.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_WRITE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by RUI in Microsoft® Host Integration Server or Microsoft® SNA Server and should be set to zero.

lua_cobol_offset
Not used by LUA in Host Integration Server or SNA Server and should be zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Not used by RUI_WRITE and should be set to zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_data_length
Returned parameter. Specifies the length of data returned in lua_peek_data for the RUI_BID verb.

lua_data_ptr
Points to the buffer containing the data to be sent to the host by RUI_WRITE.

Both SNA commands and data are placed in this buffer, and they can be in an EBCDIC format.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various subparameters are
set for write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. For the RH for
RUI_WRITE, all fields except the queued-response indicator (lua_rh.qri) and pacing indicator (lua_rh.pi) are used. Its
subparameters are as follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segment
LUA_RH_NC (0x20) Network control
LUA_RH_DFC (0x40) Data flow control
LUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters are
as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set one of the following flags to 1 to indicate on which message flow the data is to be sent:

lua_flag1.sscp_exp

lua_flag1.sscp_norm

lua_flag1.lu_exp

lua_flag1.lu_norm

lua_message_type
Not used by RUI_WRITE and should be set to zero.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Reserved and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_CANCELED
Primary return code; the verb did not complete successfully because it was canceled by another verb.

LUA_TERMINATED

Secondary return code; the verb was canceled because RUI_TERM was issued for this session.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter contained an invalid value.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_DUPLICATE_WRITE_FLOW

Secondary return code; RUI_WRITE was already outstanding for the session flow specified on this verb (the session flow is
specified by setting one of the lua_flag1 flow flags to 1). Only one RUI_WRITE at a time can be outstanding on each session
flow.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1.sscp_exp flow flag was set, indicating that the message should be sent on the SSCP
expedited flow. LUA does not allow applications to send data on this flow.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows 2000, Windows NT, Windows 98, or Windows 95 system using events as the
asynchronous posting method, the Windows LUA VCB does not contain a valid event handle.

For the Windows version 3.x system, the Windows LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the Windows LUA VCB does not contain a valid semaphore or queue handle, which is needed when the verb
completes asynchronously.

LUA_MULTIPLE_WRITE_FLOWS

Secondary return code; more than one of the lua_flag1 flow flags was set to 1. One and only one of these flags must be set to
1, to indicate which session flow the data is to be sent on.

LUA_REQUIRED_FIELD_MISSING

Secondary return code; indicates one of the following cases:

None of the lua_flag1 flow flags was set. One and only one of these flags must be set to 1.
RUI_WRITE was used to send a response, and the response required more data than was supplied.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record or a parameter not used by this verb was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_MODE_INCONSISTENCY

Secondary return code; the SNA message sent on RUI_WRITE was not valid at this time. This is caused by trying to send data
on the LU session before the session is bound. Check the sequence of SNA messages sent.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on this verb.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; indicates one of the following cases:

The lua_rh.fi bit (format indicator) was set to 1, but the first byte of the supplied RU was not a recognized request code.
The lua_rh.ruc parameter (RU category) specified the network control (NC) category; LUA does not allow applications to
send requests in this category.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this session.
Only the process that started a session can issue verbs on that session.

LUA_INVALID_SESSION_PARAMETERS

Secondary return code; the application used RUI_WRITE to send a positive response to a BIND message received from the host.
However, Host Integration Server or SNA Server cannot accept the BIND parameters as specified, and has sent a negative
response to the host. See SNA Considerations Using LUA for more information on the BIND profiles accepted by Host

Integration Server or SNA Server.

LUA_RSP_CORRELATION_ERROR

Secondary return code; when using RUI_WRITE to send a response, lua_th.snf (which indicates the sequence number of the
received message being responded to) did not contain a valid value.

LUA_RU_LENGTH_ERROR

Secondary return code; the lua_data_length parameter contained an invalid value. When sending data on the LU normal flow,
the maximum length is as specified in the BIND received from the host; for all other flows the maximum length is 256 bytes.

 Note Any other secondary return code is an SNA sense code indicating that the supplied SNA data was invalid
or could not be sent. See SNA Considerations Using LUA for information on interpreting the SNA sense codes that
can be returned.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node was broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_SESSION_FAILURE
Primary return code; a required Host Integration Server or SNA Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session has failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_INIT must be issued successfully before this verb is issued.

When sending an SNA request, all applicable values in the lua_rh must be set. Chaining and bracketing are the responsibility of
the application.

When sending a response, the type of response determines the RUI_WRITE information required. For all responses, you must:

Set the selected lua_rh.rri flag to 1.
Provide the sequence number in lua_th.snf for the request to which you are responding.

For multichain message responses, the sequence number of the last received chain element must be used. For a response to a
multichain message ending with a CANCEL command, the CANCEL command sequence number is used.

For positive responses that only require the request code, set lua_rh.ri to zero (indicating that the response is positive) and
lua_data_length to zero (indicating that no data is provided). The request code is filled in by the RUI, using the sequence number
provided.

For negative responses, set lua_rh.ri to 1, lua_data_ptr to the SNA sense code address, and lua_data_length to the SNA sense
code length (four bytes). The sequence number is used by the RUI to fill in the request code.

For positive responses to the BIND and STSN commands that require data in the responses, set lua_data_ptr to point to the
response and set lua_data_length to the length of the data provided in lua_data_ptr.

While an existing RUI_WRITE is pending, you can issue a second RUI_WRITE only if it specifies a different session flow from the
pending RUI_WRITE. That is, you cannot have more than one RUI_WRITE outstanding for the same session flow.

RUI_WRITE can be issued on the SSCP normal flow at any time after a successful RUI_INIT. RUI_WRITE verbs on the LU
expedited or LU normal flows are permitted only after a BIND has been received, and must abide by the protocols specified on the
BIND.

Note that successful completion of RUI_WRITE indicates that the message was queued successfully to the data link; it does not
necessarily indicate that the message was sent successfully, or that the host accepted it.

Pacing can be used on the secondary-to-primary half-session (specified on the BIND) to prevent the LUA application from
sending more data than the local or remote LU can handle. If this is the case, an RUI_WRITE on the LU normal flow may be
delayed by LUA and may take some time to complete.

See also

RUI_INIT, RUI_READ, RUI_TERM, SLI_OPEN, SLI_PURGE, SLI_RECEIVE, SLI_SEND

Microsoft Host Integration Server 2000

LUA SLI Verbs
This section describes the LUA Session Level Interface (SLI) verbs. It provides the following information for each SLI verb:

Details of the LUA verb control block (VCB) structure.
A description of the verb and its purpose.
Parameters (VCB structure members) supplied to and returned by LUA. The description of each parameter includes
information on the valid values for that parameter.
Interaction with other verbs.

There are six SLI verbs and two user-defined routines:

SLI_BID
Notifies the SLI application that a message is waiting to be read using SLI_RECEIVE and provides the current status of the
session to the Windows LUA application.

SLI_CLOSE
Ends a session opened with SLI_OPEN.

SLI_OPEN
Transfers control of the specified LU to the Windows LUA application and establishes a session between the system services
control point (SSCP) and the specified LU, as well as an LU-LU session.

SLI_PURGE
Cancels SLI_RECEIVE verbs issued with a wait condition.

SLI_RECEIVE
Receives responses, SNA commands, and data into the buffer of a Windows LUA application. SLI_RECEIVE also provides the
current status of the session to the Windows LUA application.

SLI_RECEIVE_EX
Receives responses, SNA commands, and data into the buffer of a Windows LUA application and supports inbound chaining
allowing sending up to 4,294,967,295 bytes in a single verb. SLI_RECEIVE_EX also provides the current status of the session to
the Windows LUA application.

SLI_SEND
Sends responses, SNA commands, and data from a Windows LUA application to a host LU.

SLI_SEND_EX
Sends responses, SNA commands, and data from a Windows LUA application to a host LU and supports inbound chaining
allowing receiving up to 4,294,967,295 bytes in a single verb.

SLI_BIND_ROUTINE
Notifies the Windows LUA application that a BIND request has come from the host and allows the user-supplied routine to
examine the request and formulate a response.

SLI_STSN_ROUTINE
Notifies the Windows LUA application that an STSN command has come from the host and allows the user-supplied routine to
examine the request and formulate a response.

Cryptography is not defined as part of the Windows LUA standard.

The verb descriptions in this section include parameter values specific to each verb. For a complete description of the VCB
structure for both RUI and SLI verbs, see LUA Verb Control Blocks.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SLI_BID
The SLI_BID verb notifies the SLI application that a message is waiting to be read using SLI_RECEIVE. SLI_BID also provides the
current status of the session to the Windows LUA application.

The following structure describes the LUA_COMMON member of the VCB used by SLI_BID.

The following union describes the LUA_SPECIFIC member of the VCB used by SLI_BID. Other union members are omitted for
clarity.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued, LUA_OPCODE_SLI_BID.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_BID only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_BID and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

union LUA_SPECIFIC {
 unsigned char lua_peek_data[12];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_sid
Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this parameter
to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions, set the lua_sid
parameter to zero.

lua_max_length
Not used by SLI_BID and should be set to zero.

lua_data_length
Returned parameter. Specifies the length of data returned in lua_peek_data.

lua_data_ptr
Pointer to the application-supplied buffer that contains the data to be sent for SLI_SEND and RUI_WRITE or that will receive data
for SLI_RECEIVE and RUI_READ. Not used by other RUI and SLI verbs and should be set to zero.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are returned
for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. Its subparameters are as
follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00 FM data segment
LUA_RH_NC (0x20 Network control
LUA_RH_DFC (0x40 Data flow control
LUA_RH_SC (0x60 Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters are
as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type
Returned parameter. Specifies the type of SNA message indicated to SLI_BID. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that SLI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Not used by SLI_BID and should be set to zero.

lua_peek_data
The union member of LUA_SPECIFIC used by the RUI_BID and SLI_BID verbs. Returned parameter. Contains up to 12 bytes of
the data waiting to be read.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname name was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft®
Windows® 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain a valid event
handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_SLI_BID_PENDING

Secondary return code; an SLI verb was still active when another SLI_BID was issued. Only one SLI_BID can be active at a time.

LUA_SESSION_FAILURE
Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a
result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was issued
before the session was initialized.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception request
sense code.

LUA_RECEIVER_IN_TRANSMIT_MODE

Secondary return code; either resources needed to handle normal flow data were not available or the state of the half-duplex
contention was not received when a normal-flow request was received. The result is a race condition. This SNA sense code is
also an exception request sense code.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_CHAINING_ERROR

Secondary return code; the sequence of the chain indicator settings is in error. An invalid request header or request unit for the
receiver’s current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receiver’s current session control or data flow control
state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receiver’s current session control or data flow control state was found. Delivery to
the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a DFC or FMD request was received from a half-session that sent either a SHUTC command or QC
command, and the DFC or FMD request has not responded to a RELQ command. An invalid request header or request unit for
the receiver’s current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit for
the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was

prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_RSP_PROTOCOL_ERROR

Secondary return code; a violation of the response protocol was found in the response received from the primary half-session.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a “no response.” The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the

half-session component was prevented. The errors are not dependent on the current session state. The sender’s failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors
are not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The BIND
options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the half-
session component was prevented. The errors are not dependent on the current session state. The sender’s failure to enforce
session rules may have caused the errors.

LUA_INCORRECT_RU_CATEGORY

Secondary return code; the request unit category indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the sense-data-included indicator (SDI) and the response-type-indicator (RTI) were not specified
correctly on a response. The BIND options chosen previously or the architectural rules were violated by the request header
parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the current session
state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the definite response 1 indicator (DR1I), the definite response 2 indicator (DR2I), and the exception
response indicator (ERI) were specified incorrectly. The BIND options chosen previously or the architectural rules were violated
by the request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent
on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator (QRI) was incorrectly specified. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the enciphered data indicator (EDI) was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the padded data indicator (PDI) was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server SNA Server
when an LUA verb was issued.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another process owns the session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while attempting to stop the session. This LU is unavailable for any LUA
requests until an ACTLU is received from the host.

LUA_RECEIVE_CORRELATION_TABLE_FULL

Secondary return code; the session receive correlation table for the flow requested reached its capacity.

LUA_NEGATIVE_RESPONSE
Primary return code; either LUA sent a negative response to a message received from the primary LU because an error was
found in the message, or the application responded negatively to a chain for which the end-of-chain has arrived.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; the LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receiver’s current session control or data flow control state was found.
Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-session
component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of the session control (SC) protocol occurred. A request (that is permitted only after an SC
request and a positive response to that request have been successfully exchanged) was received before the required exchange.
Byte 4 of the sense data contains the request code. No user data exists for this sense code. An invalid header request or request
unit for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_INVALID_SC_OR_NC_RH

Secondary return code; the RH of an SC or NC request was invalid.

LUA_PACING_NOT_SUPPORTED

Secondary return code; the request contained a pacing indicator when support of pacing for this session does not exist for the
receiving half-session or boundary function half-session. The BIND options chosen previously or the architectural rules were
violated by lua_rh values. Delivery to the half-session component was prevented. The errors are not dependent on the current
session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_NAU_INOPERATIVE

Secondary return code; the network addressable unit (NAU) is not able to process responses or requests. Delivery to the
receiver could not take place for one of the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session, that usually means there is no longer a valid path to the session partner.

LUA_CANCELED
Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS
Primary return code; an asynchronous command was received but is not completed.

LUA_STATUS
Primary return code; the secondary return code contains SLI status information for the application.

LUA_READY

Secondary return code; following a NOT_READY status, this status is issued to notify you that the SLI is ready to process
commands.

LUA_NOT_READY

Secondary return code; an SNA UNBIND type 0x02 command was received, which means a new BIND is coming.

If the UNBIND type 0x02 is received after the beginning SLI_OPEN is complete, the session is suspended until a BIND,
optional CRV and STSN, and SDT flows are received. These routines are re-entrant because they have to be called again.
The session resumes after the SLI processes the SDT command.
If the UNBIND type 0x02 is received while SLI_OPEN is still processing, the primary return code is session-failure, not
status. Or, the receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INIT_COMPLETE

Secondary return code; the LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue
SLI_OPEN with the lua_open_type_prim_sscp parameter receive this status on SLI_RECEIVE or SLI_BID.

LUA_SESSION_END_REQUESTED

Secondary return code; the LUA interface received an SNA shutdown command (SHUTD) from the host, which means the host
is ready to shut down the session.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_BID does the following:

Notifies a Windows LUA application that a message is waiting to be read.
Provides the current session status.
Provides a preview of the next message that will be read by SLI_RECEIVE.

This preview contains a maximum of 12 bytes of information (peek data) that enables the Windows LUA application to
define its processing strategy for the data.

To use SLI_BID within a Windows LUA application, issue SLI_BID. When the verb completes, it can be reactivated in the following
two ways:

Reissue SLI_BID.
Issue SLI_RECEIVE with lua_flag1_bid_enable set to 1. This issues an SLI_BID that uses the most recently accepted address
for the VCB and establishes the active bid.

Each session can have only one SLI_BID at a time.

If multiple messages are available when a Windows LUA application issues SLI_BID, the data flow with the highest priority is
returned. The order in which the data can be returned is as follows:

SSCP expedited
LU expedited
SSCP normal
LU normal

If SLI_RECEIVE has flags set to read more than one type of message flow, the data returned by SLI_BID might be for a flow
different than the one for which you actually receive data through SLI_RECEIVE. This situation occurs when higher priority data
arrives from the host after SLI_BID completes processing, but before SLI_RECEIVE is issued.

To ensure that SLI_RECEIVE reads the data, the SLI_BID returned specifies the flow that matches lua_flag2 returned by the
completed SLI_BID.

Session Status Return Values
If LUA_STATUS is the primary return code, the secondary return code can be LUA_READY, LUA_NOT_READY,
LUA_SESSION_END_REQUESTED, or LUA_INIT_COMPLETE. In addition, if LUA_STATUS is the primary return code, the following
parameters are used:

lua_sec_rc

lua_sid

LUA_READY is returned after LUA_NOT_READY status, and indicates that the SLI is again ready to perform all commands.

LUA_NOT_READY indicates that the SLI session is suspended because the SLI has received either an SNA CLEAR command or an
SNA UNBIND command with an 0x02 UNBIND type (UNBIND with BIND forthcoming). Depending on what caused the
suspension, the session can be reactivated as follows:

When the suspension is caused by an SNA CLEAR, receiving an SNA SDT reactivates the session.
When an SNA UNBIND type BIND forthcoming causes suspension of the session and the SLI_OPEN that opened the session
is completed, the session is suspended until the SLI receives a BIND and SDT command. The session can also optionally
receive an STSN command. As a result, user-supplied routines issued with the initial SLI_OPEN must be re-entered because
they will be recalled.

The application can send SSCP data after a CLEAR or UNBIND type BIND forthcoming arrives and before the NOT READY status is
read. The application can send and receive SSCP data after reading a NOT READY.

When an SNA UNBIND type BIND forthcoming arrives before completion of the SLI_OPEN that opened the session,
LUA_SESSION_FAILURE (not LUA_STATUS) is the primary return code.

LUA_SESSION_END_REQUESTED indicates that the application received an SNA SHUTD from the host. The Windows LUA
application should issue SLI_CLOSE to close the session when convenient.

LUA_INIT_COMPLETE is returned only when lua_init_type for SLI_OPEN is LUA_INIT_TYPE_PRIM_SSCP. The status means that
SLI_OPEN has been processed sufficiently to allow SSCP data to now be sent or received.

Exception Requests
If a host application request unit is converted into an EXR, sense data will be returned. When an SLI_BID completes with the
returned verb parameters set as shown, an EXR conversion occurs.

Member Set to
lua_prim_rc OK (0x0000)
lua_sec_rc OK (0x00000000)

lua_rh.rri bit off (request unit)
lua_rh.sdi bit on (includes sense data)

Of the seven bytes of data in lua_peek_data, bytes 0 through 3 define the error detected. The following table indicates possible
sense data and the values of bytes 0 through 3.

Sense data Value of bytes 0–3
LUA_MODE_INCONSISTENCY 0x08090000
LUA_BRACKET_RACE_ERROR 0x080B0000
LUA_BB_REJECT_NO_RTR 0x08130000
LUA_RECEIVER_IN_TRANSMIT_MODE 0x081B0000
LUA_CRYPTOGRAPHY_FUNCTION_INOP 0x08480000
LUA_SYNC_EVENT_RESPONSE 0x10010000
LUA_RU_DATA_ERROR 0x10020000
LUA_RU_LENGTH_ERROR 0x10020000
LUA_INCORRECT_SEQUENCE_NUMBER 0x20010000

The information returned to bytes 3 through 6 in lua_peek_data is determined by the first 3 bytes of the initial request unit that
caused the error.

See Also

RUI_INIT, SLI_CLOSE, SLI_OPEN, SLI_RECEIVE

Microsoft Host Integration Server 2000

SLI_CLOSE
The SLI_CLOSE verb ends a session opened with SLI_OPEN. The LU-LU and LU-SSCP resources are released.

The following structure describes the LUA_COMMON member of the VCB used by SLI_CLOSE.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_CLOSE.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_CLOSE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_CLOSE and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

lua_sid
Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this parameter
to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions, set the lua_sid
parameter to zero.

lua_max_length
Not used by SLI_CLOSE and should be set to zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;

};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_data_length
Not used by SLI_CLOSE and should be set to zero.

lua_data_ptr
Not used by SLI_CLOSE and should be set to zero.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows 98, or
Microsoft® Windows 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Not used by SLI_CLOSE and should be set to zero.

lua_rh
Not used by SLI_CLOSE and should be set to zero.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters are
as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit. A supplied parameter used by SLI_CLOSE to specify whether the session is to be closed
immediately (ON) or closed normally (OFF). For verbs other than SLI_CLOSE, this flag must be off.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type
Not used by SLI_CLOSE and should be set to zero.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Not used by SLI_CLOSE and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows 98, or Microsoft®
Windows 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain a valid event
handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_CLOSE_PENDING

Secondary return code; one of the following has occurred:

A CLOSE_ABEND was still pending when another CLOSE_ABEND was issued. You can issue a CLOSE_ABEND if a
CLOSE_NORMAL is pending.
Either a CLOSE_ABEND or a CLOSE_NORMAL was still pending when a CLOSE_NORMAL was issued.

LUA_SESSION_FAILURE
Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA
verb was issued.

LUA_UNEXPECTED_SNA_SEQUENCE

Secondary return code; unexpected data or commands were received from the host while SLI_OPEN was processing.

LUA_NEGATIVE_RSP_CHASE

Secondary return code; a negative response to an SNA CHASE command from the host was received by the LUA interface while
SLI_CLOSE was being processed. SLI_CLOSE continued processing to stop the session.

LUA_NEGATIVE_RSP_SHUTC

Secondary return code; a negative response to an SNA SHUTC command from the host was received by the SLI while
SLI_CLOSE was still being processed. SLI_CLOSE continued processing to stop the session.

LUA_NEGATIVE_RSP_SHUTD

Secondary return code; a negative response to an SNA RSHUTD command from the host was received by the LUA interface
while SLI_CLOSE was still being processed. SLI_CLOSE continued processing to stop the session.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a

result, the session was stopped.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was issued
before the session was initialized.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_IN_PROGRESS
Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

There are two types of SLI_CLOSE: normal and ABEND. For a normal close, lua_flag1.close_abend is set to zero. The sequence
for a normal close can be initiated either as primary (host-initiated) or secondary (requested by a Windows LUA application).
During a primary normal close, the Windows LUA interface:

Reads the SHUTD command and posts the SESSION_END_REQUESTED status to the application.
Writes the CHASE command (if necessary).
Reads and processes the CHASE command response (if necessary).
Writes the shutdown complete (SHUTC) command.
Reads and processes the SHUTC command response.
Reads and processes the CLEAR command (if necessary).
Writes the CLEAR command response (if necessary).
Reads and processes the UNBIND command.
Writes the UNBIND command response.
Stops the session.

During a secondary normal close, the Windows LUA interface:

Writes the RSHUTD command.
Reads and processes the RSHUTD command response.
Reads and processes the CLEAR command (if necessary).
Writes the CLEAR command response (if necessary).
Reads and processes the UNBIND command.
Writes the UNBIND command response.
Stops the session.

For an ABEND close, lua_flag1.close_abend is set to 1, which directs the Windows LUA interface to close the session
immediately. After SLI_CLOSE starts processing, the LU-LU connection is terminated and the SSCP is informed that the LU is not
capable of sustaining a session.

See Also

SLI_OPEN

Microsoft Host Integration Server 2000

SLI_OPEN
The SLI_OPEN verb transfers control of the specified LU to the Windows LUA application. SLI_OPEN establishes a session
between the SSCP and the specified LU, as well as an LU-LU session.

The following structure describes the LUA_COMMON member of the VCB used by SLI_OPEN.

The following union describes the LUA_SPECIFIC member of the VCB used by SLI_OPEN. Other union members are omitted for
clarity.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

union LUA_SPECIFIC {
 struct union SLI_OPEN open;
};

The SLI_OPEN structure contains the following nested structures and members:
struct LUA_EXT_ENTRY {
 unsigned char lua_routine_type;
 unsigned char lua_module_name[9];
 unsigned char lua_procedure_name[33];
} ;

struct SLI_OPEN {
 unsigned char lua_init_type;
 unsigned char lua_resv65;
 unsigned short lua_wait;
 struct LUA_EXT_ENTRY lua_open_extension[3];
 unsigned char lua_ending_delim;
} ;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_OPEN.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_OPEN requires this parameter.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Supplied parameter. Specifies the offset from the start of the VCB to the extension list of user-supplied dynamic-link libraries
(DLLs). The value must be the beginning of a word boundary unless there is no extension list. In this case, the value must be set
to zero.

If this option is not used by SLI_OPEN, then this member should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® SNA Server and should be zero.

lua_sid
Returned parameter. Specifies the session identifier.

lua_max_length
Not used by SLI_OPEN and should be set to zero.

lua_data_length
Supplied parameter. Specifies the actual length of the data being sent.

lua_data_ptr
Pointer to the application-supplied buffer that contains the data to be sent for SLI_OPEN.

Both SNA commands and data are placed in this buffer, and they can be in an EBCDIC format.

When SLI_OPEN is issued, this parameter can be one of the following:

The LOGON message for the SSCP normal flow when the initialization type is secondary with an unformatted LOGON
message.
The RU for INITSELF. When the initialization type is secondary with INITSELF, the necessary data for the application is
provided.
For all other open types, this field should be set to zero.

This information is provided by the Windows LUA application.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Not used by SLI_OPEN and should be set to zero.

lua_rh
Not used by SLI_OPEN and should be set to zero.

lua_flag1
Not used by SLI_OPEN and should be set to zero.

lua_message_type
Not used by SLI_OPEN and should be set to zero.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56
Supplied parameter. Reserved field used by SLI_OPEN and RUI_INIT. See Remarks section.

lua_resv56[1]

Supplied parameter. This parameter must be set to 0.

lua_resv56[2]

Supplied parameter. Indicates whether an SLI application can access LUs configured as 3270 LUs, in addition to LUA LUs. If this
parameter is set to 1, 3270 LUs can be accessed.

lua_resv56[3]

Supplied parameter. Indicates whether incomplete reads are supported. If this parameter is set to 1, incomplete or truncated
reads are supported. See the remarks for RUI_READ for more details.

lua_encr_decr_option
Not used by SLI_OPEN and should be set to zero.

open
The union member of LUA_SPECIFIC used by SLI_OPEN. A supplied set of parameters contained in an SLI_OPEN structure
required with SLI_OPEN.

open.lua_init_type

Supplied parameter. Defines how the LU-LU session is initialized by the Windows LUA interface.

Valid values are as follows:

LUA_INIT_TYPE_SEC_IS

LUA_INIT_TYPE_SEC_LOG

LUA_INIT_TYPE_PRIM

LUA_INIT_TYPE_PRIM_SSCP

open.lua_resv65

Reserved field.

open.lua_wait

Supplied parameter. Represents a secondary retry wait time indicating the number of seconds the Windows LUA interface is to
wait before retrying the transmission of the INITSELF or the LOGON message after the host sends any one of these messages:

A negative response and the secondary return code is one of the following:

RESOURCE_NOT_AVAILABLE
(0x08010000)SESSION_LIMIT_EXCEEDED (0x08050000)
SESSION_SERVICE_PATH_ERROR (0x087D0000)

Note that SLI_OPEN terminates with error if lua_wait is set to zero and one of the above occurs.

A network services procedure error (NSPE) message.
A NOTIFY command, which indicates a procedure error.

open.lua_open_extension

Supplied parameter. Contains a list of application-supplied extension DLLs to process the BIND, STSN, and CRV commands.

open.open_extension.lua_routine_type

The extension routine type. Legal values are:

LUA_ROUTINE_TYPE_BIND

LUA_ROUTINE_TYPE_CRV

LUA_ROUTINE_TYPE_END (indicates end of extension list)

LUA_ROUTINE_TYPE_STSN

open.open_extension.lua_module_name

Supplied parameter. Provides the ASCII module name for the user-supplied extension DLL. The module name can be up to eight
characters long, with the remaining bytes set to 0x00.

open.open_extension.lua_procedure_name

Supplied parameter. Provides the procedure name in ASCII for the user-supplied extension DLL. The procedure name can be up
to 32 characters long, with the remaining bytes set to 0x00.

open.lua_ending_delim

The extension list delimiter.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname name was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.
The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.
The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft®
Windows® 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain a valid event
handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_INVALID_OPEN_INIT_TYPE

Secondary return code; the value in the lua_init_type contained in SLI_OPEN is invalid.

LUA_INVALID_OPEN_DATA

Secondary return code; the lua_init_type for the SLI_OPEN issued is set to LUA_INIT_TYPE_SEC_IS when the buffer for data
does not have a valid INITSELF command.

LUA_INVALID_OPEN_ROUTINE_TYPE

Secondary return code; the lua_open_routine_type for the SLI_OPEN list of extension routines is invalid.

LUA_DATA_LENGTH_ERROR

Secondary return code; the application did not provide user-supplied data required by the verb issued. Note that when
SLI_SEND is issued for an SNA LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued with
secondary initialization, data is required.

LUA_INVALID_SLI_ENCR_OPTION

Secondary return code; the lua_encr_decr_option parameter was set to 128 in SLI_OPEN, which is not supported for the
encryption/decryption processing option.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA
verb was issued.

LUA_UNEXPECTED_SNA_SEQUENCE

Secondary return code; unexpected data or commands were received from the host while SLI_OPEN was processing.

LUA_NEG_RSP_FROM_BIND_ROUTINE

Secondary return code; the user-supplied SLI_BIND routine responded negatively to the BIND. SLI_OPEN ended unsuccessfully.

LUA_NEG_RSP_FROM_STSN_ROUTINE

Secondary return code; the user-supplied SLI STSN routine responded negatively to the STSN. SLI_OPEN ended unsuccessfully.

LUA_PROCEDURE_ERROR

Secondary return code; a host procedure error is indicated by the receipt of an NSPE or NOTIFY message. The return code is
posted to SLI_OPEN when the retry option is not used. To use the reset option, set lua_wait to a value other than zero. The
LOGON or INITSELF command will be retried until the host is ready or until you issue SLI_CLOSE.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a
result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was issued
before the session was initialized.

LUA_RESOURCE_NOT_AVAILABLE

Secondary return code; the logical unit, physical unit, link, or link station specified in the request unit is unavailable. This return
code is posted to SLI_OPEN when a resource is unavailable unless you use the retry option.

To use the retry option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the host
is ready or until you issue SLI_CLOSE.

LUA_SESSION_LIMIT_EXCEEDED

Secondary return code; the session requested was not activated because an NAU is at its session limit. This SNA sense code
applies to the following requests: BID, CINIT, INIT, and ACTDRM.

The code will be posted to SLI_OPEN when an NAU is at its limit, unless you use the RETRY option.

To use the reset option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the host
is ready or until you issue SLI_CLOSE.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_NEGOTIABLE_BIND_ERROR

Secondary return code; a negotiable BIND was received, which is only allowed by the SLI when a user-supplied SLI_BIND
routine is provided with SLI_OPEN.

LUA_BIND_FM_PROFILE_ERROR

Secondary return code; only file management header profiles 3 and 4 are supported by the LUA interface. A file management
profile other than 3 or 4 was found on the BIND.

LUA_BIND_TS_PROFILE_ERROR

Secondary return code; only transmission service (TS) profiles 3 and 4 are supported by the LUA interface. A TS other than 3 or
4 was found on the BIND.

LUA_BIND_LU_TYPE_ERROR

Secondary return code; only LU 0, LU 1, LU 2, and LU 3 are supported by LUA. An LU other than 0, 1, 2, or 3 was found.

LUA_SSCP_LU_SESSION_NOT_ACTIVE

Secondary return code; the required SSCP-LU is inactive. Specific sense code information is in bytes 2 and 3. Valid settings are
0x0000, 0x0001, 0x0002, 0x0003, and 0x0004.

LUA_SESSION_SERVICES_PATH_ERROR

Secondary return code; a request for session services cannot be rerouted to an SSCP-SSCP session path. Specific sense code
information in bytes 2 and 3 gives more information about why the request cannot be rerouted.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_SESSION_ALREADY_OPEN

Secondary return code; a session is already open for the LU name specified in SLI_OPEN.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another process owns the session.

LUA_LINK_NOT_STARTED

Secondary return code; the LUA was not able to activate the data link during initialization of the session.

LUA_INVALID_ADAPTER

Secondary return code; the configuration for the data link control (DLC) is in error, or the configuration file is corrupted.

LUA_ENCR_DECR_LOAD_ERROR

Secondary return code; an unexpected return code was received from the OS/2 DosLoadModule function while attempting to
load the user-provided encryption or decryption dynamic link module.

LUA_ENCR_DECR_PROC_ERROR

Secondary return code; an unexpected return code was received from the OS/2 DosGetProcAddr function while attempting to
get the procedure address within the user-provided encryption or decryption dynamic link module.

LUA_NEG_NOTIFY_RSP

Secondary return code; the SSCP responded negatively to a NOTIFY request issued indicating that the secondary LU was
capable of a session. The half-session component that received the request understood and supported the request but could not
execute it.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the SLI was attempting to stop the session. This LU is unavailable for any
LUA requests until an ACTLU is received from the host.

LUA_CANCELED
Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process was canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.
LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

For each SLI_OPEN, the Windows LUA interface:

Starts the communication session.
Reads and verifies a BIND command from the host, and passes it to the application if a BIND extension routine is supplied.
Writes a BIND response.
Reads and processes the STSN command and passes it to the application if a BIND extension is supplied (if necessary).
Writes the STSN response (if necessary).
Reads the CRV command (if necessary).
Writes the CRV response (if necessary).
Reads and processes the SDT command.
Writes the SDT response.

The Windows LUA interface does the following additional functions for sessions that issue SLI_OPEN with the open type set to
LUA_INIT_TYPE_SEC_IS or LUA_INIT_TYPE_SEC_LOG:

Writes an INITSELF or an unformatted LOGON message.
Reads and processes an INITSELF response or LOGON message response.

All SNA message traffic is administered by SLI_OPEN through the SDT command response.

To choose a certain LU configured for Windows LUA, the application sets lua_luname to the LU name in ASCII, padded with
trailing spaces if necessary.

When SLI_OPEN is posted with LUA_OK in the lua_prim_rc parameter, SLI_OPEN successfully completed and the LU-LU data-flow
session was established. The application can now issue SLI_BID, SLI_CLOSE, SLI_PURGE, SLI_RECEIVE, and SLI_SEND.

When SLI_OPEN is posted with a primary return code other than LUA_OK or LUA_IN_PROGRESS, the command did not
successfully establish a session.

When using SLI_OPEN, a Windows LUA application must provide a session initialization type. Valid types are:

Secondary with INITSELF
Secondary with an Unformatted LOGON Message
Primary Waiting for a BIND Command
Primary with SSCP Access

See Also

RUI_INIT, SLI_OPEN, SLI_RECEIVE, SLI_SEND

Microsoft Host Integration Server 2000

Secondary with INITSELF
To initialize a session by having the secondary issue an INITSELF command, set open.lua_init_type to LUA_INIT_TYPE_SEC_IS.
When this type of session initialization is chosen, the application has to format and provide the INITSELF command. The address
of the INITSELF command is specified by lua_data_ptr. The actual length of the INITSELF command is specified by
lua_data_length.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Secondary with an Unformatted LOGON Message
To initialize a session by having the secondary issue an unformatted LOGON message, set open.lua_init_type to
LUA_INIT_TYPE_SEC_LOG. The length of the user’s EBCDIC LOGON message is then specified in lua_data_length. The address of
the user’s EBCDIC LOGON message length is specified by lua_data_ptr.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Primary Waiting for a BIND Command
To initialize a session by having the secondary wait for the primary to issue a BIND and SDT, set open.lua_init_type to
LUA_INIT_TYPE_PRIM. Until the host begins a session with the Windows LUA application using the BIND command followed by an
SDT command, the SLI_OPEN issued stays IN_PROGRESS.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Primary with SSCP Access
To initialize a session by having the SLI wait for a BIND and SDT but allow SSCP access, set open.lua_init_type to
LUA_INIT_TYPE_PRIM_SSCP. Rather than sending commands to the host to begin a session, the SLI allows the Windows LUA
application to issue SLI_SEND and SLI_RECEIVE for the SSCP normal flow only. This allows the INITSELF commands or LOGON
messages and responses to be transmitted between the Windows LUA application and the host. The application can have more
than one INITSELF and LOGON message. For this type of session only, other SLI verbs can be issued before SLI_OPEN completes.
When issuing SLI_SEND, an application should not specify any flow flag unless the application is sending a response, as specified
in the lua_message_type parameter of SLI_OPEN. To obtain the INIT_COMPLETE status, the application must first issue
SLI_OPEN, and then issue either SLI_BID or SLI_RECEIVE. The INIT_COMPLETE status notifies the application that the SLI_SEND
and SLI_RECEIVE verbs for SSCP normal flow data can be issued.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

BIND, CRV, and STSN Routines
For BIND and STSN routines supplied by the application, the names of DLLs and the entry points for procedures are passed in the
SLI_OPEN verb’s VCB. During SLI_OPEN, the BIND and STSN routines are called if the appropriate SNA request is received. When
a BIND routine is not supplied by the application, the SLI performs a minimal check of the BIND commands and responds as
necessary. If no STSN routine is supplied and an STSN request arrives, a positive response is issued by the SLI. If a CRV request
arrives, a negative response is issued by the SLI.

Names for BIND and STSN routines are provided as extensions of the SLI_OPEN verb’s VCB. The lua_extension_list_offset
parameter provides the offset from the start of the VCB to the first name in the extension list.

The function prototype for a user-defined BIND or STSN routine on Microsoft® Windows 2000, Microsoft® Windows NT®,
Microsoft® Windows® 98, or Microsoft® Windows® 95 is as follows:

The function prototype for a user-defined BIND, STSN, or END routine on Windows 3.x is as follows:

In both prototypes, the lpVcb parameter is a pointer to a LUA VCB.

VOID WINAPI UserFunction(
LUA_VERB_RECORD *lpVcb
);

VOID FAR PASCAL UserFunction(
LUA_VERB_RECORD FAR *lpVcb
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

BIND Example
The following example illustrates checking the incoming BIND image using these features of SLI_OPEN.

The following is the skeleton of a sample bind validation callback code for Windows 3.x:

Note that for Microsoft Visual C++ 4.0 or later and Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft®
Windows® 98, or Microsoft® Windows® 95, the function prototype should be:

On Windows 2000, Windows NT, Windows 98, or Windows 95, the WINAPI macro equates to _STDCall.

The BIND routine has access to the LUA VCB passed to it. The BIND routine should validate the BIND and indicate the appropriate
SLI primary and secondary return code in the LUA verb record. Also, the routine may indicate the primary and secondary RU sizes
supported by the SLI program by setting bytes 10 and 11 in the common.lua_data_ptr field (where the BIND command is
indicated).

The following are the Visual C++ compiler options for the module containing the callback:

The following is the code generated for the callback:

The following is the code generated by SLI to call this callback:

lua_vcb.specific.open.lua_open_extension[0].lua_routine_type =
 LUA_ROUTINE_TYPE_BIND;
strcpy(lua_vcb.specific.open.lua_open_extension[0].lua_module_name,
 "WINSLI32");
strcpy(lua_vcb.specific.open.lua_open_extension[0].lua_procedure_name,
 "BindValidation");
lua_vcb.specific.open.lua_open_extension[1].lua_routine_type =
 LUA_ROUTINE_TYPE_END;

VOID FAR PASCAL BindValidation (LUA_VERB_RECORD FAR * pVerb)
 {
 pVerb->common.lua_prim_rc = LUA_STATE_CHECK;
 }

VOID WINAPI BindValidation (LUA_VERB_RECORD FAR * pVerb);

 /FA -c -Zle -W3 -WX -Ge -Gy -Gz -Ox -Zd
 -DCONDITION_HANDLING -DSTD_CALL
 -Di386=1 -D_X86_ -DNT_UP -DWIN32 -DDEVL
 -D_DLL -D_MT -DWIN32_SUPPORT

PUBLIC _BindValidation@4
; COMDAT _BindValidation@4
_TEXT SEGMENT
 _pVerb$ = 8
 _BindValidation@4 PROC NEAR ; COMDAT

 // pVerb->common.lua_prim_rc = LUA_STATE_CHECK;
 mov eax, DWORD PTR _pVerb$[esp-4]
 mov WORD PTR [eax+4], 512 ; 00000200H
 ret 4
_BindValidation@4 ENDP
_TEXT ENDS

 // (*aSCB->bind_rtn)(sliVCB);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The following is the client internal trace showing WINSLI detecting the user provided bind validation callback:

The following is client internal trace showing the bind validation callback:

The following is an API trace to show the bind validation error:

 push ebp
 call DWORD PTR [ebx+188]
 // note there is no ADD ESP,4 following the call

|00000157.000000f7 OUDMD Opening User DLL Modules
|00000157.000000f7 OUDMD Opening a Bind Routine
|00000157.000000f7 OUDMD Opening DLL = WINSLI32
|00000157.000000f7 OUDMD Loading Routine = BindValidation

|00000157.0000015c CLUAD Calling BIND Routine
|00000157.0000015c CLUAD Return from BIND routine, prc=512
|00000157.0000015c CLUAD Returned With Error From Routine
|00000157.0000015c FrRUI Freeing RUI vcb = 0x14E424
|00000157.0000015c BINDP USER BIND ROUTINE FAILED

000015c SLI -- 11:11:52.28
000015c SLI SLI_OPEN post
000015c SLI SESSION_FAILURE - NEG_RSP_FROM_BIND_ROUTINE
000015c SLI ---- Verb Parameter Block at address 00405150 ----
000015c SLI 52004900 000F0000 00000039 01000000
 <R.I........9....>
000015c SLI 00000000 4C553220 20202020 48000000
 <....LU2 H...>
000015c SLI 88E01400 00000400 C0904000 F4000000
 <h.........@.4...>
000015c SLI 00000000 00000000 00000040 00000000
 <...........@....>
000015c SLI 00000000 02000000 0157494E 534C4933
 <.........WINSLI3>
000015c SLI 32004269 6E645661 6C696461 74696F6E
 <2.BindValidation>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 0000
 <.......... >
000015c SLI ---- Data at address 004090C0 ----
000015c SLI 86998584
 <fred >

Microsoft Host Integration Server 2000

Recovering from SESSION_FAILURE
If the SLI_OPEN completes with the primary return code of SESSION_FAILURE, the Windows LUA interface allows you to reissue
SLI_OPEN without issuing SLI_CLOSE.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Ending a Pending SLI_OPEN
To end a pending SLI_OPEN, issue SLI_CLOSE with lua_flag2.close_abend set to ON.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SLI_PURGE
The SLI_PURGE verb cancels SLI_RECEIVE verbs issued with a wait condition.

The following structure describes the LUA_COMMON member of the VCB used by SLI_PURGE.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_PURGE.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_PURGE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_PURGE and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

lua_sid
Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this parameter
to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions, set the lua_sid
parameter to zero.

lua_max_length
Not used by SLI_PURGE and should be set to zero.

lua_data_length

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Not used by SLI_PURGE and should be set to zero.
lua_data_ptr

When SLI_PURGE is issued, this parameter points to the location of the SLI_RECEIVE verb’s VCB that is to be canceled.
lua_post_handle

Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Not used by SLI_PURGE and should be set to zero.

lua_rh
Not used by SLI_PURGE and should be set to zero.

lua_flag1
Not used by SLI_PURGE and should be set to zero.

lua_message_type
Not used by SLI_PURGE and should be set to zero.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Not used by SLI_PURGE and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for the Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain
a valid event handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_NO_RECEIVE_TO_PURGE

Secondary return code; no SLI_RECEIVE was outstanding when you issued SLI_PURGE. One of two situations caused the
problem:

SLI_RECEIVE completed before SLI_PURGE finished processing. You can change the application to take care of this
problem because it is not an error condition.
The lua_data_ptr parameter does not correctly point to the SLI_RECEIVE you want to purge.

LUA_SLI_PURGE_PENDING

Secondary return code; an SLI_PURGE was still active when another SLI_PURGE was issued. Only one SLI_PURGE can be active
at a time.

LUA_SESSION_FAILURE
Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a
result, the session was stopped.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA
verb was issued.

LUA_NOT_READY

Secondary return code; one of the following caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, which indicates a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after the
SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the primary
return code is SESSION_FAILURE, not LUA_STATUS.
The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INVALID_PROCESS

Secondary return code; the session for which an RUI verb was issued is unavailable because another OS/2 process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the RUI was attempting to stop the session. This LU is unavailable for any
LUA requests until an ACTLU is received from the host.

LUA_CANCELED
Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process was canceled.

LUA_IN_PROGRESS
Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_PURGE cancels SLI_RECEIVE commands with a wait condition.

Typically, SLI_PURGE is issued if SLI_RECEIVE takes too long to complete. To cancel an SLI_RECEIVE, lua_data_ptr has to point to
the SLI_RECEIVE VCB to cancel. The primary return code of the SLI_RECEIVE will be set to LUA_CANCELED when SLI_PURGE
succeeds in canceling SLI_RECEIVE.

See Also

RUI_INIT, SLI_OPEN, SLI_PURGE, SLI_RECEIVE, SLI_SEND

Microsoft Host Integration Server 2000

SLI_RECEIVE
The SLI_RECEIVE verb receives responses, SNA commands, and data into a Windows LUA application’s buffer. SLI_RECEIVE also
provides the current status of the session to the Windows LUA application.

The following structure describes the LUA_COMMON member of the VCB used by SLI_RECEIVE.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_RECEIVE.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_RECEIVE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_RECEIVE and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Specifies the length of received buffer for RUI_READ and SLI_RECEIVE.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_data_length
Returned parameter. Specifies the length of data returned in the receive buffer.

lua_data_ptr
Pointer to the application-supplied buffer that is to receive the data from an SLI_RECEIVE verb. Both SNA commands and data
are placed in this buffer, and they can be in an EBCDIC format.

When SLI_RECEIVE is issued, this parameter points to the location to receive the data from the host.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are returned
for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x0 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. Its subparameters are as
follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segment
LUA_RH_NC (0x20) Network control
LUA_RH_DFC (0x40) Data flow control
LUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is used
by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. Its subparameters are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set lua_flag1.bid_enable to 1 to re-enable the most recent SLI_BID (equivalent to issuing SLI_BID again with exactly the same
parameters as before), or set it to zero if you do not want to re-enable SLI_BID. Note that re-enabling the previous SLI_BID
reuses the VCB originally allocated for it, so this VCB must not have been freed or modified.

Set lua_flag1.nowait to 1 to indicate that you want SLI_RECEIVE to return immediately whether or not data is available to be
read, or set it to zero if you want the verb to wait for data before returning.

Set one or more of the following flags to 1 to indicate from which message flow to read data:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available is returned. The order of priorities (highest first) is: SSCP
expedited, LU expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2 group is set to indicate from which flow
the data was read.

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. Returned parameter. Specifies the type of SNA
message indicated to SLI_RECEIVE. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Returned by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID,
SLI_RECEIVE, and SLI_SEND. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Not used by SLI_RECEIVE and should be set to zero.

lua_encr_decr_option
Not used by SLI_RECEIVE and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft®
Windows® 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain a valid event
handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_BID_VERB_SEGMENT_ERROR

Secondary return code; the buffer with the SLI_BID VCB was released before the SLI_RECEIVE with lua_flag1.bid_enable set
to 1 was issued.

LUA_NO_PREVIOUS_BID_ENABLED

Secondary return code; SLI_BID was not issued prior to issuing SLI_RECEIVE with lua_flag1.bid_enable.

LUA_BID_ALREADY_ENABLED

Secondary return code; SLI_RECEIVE was issued with lua_flag1.bid_enable when SLI_BID was already active.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

When issuing SLI_SEND to send an SNA response, set only one lua_flag1 flow flag.
When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_RECEIVE_ON_FLOW_PENDING

Secondary return code; an SLI_RECEIVE was still outstanding when this application issued another SLI_RECEIVE for an SNA
flow.

LUA_SESSION_FAILURE
Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RUI_WRITE_FAILURE

Secondary return code; an unexpected error was posted to the SLI by RUI_WRITE.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a
result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued or some verb other than SLI_OPEN was issued
before the session was initialized.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception request
sense code.

LUA_RECEIVER_IN_TRANSMIT_MODE

Secondary return code; either resources needed to handle normal flow data were not available or the state of the half-duplex
contention was not received when a normal-flow request was received. The result is a race condition. This SNA sense code is
also an exception request sense code.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_CHAINING_ERROR

Secondary return code; the sequence of the chain indicator settings is in error. An invalid request header or request unit for the
receiver’s current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receiver’s current session control or data flow control
state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receiver’s current session control or data flow control state was found. Delivery to
the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a DFC or FMD request was received from a half-session that sent either a SHUTC command or QC
command, and the DFC or FMD request has not responded to a RELQ command. An invalid request header or request unit for
the receiver’s current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit for
the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_RSP_PROTOCOL_ERROR

Secondary return code; a violation of the response protocol was found in the response received from the primary half-session.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a NO RESPONSE. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the
half-session component was prevented. The errors are not dependent on the current session state. The sender’s failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors
are not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The BIND
options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the half-
session component was prevented. The errors are not dependent on the current session state. The sender’s failure to enforce
session rules may have caused the errors.

LUA_INCORRECT_RU_CATEGORY

Secondary return code; the request unit category indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously or

the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_DATA_TRUNCATED

Secondary return code; the data was truncated because the data received was longer than the buffer length specified in
lua_max_length.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.
The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.
The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

LUA_NO_DATA

Secondary return code; no data was available to read when SLI_RECEIVE containing a no wait parameter was issued.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA
verb was issued.

LUA_NOT_READY

Secondary return code; one of the following has caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, which indicates a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after the
SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the primary
return code is LUA_SESSION_FAILURE, not LUA_STATUS.
The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another OS/2 process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for any
LUA requests until an ACTLU is received from the host.

LUA_RECEIVE_CORRELATION_TABLE_FULL

Secondary return code; the session receive correlation table for the flow requested reached its capacity.

LUA_NEGATIVE_RESPONSE
Primary return code; either the LUA sent a negative response to a message received from the primary LU because an error was
found in the message, or the application responded negatively to a chain for which the end-of-chain has arrived.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception request
sense code.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; the LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receiver’s current session control or data flow control state was found.
Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-session
component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a positive
response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of the sense
data contains the request code. No user data exists for this sense code. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_INVALID_SC_OR_NC_RH

Secondary return code; the RH of an SC or NC request was invalid.

LUA_PACING_NOT_SUPPORTED

Secondary return code; the request contained a pacing indicator when support of pacing for this session does not exist for the
receiving half-session or boundary function half-session. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_NAU_INOPERATIVE

Secondary return code; the network addressable unit is not able to process responses or requests. Delivery to the receiver could
not take place for one of the following reasons:

A path information unit error
A path outage
An invalid sequence of requests for activation

If a path error is received during an active session, it usually means there is no longer a valid path to the session partner.

LUA_CANCELED
Primary return code; the secondary return code gives the reason for canceling the command.

LUA_PURGED

Secondary return code; SLI_PURGE was issued and canceled SLI_RECEIVE.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_CANCEL_COMMAND_RECEIVED

Secondary return code; the host sent an SNA CANCEL command to cancel the data chain currently being received by
SLI_RECEIVE.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS
Primary return code; an asynchronous command was received but is not completed.

LUA_STATUS
Primary return code; the secondary return code contains SLI status information for the application.

LUA_READY

Secondary return code; following a NOT READY status, this status is issued to notify you that the SLI is ready to process
commands.

LUA_NOT_READY

Secondary return code; the SLI session is temporarily suspended for the following reason:

An SNA UNBIND type 0x02 command was received, which means a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after the
SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the primary
return code is session-failure, not status.
The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INIT_COMPLETE

Secondary return code; the LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue
SLI_OPEN with lua_open_type_prim_sscp receive this status on SLI_RECEIVE or SLI_BID.

LUA_SESSION_END_REQUESTED

Secondary return code; the LUA interface received an SNA SHUTD from the host, which means the host is ready to shut down
the session.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_RECEIVE receives responses, SNA commands, and request unit data from the host. SLI_RECEIVE also provides the status of
the session to the Windows LUA application. An SLI_OPEN request must complete before SLI_RECEIVE can be issued. However, if
SLI_OPEN is issued with lua_init_type set to LUA_INIT_TYPE_PRIM_SSCP, an SLI_RECEIVE over the SSCP normal flow can be
issued as soon as SLI_OPEN returns an IN_PROGRESS.

Data is received by the application in one of four session flows. The four session flows, from highest to lowest priority are:

SSCP expedited
LU expedited
SSCP normal
LU normal

The data flow type that SLI_RECEIVE will process is specified in lua_flag1. The application can also specify whether it wants to
look at more than one type of data flow. When multiple flow bits are set, the highest priority is received first. When SLI_RECEIVE
completes processing, lua_flag2 indicates the specific type of flow for which data has been received by the Windows LUA
application.

If SLI_BID successfully completes before SLI_RECEIVE is issued, the Windows LUA interface can be instructed to reuse the last
SLI_BID verb’s VCB. To do this, issue SLI_RECEIVE with lua_flag1.bid_enable set to 1.

When using lua_flag1.bid_enable, the SLI_BID storage must not be freed because the last SLI_BID verb’s VCB is used. Also, when
using lua_flag1.bid_enable, the successful completion of SLI_BID will be posted.

If SLI_RECEIVE is issued with lua_flag1.nowait when no data is available to receive, LUA_NO_DATA will be the secondary return
code set by the Windows LUA interface.

Session Status Return Values
If LUA_STATUS is the primary return code, the secondary return code can be one of the following:

LUA_READY

LUA_NOT_READY

LUA_SESSION_END_REQUESTED

LUA_INIT_COMPLETE

In addition, if LUA_STATUS is the primary return code, the following parameters are used:

lua_sec_rc

lua_sid

LUA_READY is returned after an LUA_NOT_READY status and indicates that the SLI is again ready to perform all commands.

LUA_NOT_READY indicates that the SLI session is suspended because the SLI has received either an SNA CLEAR command or an
SNA UNBIND command with an 0x02 UNBIND type (UNBIND with BIND forthcoming). Depending on what caused the
suspension, the session can be reactivated as follows:

When the suspension is caused by an SNA CLEAR, receiving an SNA SDT reactivates the session.
When an SNA UNBIND type BIND forthcoming causes suspension of the session and the SLI_OPEN that opened the session
is completed, the session is suspended until the SLI receives a BIND and SDT command. The session can also optionally
receive an STSN command. As a result, user-supplied routines issued with the initial SLI_OPEN must be re-entered because
they will be recalled.

The application can send SSCP data after a CLEAR or UNBIND type BIND forthcoming arrives and before the NOT_READY status is
read. The application can send and receive SSCP data after reading a NOT_READY.

When an SNA UNBIND type BIND forthcoming arrives before completion of the SLI_OPEN that opened the session,
LUA_SESSION_FAILURE (not LUA_STATUS) is the primary return code.

LUA_SESSION_END_REQUESTED indicates that the application received an SNA SHUTD from the host. The Windows LUA

application should issue SLI_CLOSE to close the session when convenient.

LUA_INIT_COMPLETE is returned only when lua_init_type for SLI_OPEN is LUA_INIT_TYPE_PRIM_SSCP. The status means that the
SLI_OPEN has been processed sufficiently to allow SSCP data to now be sent or received.

Exception Requests
If a host application request unit is converted into an EXR, sense data will be returned. When SLI_BID completes with the returned
verb parameters set as shown, an EXR conversion occurs.

Member Set to
lua_prim_rc OK (0x0000)
lua_sec_rc OK (0x00000000)
lua_rh.rri bit off (request unit)
lua_rh.sdi bit on (includes sense data)

Of the seven bytes of data in lua_peek_data, bytes 0 through 3 define the error detected. The following table indicates possible
sense data and the values of bytes 0 through 3.

Sense data Value of bytes 0–3
LUA_MODE_INCONSISTENCY 0x08090000
LUA_BRACKET_RACE_ERROR 0x080B0000
LUA_BB_REJECT_NO_RTR 0x08130000
LUA_RECEIVER_IN_TRANSMIT_MODE 0x081B0000
LUA_CRYPTOGRAPHY_FUNCTION_INOP 0x08480000
LUA_SYNC_EVENT_RESPONSE 0x10010000
LUA_RU_DATA_ERROR 0x10020000
LUA_RU_LENGTH_ERROR 0x10020000
LUA_INCORRECT_SEQUENCE_NUMBER 0x20010000

The information returned to bytes 3 through 6 in lua_peek_data is determined by the first three bytes of the initial request unit
that caused the error.

See Also

RUI_INIT, RUI_PURGE, RUI_READ, RUI_WRITE, SLI_BID, SLI_CLOSE, SLI_OPEN, SLI_PURGE, SLI_SEND

Microsoft Host Integration Server 2000

SLI_RECEIVE_EX
The SLI_RECEIVE_EX verb receives responses, SNA commands, and data into a Windows LUA application’s buffer.
SLI_RECEIVE_EX also provides the current status of the session to the Windows LUA application.

The SLI_RECEIVE_EX verb also supports inbound chaining. The maximum length of data that can be received by a single verb is
4,294,967,295 bytes. This is compared to a maximum of 65,535 bytes that can be received by the SLI_RECEIVE verb.

The following structure describes the LUA_COMMON member of the VCB used by SLI_RECEIVE_EX.

The following union describes the LUA_SPECIFIC member of the VCB used by SLI_RECEIVE_EX. Other union members are
omitted for clarity.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_RECEIVE_EX.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_RECEIVE_EX only requires this parameter if lua_sid is zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

union LUA_SPECIFIC {
 struct SLI_RECEIVE_EX_SPECIFIC {
 unsigned long lua_data_length_ex;
 unsigned long lua_max_length_ex;
 };
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_RECEIVE_EX and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
This supplied parameter is reserved and must be set to zero.

The maximum length of data returned in a receive buffer must be set in the lua_max_length_ex parameter.

lua_data_length
This parameter is reserved and must be set to zero.

The length of data returned in the receive buffer is set in the lua_data_length_ex parameter.

lua_data_ptr
Pointer to the application-supplied buffer that is to receive the data from an SLI_RECEIVE_EX verb. Both SNA commands and
data are placed in this buffer, and they can be in an EBCDIC format.

When SLI_RECEIVE_EX is issued, this parameter points to the location to receive the data from the host.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are returned
for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. Its subparameters are as
follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segment
LUA_RH_NC (0x20) Network control
LUA_RH_DFC (0x40) Data flow control
LUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is used
by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE_EX, and SLI_SEND_EX. Its subparameters are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set lua_flag1.bid_enable to 1 to re-enable the most recent SLI_BID (equivalent to issuing SLI_BID again with exactly the same
parameters as before), or set it to zero if you do not want to re-enable SLI_BID. Note that re-enabling the previous SLI_BID
reuses the VCB originally allocated for it, so this VCB must not have been freed or modified.

Set lua_flag1.nowait to 1 to indicate that you want SLI_RECEIVE_EX to return immediately whether or not data is available to be
read, or set it to zero if you want the verb to wait for data before returning.

Set one or more of the following flags to 1 to indicate from which message flow to read data:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available is returned. The order of priorities (highest first) is: SSCP
expedited, LU expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2 group is set to indicate from which flow
the data was read.

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. Returned parameter. Specifies the type of SNA
message indicated to SLI_RECEIVE_EX. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Returned by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID,
SLI_RECEIVE, and SLI_SEND_EX. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Not used by SLI_RECEIVE and should be set to zero.

lua_encr_decr_option
Not used by SLI_RECEIVE and should be set to zero.

lua_max_length_ex
Specifies the length of received buffer for SLI_RECEIVE_EX.

lua_data_length_ex
The union member of LUA_SPECIFIC used by SLI_RECEIVE_EX. Returned parameter. Specifies the length of data returned in
the receive buffer.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write

segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft®
Windows® 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain a valid event
handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_BID_VERB_SEGMENT_ERROR

Secondary return code; the buffer with the SLI_BID VCB was released before the SLI_RECEIVE_EX with lua_flag1.bid_enable
set to 1 was issued.

LUA_NO_PREVIOUS_BID_ENABLED

Secondary return code; SLI_BID was not issued prior to issuing SLI_RECEIVE_EX with lua_flag1.bid_enable.

LUA_BID_ALREADY_ENABLED

Secondary return code; SLI_RECEIVE_EX was issued with lua_flag1.bid_enable when SLI_BID was already active.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

When issuing SLI_SEND_EX_sna_SLI_SEND_EX_lua to send an SNA response, set only one lua_flag1 flow flag.
When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_RECEIVE_ON_FLOW_PENDING

Secondary return code; an SLI_RECEIVE_EX was still outstanding when this application issued another SLI_RECEIVE_EX for an
SNA flow.

LUA_SESSION_FAILURE
Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RUI_WRITE_FAILURE

Secondary return code; an unexpected error was posted to the SLI by RUI_WRITE.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a
result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued or some verb other than SLI_OPEN was issued
before the session was initialized.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception request
sense code.

LUA_RECEIVER_IN_TRANSMIT_MODE

Secondary return code; either resources needed to handle normal flow data were not available or the state of the half-duplex
contention was not received when a normal-flow request was received. The result is a race condition. This SNA sense code is
also an exception request sense code.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_CHAINING_ERROR

Secondary return code; the sequence of the chain indicator settings is in error. An invalid request header or request unit for the
receiver’s current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receiver’s current session control or data flow control
state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receiver’s current session control or data flow control state was found. Delivery to
the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a DFC or FMD request was received from a half-session that sent either a SHUTC command or QC
command, and the DFC or FMD request has not responded to a RELQ command. An invalid request header or request unit for
the receiver’s current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit for
the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_RSP_PROTOCOL_ERROR

Secondary return code; a violation of the response protocol was found in the response received from the primary half-session.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a NO RESPONSE. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the
half-session component was prevented. The errors are not dependent on the current session state. The sender’s failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors

are not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The BIND
options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the half-
session component was prevented. The errors are not dependent on the current session state. The sender’s failure to enforce
session rules may have caused the errors.

LUA_INCORRECT_RU_CATEGORY

Secondary return code; the request unit category indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_UNSUCCESSFUL
Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_DATA_TRUNCATED

Secondary return code; the data was truncated because the data received was longer than the buffer length specified in
lua_max_length_ex.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE_EX or SLI_SEND_EX is not a read/write data segment as required.
The supplied data segment for SLI_RECEIVE_EX is not as long as that provided in lua_max_length_ex.
The supplied data segment for SLI_SEND_EX is not as long as that provided in lua_data_length_ex.

LUA_NO_DATA

Secondary return code; no data was available to read when SLI_RECEIVE_EX containing a no wait parameter was issued.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA
verb was issued.

LUA_NOT_READY

Secondary return code; one of the following has caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, which indicates a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after the
SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the primary
return code is LUA_SESSION_FAILURE, not LUA_STATUS.
The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another process owns the session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for any
LUA requests until an ACTLU is received from the host.

LUA_RECEIVE_CORRELATION_TABLE_FULL

Secondary return code; the session receive correlation table for the flow requested reached its capacity.

LUA_NEGATIVE_RESPONSE
Primary return code; either the LUA sent a negative response to a message received from the primary LU because an error was
found in the message, or the application responded negatively to a chain for which the end-of-chain has arrived.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception request
sense code.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; the LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receiver’s current session control or data flow control state was found.
Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-session
component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a positive
response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of the sense
data contains the request code. No user data exists for this sense code. An invalid header request or request unit for the

received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_INVALID_SC_OR_NC_RH

Secondary return code; the RH of an SC or NC request was invalid.

LUA_PACING_NOT_SUPPORTED

Secondary return code; the request contained a pacing indicator when support of pacing for this session does not exist for the
receiving half-session or boundary function half-session. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_NAU_INOPERATIVE

Secondary return code; the network addressable unit is not able to process responses or requests. Delivery to the receiver could
not take place for one of the following reasons:

A path information unit error
A path outage
An invalid sequence of requests for activation

If a path error is received during an active session, it usually means there is no longer a valid path to the session partner.

LUA_CANCELED
Primary return code; the secondary return code gives the reason for canceling the command.

LUA_PURGED

Secondary return code; SLI_PURGE was issued and canceled SLI_RECEIVE.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_CANCEL_COMMAND_RECEIVED

Secondary return code; the host sent an SNA CANCEL command to cancel the data chain currently being received by
SLI_RECEIVE_EX.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS
Primary return code; an asynchronous command was received but is not completed.

LUA_STATUS
Primary return code; the secondary return code contains SLI status information for the application.

LUA_READY

Secondary return code; following a NOT READY status, this status is issued to notify you that the SLI is ready to process
commands.

LUA_NOT_READY

Secondary return code; the SLI session is temporarily suspended for the following reason:

An SNA UNBIND type 0x02 command was received, which means a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after the
SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the primary
return code is session-failure, not status.
The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INIT_COMPLETE

Secondary return code; the LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue
SLI_OPEN with lua_open_type_prim_sscp receive this status on SLI_RECEIVE or SLI_BID.

LUA_SESSION_END_REQUESTED

Secondary return code; the LUA interface received an SNA SHUTD from the host, which means the host is ready to shut down
the session.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_RECEIVE_EX receives responses, SNA commands, and request unit data from the host. SLI_RECEIVE_EX also provides the
status of the session to the Windows LUA application.

The difference between SLI_RECEIVE_EX and SLI_RECEIVE is that the SLI_RECEIVE_EX verb supports inbound chaining and can
receive up to 4,295 KB in a single verb request. In contrast, SLI_RECEIVE is limited to receiving up to 64 KB in a verb request.

An SLI_OPEN request must complete before SLI_RECEIVE_EX can be issued. However, if SLI_OPEN is issued with lua_init_type set
to LUA_INIT_TYPE_PRIM_SSCP, an SLI_RECEIVE_EX over the SSCP normal flow can be issued as soon as SLI_OPEN returns an
IN_PROGRESS.

Data is received by the application in one of four session flows. The four session flows, from highest to lowest priority are:

SSCP expedited
LU expedited
SSCP normal
LU normal

The data flow type that SLI_RECEIVE_EX will process is specified in lua_flag1. The application can also specify whether it wants
to look at more than one type of data flow. When multiple flow bits are set, the highest priority is received first. When
SLI_RECEIVE_EX completes processing, lua_flag2 indicates the specific type of flow for which data has been received by the
Windows LUA application.

If SLI_BID successfully completes before SLI_RECEIVE is issued, the Windows LUA interface can be instructed to reuse the last
SLI_BID verb’s VCB. To do this, issue SLI_RECEIVE_EX with lua_flag1.bid_enable set to 1.

When using lua_flag1.bid_enable, the SLI_BID storage must not be freed because the last SLI_BID verb’s VCB is used. Also, when
using lua_flag1.bid_enable, the successful completion of SLI_BID will be posted.

If SLI_RECEIVE_EX is issued with lua_flag1.nowait when no data is available to receive, LUA_NO_DATA will be the secondary return
code set by the Windows LUA interface.

Session Status Return Values
If LUA_STATUS is the primary return code, the secondary return code can be one of the following:

LUA_READY

LUA_NOT_READY

LUA_SESSION_END_REQUESTED

LUA_INIT_COMPLETE

In addition, if LUA_STATUS is the primary return code, the following parameters are used:

lua_sec_rc

lua_sid

LUA_READY is returned after an LUA_NOT_READY status and indicates that the SLI is again ready to perform all commands.

LUA_NOT_READY indicates that the SLI session is suspended because the SLI has received either an SNA CLEAR command or an
SNA UNBIND command with an 0x02 UNBIND type (UNBIND with BIND forthcoming). Depending on what caused the
suspension, the session can be reactivated as follows:

When the suspension is caused by an SNA CLEAR, receiving an SNA SDT reactivates the session.
When an SNA UNBIND type BIND forthcoming causes suspension of the session and the SLI_OPEN that opened the session
is completed, the session is suspended until the SLI receives a BIND and SDT command. The session can also optionally
receive an STSN command. As a result, user-supplied routines issued with the initial SLI_OPEN must be re-entered because
they will be recalled.

The application can send SSCP data after a CLEAR or UNBIND type BIND forthcoming arrives and before the NOT_READY status is
read. The application can send and receive SSCP data after reading a NOT_READY.

When an SNA UNBIND type BIND forthcoming arrives before completion of the SLI_OPEN that opened the session,
LUA_SESSION_FAILURE (not LUA_STATUS) is the primary return code.

LUA_SESSION_END_REQUESTED indicates that the application received an SNA SHUTD from the host. The Windows LUA
application should issue SLI_CLOSE to close the session when convenient.

LUA_INIT_COMPLETE is returned only when lua_init_type for SLI_OPEN is LUA_INIT_TYPE_PRIM_SSCP. The status means that the
SLI_OPEN has been processed sufficiently to allow SSCP data to now be sent or received.

Exception Requests
If a host application request unit is converted into an EXR, sense data will be returned. When SLI_BID completes with the returned
verb parameters set as shown, an EXR conversion occurs.

Member Set to
lua_prim_rc OK (0x0000)
lua_sec_rc OK (0x00000000)
lua_rh.rri bit off (request unit)
lua_rh.sdi bit on (includes sense data)

Of the seven bytes of data in lua_peek_data, bytes 0 through 3 define the error detected. The following table indicates possible
sense data and the values of bytes 0 through 3.

Sense data Value of bytes 0–3
LUA_MODE_INCONSISTENCY 0x08090000
LUA_BRACKET_RACE_ERROR 0x080B0000
LUA_BB_REJECT_NO_RTR 0x08130000
LUA_RECEIVER_IN_TRANSMIT_MODE 0x081B0000
LUA_CRYPTOGRAPHY_FUNCTION_INOP 0x08480000
LUA_SYNC_EVENT_RESPONSE 0x10010000
LUA_RU_DATA_ERROR 0x10020000
LUA_RU_LENGTH_ERROR 0x10020000
LUA_INCORRECT_SEQUENCE_NUMBER 0x20010000

The information returned to bytes 3 through 6 in lua_peek_data is determined by the first three bytes of the initial request unit
that caused the error.

See Also

RUI_INIT, RUI_PURGE, RUI_READ, RUI_WRITE, SLI_BID, SLI_CLOSE, SLI_OPEN, SLI_PURGE, SLI_SEND_EX

Microsoft Host Integration Server 2000

SLI_SEND
The SLI_SEND verb sends responses, SNA commands, and data from a Windows LUA application to a host LU.

The following structure describes the LUA_COMMON member of the VCB used by SLI_SEND.

The following union describes the LUA_SPECIFIC member of the VCB used by SLI_SEND. Other union members are omitted for
clarity.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_SEND.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_SEND only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_SEND and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

union LUA_SPECIFIC {
 unsigned char lua_sequence_number[2];
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Not used by SLI_SEND and should be set to zero.

lua_data_length
Supplied parameter. Specifies the length of data being sent.

lua_data_ptr
Pointer to the application-supplied buffer that contains the data to be sent to the host by SLI_SEND.

Both SNA commands and data are placed in this buffer, and they can be in an EBCDIC format.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are set for
write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Supplied parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for RUI_WRITE
and SLI_SEND, and returned by RUI_READ and RUI_BID. For the RH for SLI_SEND, all fields except the queued-response
indicator (lua_rh.qri) and pacing indicator (lua_rh.pi) are used.

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits.

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application.Its subparameters are
as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set one of the following flags to 1 to indicate on which message flow the data is to be sent:

lua_flag1.sscp_exp

lua_flag1.sscp_norm

lua_flag1.lu_exp

lua_flag1.lu_norm

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. This is a supplied parameter for SLI_SEND.

Possible values are as follows:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Not used by SLI_SEND and should be set to zero.

lua_sequence_number
The union member of LUA_SPECIFIC used by SLI_SEND. Returned parameter. Contains the sequence number for either the
first in the chain request unit or the only segment in the chain request unit. Note that this parameter is not byte-reversed.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft®
Windows® 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain a valid event
handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

When issuing SLI_SEND to send an SNA response, set only one lua_flag1 flow flag.
When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_REQUIRED_FIELD_MISSING

Secondary return code; the verb that was issued either did not include a data pointer (if the data count was not zero) or did not
include an lua_flag1 flow flag.

LUA_INVALID_MESSAGE_TYPE

Secondary return code; the lua_message_type parameter is not recognized by the LUA interface.

LUA_DATA_LENGTH_ERROR

Secondary return code; the application did not provide user-supplied data required by the verb issued. Note that when
SLI_SEND is issued for an SNA LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued with
secondary initialization, data is required.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_MAX_NUMBER_OF_SENDS

Secondary return code; the application issued a third SLI_SEND before one completed.

LUA_SEND_ON_FLOW_PENDING

Secondary return code; an SLI_SEND was still outstanding when the application issued another SLI_SEND for an SNA flow.

LUA_SESSION_FAILURE
Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a
result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was issued
before the session was initialized.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.
The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.
The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA
verb was issued.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another OS/2 process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for any
LUA requests until an ACTLU is received from the host.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception request
sense code.

LUA_INSUFFICIENT_RESOURCES

Secondary return code; a temporary condition of insufficient resources caused the request receiver to be unable to perform. The
request sent to the half-session component was not executed, even though it was understood and supported.

LUA_SEND_CORRELATION_TABLE_FULL

Secondary return code; the session send correlation table for the flow requested reached its capacity.

LUA_RU_LENGTH_ERROR

Secondary return code; the RU request was an incorrect length (either too short or too long). The request unit was not
interpreted or processed even though it was delivered to the half-session component. The half-session capabilities do not
match. This SNA sense code is also an exception request sense code.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_HDX_BRACKET_STATE_ERROR

Secondary return code; the existing state error prevented the current request from being sent. The determination was made by
a protocol computer.

LUA_RESPONSE_ALREADY_SENT

Secondary return code; a response for the chain was already sent so that the current request was not sent. The determination
was made by a protocol computer.

LUA_EXR_SENSE_INCORRECT

Secondary return code; the application responded negatively to an exception request. The sense code was unacceptable.

LUA_RESPONSE_OUT_OF_ORDER

Secondary return code; the current response was not for the oldest request. The determination was made by a protocol
computer.

LUA_CHAIN_RESPONSE_REQUIRED

Secondary return code; a CHASE response was still outstanding when a more recent request was attempted. The determination
was made by a protocol computer.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receiver’s current session control or data flow control
state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receiver’s current session control or data flow control state was found. Delivery to
the half-session component was prevented.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receiver’s current session control or data flow control state was found.
Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a DFC or FMD request was received from a half-session that sent either a SHUTC command or QC

command, and the DFC or FMD request has not responded to a RELQ command. An invalid request header or request unit for
the receiver’s current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-session
component was prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a positive
response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of the sense
data contains the request code. No user data exists for this sense code. An invalid header request or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit for
the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_RSP_BEFORE_SENDING_REQ

Secondary return code; a previously received request has not been responded to yet and an attempt was made in half-duplex
send/receive mode to send a normal flow request. An invalid header request or request unit for the received current session
control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a “no response.” The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the
half-session component was prevented. The errors are not dependent on the current session state. The sender’s failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors
are not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The BIND
options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the half-
session component was prevented. The errors are not dependent on the current session state. The sender’s failure to enforce
session rules may have caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the

architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_NO_SESSION

Secondary return code; a request to activate a session is required because no active half-session in the receiving end node for
the origination-destination pair exists, or no active boundary function half-session component for the origination-destination
pair in a node that supplies the boundary function exists. Delivery of the request could not take place for one of the following
reasons:

A path information unit error
A path outage
An invalid sequence of requests for activation

If a path error is received during an active session, that usually indicates there is no longer a valid path to the session partner.

LUA_CANCELED
Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS
Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT
Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR
Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_SEND sends responses, SNA commands, and data from the Windows LUA application to a host LU. A session must already be

open to issue SLI_SEND for a particular LU-LU session flow. To send data on the SSCP normal flow prior to the completion of
SLI_OPEN, the session must have been initialized as primary with SSCP access. In addition, the session status must be
INIT_COMPLETE.

The settings for lua_message_type determine the type of processing that will be done by SLI_SEND. The following table indicates
the parameters to set based on the value of lua_message_type.

SLI_SEND parameter LU_DATA
SSCP_DATA

BID
BIS
RTR

CHASE
QC

LUSTAT_LU
LUSTAT_SSCP

QEC
RELQ
SBI
SIGNAL

RQR RSP

lua_data
_length

Req. 0 0 Req. 0 0 Req. (0 if
no data)

lua_data
_ptr

Req. (0 if
no data)

0 0 Req. 0 0 Req. (0 if
no data)

lua_flag1 flow flags 0 0 0 0 0 0 Req. (set
one)

lua_rh FI
DRL1
DRL2
RI
BBI
EBI
CDI
CSI
EDI

SDI
QRI

SDI
QRI
EBI
CDI

SDI
QRI
DRL1
DRL2
RI
BBI
EBI
CDI

SDI 0 RRI
RI

lua_th 0 0 0 0 0 0 SNF

The location provided in lua_data_ptr and the length provided in lua_data_length determine the data that the SLI sends. The
data will be chained by the SLI verbs if necessary.

When sending a response, the type of response determines the SLI_SEND information required. For all responses, you must:

Set the selected lua_flag1 flow flag.
Provide the sequence number in lua_th.snf for the request to which you are responding.
Set lua_message_type to LUA_MESSAGE_TYPE_RSP.

For multichain message responses, the sequence number of the last received chain element must be used. For a response to a
multichain message ending with a CANCEL command, the CANCEL command sequence number is used.

For positive responses that only require the request code, set lua_rh.ri to zero (indicating that the response is positive) and
lua_data_length to zero (indicating no data is provided). The request code is filled in by the SLI, using the sequence number
provided.

For negative responses in which lua_rh.ri is set to 1, set the lua_data_ptr to the SNA sense code address and the lua_data_length
to the SNA sense code length (four bytes). The sequence number is used by the SLI to fill in the request code.

See Also

RUI_INIT, RUI_READ, RUI_WRITE, SLI_BID, SLI_CLOSE, SLI_OPEN, SLI_RECEIVE

Microsoft Host Integration Server 2000

SLI_SEND_EX
The SLI_SEND_EX verb sends responses, SNA commands, and data from a Windows LUA application to a host LU.

The SLI_SEND_EX verb also supports inbound chaining. The maximum length of data that can be sent by a single verb is
4,294,967,295 bytes. This is compared to a maximum of 65,535 bytes that can be sent by the SLI_SEND verb.

The following structure describes the LUA_COMMON member of the VCB used by SLI_SEND_EX.

The following union describes the LUA_SPECIFIC member of the VCB used by SLI_SEND_EX. Other union members are omitted
for clarity.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_SEND_EX.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_SEND only requires this parameter if lua_sid is zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

union LUA_SPECIFIC {
 struct SLI_SEND_EX_SPECIFIC {
 unsigned char lua_sequence_number[2];
 unsigned long lua_data_length_ex;
 };
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_SEND_EX and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Not used by SLI_SEND_EX and should be set to zero.

lua_data_length
This parameter is reserved and must be set to zero.

The length of data to be sent is set in the lua_data_length_ex parameter.

lua_data_ptr
Pointer to the application-supplied buffer that contains the data to be sent to the host by SLI_SEND_EX.

Both SNA commands and data are placed in this buffer, and they can be in an EBCDIC format.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are set for
write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Supplied parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for RUI_WRITE
and SLI_SEND, and returned by RUI_READ and RUI_BID. For the RH for SLI_SEND_EX, all fields except the queued-response
indicator (lua_rh.qri) and pacing indicator (lua_rh.pi) are used.

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits.

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters are
as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set one of the following flags to 1 to indicate on which message flow the data is to be sent:

lua_flag1.sscp_exp

lua_flag1.sscp_norm

lua_flag1.lu_exp

lua_flag1.lu_norm

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. This is a supplied parameter for SLI_SEND_EX.

Possible values are as follows:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Not used by SLI_SEND_EX and should be set to zero.

lua_sequence_number
The union member of LUA_SPECIFIC used by SLI_SEND_EX. Returned parameter. Contains the sequence number for either the
first in the chain request unit or the only segment in the chain request unit. Note that this parameter is not byte-reversed.

lua_data_length_ex
The union member of LUA_SPECIFIC used by SLI_SEND_EX. Supplied parameter. Specifies the length of data being sent.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK
Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft®
Windows® 95 system using events as the asynchronous posting method, the Windows LUA VCB does not contain a valid event
handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

When issuing SLI_SEND_EX to send an SNA response, set only one lua_flag1 flow flag.
When issuing SLI_RECEIVE_EX, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_REQUIRED_FIELD_MISSING

Secondary return code; the verb that was issued either did not include a data pointer (if the data count was not zero) or did not
include an lua_flag1 flow flag.

LUA_INVALID_MESSAGE_TYPE

Secondary return code; the lua_message_type parameter is not recognized by the LUA interface.

LUA_DATA_LENGTH_ERROR

Secondary return code; the application did not provide user-supplied data required by the verb issued. Note that when
SLI_SEND_EX is issued for an SNA LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued with
secondary initialization, data is required.

LUA_STATE_CHECK
Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_MAX_NUMBER_OF_SENDS

Secondary return code; the application issued a third SLI_SEND or an SLI_SEND_EX before one completed.

LUA_SEND_ON_FLOW_PENDING

Secondary return code; an SLI_SEND or an SLI_SEND_EX was still outstanding when the application issued another
SLI_SEND_EX for an SNA flow.

LUA_SESSION_FAILURE
Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a
result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was issued
before the session was initialized.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE_EX or SLI_SEND_EX is not a read/write data segment as required.
The supplied data segment for SLI_RECEIVE_EX is not as long as that provided in lua_max_length_ex.
The supplied data segment for SLI_SEND_EX is not as long as that provided in lua_data_length_ex.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA
verb was issued.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another OS/2 process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for any
LUA requests until an ACTLU is received from the host.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception request
sense code.

LUA_INSUFFICIENT_RESOURCES

Secondary return code; a temporary condition of insufficient resources caused the request receiver to be unable to perform. The
request sent to the half-session component was not executed, even though it was understood and supported.

LUA_SEND_CORRELATION_TABLE_FULL

Secondary return code; the session send correlation table for the flow requested reached its capacity.

LUA_RU_LENGTH_ERROR

Secondary return code; the RU request was an incorrect length (either too short or too long). The request unit was not
interpreted or processed even though it was delivered to the half-session component. The half-session capabilities do not
match. This SNA sense code is also an exception request sense code.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_HDX_BRACKET_STATE_ERROR

Secondary return code; the existing state error prevented the current request from being sent. The determination was made by
a protocol computer.

LUA_RESPONSE_ALREADY_SENT

Secondary return code; a response for the chain was already sent so that the current request was not sent. The determination
was made by a protocol computer.

LUA_EXR_SENSE_INCORRECT

Secondary return code; the application responded negatively to an exception request. The sense code was unacceptable.

LUA_RESPONSE_OUT_OF_ORDER

Secondary return code; the current response was not for the oldest request. The determination was made by a protocol
computer.

LUA_CHAIN_RESPONSE_REQUIRED

Secondary return code; a CHASE response was still outstanding when a more recent request was attempted. The determination
was made by a protocol computer.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receiver’s current session control or data flow control
state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receiver’s current session control or data flow control state was found. Delivery to
the half-session component was prevented.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receiver’s current session control or data flow control state was found.
Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a DFC or FMD request was received from a half-session that sent either a SHUTC command or QC
command, and the DFC or FMD request has not responded to a RELQ command. An invalid request header or request unit for
the receiver’s current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-session
component was prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a positive
response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of the sense
data contains the request code. No user data exists for this sense code. An invalid header request or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit for
the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_RSP_BEFORE_SENDING_REQ

Secondary return code; a previously received request has not been responded to yet and an attempt was made in half-duplex
send/receive mode to send a normal flow request. An invalid header request or request unit for the received current session
control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a “no response.” The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the
half-session component was prevented. The errors are not dependent on the current session state. The sender’s failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors
are not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The BIND
options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the half-
session component was prevented. The errors are not dependent on the current session state. The sender’s failure to enforce
session rules may have caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural rules

were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

LUA_NO_SESSION

Secondary return code; a request to activate a session is required because no active half-session in the receiving end node for
the origination-destination pair exists, or no active boundary function half-session component for the origination-destination
pair in a node that supplies the boundary function exists. Delivery of the request could not take place for one of the following
reasons:

A path information unit error
A path outage
An invalid sequence of requests for activation

If a path error is received during an active session, that usually indicates there is no longer a valid path to the session partner.

LUA_CANCELED
Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS
Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED
Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node has been broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED
Primary return code; a required component could not be loaded or terminated while processing the verb. Thus, communication
could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.
LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL
Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your application.

LUA_INVALID_VERB
Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_SEND_EX sends responses, SNA commands, and data from the Windows LUA application to a host LU.

The difference between SLI_SEND_EX and SLI_SEND is that the SLI_SEND_EX verb supports inbound chaining and can send up to
a maximum of 4,295 KB in a single verb request. In contrast, SLI_SEND is limited to sending up to 64 KB in a verb request. A single
SLI_SEND_EX or SLI_SEND verb defines a chain. A single SLI_RECEIVE_EX or SLI_RECEIVE verb receives a whole chain.

A session must already be open to issue SLI_SEND_EX for a particular LU-LU session flow. To send data on the SSCP normal flow
prior to the completion of SLI_OPEN, the session must have been initialized as primary with SSCP access. In addition, the session
status must be INIT_COMPLETE.

The settings for lua_message_type determine the type of processing that will be done by SLI_SEND_EX. The following table
indicates the parameters to set based on the value of lua_message_type.

SLI_SEND_EX parameter LU_DATA
SSCP_DATA

BID
BIS
RTR

CHASE
QC

LUSTAT_LU
LUSTAT_SSCP

QEC
RELQ
SBI
SIGNAL

RQR RSP

lua_data
_length

Req. 0 0 Req. 0 0 Req. (0 if
no data)

lua_data
_ptr

Req. (0 if
no data)

0 0 Req. 0 0 Req. (0 if
no data)

lua_flag1 flow flags 0 0 0 0 0 0 Req. (set
one)

lua_rh FI
DRL1
DRL2
RI
BBI
EBI
CDI
CSI
EDI

SDI
QRI

SDI
QRI
EBI
CDI

SDI
QRI
DRL1
DRL2
RI
BBI
EBI
CDI

SDI 0 RRI
RI

lua_th 0 0 0 0 0 0 SNF

The location provided in lua_data_ptr and the length provided in lua_data_length_ex determine the data that the SLI sends. The
data will be chained by the SLI verbs if necessary.

When sending a response, the type of response determines the SLI_SEND_EX information required. For all responses, you must:

Set the selected lua_flag1 flow flag.
Provide the sequence number in lua_th.snf for the request to which you are responding.
Set lua_message_type to LUA_MESSAGE_TYPE_RSP.

For multichain message responses, the sequence number of the last received chain element must be used. For a response to a
multichain message ending with a CANCEL command, the CANCEL command sequence number is used.

For positive responses that only require the request code, set lua_rh.ri to zero (indicating that the response is positive) and
lua_data_length to zero (indicating no data is provided). The request code is filled in by the SLI, using the sequence number
provided.

For negative responses in which lua_rh.ri is set to 1, set the lua_data_ptr to the SNA sense code address and the lua_data_length
to the SNA sense code length (four bytes). The sequence number is used by the SLI to fill in the request code.

See Also

RUI_INIT, RUI_READ, RUI_WRITE, SLI_BID, SLI_CLOSE, SLI_OPEN, SLI_RECEIVE_EX

Microsoft Host Integration Server 2000

SLI_BIND_ROUTINE
The SLI_BIND_ROUTINE verb notifies the Windows LUA application that a BIND request has come from the host and allows the
user-supplied routine to examine the request and formulate a response.

The following structure describes the LUA_COMMON member of the VCB used by SLI_BIND_ROUTINE.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_BIND_ROUTINE.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_BIND_ROUTINE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_BIND_ROUTINE and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

lua_sid
Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this parameter
to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions, set the lua_sid
parameter to zero.

lua_max_length
Not used by SLI_BIND_ROUTINE and should be set to zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_data_length
Returned parameter. Specifies the length of the BIND RU data returned in the data buffer.

lua_data_ptr
For the SLI_BIND_ROUTINE this parameter contains the address of the BIND RU.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Supplied parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are returned
for read and bid functions.

lua_rh
Supplied parameter. Contains the SNA request/response header (RH) of the message sent or received.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application.

lua_message_type
Supplied parameter. Specifies the type of SNA data or command sent to the host.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Not used by SLI_BIND_ROUTINE and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_NEGATIVE_RSP
Primary return code; either the LUA sent a negative response to a message received from the primary LU because an error was
found in the message, or the application responded negatively to a chain for which the end-of-chain has arrived.

Remarks

SLI_BIND_ROUTINE provides a mechanism for the Windows LUA application to examine BIND requests that are received from
the host. The Windows LUA uses a user-supplied DLL to notify the Windows LUA application that a BIND request has been
received. The user-supplied DLL routine then examines the contents of the BIND and formulates a response for the request.

The DLL name for the routine is provided as extensions of the SLI_OPEN verb’s VCB. The lua_extension_list_offset parameter
provides the offset from the start of the VCB to the first name in the extension list.

The Windows LUA interface assigns storage space where the VCB is structured. The VCB of SLI_BIND_ROUTINE contains lua_th

and lua_rh. The address of the BIND RU is specified in lua_data_ptr and the length of the RU is specified in lua_data_length.

When SLI_BIND_ROUTINE returns to the Windows LUA, processing of SLI_BIND_ROUTINE is completed. The BIND response
should overwrite the BIND RU. When the BIND is accepted, the primary return code should be set to LUA_OK. If the BIND is
rejected, the primary return code should be set to LUA_NEGATIVE_RSP and the BIND buffer contains the negative sense code. The
lua_data_ptr parameter should not be modified.

If a negative response is returned from SLI_BIND_ROUTINE, SLI_OPEN is canceled. The lua_prim_rc of the SLI_OPEN is set to
LUA_SESSION_FAILURE, and the lua_sec_rc is set to LUA_NEG_RSP_FROM_BIND_ROUTINE.

See Also

RUI_INIT, RUI_PURGE, RUI_READ, RUI_WRITE, SLI_OPEN, SLI_PURGE, SLI_RECEIVE, SLI_SEND

Microsoft Host Integration Server 2000

SLI_STSN_ROUTINE
The SLI_STSN_ROUTINE verb notifies the Windows LUA application that an STSN command has come from the host and allows
the user-supplied routine to examine the request and formulate a response.

The following structure describes the LUA_COMMON member of the VCB used by SLI_STSN_ROUTINE.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_STSN_ROUTINE.

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_STSN_ROUTINE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Not used by SLI_STSN_ROUTINE and should be set to zero.

lua_cobol_offset
Not used by LUA in Microsoft® Host Integration Server or Microsoft® SNA Server and should be zero.

lua_sid
Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this parameter
to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions, set the lua_sid
parameter to zero.

lua_max_length
Not used by SLI_STSN_ROUTINE and should be set to zero.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

lua_data_length
Returned parameter. Specifies the length of the STSN RU data returned in the data buffer.

lua_data_ptr
For the SLI_STSN_ROUTINE this parameter contains the address of the STSN RU.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are returned
for read and bid functions.

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application.

lua_message_type
Supplied parameter. Specifies the type of SNA data or command sent to the host.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
Reserved and should be set to zero.

lua_encr_decr_option
Not used by SLI_STSN_ROUTINE and should be set to zero.

Return Codes

LUA_OK
Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_NEGATIVE_RSP
Primary return code; either the LUA sent a negative response to a message received from the primary LU because an error was
found in the message, or the application responded negatively to a chain for which the end-of-chain has arrived.

Remarks

SLI_STSN_ROUTINE provides a mechanism for the Windows LUA application to examine and respond to STSN commands. The
Windows LUA notifies the Windows LUA application that an STSN command has been received from the host. This is done
through a user-supplied DLL. The user’s DLL examines the STSN request and formulates a response to the request.

The DLL name for the routine is provided as extensions of the SLI_OPEN verb’s VCB. The lua_extension_list_offset parameter
provides the offset from the start of the VCB to the first name in the extension list.

The Windows LUA interface assigns storage space where the VCB is structured. The VCB of the SLI_STSN_ROUTINE contains

lua_th and lua_rh. The address of the STSN RU is specified in lua_data_ptr and the length of the RU is specified in lua_data_length.

When SLI_STSN_ROUTINE returns to the Windows LUA, processing of the SLI_STSN_ROUTINE is completed. The STSN response
should overwrite the STSN RU. When the STSN is accepted, the primary return code should be set to LUA_OK. If the STSN is
rejected, the primary return code should be set to LUA_NEGATIVE_RSP and the STSN buffer contains the negative sense code. The
lua_data_ptr parameter should not be modified.

If a negative response is returned from SLI_STSN_ROUTINE, SLI_OPEN is canceled. The lua_prim_rc of the SLI_OPEN is set to
LUA_SESSION_FAILURE, and the lua_sec_rc is set to LUA_NEG_RSP_FROM_STSN_ROUTINE.

See Also

RUI_INIT, RUI_PURGE, RUI_READ, RUI_WRITE, SLI_OPEN, SLI_PURGE, SLI_RECEIVE, SLI_SEND

Microsoft Host Integration Server 2000

LUA Extensions for the Windows Environment
The extensions described in this section are designed for all implementations and versions of the Microsoft® Windows®
graphical environment version 3.0 or later. They provide support for maximum Windows-based programming compatibility and
optimum application performance in both 16-bit and 32-bit operating environments.

Windows LUA allows multithreaded Windows-based processes. A process contains one or more threads of execution. The 16-bit
Windows environment is not multithreaded. In this instance, a task corresponds to a process with a single thread. All references to
threads in this document refer to actual threads in multithreaded Windows environments.

For each extension, this section provides a definition of the function with syntax, return codes, and remarks for using the
extension.

These functions can be grouped into two categories depending on whether RUI or SLI verbs are used.

Functions for use with RUI verbs are:

RUI
Provides event notification for all RUI verbs.

WinRUI
Provides asynchronous message notification for all Windows-based RUI verbs.

WinRUICleanup
Terminates and deregisters an application using RUI verbs from a Windows LUA implementation.

WinRUIGetLastInitStatus
Enables an application using RUI verbs to initiate status reporting, terminate status reporting, or find the current status.

WinRUIStartup
Allows an application using RUI verbs to specify the version of Windows LUA required and to retrieve details of the specific
Windows LUA implementation. This function must be called by an application to register itself with a Windows LUA
implementation before issuing any further Windows LUA calls.

Functions for use with SLI verbs are:

SLI
Provides event notification for all SLI verbs.

WinSLI
Provides asynchronous message notification for all Windows-based SLI verbs.

WinSLICleanup
Terminates and deregisters an application using SLI verbs from a Windows LUA implementation.

WinSLIStartup
Allows an application using SLI verbs to specify the version of Windows LUA required and to retrieve details of the specific
Windows LUA implementation. This function must be called by an application to register itself with a Windows LUA
implementation before issuing any further Windows LUA calls.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RUI
The RUI function provides event notification for all RUI verbs.

Parameters

lpVCB
Pointer to the LUA VCB, LUA_VERB_RECORD.

Return Values

The code returned in lua_prim_rc indicates whether asynchronous notification will occur. If the field is set to LUA_IN_PROGRESS,
asynchronous notification will occur through event signaling. If the flag is not LUA_IN_PROGRESS, the request completed
synchronously. Examine the primary return code and secondary return code for any errors.

Remarks

The application must provide a handle to an event in the lua_post_handle parameter of the VCB. The event must be in the not-
signaled state.

When the asynchronous operation is complete, the application is notified through the signaling of the event. Upon signaling of
the event, examine the primary return code and secondary return code for any error conditions.

See Also

WinRUI

void WINAPI RUI(
 LUA_VERB_RECORD FAR *lpVCB
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SLI
The SLI function provides event notification for all SLI verbs.

Parameters

lpVCB
Pointer to the LUA VCB, LUA_VERB_RECORD.

Return Values

The code returned in lua_prim_rc indicates whether asynchronous notification will occur. If the field is set to LUA_IN_PROGRESS,
asynchronous notification will occur through event signaling. If the flag is not LUA_IN_PROGRESS, the request completed
synchronously. Examine the primary return code and secondary return code for any errors.

Remarks

The application must provide a handle to an event in the lua_post_handle parameter of the VCB. The event must be in the not-
signaled state.

When the asynchronous operation is complete, the application is notified through the signaling of the event. Upon signaling of
the event, examine the primary return code and secondary return code for any error conditions.

See Also

WinSLI

void WINAPI SLI(
 LUA_VERB_RECORD FAR *lpVCB
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinRUI
The WinRUI function provides asynchronous message notification for all Windows-based RUI verbs.

Parameters

hWnd
Handle of window to receive message.

lpVCB
Pointer to the LUA VCB, LUA_VERB_RECORD.

Return Values

The function returns a value indicating whether the request was accepted by the Windows-based RUI for processing. A returned
value of zero indicates that the request was accepted and will be processed. A value other than zero indicates an error. Possible
error codes are as follows:

WLUAINVALIDHANDLE
The window handle provided is invalid.

WLUASTARTUPNOTCALLED
The application has not initiated a session using WinRUIStartup.

The value returned in lua_flag2.async indicates whether asynchronous notification will occur. If the flag is set (nonzero),
asynchronous notification will occur through a message posted to the application’s message queue. If the flag is not set, the
request completed synchronously. Examine the primary return code and secondary return code for any error conditions.

Remarks

When the asynchronous operation is complete, the application’s window hWnd receives the message returned by
RegisterWindowMessage with “WinRUI” as the input string. The lParam argument contains the address of the VCB being
posted as complete. The wParam argument is undefined.

 Note It is possible for the request to be accepted for processing (the function call returns zero) but rejected later
with a primary return code and secondary return code set in the VCB. Examine the primary return code and secondary
return code for any error conditions.

If the application calls WinRUI without first initializing the session using WinRUIStartup, an error is returned.

See Also

RUI, WinRUIStartup

int WINAPI WinRUI(
 HWND hWnd,
 LUA_VERB_RECORD FAR *lpVCB
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinRUICleanup
The WinRUICleanup function terminates and deregisters an application using RUI verbs from a Windows LUA implementation.

Return Values

The return code specifies whether the deregistration was successful. If the value is not zero, the application was successfully
deregistered. If the value is zero, the application was not deregistered.

Remarks

Use WinRUICleanup to indicate deregistration of a Windows LUA application from a Windows LUA implementation. This
function can be used, for example, to free up resources allocated to the specific application.

If WinRUICleanup is called while LUs are in session (RUI_TERM not issued), the cleanup code should issue an RUI_TERM close
type ABEND for the application for all open sessions.

See Also

RUI_TERM, WinRUIStartup

BOOL WINAPI WinRUICleanup(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinRUIGetLastInitStatus
The WinRUIGetLastInitStatus function enables an application to determine the status of an RUI_INIT, so that the application can
evaluate whether the RUI_INIT should be timed out. This extension can be used to initiate status reporting, terminate status
reporting, or find the current status. For details, see the Remarks section.

Parameters

dwSid
Specifies the RUI session identifier of the session for which status will be determined. If dwSid is zero, hStatusHandle is used to
report status on all sessions. Note that the lua_sid parameter in the RUI_INIT VCB is valid as soon as the call to RUI or WinRUI
for the RUI_INIT returns.

hStatusHandle
Specifies a handle used for signaling the application that the status for the session (specified by dwSid) has changed. Can be a
window handle, an event handle, or NULL; dwNotifyType must be set accordingly:

If hStatusHandle is a window handle, status is sent to the application through a window message. The message is
obtained from RegisterWindowMessage using the string “WinRUI”. The parameter wParam contains the session status
(see Return Codes). Depending on the value of dwNotifyType, lParam contains either the RUI session identifier of the
session, or the value of lua_correlator from the RUI_INIT verb.
If hStatusHandle is an event handle, when the status for the session specified by dwSid changes, the event is put into the
signaled state. The application must then make a further call to WinRUIGetLastInitStatus to find out the new status.
Note that the event should not be the same as one used for signaling completion of any RUI verb.
If hStatusHandle is NULL, the status of the session specified by dwSid is returned in the return code. In this case, dwSid
must not be zero unless bClearPrevious is TRUE. If hStatusHandle is NULL, dwNotifyType is ignored.

dwNotifyType
Specifies the type of indication required. This determines the contents of the lParam of the window message, and how
WinRUIGetLastInitStatus interprets hStatusHandle. Allowed values are:

WLUA_NTFY_EVENT

The hStatusHandle parameter contains an event handle.

WLUA_NTFY_MSG_CORRELATOR

The hStatusHandle parameter contains a window handle, and the lParam of the returned window message should contain the
value of the lua_correlator field on the RUI_INIT.

WLUA_NTFY_MSG_SID

The hStatusHandle parameter contains a window handle, and the lParam of the returned window message should contain the
LUA session identifier.

bClearPrevious
If TRUE, status messages are no longer sent for the session identified by dwSid. If dwSid is zero, status messages are no longer
sent for any session. If bClearPrevious is TRUE, hStatusHandle and dwNotifyType are ignored.

Return Values

WLUASYSNOTREADY
SNABASE is not running.

WLUANTFYINVALID
The dwNotifyType parameter is invalid.

WLUAINVALIDHANDLE
The hStatusHandle parameter does not contain a valid handle.

WLUASTARTUPNOTCALLED
WinRUIStartup has not been called.

int WINAPI WinRUIGetLastInitStatus(
 DWORD dwSid,
 HANDLE hStatusHandle,
 DWORD dwNotifyType,
 BOOL bClearPrevious
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

WLUALINKINACTIVE
The link to the host is not yet active.

WLUALINKACTIVATING
The link to the host is being activated.

WLUAPUINACTIVE
The link to the host is active, but no ACTPU has yet been received.

WLUAPUACTIVE
An ACTPU has been received.

WLUAPUREACTIVATED
The PU has been reactivated.

WLUALUINACTIVE
The link to the host is active, and an ACTPU has been received, but no ACTLU has been received.

WLUALUACTIVE
The LU is active.

WLUALUREACTIVATED
The LU has been reactivated.

WLUAUNKNOWN
The session is in an unknown status. (This is an internal error.)

WLUAGETLU
The session is waiting for an Open(SSCP) response from the node.

WLUASIDINVALID
The SID specified does not match any known by the RUI.

WLUASIDZERO
The hStatusHandle parameter is NULL and bClearPrevious is FALSE, but dwSid is zero.

WLUAGLOBALHANDLER
The dwSid parameter is zero, and messages from all sessions will be notified. (This is a normal return code, not an error.)

Remarks

This extension is intended to be used with either a window handle or an event handle to enable asynchronous notification of
status changes. It can also be used alone to find out the current status of a session.

With a window handle
There are two ways to use this extension with a window handle:

—or—

With this implementation, changes in status are reported by a window message sent to the window handle specified. If
WLUA_NTFY_MSG_CORRELATOR is specified, the lParam field in the window message contains the lua_correlator field for the
session. If WLUA_NTFY_MSG_SID is specified, the lParam field in the window message contains the LUA session identifier for the
session.

When the extension has been used with a window handle, use the following to cancel status reporting:

For this implementation, note that if Sid is nonzero, status is only reported for that session. If Sid is zero, status is reported for all
sessions.

With an event handle
To use this extension with an event handle, implement it as follows:

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_CORRELATOR,FALSE);

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_SID,FALSE);

WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NOTIFY_EVENT,FALSE);

The event whose handle is given will be signaled when a change in state occurs. Since no information is returned when an event
is signaled, a further call must be issued to find out the status.

Note that in this case, a Sid must be specified.

When the extension has been used with an event handle, use the following to cancel the reporting of status:

To query current status
To use this extension to query the current status of a session, it is not necessary to use an event or window handle. Instead, use
the following:

See Also

RUI, RUI_INIT, WinRUI, WinRUIStartup

Status = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

Status = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

Microsoft Host Integration Server 2000

WinRUIStartup
The WinRUIStartup function allows an application using RUI verbs to specify the version of Windows LUA required and to
retrieve details of the specific Windows LUA implementation. This function must be called by an application to register itself with
a Windows LUA implementation before issuing any further Windows LUA calls.

Parameters

wVersionRequired
Specifies the version of Windows LUA support required. The high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

lpLuaData
Pointer to the LUADATA structure containing the returned version number information.

Return Values

The return code specifies whether the application was registered successfully and whether the Windows LUA implementation can
support the specified version number. If the value is zero, it was registered successfully and the specified version can be
supported. Otherwise, the return code is one of the following:

WLUASYSNOTREADY
The underlying network subsystem is not ready for network communication.

WLUAVERNOTSUPPORTED
The version of Windows LUA support requested is not provided by this particular Windows LUA implementation.

WLUAINVALID
The Windows LUA version specified by the application is not supported by this DLL.

WLUAFAILURE
A failure occurred while the Windows LUA DLL was initializing. This usually occurs because an operating system call failed.

WLUAINITREJECT
WinRUIStartup was called multiple times.

Remarks

To support future Windows LUA implementations and applications that may have functionality differences, a negotiation takes
place in WinRUIStartup. An application passes to WinRUIStartup the Windows LUA version that it can use. If this version is
lower than the lowest version supported by the Windows LUA DLL, the DLL cannot support the application and WinRUIStartup
fails. If the version is not lower, however, the call succeeds and returns the highest version of Windows LUA supported by the DLL.
If this version is lower than the lowest version supported by the application, the application either fails its initialization or attempts
to find another Windows LUA DLL on the system.

This negotiation allows both a Windows LUA DLL and a Windows LUA application to support a range of Windows LUA versions.
An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinRUIStartup works in conjunction with different application and DLL versions:

App versions DLL versions To
WinRUIStartup

From
WinRUIStartup Result

1.0 1.0 1.0 1.0 Use 1.0
1.0, 2.0 1.0 2.0 1.0 Use 1.0
1.0 1.0, 2.0 1.0 2.0 Use 1.0
1.0 2.0, 3.0 1.0 WLUAINVALID Fail
2.0, 3.0 1.0 3.0 1.0 App fails
1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

 Note The application that uses RUI verbs must call WinRUIStartup prior to issuing any other LUA commands.
However, WinRUIStartup needs to be called only once per application. If it is called multiple times, the subsequent
calls will be rejected.

Details of the actual LUA implementation are described in the WLUADATA structure, defined as follows:

int WINAPI WinRUIStartup(
 WORD wVersionRequired,
 LUADATA FAR *lpLuaData
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Having made its last Windows LUA call, an application should call the WinRUICleanup routine.

Each LUA application that uses RUI verbs must make a WinRUIStartup call before issuing any other LUA calls.

See Also

WinRUICleanup

typedef struct { WORD wVersion;
 char szDescription[WLUADESCRIPTION_LEN+1];
 } LUADATA;

Microsoft Host Integration Server 2000

WinSLI
The WinSLI function provides asynchronous message notification for all Windows-based SLI verbs.

Parameters

hWnd
Handle of window to receive message.

lpVCB
Pointer to the LUA VCB, LUA_VERB_RECORD.

Return Values

The function returns a value indicating whether the request was accepted by the Windows-based SLI for processing. A returned
value of zero indicates that the request was accepted and will be processed. A value other than zero indicates an error. Possible
error codes are as follows:

WLUAINVALIDHANDLE
The window handle provided is invalid.

WLUASTARTUPNOTCALLED
The application has not initiated a session using WinSLIStartup.

The value returned in lua_flag2.async indicates whether asynchronous notification will occur. If the flag is set (nonzero),
asynchronous notification will occur through a message posted to the application’s message queue. If the flag is not set, the
request completed synchronously. Examine the primary return code and secondary return code for any error conditions.

Remarks

When the asynchronous operation is complete, the application’s window hWnd receives the message returned by
RegisterWindowMessage with ‘WinSLI” as the input string. The lParam argument contains the address of the VCB being posted
as complete. The wParam argument is undefined.

 Note It is possible for the request to be accepted for processing (the function call returns zero) but rejected later
with a primary return code and secondary return code set in the VCB. Examine the primary return code and secondary
return code for any error conditions.

If the application calls WinSLI without first initializing the session using WinSLIStartup, an error is returned.

See Also

SLI, WinSLIStartup

int WINAPI WinSLI(
 HWND hWnd,
 LUA_VERB_RECORD FAR *lpVCB
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinSLICleanup
The WinSLICleanup function terminates and deregisters an application using SLI verbs from a Windows LUA implementation.

Return Values

The return code specifies whether the deregistration was successful. If the value is not zero, the application was successfully
deregistered. If the value is zero, the application was not deregistered.

Remarks

Use WinSLICleanup to indicate deregistration of a Windows LUA application from a Windows LUA implementation. This
function can be used, for example, to free up resources allocated to the specific application.

If WinSLICleanup is called while LUs are in session (SLI_CLOSE not issued), the cleanup code should issue an SLI_CLOSE close
type ABEND for the application for all open sessions.

See Also

SLI_CLOSE, WinSLIStartup

BOOL WINAPI WinSLICleanup(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WinSLIStartup
The WinSLIStartup function allows an application using the SLI verbs to specify the version of Windows LUA required and to
retrieve details of the specific Windows LUA implementation. This function must be called by an application to register itself with
a Windows LUA implementation before issuing any further Windows LUA calls.

Parameters

wVersionRequired
Specifies the version of Windows LUA support required. The high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

lpLuaData
Pointer to the LUADATA structure containing the returned version number information.

Return Values

The return code specifies whether the application was registered successfully and whether the Windows LUA implementation can
support the specified version number. If the value is zero, it was registered successfully and the specified version can be
supported. Otherwise, the return code is one of the following:

WLUASYSNOTREADY
The underlying network subsystem is not ready for network communication.

WLUAVERNOTSUPPORTED
The version of Windows LUA support requested is not provided by this particular Windows LUA implementation.

WLUAINVALID
The Windows LUA version specified by the application is not supported by this DLL.

WLUAFAILURE
A failure occurred while the Windows LUA DLL was initializing. This usually occurs because an operating system call failed.

WLUAINITREJECT
WinSLIStartup was called multiple times.

Remarks

To support future Windows LUA implementations and applications that may have functionality differences, a negotiation takes
place in WinSLIStartup. An application passes to WinSLIStartup the Windows LUA version that it can use. If this version is lower
than the lowest version supported by the Windows LUA DLL, the DLL cannot support the application and WinSLIStartup fails. If
the version is not lower, however, the call succeeds and returns the highest version of Windows LUA supported by the DLL. If this
version is lower than the lowest version supported by the application, the application either fails its initialization or attempts to
find another Windows LUA DLL on the system.

This negotiation allows both a Windows LUA DLL and a Windows LUA application to support a range of Windows LUA versions.
An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinSLIStartup works in conjunction with different application and DLL versions:

App versions DLL versions To
WinSLIStartup

From
WinSLIStartup Result

1.0 1.0 1.0 1.0 Use 1.0
1.0, 2.0 1.0 2.0 1.0 Use 1.0
1.0 1.0, 2.0 1.0 2.0 Use 1.0
1.0 2.0, 3.0 1.0 WLUAINVALID Fail
2.0, 3.0 1.0 3.0 1.0 App fails
1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

 Note The application that uses SLI verbs must call WinSLIStartup prior to issuing any other LUA commands.
However, WinSLIStartup needs to be called only once per application. If it is called multiple times, the subsequent
calls will be rejected.

Details of the actual LUA implementation are described in the WLUADATA structure, defined as follows:

int WINAPI WinSLIStartup(
 WORD wVersionRequired,
 LUADATA FAR *lpLuaData
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Having made its last Windows LUA call, an application should call the WinSLICleanup routine.

Each LUA application that uses SLI verbs must make a WinSLIStartup call before issuing any other LUA calls.

See Also

WinSLICleanup

typedef struct { WORD wVersion;
 char szDescription[WLUADESCRIPTION_LEN+1];
 } LUADATA;

Microsoft Host Integration Server 2000

SNA Server Enhancement to the Windows LUA Environment
This section describes the Microsoft® Host Integration Server and Microsoft® SNA Server-specific extension to Windows LUA
that converts primary and secondary return codes in the verb control block (VCB) to a printable string.

Following is a definition of the function, syntax, returns, and remarks for using the extension.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GetLuaReturnCode
The GetLuaReturnCode function converts the primary and secondary return codes in the VCB to a printable string. This function
provides a standard set of error strings for use by LUA applications.

Parameters

vpb
Supplied parameter. Specifies the address of the verb control block.

buffer_length
Supplied parameter. Specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256.

buffer_addr
Supplied/returned parameter. Specifies the address of the buffer that will hold the formatted, null-terminated string.

Return Codes

0x20000001
The parameters are invalid; the function could not read from the specified verb control block or could not write to the specified
buffer.

0x20000002
The specified buffer is too small.

0x20000003
The LUA string library LUASTR.DLL (for Windows) or LUAST32.DLL (for Microsoft® Windows 2000, Microsoft® Windows NT®,
Microsoft® Windows® 98, or Microsoft® Windows® 95) could not be loaded.

Remarks

The descriptive error string returned in buffer_addr does not terminate with a newline character (\n).

The descriptive error strings are contained in LUASTR.DLL (for Windows) or LUAST32.DLL (for Windows 2000, Windows NT,
Windows 98, or Windows 95) and can be customized for different languages.

int WINAPI GetLuaReturnCode(
 struct LUA_COMMON FAR *vpb,
 UINT buffer_length,
 unsigned char FAR *buffer_addr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Verb Control Blocks
When an application issues a Windows LUA verb, the verb is coded within the application as a precisely defined VCB. The total
length of this VCB is variable and is defined by lua_verb_length.

This section defines the structure of individual Windows LUA VCBs.

This section contains:

Common Structure of LUA VCBs

Values for lua_message_type

Command-Specific Structure of LUA VCBs

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Common Structure of LUA VCBs
The following data structure shows the parameters that are common to all Windows LUA verbs.

Members

lua_verb
Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs or LUA_VERB_SLI for SLI verbs. For both of these
macros the value is 0x5200.

lua_verb_length
Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc
Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc
Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_opcode
Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued, for example,
LUA_OPCODE_RUI_BID for the RUI_BID verb. Valid values are as follows:

LUA_OPCODE_SLI_OPEN

LUA_OPCODE_SLI_CLOSE

LUA_OPCODE_SLI_RECEIVE

LUA_OPCODE_SLI_SEND

LUA_OPCODE_SLI_PURGE

LUA_OPCODE_SLI_BID

LUA_OPCODE_SLI_BIND_ROUTINE

LUA_OPCODE_SLI_STSN_ROUTINE

LUA_OPCODE_SLI_CRV_ROUTINE

LUA_OPCODE_RUI_INIT

LUA_OPCODE_RUI_TERM

LUA_OPCODE_RUI_READ

LUA_OPCODE_RUI_WRITE

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
} LUA_COMMON;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LUA_OPCODE_RUI_PURGE

LUA_OPCODE_RUI_BID

lua_correlator
Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not use
or change this information. This parameter is optional.

lua_luname
Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_OPEN and RUI_INIT require this parameter. Other Windows LUA verbs only require this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset
Specifies the offset from the start of the VCB to the extension list of user-supplied dynamic-link libraries (DLLs). This parameter
is not used by RUI in Microsoft® Host Integration Server or Microsoft® SNA Server and should be set to zero. The value must
be the beginning of a word boundary unless there is no extension list.

lua_cobol_offset
Offset of the Cobol extension. Not used by LUA in Host Integration Server or SNA Server and should be zero.

lua_sid
Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length
Specifies the length of received buffer for RUI_READ and SLI_RECEIVE. For other RUI and SLI verbs, it is not used and should be
set to zero.

lua_data_length
Specifies the length of the data being sent or received. It specifies the length of data returned in lua_peek_data for the RUI_BID
verb.

lua_data_ptr
Pointer to an application-supplied buffer.

When SLI_RECEIVE or RUI_READ is issued, this parameter points to the location to receive the data from the host.

When SLI_SEND or RUI_WRITE is issued, this parameter points to the location of the application’s data to be sent to the host.

When SLI_PURGE or RUI_PURGE is issued, this parameter points to the location of the SLI_RECEIVE or RUI_READ verb’s VCB
that is to be canceled.

When SLI_OPEN is issued, this parameter can be one of the following:

The logon message for the SSCP normal flow when the initialization type is secondary with an unformatted logon
message.
The RU for INITSELF. When the initialization type is secondary with INITSELF, the necessary data for the application is
provided.
For all other open types, this field should be set to zero.

For other RUI and SLI verbs, this parameter is not used and should be set to zero. Both SNA commands and data are placed in
this buffer and they can be in an EBCDIC format.

This information is provided by the Windows LUA application.

lua_post_handle
Supplied parameter. Used under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and
Microsoft® Windows® 95 if asynchronous notification is to be accomplished by events. This variable contains the handle of the
event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th
Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various subparameters are
set for write functions and returned for read and bid functions. The subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment
0x04 Last segment
0x08 First segment
0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh
Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions. Its subparameters are as follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segment
LUA_RH_NC (0x20) Network control
LUA_RH_DFC (0x40) Data flow control
LUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1
Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is used
by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs this parameter is not used and
should be set to zero. Its subparameters are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type
Specifies the type of the inbound or outbound SNA commands and data. This is a returned parameter for RUI_INIT and
SLI_OPEN and a supplied parameter for SLI_SEND. For other LUA verbs this variable is not used and should be set to zero.

Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2
Returned parameter. Contains flags for messages returned by LUA. This parameter is returned by RUI_BID, RUI_READ,
RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs this parameter is not used and should be set to zero. Its
subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56
This supplied parameter is a reserved field used by SLI_OPEN and RUI_INIT. For all other LUA verbs, this parameter is reserved
and should be set to zero.

lua_encr_decr_option
This parameter is a field for cryptography options. On RUI_INIT, only the following are supported:

lua_encr_decr_option = 0
lua_encr_decr_option = 128

For all other LUA verbs, this parameter is reserved and should be set to zero.

Microsoft Host Integration Server 2000

Values for lua_message_type
The following table describes the possible values for lua_message_type.

Message type SNA data SLI_SEND SLI_BID
SLI_RECEIVE

RUI_BID
RUI_READ

0xC8 BID X X X
0x31 BIND Extension* X
0x70 BIS X X X
0x83 CANCEL X X X
0x84 CHASE X X X
0xA1 CLEAR X
0xD0 CRV X
0x01 LU_DATA** X X X
0x04 LUSTAT_LU** X X X
0x14 LUSTAT_SSCP** X X X
0x81 QC X X X
0x80 QEC X X X
0x82 RELQ X X X
0xA3 RQR X X
0x02 RSP X X
0x05 RTR X X X
0x71 SBI X X X
0xC0 SHUTD X
0xC9 SIGNAL X X X
0xA0 SDT X
0x11 SSCP_DATA** X X X
0xA2 STSN Extension* X
0x32 UNBIND X

*The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA
interface extension routines.

**Not an SNA command.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Command-Specific Structure of LUA VCBs
The following union shows the specific data structure that is included for functions that use the LUA_SPECIFIC part of a verb
control block. The only LUA verbs that use this union are RUI_BID, SLI_BID, SLI_OPEN, and SLI_SEND.

Members

open
The union member of LUA_SPECIFIC used by the SLI_OPEN verb.

lua_sequence_number
The union member of LUA_SPECIFIC used by the SLI_SEND verb. Returned parameter. Sequence number of the RU to the
host. It contains the sequence number for either the first in the chain request unit or the only segment in the chain request unit.
Note that this parameter is not byte-reversed.

lua_peek_data
The union member of LUA_SPECIFIC used by the RUI_BID and SLI_BID verbs. Returned parameter. Contains up to 12 bytes of
the data waiting to be read. It is a preview (up to 12 bytes) of the RU data waiting to be read. The lua_data_length parameter
contains the exact length of the data peeked at.

The following topic describes command-specific parameters for SLI_OPEN.

union LUA_SPECIFIC {
 struct SLI_OPEN open;
 unsigned char lua_sequence_number[2];
 unsigned char lua_peek_data[12];
} LUA_SPECIFIC;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SLI_OPEN VCB Structure
The following structure shows the SLI_OPEN fields of the LUA SPECIFIC union member for the SLI_OPEN verb.

Members

lua_init_type
Type of session initiation, which determines how the LU-LU session is initialized by the Windows LUA interface. The following
values are valid:

lua_init_type_sec_is

Secondary-initiated and sends the INITSELF command supplied in the OPEN data buffer.

lua_init_type_sec_log

Secondary-initiated with an unformatted LOGON message in the OPEN data buffer.

lua_init_type_prim

Primary-initiated and waits on the BIND command.

lua_init_type_prim_sscp

Primary-initiated with SSCP access.

lua_resv65
Reserved field.

lua_wait
Secondary retry wait time. Specifies how many seconds the Windows LUA interface is to wait before retransmitting the
INITSELF or the LOGON message after receiving one of the following:

A NOTIFY command (indicating a procedure error)
A network services procedure error message
A negative response with one of the following secondary return codes:

RESOURCE_NOT_AVAILABLE
SESSION_LIMIT_EXCEEDED
SESSION_SERVICE_PATH_ERROR

lua_open_extension
Supplied parameter. Specifies any user-supplied dynamic-link libraries (DLLs) used to process specific LUA messages.

lua_ending_delim
Extension list delimiter.

struct SLI_OPEN {
 unsigned char lua_init_type;
 unsigned char lua_resv65;
 unsigned short lua_wait;
 struct LUA_EXT_ENTRY lua_open_extension[3];
 unsigned char lua_ending_delim;
} SLI_OPEN;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Common Return Codes
This section describes the primary and, if applicable, secondary return codes that are common to the LUA verbs. The return codes
are listed in hexadecimal order.

Verb-specific return codes are described for the individual verbs in LUA RUI Verbs and LUA SLI Verbs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Primary Return Codes
0x0000

LUA_OK
The verb executed successfully.

0x0001

LUA_PARAMETER_CHECK
The verb did not execute because of a parameter error.

0x0002

LUA_STATE_CHECK
The verb did not execute because it was issued in an invalid state.

0x000F

LUA_SESSION_FAILURE
A required Microsoft® Host Integration Server or Microsoft® SNA Server component (such as the local node) has terminated.

0x0014

LUA_UNSUCCESSFUL
The verb record supplied was valid, but the verb did not complete successfully.

0x0018

LUA_NEGATIVE_RESPONSE
Either LUA sent a negative response to a message received from the primary LU because an error was found in the message, or
the application responded negatively to a chain for which the end-of-chain has arrived.

0x0021

LUA_CANCELED
The secondary return code gives the reason for canceling the command.

0x0030

LUA_IN_PROGRESS
An asynchronous command was received but is not completed.

0x0040

LUA_STATUS
The secondary return code contains SLI status information for the application.

0xF003

LUA_COMM_SUBSYSTEM_ABENDED
Indicates one of the following conditions:

The node used by this conversation encountered an ABEND.
The connection between the TP and the PU 2.1 node was broken (a LAN error).
The SnaBase at the TP’s computer encountered an ABEND.

0xF004

LUA_COMM_SUBSYSTEM_NOT_LOADED
A required component could not be loaded or terminated while processing the verb. Thus, communication could not take place.
Contact the system administrator for corrective action.

0xF008

LUA_INVALID_VERB_SEGMENT
The VCB extended beyond the end of the data segment.

0xF011

LUA_UNEXPECTED_DOS_ERROR

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

After issuing an operating system call, an unexpected operating system return code was received and is specified in the
secondary return code.

0xF015

LUA_STACK_TOO_SMALL
The stack size of the application is too small to execute the verb. Increase the stack size of your application.

0xFFFF

LUA_INVALID_VERB
Either the verb code or the operation code, or both, is invalid. The verb did not execute.

Microsoft Host Integration Server 2000

LUA Secondary Return Codes
0x00000000

LUA_SEC_RC_OK
No additional information exists for LUA_OK.

0x00000001

LUA_INVALID_LUNAME
An invalid lua_luname name was specified.

0x00000002

LUA_BAD_SESSION_ID
An invalid value for lua_sid was specified in the VCB.

0x00000003

LUA_DATA_TRUNCATED
The data was truncated because the data received was longer than the buffer length specified in lua_max_length.

0x00000004

LUA_BAD_DATA_PTR
The lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write segment and supplied
data is required.

0x00000005

LUA_DATA_LENGTH_ERROR
One of the following occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.
The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.
The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

0x00000006

LUA_RESERVED_FIELD_NOT_ZERO
A reserved parameter for the verb just issued is not set to zero.

0x00000007

LUA_INVALID_POST_HANDLE
For a Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft® Windows® 95 system
using events as the asynchronous posting method, the Windows-based LUA VCB does not contain a valid event handle.

For the Windows version 3.x system, the LUA VCB does not contain the valid procedure address returned by the
MakeProcInstance command.

For OS/2, the LUA VCB does not contain a valid semaphore or queue handle, which is needed when a verb completes
asynchronously.

0x0000000C

LUA_PURGED
SLI_PURGE was issued and canceled SLI_RECEIVE.

0x0000000F

LUA_BID_VERB_ERROR
The buffer with the SLI_BID VCB was released before the SLI_RECEIVE with lua_flag1.bid_enable set to 1 was issued.

0x00000010

LUA_NO_PREVIOUS_BID_ENABLED
SLI_BID was not issued prior to issuing SLI_RECEIVE with bid_enable.

0x00000011

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LUA_NO_DATA
No data was available to read when SLI_RECEIVE containing a no-wait parameter was issued.

0x00000012

LUA_BID_ALREADY_ENABLED
SLI_RECEIVE was issued with bid_enable when SLI_BID was already active.

0x00000013

LUA_VERB_RECORD_SPANS_SEGMENTS
The LUA VCB length parameter plus the segment offset is beyond the segment end.

0x00000014

LUA_INVALID_FLOW
The lua_flag1 flow flags were set incorrectly when a verb was issued as follows:

When issuing SLI_SEND to send an SNA response, set only one lua_flag1 flow flag.
When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

0x00000015

LUA_NOT_ACTIVE
LUA was not active within Microsoft® Host Integration Server or Microsoft® SNA Server when an LUA verb was issued.

0x00000016

LUA_VERB_LENGTH_INVALID
An LUA verb was issued with the value of lua_verb_length unexpected by the LUA.

0x00000019

LUA_REQUIRED_FIELD_MISSING
The verb that was issued either did not include a data pointer (if the data count was not zero) or did not include an lua_flag1
flow flag.

0x00000030

LUA_READY
Following a NOT_READY status, this status is issued to notify you that the SLI is ready to process commands.

0x00000031

LUA_NOT_READY
One of the following caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, indicating a new BIND is coming.

If the UNBIND type 0x02 is received after the beginning SLI_OPEN is complete, the session is suspended until a BIND,
optional CRV and STSN, and SDT flows are received. These routines are re-entrant because they have to be called again.
The session resumes after the SLI processes the SDT command. If the UNBIND type 0x02 is received while SLI_OPEN is
still processing, the primary return code is session-failure, not status.

The receipt of an SNA CLEAR caused the suspension.

Receipt of an SNA SDT will cause the session to resume.

0x00000032

LUA_INIT_COMPLETE
The LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue SLI_OPEN with
lua_open_type_prim_sscp receive this status on SLI_RECEIVE or SLI_BID.

0x00000033

LUA_SESSION_END_REQUESTED
The LUA interface received an SNA shutdown command (SHUTD) from the host, indicating the host is ready to shut down the
session.

0x00000034

LUA_NO_SLI_SESSION
A session was not open or was down due to an SLI_CLOSE or session failure when a command was issued.

0x00000035

LUA_SESSION_ALREADY_OPEN
A session is already open for the LU name specified in SLI_OPEN.

0x00000036

LUA_INVALID_OPEN_INIT_TYPE
The value in the lua_init_type contained in SLI_OPEN is invalid.

0x00000037

LUA_INVALID_OPEN_DATA
The lua_init_type for the SLI_OPEN issued is set to LUA_INIT_TYPE_SEC_IS when the buffer for data does not have a valid
INITSELF command.

0x00000038

LUA_UNEXPECTED_SNA_SEQUENCE
Unexpected data or commands were received from the host while SLI_OPEN was processing.

0x00000039

LUA_NEG_RSP_FROM_BIND_ROUTINE
The user-supplied SLI_BIND routine responded negatively to the BIND. SLI_OPEN ended unsuccessfully.

0x0000003B

LUA_NEG_RSP_FROM_STSN_ROUTINE
The user-supplied SLI STSN routine responded negatively to the STSN. SLI_OPEN ended unsuccessfully.

0x0000003E

LUA_INVALID_OPEN_ROUTINE_TYPE
The lua_open_routine_type for the SLI_OPEN list of extension routines is invalid.

0x0000003F

LUA_MAX_NUMBER_OF_SENDS
The application issued a third SLI_SEND before one completed.

0x00000040

LUA_SEND_ON_FLOW_PENDING
An SLI_SEND was still outstanding when the application issued another SLI_SEND for an SNA flow.

0x00000041

LUA_INVALID_MESSAGE_TYPE
The lua_message_type parameter is not recognized by the LUA interface.

0x00000042

LUA_RECEIVE_ON_FLOW_PENDING
An SLI_RECEIVE was still outstanding when this application issued another SLI_RECEIVE for an SNA flow.

0x00000043

LUA_DATA_LENGTH_ERROR
The application did not provide user-supplied data required by the verb issued. Note that when SLI_SEND is issued for an SNA
LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued with secondary initialization, data is
required.

0x00000044

LUA_CLOSE_PENDING
One of the following occurred:

A CLOSE_ABEND was still pending when another CLOSE_ABEND was issued. You can issue a CLOSE_ABEND if a
CLOSE_NORMAL is pending.

Either a CLOSE_ABEND or a CLOSE_NORMAL was still pending when a CLOSE_NORMAL was issued.

0x00000046

LUA_NEGATIVE_RSP_CHASE
A negative response to an SNA CHASE command from the host was received by the LUA interface while SLI_CLOSE was being
processed. SLI_CLOSE continued processing to stop the session.

0x00000047

LUA_NEGATIVE_RSP_SHUTC
A negative response to an SNA SHUTC command from the host was received by the SLI while SLI_CLOSE was still being
processed. SLI_CLOSE continued processing to stop the session.

0x00000048

LUA_NEGATIVE_RSP_RSHUTD
A negative response to an SNA RSHUTD command from the host was received by the LUA interface while SLI_CLOSE was
being processed. SLI_CLOSE continued processing to stop the session.

0x0000004A

LUA_NO_RECEIVE_TO_PURGE
No SLI_RECEIVE was outstanding when you issued SLI_PURGE. One of two situations caused the problem:

SLI_RECEIVE completed before SLI_PURGE finished processing.

You can change the application to take care of this problem because it is not an error condition.

The lua_data_ptr parameter does not correctly point to the SLI_RECEIVE you want to purge.

0x0000004D

LUA_CANCEL_COMMAND_RECEIVED
The host sent an SNA CANCEL command to cancel the data chain currently being received by SLI_RECEIVE.

0x0000004E

LUA_RUI_WRITE_FAILURE
An unexpected error was posted to the SLI by RUI_WRITE.

0x00000051

LUA_SLI_BID_PENDING
An SLI verb was still active when another SLI_BID was issued. Only one SLI_BID can be active at a time.

0x00000052

LUA_SLI_PURGE_PENDING
An SLI_PURGE was still active when another SLI_PURGE was issued. Only one SLI_PURGE can be active at a time.

0x00000053

LUA_PROCEDURE_ERROR
A host procedure error is indicated by the receipt of an NSPE or NOTIFY message. The return code is posted to SLI_OPEN when
the retry option is not used. To use the reset option, set lua_wait to a value other than zero. The LOGON or INITSELF command
will be retried until the host is ready or until you issue SLI_CLOSE.

0x00000054

LUA_INVALID_SLI_ENCR_OPTION
The lua_encr_decr_option parameter was set to 128 in SLI_OPEN, which is not supported for the encryption/decryption
processing option.

0x00000055

LUA_RECEIVED_UNBIND
The primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a result, the session was
stopped.

0x0000007F

LUA_SLI_LOGIC_ERROR

The LUA interface found an internal error in logic.

0x00000080

LUA_TERMINATED
The session was terminated when a verb was pending. The verb process has been canceled.

0x00000081

LUA_NO_RUI_SESSION
No session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was issued before the session was
initialized.

0x00000083

LUA_INVALID_PROCESS
The session for which an RUI verb was issued is unavailable because another process owns the session.

0x0000008C

LUA_LINK_NOT_STARTED
The LUA was not able to activate the data link during initialization of the session.

0x0000008D

LUA_INVALID_ADAPTER
The configuration for the DLC is in error, or the configuration file is corrupted.

0x0000008E

LUA_ENCR_DECR_LOAD_ERROR
An unexpected return code was received from the OS/2 DosLoadModule function while attempting to load the user-provided
encryption or decryption dynamic link module.

0x0000008F

LUA_ENCR_DECR_LOAD_ERROR
An unexpected return code was received from the OS/2 DosGetProcAddr function while attempting to get the procedure
address within the user-provided encryption or decryption dynamic link module.

0x000000BE

LUA_NEG_NOTIFY_RSP
The SSCP responded negatively to a NOTIFY request issued indicating that the secondary LU was capable of a session. The half-
session component that received the request understood and supported the request but could not execute it.

0x000000FF

LUA_LU_INOPERATIVE
A severe error occurred while the RUI was attempting to stop the session. This LU is unavailable for any LUA requests until an
ACTLU is received from the host.

0x08010000

LUA_RESOURCE_NOT_AVAILABLE
The logical unit, physical unit, link, or link station specified in the request unit is unavailable. This return code is posted to
SLI_OPEN when a resource is unavailable unless you use the retry option.

To use the retry option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the host
is ready or until you issue SLI_CLOSE.

0x08050000

LUA_SESSION_LIMIT_EXCEEDED
The session requested was not activated because an NAU is at its session limit.

This SNA sense code applies to the following requests: BID, CINIT, INIT, and ACTDRM. The code will be posted to SLI_OPEN
when an NAU is at its limit, unless you use the retry option.

To use the retry option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the host
is ready or until you issue SLI_CLOSE.

0x08090000

LUA_MODE_INCONSISTENCY
Performing this function is not allowed by the current status. The request sent to the half-session component was not executed
even though it was understood and supported. This SNA sense code is also an exception request sense code.

0x08120000

LUA_INSUFFICIENT_RESOURCES
A temporary condition of insufficient resources caused the request receiver to be unable to perform. The request sent to the
half-session component was not executed, even though it was understood and supported.

0x081B0000

LUA_RECEIVER_IN_TRANSMIT_MODE
Either resources needed to handle normal flow data were not available or the state of the half-duplex contention was not
received when a normal-flow request was received. The result is a race condition. This SNA sense code is also an exception
request sense code.

0x08310000

LUA_LU_COMPONENT_DISCONNECTED
An LU component is unavailable because it is not connected properly. Make sure that the power is on.

0x08350001

LUA_NEGOTIABLE_BIND_ERROR
A negotiable BIND was received, which is only allowed by the SLI when a user-supplied SLI_BIND routine is provided with
SLI_OPEN.

0x08350002

LUA_BIND_FM_PROFILE_ERROR
Only file management header profiles 3 and 4 are supported by the LUA interface. A file management profile other than 3 or 4
was found on the BIND.

0x08350003

LUA_BIND_TS_PROFILE_ERROR
Only TS profiles 3 and 4 are supported by the LUA interface. A TS other than 3 or 4 was found on the BIND.

0x0835000E

LUA_BIND_LU_TYPE_ERROR
Only LU 0, LU 1, LU 2, and LU 3 are supported by LUA. An LU other than 0, 1, 2, or 3 was found.

0x08570000

LUA_SSCP_LU_SESSION_NOT_ACTIVE
The required SSCP-LU is inactive. Specific sense code information is in bytes 2 and 3. Valid settings are 0x0000, 0x0001,
0x0002, 0x0003, and 0x0004.

0x08780001

LUA_RECEIVE_CORRELATION_TABLE_FULL
The session receive correlation table for the flow requested reached its capacity.

0x08780002

LUA_SEND_CORR_TABLE_FULL
The session send correlation table for the flow requested reached its capacity.

0x087D0000

LUA_SESSION_SERVICE_PATH_ERROR
A request for session services cannot be rerouted to an SSCP-SSCP session path. Specific sense code information in bytes 2 and
3 gives more information about why the request cannot be rerouted.

0x10020000

LUA_RU_LENGTH_ERROR
The RU request was an incorrect length (either too short or too long). The request unit was not interpreted or processed even
though it was delivered to the half-session component. The half-session capabilities do not match. This SNA sense code is also
an exception request sense code.

0x10030000

LUA_FUNCTION_NOT_SUPPORTED
The LUA does not support the requested function. A control character, an RU parameter, or a formatted request code may have
specified the function. Specific sense code information is in bytes 2 and 3.

0x10050121

LUA_HDX_BRACKET_STATE_ERROR
The existing state error prevented the current request from being sent. The determination was made by a protocol computer.

0x10050122

LUA_RESPONSE_ALREADY_SENT
A response for the chain was already sent so that the current request was not sent. The determination was made by a protocol
computer.

0x10050123

LUA_EXR_SENSE_INCORRECT
The application responded negatively to an exception request. The sense code was unacceptable.

0x10050124

LUA_RESPONSE_OUT_OF_ORDER
The current response was not for the oldest request. The determination was made by a protocol computer.

0x10050125

LUA_CHASE_RESPONSE_REQUIRED
A CHASE response was still outstanding when a more recent request was attempted. The determination was made by a protocol
computer.

0x20020000

LUA_CHAINING_ERROR
The sequence of the chain indicator settings is in error. An invalid request header or request unit for the receiver’s current
session control or data flow control state was found. Delivery to the half-session component was prevented.

0x20030000

LUA_BRACKET
The sender failed to enforce the session bracket rules. Note that contention and race conditions are exempt from this error. An
invalid request header or request unit for the receiver’s current session control or data flow control state was found. Delivery to
the half-session component was prevented.

0x20040000

LUA_DIRECTION
While the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An invalid request header or
request unit for the receiver’s current session control or data flow control state was found. Delivery to the half-session
component was prevented.

0x20050000

LUA_DATA_TRAFFIC_RESET
A half-session of an active session with inactive data traffic received a normal flow DFC or FMD request. An invalid request
header or request unit for the receiver’s current session control or data flow control state was found. Delivery to the half-
session component was prevented.

0x20060000

LUA_DATA_TRAFFIC_QUIESCED
A DFC or FMD request was received from a half-session that sent either a SHUTC command or QC command, and the DFC or
FMD request has not responded to a RELQ command. An invalid request header or request unit for the receiver’s current
session control or data flow control state was found. Delivery to the half-session component was prevented.

0x20070000

LUA_DATA_TRAFFIC_NOT_RESET
While the data traffic state was not reset, the session control request was received. An invalid request header or request unit for
the received current session control or data flow control state was found. Delivery to the half-session component was

prevented.

0x20080000

LUA_NO_BEGIN_BRACKET
The receiver has already sent a positive response to a BIS command when a BID or an FMD request specifying BBI=BB was
received. An invalid request header or request unit for the received current session control or data flow control state was found.
Delivery to the half-session component was prevented.

0x20090000

LUA_SC_PROTOCOL_VIOLATION
A violation of the SC protocol occurred. A request (that is permitted only after an SC request and a positive response to that
request have been successfully exchanged) was received before the required exchange. Byte 4 of the sense data contains the
request code. No user data exists for this sense code. An invalid header request or request unit for the received current session
control or data flow control state was found. Delivery to the half-session component was prevented.

0x200A0000

LUA_IMMEDIATE_REQUEST_MODE_ERROR
The request violated the immediate request mode protocol. An invalid header request or request unit for the received current
session control or data flow control state was found. Delivery to the half-session component was prevented.

0x200B0000

LUA_QUEUED_RESPONSE_ERROR
The request violated the queued response protocol. An invalid header request or request unit for the received current session
control or data flow control state was found. Delivery to the half-session component was prevented.

0x200C0000

LUA_ERP_SYNC_EVENT_ERROR
A violation of the ERP synchronous event protocol occurred. An invalid header request or request unit for the received current
session control or data flow control state was found. Delivery to the half-session component was prevented.

0x200D0000

LUA_RSP_BEFORE_SENDING_REQ
A previously received request has not yet been responded to and an attempt was made in half-duplex send/receive mode to
send a normal flow request. An invalid header request or request unit for the received current session control or data flow
control state was found. Delivery to the half-session component was prevented.

0x200E0000

LUA_RSP_CORRELATION_ERROR
A response was sent that does not correspond to a previously received request or a response was received that does not
correspond to a request sent previously.

0x200F0000

LUA_RSP_PROTOCOL_ERROR
A violation of the response protocol was found in the response received from the primary half-session.

0x40010000

LUA_INVALID_SC_OR_NC_RH
The RH of an SC or NC request was invalid.

0x40030000

LUA_BB_NOT_ALLOWED
The begin bracket indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40040000

LUA_EB_NOT ALLOWED
The end bracket indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were violated
by the request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent
on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40060000

LUA_EXCEPTION_RSP_NOT_ALLOWED
When an exception response was not allowed, one was requested. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40070000

LUA_DEFINITE_RSP_NOT_ALLOWED
When a definite response was not allowed, one was requested. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40080000

LUA_PACING_NOT_SUPPORTED
The request contained a pacing indicator when support of pacing for this session does not exist for the receiving half-session or
boundary function half-session. The BIND options chosen previously or the architectural rules were violated by the request
header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the current
session state. The sender’s failure to enforce session rules may have caused the errors.

0x40090000

LUA_CD_NOT_ALLOWED
The change-direction indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x400A0000

LUA_NO_RESPONSE_NOT_ALLOWED
A request other than an EXR contained a NO RESPONSE. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x400B0000

LUA_CHAINING_NOT_SUPPORTED
The chaining indicators were incorrectly specified. The BIND options chosen previously or the architectural rules were violated
by the request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent
on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x400C0000

LUA_BRACKETS_NOT_SUPPORTED
The bracket indicators were incorrectly specified. The BIND options chosen previously or the architectural rules were violated by
the request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on
the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x400D0000

LUA_CD_NOT_SUPPORTED
The change-direction indicator was set, but LUA does not support change-direction for this situation. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session
rules may have caused the errors.

0x400F0000

LUA_INCORRECT_USE_OF_FI
The format indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by
the request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on
the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40100000

LUA_ALTERNATE_CODE_NOT_SUPPORTED
The code selection indicator was set, but LUA does not support code selection for this session. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session

component was prevented. The errors are not dependent on the current session state. The sender’s failure to enforce session
rules may have caused the errors.

0x40110000

LUA_INCORRECT_RU_CATEGORY
The request unit category indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40120000

LUA_INCORRECT_REQUEST_CODE
The request code was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by the
request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the
current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40130000

LUA_INCORRECT_SPEC_OF_SDI_RTI
The SDI and the RTI were not specified correctly on a response. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40140000

LUA_INCORRECT_DR1I_DR2I_ERI
The DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The sender’s failure to enforce session rules may have caused the errors.

0x40150000

LUA_INCORRECT_USE_OF QRI
The QRI was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by the request
header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the current
session state. The sender’s failure to enforce session rules may have caused the errors.

0x40160000

LUA_INCORRECT_USE_OF_EDI
The EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by the request
header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the current
session state. The sender’s failure to enforce session rules may have caused the errors.

0x40170000

LUA_INCORRECT_USE_OF_PDI
The PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by the request
header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the current
session state. The sender’s failure to enforce session rules may have caused the errors.

0x80030000

LUA_NAU_INOPERATIVE
The NAU is not able to process responses or requests. Delivery to the receiver could not take place for one of the following
reasons:

A path information unit error
A path outage
An invalid sequence of requests for activation

If a path error is received during an active session, that usually means there is no longer a valid path to the session partner.

0x80050000

LUA_NO_SESSION
A request to activate a session is required because no active half-session in the receiving end node for the origination-
destination pair exists, or no active boundary function half-session component for the origination-destination pair in a node
that supplies the boundary function exists. Delivery of the request could not take place for one of the following reasons:

A path information unit error
A path outage
An invalid sequence of requests for activation

If a path error is received during an active session, that usually indicates there is no longer a valid path to the session partner.

Microsoft Host Integration Server 2000

LUA Sample Applications
This section contains descriptions of samples that show how to build a simple 3270 emulator using either the RUI or SLI API.

This section contains:

LUA Code Samples in the SDK

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUA Code Samples in the SDK
The source code for several sample programs that illustrate using LUA are included on the Microsoft® Host Integration Server
2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. These sample programs are located in the
\SDK\Samples\SNA subdirectory on the Host Integration Server 2000 CD-ROM (these samples are located under the
\SDK\SAMPLES folder on earlier versions of SNA Server). These files are copied to your hard drive during Host Integration Server
software or Host Integration Client software installation when the Host Integration Server Software Development Kit option is
selected. These samples are installed in the Samples\SNA subdirectory below where the Host Integration Server SDK software is
installed (C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\Sna subdirectory
below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files:

Sample TP progr
am

Description

RUI3270 Sample code for a simple emulator based on using the RUI API. Sample code is provided for Win32 and Win1
6 applications.
This sample is located in the \SDK\Samples\SNA\RUI3270 folder on the CD-ROM.

SLI3270 Sample code for a simple emulator based on using the SLI API. Sample code is provided for Win32 and Win1
6 applications.
This sample is located in the \SDK\Samples\SNA\SLI3270 folder on the CD-ROM.

These samples show how to build a simple 3270 emulator using either the RUI or SLI API. This emulator does not interpret the
data it receives from the host, but does demonstrate how to use the APIs to establish a session with the host.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Building the LUA Samples
The LUA samples are designed to be built using Microsoft® Visual C/C++ 6.0 or later using the command-line compiler or using
the Microsoft® Visual Studio .NET interactive development environment (IDE).

To build the LUA samples installed from the Host Integration Server CD-ROM, set the following environment variables:

Variabl
e

Description

ISVLIBS The directory containing the Microsoft® Host Integration Server 2000 LIB files for Microsoft® Windows 2000, Microsoft
® Window NT®, Microsoft® Windows® 98, and Microsoft® Windows® 95.

ISVINCS The directory containing the Host Integration Server 2000 header files.
SAMPLE
ROOT

The root directory where the sample code provided as part of the SDK has been installed on a local hard disk.

For example, if you installed the Host Integration Server SDK directory to the default location
(C:\Program Files\Host Integration Server SDK), use the following lines to set the variables (assumes Intel binaries are being
produced for Windows 2000, Windows NT on I386, Windows 98, or Windows 95) :

Change to each subdirectory and run NMAKE on the .MAK file in each directory. For example, for the Win32 version of Rui3270,
change to the SNA\Rui3270\win32 directory and type the following:

nmake -f nrui3270.mak

Note that Windows NT on DEC Alpha is not supported by the Host Integration Server SDK. If you wish to build these samples on
Windows NT 4.0 for DEC Alpha, the earlier SNA Server 4.0 SDK will be required for accessing the Windows NT import libraries for
DEC Alpha under the \SDK\LIB\WINNT\ALPHA folder.

To build the LUA samples installed as part of the MSDN Platform SDK using the command-line compiler, set up your build
environment as follows:

Run VCVARS32.bat (for VS6) or VSVARS32.bat (for VS.NET) from the Visual Studio bin directory. The default location of this
file is C:\Program Files\Microsoft Visual Studio\VC98\Bin (for VS6) or C:\Program Files\Microsoft Visual Studio
.NET\Common7\Tools (for VS.NET)

To build all the SNA samples, open an MS-DOS Command Prompt window, navigate to the SNA subdirectory, and invoke
NMAKE. This will recursively invoke NMAKE and build all of the SNA samples including the LUA samples.

To build a specific sample (Rui3270, for example) using the command-line compiler, open an MS-DOS Command Prompt
window, navigate to the appropriate subdirectory (SNA\Rui3270\win32, for example), and invoke NMAKE.

To build a specific sample (the Win32 version of Rui3270, for example) using the Visual Studio .NET IDE, start Microsoft Visual
Studio. NET 7.0 and open the appropriate Visual C++ 7.0 project file (SNA\Rui3270\win32\nrui3270.vcproj, for example) from
the File menu. Select a configuration and build the sample from the Build menu. Each VC7 project file has two configurations,
one for a DEBUG build and one for a RETAIL build.

ISVLIBS=C:\Program Files\Host Integration Server SDK\LIB
ISVINCS=C:\Program Files\Host Integration Server SDK\Include
SAMPLEROOT=C:\Program Files\Host Integration Server SDK\Samples\SNA

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Specifying a File Name for Table G for Code Conversion
The sample emulators use a user-defined table referred to as Table G in Microsoft® Host Integration Server or Microsoft® SNA
Server for converting between ASCII and EBCDIC characters. The sample applications require that the file name of this table be
specified. Use the COMTBLG registry or create a COMTBLG environment variable to specify the file name. The registry entry is
described in the sections on Host Integration Server Client Binary Setup.

A sample Table G file, COMTBLG.DAT, is installed with Host Integration Server or SNA Server 4.0 in the SYSTEM subdirectory
below the root directory where the product is installed. The default location where Host Integration Server is installed is the
following:

C:\Program Files\Host Integration Server

To use this COMTBLG.DAT file, copy it to the client computers where the sample programs will be run, and specify the file name
using the COMTBLG environment variable or the registry entry.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Code Samples Using the RUI API
The following files located under the SNA\RUI3270 folder can be used to build simple 3270 emulators using the RUI API. Study
the comments in the .C files for information about how to run the emulators.

File name API
Use
d

Type of file Target operating system

RUI3270.C RUI Source code for RUI3270.EXE Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Wi
ndows® 98, Microsoft® Windows® 95, OS/2, or Microsoft® MS-DOS
®

Win32\NR
UI3270.MA
K

RUI Makefile Windows 2000, Windows NT, Windows 98, or Windows 95

Win32\RUI
INC.C

RUI Source code that #includes RUI3270.c t
o build a Win32 version of WRUI3270.E
XE

Windows 2000, Windows NT, Windows 98, or Windows 95

Win32\WR
UI3270.RC

RUI Resource definition file Windows 2000, Windows NT, Windows 98, or Windows 95

Win16\WR
UI3270.C

RUI Source code for WRUI3270.EXE Windows version 3.1 or Windows for Workgroups

Win16\WR
UI3270.DE
F

RUI Definition file Windows version 3.1 or Windows for Workgroups

Win16\WR
UI3270.MA
K

RUI Makefile Windows version 3.1 or Windows for Workgroups

Win16\WR
UI3270.RC

RUI Resource definition file Windows version 3.1 or Windows for Workgroups

Note that the earlier SNA Server SDK also included makefiles for building OS/2 and MS-DOS versions of this sample.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Code Samples Using the SLI API
The following files located under the SNA\SLI3270 folder can be used to build simple 3270 emulators using the SLI API. Study the
comments in the .C files for information about how to run the emulators.

File name API
Use
d

Type of file Target operating system

SLI3270.C SLI Source code for SLI3270.EXE Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Win
dows® 98, Microsoft® Windows® 95, OS/2, or Microsoft® MS-DOS®

Win32\NS
LI3270.MA
K

SLI Makefile Windows 2000, Windows NT, Windows 98, or Windows 95

Win32\SLII
NC.C

SLI Source code that #includes SLI3270.c t
o build a Win32 version of SLI3270.EX
E

Windows 2000, Windows NT, Windows 98, or Windows 95

Win32\WS
LI3270.RC

SLI Resource definition file Windows 2000, Windows NT, Windows 98, or Windows 95

Win16\WS
LI3270.C

SLI Source code for WSLI3270.EXE Windows version 3.1 or Windows for Workgroups

Win16\WS
LI3270.DEF

SLI Definition file Windows version 3.1 or Windows for Workgroups

Win16\WS
LI3270.MA
K

SLI Makefile Windows version 3.1 or Windows for Workgroups

Win16\WS
LI3270.RC

SLI Resource definition file Windows version 3.1 or Windows for Workgroups

Note that the earlier SNA Server SDK also included a makefile for building an OS/2 version of this sample.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

3270 Emulator Interface Specifications
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information for independent software
vendors who are developing their own 3270 emulation client software to work with Microsoft Host Integration Server 2000 or
Microsoft SNA Server.

This section contains:

About the EIS Guide
3270 Emulation Programmer's Guide
3270 Emulation Reference

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

About the EIS Guide
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information for independent software
vendors who are developing their own 3270 emulation client software to work with Microsoft® Host Integration Server 2000 or
Microsoft SNA Server.

To use this section of the guide effectively, you should be familiar with:

Microsoft Host Integration Server 2000
One of the following operating environments:

Microsoft Windows® 2000
Microsoft Windows NT®
Microsoft Windows 98
Microsoft Windows 95

SNA concepts

Before using this section, you should be familiar with System Network Architecture (SNA) concepts. This section provides the
following information:

Internal concepts of Host Integration Server 2000 and SNA Server that are required to integrate 3270 client software.
Definitions of the interfaces used by the client software to communicate with Host Integration Server 2000 or SNA Server
components.
Information on using configuration and diagnostics features of Host Integration Server 2000 or SNA Server.
Instructions for compiling and linking the client software with the necessary library files supplied with Host Integration
Server 2000 or SNA Server.

This section contains:

Operating Systems Support for 3270 Development
Network Operating Systems Support for 3270 Development

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Operating Systems Support for 3270 Development
This section of the guide contains information relating to following operating systems:

Microsoft Windows 2000
Microsoft Windows NT
Microsoft Windows 98
Microsoft Windows 95
Microsoft Windows version 3.x
Microsoft MS-DOS®
OS/2

Microsoft Host Integration Server 2000 supports the development of 3270 client applications for Windows 2000, Windows NT,
Windows 98, and Windows 95. Under these operating systems, support for 3270 client applications is provided only for the
Win32® subsystem.

The previous Microsoft SNA Server product also supported the development of 3270 client applications for Windows 3.x, MS-
DOS, and OS/2. Most 3270 client applications developed for Windows 3.x, MS-DOS, and OS/2 with SNA Server can be used with
Host Integration Server 2000. The Windows 3.x, MS-DOS, and OS/2 interface is described here for completeness, but Windows
3.x, MS-DOS, or OS/2 3270 client application development is not supported using Host Integration Server.

Information presented here can be different for different operating systems. When a section of text applies only to specific
operating systems, this is indicated by a header preceding that text. The end of such a section is indicated by one of the following:

A header specifying other operating systems.
A header stating that subsequent information applies to all operating systems.
The end of a topic.

Text not explicitly designated applies to all operating systems.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Network Operating Systems Support for 3270 Development
Microsoft Host Integration Server 2000 supports the following network operating systems:

Native TCP/IP
Novell NetWare
Banyan VINES (only when installed on Windows NT)

The network operating systems supported by Microsoft SNA Server version 4.0 are Microsoft LAN Manager, IBM LAN Server,
Novell NetWare, native TCP/IP, and Banyan VINES.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

3270 Emulation Programmer's Guide
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about how to use the 3270
Emulator to assist in writing applications for Host Integration Server 2000.

This section contains:

Host Integration Server Concepts
The DL-BASE/DMOD Interface
The Function Management Interface
FMI Status, Error, and Sense Codes
Configuration Information
Diagnostics
Compiling and Linking 3270 Client Applications
Support for 3270 Single Sign-On

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Integration Server Concepts
This section describes some key concepts used in Microsoft® Host Integration Server 2000 and Microsoft SNA Server when
providing 3270 client access. Since the purpose of this document is to enable independent software vendors to integrate their
3270 emulators with a Host Integration Server or SNA Server system, only the relevant parts of the Microsoft SNA gateway
architecture are described.

This section contains:

Structure of Host Integration Server Components
Messages
LPI Connections

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Structure of Host Integration Server Components
The components of Microsoft Host Integration Server 2000 and Microsoft SNA Server are local nodes, link services, the 3270
emulation program, and so on. This section introduces the structure of these components and explains terms used to refer to the
structure.

This section contains:

The Role of the Base
Localities and DMODs
Application Localities
Partners

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Role of the Base
The Base is a part of each Host Integration Server or SNA Server gateway component, such as the local 2.1 node or a link service,
that provides the operating environment for the core functions of that component. It passes messages between components and
provides functions common to all components, such as diagnostic tracing.

This document is concerned with the DL-BASE, which is the type of Base used by Host Integration Server and SNA Server 3270
emulation programs. The Host Integration Server or SNA Server DL-BASE supports a single SNA server component or a single
user application and has entry points for initialization, sending messages, receiving messages, and termination.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Localities and DMODs
A Base and the components within it (that is, a Host Integration Server or an SNA Server executable program) is called a locality.
The Host Integration Server or SNA Server system therefore consists of one or more communicating localities (all the running
SNA server executable programs within the LAN Manager domain). For each SNA server system, there is a single configuration
file.

In a system such as Host Integration Server, where the number of localities and their types are not configured in advance, the
relationships between the localities are set up dynamically as individual localities come and go. Localities that can enter and leave
a system in this way are called dynamic localities.

Dynamic localities communicate using the DMOD (dynamic access module) component, which provides the communications
facilities needed to pass messages between the Bases. This is illustrated in the following figure.

This diagram shows a system consisting of three dynamic localities. Dynamic localities can enter or leave this system at any time.

For Windows® 2000, Windows NT®, Windows 98, Windows 95, Windows 3.x, and OS/2

The DMOD is implemented as a dynamic-link library (DLL). The preceding diagram can therefore be represented as follows:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Application Localities
Applications such as 3270 emulators can enter dynamically into an SNA server system. The application, in conjunction with the
Base, acts as a whole locality and communicates with the other localities in the system using a DMOD.

The DL-BASE/DMOD Interface describes the interface to the Base and the DMOD that allows an application to participate in an
SNA server system.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Partners
For Host Integration Server or SNA Server components and applications to communicate with each other, it must be possible to
identify a partner within a locality. A partner is an addressable component of a locality; that is, code to which messages can be
sent. In a Host Integration Server or SNA Server system, there is generally only one partner within a locality (such as a link service
or the 3270 emulation program); however, separate functions within the local 2.1 node (such as the 3270 and APPC functions)
can be considered to be separate partners.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Messages
Messages are used to pass data between partners in the Microsoft Host Integration Server 2000 or Microsoft SNA Server system.
This section provides information about message structure and formats.

This section contains:

Overview of Message Formats
Buffer Header Format
Buffer Element Format

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Overview of Message Formats
A message always contains fixed-format header information such as a message type and addressing information. It can also
contain other header information specific to a particular message type (such as the message subtype) and an indefinite amount of
extra data.

Messages are saved in buffers that consist of one header and zero or more elements:

The header contains the fixed-format information and a pointer to an element. (This pointer will be NULL if there are no
elements associated with the message.)
An element contains any extra data for a message and a pointer to another element if the data continues into another
element.

Buffer headers and elements are regarded as contiguous (8-bit) byte sequences. Messages of any length can be built by chaining
sufficient elements to a header.

The following figure illustrates a typical message with two elements. The individual fields in the header and elements are
explained in the following topics.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Buffer Header Format
This topic lists the common fields that always occur at the start of a buffer header. These are followed by further fields specific to
the particular message; see FMI Message Formats for details of individual message formats.

Fie
ld

Typ
e

Description

nxt
qpt
r

PTR
BFH
DR

When the buffer is in a queue, this field points to the header of the next buffer in the queue (NULL if it is the last buffer i
n the queue). When the buffer is not in a queue, this field points to itself; the SNA server buffer management routines us
e this to check for buffer corruption.

hdr
ept
r

PTR
BFE
LT

Pointer to the first buffer element in the associated chain of buffer elements; NULL if the message consists only of a buff
er header.

nu
me
lts

CHA
R

Number of buffer elements chained from the header; zero if the message consists only of a buffer header.

ms
gty
pe

CHA
R

Message type: see individual message descriptions in FMI Message Formats.

srcl CHA
R

Source locality: see LPI Addresses.

src
p

CHA
R

Source partner: see LPI Addresses.

srci INT
EGE
R

Source index: see LPI Addresses.

des
tl

CHA
R

Destination locality: see LPI Addresses.

des
tp

CHA
R

Destination partner: see LPI Addresses.

des
ti

INT
EGE
R

Destination index: see LPI Addresses.

Members

nxtqptr
When the buffer is in a queue, this field points to the header of the next buffer in the queue (NULL if it is the last buffer in the
queue). When the buffer is not in a queue, this field points to itself; the SNA server buffer management routines use this to
check for buffer corruption.

hdreptr
Pointer to the first buffer element in the associated chain of buffer elements; NULL if the message consists only of a buffer
header.

numelts
Number of buffer elements chained from the header; zero if the message consists only of a buffer header.

msgtype
Message type. See individual message descriptions in FMI Message Formats.

srcl
Source locality. See LPI Addresses.

PTRBFHDR nxtqptr;
PTRBFELT hdreptr;
CHAR numelts;
CHAR msgtype;
CHAR srcl;
CHAR srcp;
INTEGER srci;
CHAR destl;
CHAR destp;
INTEGER desti;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

srcp
Source partner. See LPI Addresses.

srci
Source index. See LPI Addresses.

destl
Destination locality. See LPI Addresses.

destp
Destination partner. See LPI Addresses.

desti
Destination index. See LPI Addresses.

Note Fields that occupy two bytes, such as opresid in Open(PLU) Request are normally represented with the arithmetically
most significant byte in the lowest byte address, irrespective of the normal orientation used by the processor on which the
software executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest byte address. However, the following fields are
exceptions:

The srci and desti fields in buffer headers are stored in the local format of the application that assigns them (only the
assigning application needs to interpret these values).
The startd and endd fields in elements are always stored in low-byte, high-byte orientation (the normal orientation of an
Intel processor).

Microsoft Host Integration Server 2000

Buffer Element Format
This topic lists the common fields that always occur at the start of a buffer element. The dataru field contains information specific
to the particular message; see FMI Message Formats for details of individual message formats.

Field Type Description
hdreptr
->eltept
r

PTRB
FELT

Pointer to next buffer element in the chain; NULL if this element is the last or only element in the chain.

hdreptr
->start
d

INTE
GER

Start of valid data in this element. The index into dataru of the first byte of valid data.

hdreptr
->endd

INTE
GER

End of valid data in this element. The index into dataru of the last byte of valid data.

hdreptr
->trpad

CHA
R

Pad byte (reserved).

hdreptr
->datar
u

CHA
R[26
8]

An array of characters that contains the data for this element. Note that the valid data might not occupy the whole
of the element; startd and endd (see above) give the indexes into this array of the start and end of the valid data.

Members

hdreptr–>elteptr
Pointer to next buffer element in the chain; NULL if this element is the last or only element in the chain.

hdreptr–>startd
Start of valid data in this element. The index into dataru of the first byte of valid data.

hdreptr–>endd
End of valid data in this element. The index into dataru of the last byte of valid data.

hdreptr–>trpad
Pad byte (reserved).

hdreptr–>dataru
An array of characters that contains the data for this element. Note that the valid data might not occupy the whole of the
element; startd and endd give the indexes into this array of the start and end of the valid data.

The following information will help you to interpret the message formats:

Certain messages are shown as having two elements in the message formats; for example, the Open(PLU) Request has the
CICB field in the first element and the BIND RU in the second element. This indicates that the message consists of two
distinct linked element chains; the elteptr field in the first element points to the second element.
Fields that occupy two bytes are represented with the arithmetically most significant byte in the lowest byte address,
irrespective of the normal orientation used by the processor on which the software executes. That is, the 2-byte value
0x1234 has the byte 0x12 in the lowest byte address. The exceptions to this are the startd and endd fields in elements, which
are always stored in low-byte, high-byte orientation (the normal orientation of an Intel processor).
The offsets indicated by the startd and endd fields are expressed in terms of the first byte of dataru being offset 1; the first
byte of valid data is at dataru[startd–1]. For example, if startd is 11 and endd is 18, then dataru begins with 10 bytes that are
not valid data, followed by 8 bytes of valid data.
It is possible for an element to arrive with startd greater than endd. This indicates there is no valid data in dataru.

In the sample message format illustrated in Overview of Message Formats, each element has a startd of 13, indicating 12 bytes of
padding before the start of the valid data. This leaves room for 256 bytes of data, and hence the element data (300 bytes long in
this example) requires two elements.

PTRBFELT hdreptr->elteptr;
INTEGER hdreptr->startd;
INTEGER hdreptr->endd;
CHAR hdreptr->trpad;
CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LPI Connections
Partners communicate by passing messages to each other. If two partners wish to communicate with each other, an LPI
connection is set up between the two partners. Messages then flow between the partners over this connection. The term "LPI
connection" is explained in LPI Addresses; note that this is not related to the Microsoft Host Integration Server or Microsoft SNA
Server concept of a connection between the local node and a remote system.

This section contains:

Paths and DMODs
LPI Addresses
Making Connections

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Paths and DMODs
Dynamic access modules (DMODs) are responsible for the communication between localities. When the DMODs in two localities
can successfully pass messages between them, a path is said to exist between the two localities. A path must exist between two
localities before a connection can exist between partners in those localities.

Host Integration Server and SNA Server establish a path using an appropriate method for the network operating system in use.
For example, with Microsoft LAN Manager, a named pipe is used; with NetWare, an SPX connection is used. When the two
localities are on the same PC, a local pipe is used; this is implemented using shared buffers to increase performance, but is used
by the application in exactly the same way as communication with a remote locality.

The DMOD provides communication between dynamic localities and provides guaranteed in-order delivery of messages flowing
over paths between localities. If the DMOD loses its path to another locality, it informs the Base.

The following figure illustrates the paths and connections between an SNA server local node and two 3270 emulation programs.
Program A has two connections to the local node (one for each of two sessions); program B has one connection to the local node.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LPI Addresses
An LPI address is used to identify each end of a connection. It has three components: locality (L), partner (P), and index (I).

Locality is a 1-byte identifier that uniquely identifies a locality within a system. This locality corresponds to an SNA server
component (local node, link service, 3270 emulator, and so on).
Partner is a 1-byte identifier that uniquely identifies a partner within the locality. This is not always used, but can be used to
distinguish between parts of a component (for example, the 3270 functions in the local node rather than the APPC
functions).
Index is a 2-byte identifier that uniquely identifies a logical entity within the partner. The meaning and use of this field is
defined by the communicating partners; it is used to distinguish multiple connections between the same partners (for
example, to identify one of many 3270 sessions between the local node and a particular 3270 emulator). The value of zero
should not be used as an index value. Applications must assign unique index values for every active LPI connection with the
node.

A message flowing over a connection carries a pair of LPIs that identify the source and destination of the message. These are the
source LPI and destination LPI of the message; together they identify the connection on which the message is flowing.

Note that more than one connection can exist between any pair of partners. The I values are then used to distinguish the
connections. For example, in communications between the local node and a 3270 emulator, the L and P values identify the
message as being 3270 data for that local node, and the I value indicates which session the data is intended for.

The LPIs are assigned by a combination of the partners and the DMODs when the connection is opened, as described in
Making Connections.

Because they are assigned dynamically for each component, the L values are not the same across a whole system. For example, a
local 2.1 node locality could be known as locality 4 to one 3270 locality, and locality 6 to a second 3270 locality. However, from
the viewpoint of any locality, there exists a unique L value for each remote locality within which a path exists; this L value is used
as an index into an internal table that identifies the path to that locality.

The following figures show an example of the L values that could be used between the components shown in Paths and DMODS,
and examples of the LPI values that would be used by the local node on messages flowing between the components. (See
Opening the PLU Connection for more information on how the LPI values are assigned and used.)

Example L values

L values specified on messages between the local node and 3270 B

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LPI values specified on messages flowing on two different connections between the local node and 3270 A

The Base is called by any piece of code that wishes to send a message. It uses the destination L value on the message to determine
where to send it. When the message gets to the remote locality, the Base in that locality routes it to the appropriate partner if the
locality contains more than one partner.

Microsoft Host Integration Server 2000

Making Connections
Before messages can flow across a connection, the connection must be established, or opened. This is necessary because a
partner (P1) does not initially know the LPI address of the partner with which it wishes to communicate; indeed, there may not
even be a suitable partner for it to communicate with.

A component of the Base, known as the Resource Locator, and a message with type of Open, known as an Open message, are
used to establish a connection between partners.

The following procedure outlines how a connection is established. More specific information is available in
The Function Management Interface.

To establish a connection between partners

1. The Open message has two forms: an Open request and an Open response. The Open request contains information on the
type of partner P1 is looking for.

P1 fills in an Open request and calls the Base with it. Since it does not know the LPI address of its partner, it sets the
destination LPI values to zero.

2. The Base cannot forward the Open to a particular partner, since it has no destination LPI address. Therefore it passes the
Open to the Resource Locator, which attempts to find a locality that will accept the Open. The DMOD has a record of all the
localities that could accept this type of Open. The Resource Locator tries each of these localities until the Open is accepted. If
no locality is found, the Resource Locator returns a negative response to the Open to inform the sender that no partner
could be found.

3. When a remote locality receives an Open, the Base passes the Open to the partner (P2). If P2 can accept the Open, it
responds by sending back a positive Open response message to P1.

4. The Open response message returned to P1 contains both the source and destination LPI values for the particular
connection. At the end of this exchange, both P1 and P2 know each other's addresses and can communicate over the
connection.

Note that the terms "source" and "destination" in the context of LPIs refer to the source and destination of the particular message.
Hence, when the 3270 emulator builds a message to send to the local 2.1 node, it needs to swap the source and destination LPIs
received on the Open response from the local 2.1 node.

For a detailed example of how LPI addresses are assigned during initialization of the SSCP and PLU sessions, see
Opening the PLU Connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The DL-BASE/DMOD Interface
This section describes the interface to the Microsoft® Host Integration Server 2000 or the Microsoft SNA Server DL-BASE. It
includes a listing of the entry points that an application such as a 3270 emulator can call. These entry points allow messages to be
sent to and received from services such as the local 2.1 node.

This section contains:

About DL-BASE/DMOD
MS-DOS-Based 3270 Emulations
DL-BASE/DMOD Entry Point Summary
Sample Code: Initialization and Routing Procedures

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

About DL-BASE/DMOD
The following topics describe an example in which a 3270 emulator is to be adapted to use Microsoft Host Integration Server or
Microsoft SNA Server. It needs to communicate with the local 2.1 node.

This section contains:

Initialization
Sending Messages
Receiving Messages
Opening a Connection
Termination

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Initialization
The 3270 emulator should initialize the DL-BASE and then call the dynamic access module (DMOD) to obtain the necessary
configuration information. This also registers the user name with the DMOD. It can then obtain further system information such
as the Host Integration Server or SNA Server version number, if required.

The functions involved are:

Function Description
sbpuinit Initialize the DL-BASE.
sepdcrec Get configuration information.
sepdgetinfo Get system information.

The sbpuinit entry point should always be called before any other DL-BASE/DMOD entry points except SNAGetVersion. For new
emulators, sepdcrec should be called after sbpuinit. (Because of the order of calls used in older emulators, a call to sepdcrec
before sbpuinit is still supported, but this order is not recommended.)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending Messages
The 3270 emulator should insert a message in a buffer and then call the DL-BASE to send it. The message contains source and
destination LPIs, which are set up when the connection is opened; see LPI Connections for more information.

The application can either obtain a new buffer to contain the message to be sent (using sepdbubl), or reuse one in which it
previously received a message. The application is responsible for any buffer it has obtained or in which it has received a message;
it must either use (or reuse) the buffer to send a message or release it (using sepdburl). If the buffer to be reused does not contain
the correct number of elements for the message to be sent, the application can obtain additional elements (using sbpibegt) or
release existing ones (using sbpiberl); in this case, it must also ensure that the numelts field in the buffer header indicates the
correct number of elements.

The function used to send the message is sbpusend.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Receiving Messages
For Win32 and OS/2

The method for receiving messages from the DMOD is illustrated in the following figure.

After DMOD initialization, the 3270 emulator registers the routing procedure by calling sepdrout. When the DMOD receives a
message, it calls the 3270 emulator routing procedure, which can then process the message.

With this approach, there is no context switch between the DMOD thread and the 3270 emulator thread. However, the routing
procedure must return control to the DMOD fairly quickly. For instance, it cannot suspend waiting for a keyboard input.

The application must determine whether the received message is for this application or for another application. If the message is
not for this application, the routing procedure must return, indicating that the message was not processed. If the application
processes the message, it is responsible for freeing the buffer when the processing is finished.

In some cases, the routing procedure can process the message to completion. An alternative is for the routing procedure to put
the message on an application queue and then clear an application semaphore. The application can then subsequently process the
message.

A further performance gain can be achieved by sending a Status-Resource message (to return credit to the local node, allowing it
to send further data) from the routing procedure when a message is received, rather than waiting until the message is processed
to completion. This usage is illustrated in Sample Code: Initialization and Routing Procedure. See Pacing and Chunking for more
information on credit and flow control.

For Microsoft Windows® version 3.x

If an application wishes to schedule its main (non-callback) part on receipt of a message, it can do so by posting a Windows
message to its WndProc.

For all operating systems

Note that after the application has received a message it is responsible for the buffer in which the message was received; it must
either reuse the buffer to send a message (using sbpusend) or release it (using sepdburl). If the buffer to be reused does not
contain the correct number of elements for the message to be sent, the application can obtain additional elements (using
sbpibegt) or release existing ones (using sbpiberl); in this case, it must also ensure that the numelts field in the buffer header
indicates the correct number of elements.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Opening a Connection
Before an LPI connection can be used to transfer data, it needs to be opened. This is performed by sending Open messages,
starting with an Open request. The format of the Open messages is defined by the interface being used. For example, the 3270
emulator uses the Function Management Interface (FMI) to communicate with the local 2.1 node.

The interface also defines the initiator of the Open request. In this case, the 3270 emulator sends the Open(SSCP) Request, and
the local 2.1 node sends the Open(PLU) Request.

On the Open(SSCP) Request, the 3270 emulator sets all the source and destination LPIs to zero, except for the source index, which
can be used by the 3270 emulator for internal routing (for example, to distinguish between two sessions).

The DL-BASE and DMOD ensure that Open messages are routed to a suitable destination. If a routing procedure is used, it should
always first call sbpurcvx to process Open responses; when sbpurcvx indicates that it has not processed a received message, and
the received message is an Open OK response, the application is informed that the connection was established successfully.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Termination
The 3270 emulator must call sbputerm to free DL-BASE/DMOD resources before it terminates.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MS-DOS-Based 3270 Emulation
This section describes important information for emulator vendors who are writing for the Microsoft MS-DOS® operating
system.

For simple emulators that will run as the sole application in a system, much of the following information is unnecessary — the
only consideration for vendors of this type of emulator is support for task switching, described in the following topic. However,
for emulators that will support background operation it is vital that the facilities provided by the DMOD are used to ensure that
this functions correctly.

This section contains:

Task Switching on MS-DOS and Windows 3.x
Client Environment for MS-DOS-Based Emulators

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Task Switching on MS-DOS and Windows 3.x
MS-DOS versions 5 and 6 and Windows 3.x operating systems provide support for task-switching MS-DOS applications. This is a
facility that allows the user to switch between multiple applications running on the machine. When an application is not the
currently running foreground task, it can be swapped out of memory onto disk by the operating system.

Due to the asynchronous nature of the DL-BASE interface, it is important that this task-switching operation is detected. If the user
task switches from an emulator running in the foreground to another application, and the emulator is removed from memory, it
is important that the DL-BASE does not attempt to call the emulator's routing procedure with any received messages.

Task-switching support is handled by the DMOD, and need not concern the 3270 emulator writer. However, the DMOD provides a
means for the application to make use of the task switch detection. The emulator can call RegisterSwitchProc to register a
procedure that will be called whenever an application is being switched out or back in.

If the emulator changes the screen mode (for example, to support model 5 emulation), the task switch notification mechanism
must be used to restore the screen mode to its default when the application is being switched out. This is because Windows does
not restore the screen mode before attempting to redraw the screen.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Client Environment for MS-DOS-Based Emulators
The MS-DOS-based client Network Access Program (NAP) provides full support for applications that allow switching between
foreground and background operation (that is, terminate-and-stay-resident (TSR) applications), including fully preemptive
scheduling of a background thread.

To avoid possible interaction problems, it is important that client applications that intend to support background operation make
use of the facilities provided by the NAP, rather than implementing separate scheduling mechanisms hooked from MS-DOS
interrupts.

This section contains:

Background Operation
Scheduler
Semaphores

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Background Operation
During its initialization sequence, the emulator should hook the keyboard interrupt to allow it to scan for the hot key sequence
that it uses to switch between foreground and background operation.

When the emulator has completed its initialization and wishes to go resident, it must call CMDGoTSR passing the address of a
procedure that is used to start a background thread of execution. The call executes an MS-DOS TSR call to force the emulator to
be resident, and will never return control to the emulator.

The background thread can be used to perform any work items that are required (such as processing messages received from the
local node, initiating a file transfer, and so on), but the emulator must not write any output to the screen while in background
mode.

When the emulator detects a hot key sequence that commands it to return to the foreground, it must first call CMDStopFG to
suspend the current foreground thread and gain control of the screen area. If this call returns a nonzero value, the foreground
thread has been stopped within MS-DOS. In this case, the emulator must not switch into the foreground, and should restart the
foreground thread.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Scheduler
The scheduler provided by the NAP component takes complete control of scheduling all applications running in the system. It is
fully preemptive, and allows several processes to run concurrently. Only the current foreground process is permitted to write to
the screen.

The entry point provided by the 3270 emulator on the CMDGoTSR call is executed as a fully independent background thread of
execution. Scheduling between the foreground application's thread and the emulator background thread occurs in response to:

MS-DOS interrupts.
Timer ticks.
API calls that affect semaphores.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Semaphores
In any preemptively scheduled environment, the use of semaphores is vital to protect data structures that can be accessed by
more than one thread of execution. The standard semaphore functions (Set, Clear, Wait, Request) are provided as DMOD entry
points.

For example, if the emulator uses the routing procedure method of receiving messages, the routing procedure will be called from
a different thread context to the main application thread. This may require the use of semaphore protection around emulator data
structures.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DL-BASE/DMOD Entry Point Summary
The following table shows entry points divided into the categories DL-BASE, DMOD, and buffer management, and listed in
alphabetic order within each category.

DL-BASE entry points

DL-BASE Entry points Description
sbpuinit Initialize the DL-BASE.
sbpurcvx Process Opens from routing procedure.
sbpusend Send message.
sbputerm Terminate.

DMOD entry points

DMOD entry poin
ts

Description

routproc Sample routing procedure.
sepdchnk Get FMI chunk size.
sepdcrec Get user and diagnostics records from configuration file.
sepdgetinfo Get SNA server system information.
sepdrout Set up routing procedure (OS/2, Windows 2000, Windows NT®, Windows 98, Windows 95, and Microsoft M

S-DOS only).
sepwrout Set up routing procedure (Microsoft Windows 3.x only).
(for MS-DOS)
CMDGoTSR Start background thread and go resident.
CMDSemClear Standard semaphore functions for MS-DOS environment.
CMDSemRequest
CMDSemSet
CMDSemWait
CMDStartFG Resume scheduling of current foreground process.
CMDStopFG Suspend current foreground process.
RegisterSwitchProc Register a task-switch detection procedure.

Buffer management entry points

Buffer management entry points Description
sbpibegt Get buffer element.
sbpiberl Release buffer element.
sepdbubl Get buffer.
sepdburl Release buffer.

 Note The PASCAL calling convention is used for all entry points including routing procedures on MS-DOS,
Windows 3.x, and OS/2. The standard-call convention (CDECL) is used on Windows 2000, Windows NT, Windows 98,
and Windows 95.

 Note The format of buffer headers and elements is described in Messages. The formats of individual messages
contained in buffers are defined in FMI Message Formats.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Code: Initialization and Routing Procedure
This section contains an outline of source code for receiving messages from the DMOD.

Note that TRACEn() is a macro used to specify data to be traced; this data can include variable parameters. The value n identifies
the severity level of the trace. The unmatched parentheses are deliberate; they are resolved by the expansion of the macro.

/**/
/* Sample code for initialization and routing procedure. */
/**/

HSEM dummysem = NULL; /* This semaphore is never used */

/**/
/* Initialization procedure */
/**/
USHORT init_proc()
{
 COM_ENTRY("initp");
 rc = sbpuinit(&dmodsem, CLIENT, CES3270, username);
 TRACE4()"DMOD initialized, rc=%d",rc));
 if (rc == NO_ERROR)
 {

 /**/
/* The procedure routproc will be called whenever a message is */
/* received by the DMOD. This is used to post back the application, */
/* but take care to protect any queues against concurrent access by */
/* multiple threads. */
/**/
 rc = sepdrout(routproc);
 TRACE4()"Rout proc set up, rc=%d",rc));
 if (rc == NO_ERROR)
 {
 /* Other initialization here */
 }
 }
 return (rc);
}
/**/
/* The routine routproc is called whenever the DMOD receives a */
/* message or a status indication */
/**/
USHORT FAR _loadds routproc(buf, srcl, status)
BUFHDR FAR *buf; /* Buffer that has been received */
USHORT srcl; /* Locality from which buffer was received */
USHORT status; /* Reason for call */
 /* CEDINMSG = message received */
 /* CEDINLLN = path error occurred (on srcl) */
{
 COM_ENTRY("routp"); /* initialize rc=FALSE */

 /* Call the DL BASE to handle re-resource */
 /* location */
 if (!sbpurcvx(&buf, srcl, status))
 {
 switch (status) {
 case CEDINMSG:
 if (buf->destp == S3PROD) /* Is the message for us? */
 {
 /**/
 /* Process the received message. */
 /* */
 /* If the message is DATAFMI on the PLU-SLU session, and the */
 /* application has requested to use flow control on the */
 /* session, then this processing should include: */
 /* */

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 /* - increment number of messages received by the client */
 /* - check whether the number received exceeds the threshold */
 /* for normally returning credit to the node. If so, check */
 /* whether it's OK to return credit (e.g. not short of */
 /* buffers), and if OK send a status-resource message to */
 /* the node to give it credit to send more messages to the */
 /* client. */
/**/
 rc = TRUE;
 TRACE2()"Routing proc got message at %p",buf));
 }
 else
 {
 TRACE2()"Routing proc did not take message at %p",buf));
 }
 break;

 case CEDINLLN:
 TRACE2()"Path error on %d",srcl));
 /**/
 /* Process the path error status. */
/**/
 break;
 }

 /**/
 /* If the message/status cannot be completely processed here, */
 /* the app can queue the message and clear a semaphore for the */
 /* main thread to continue the processing. */
/**/
 } else {
 rc = TRUE; /* DLBase handled the message on our behalf */
 }
 /* Returning a value of TRUE indicates that we processed the */
 /* event return(rc);
}

Microsoft Host Integration Server 2000

The Function Management Interface
The Function Management Interface (FMI) provides applications with direct access to SNA data flows and information about SNA
control flows by means of status messages. This section provides information about the SNA sessions and connections over
which FMI messages can flow, and summarizes the messages. The FMI is particularly suited to the requirements of 3270
emulation applications.

This section contains:

FMI Concepts
The SSCP Connection
The PLU Connection
Data Flow
Status Messages
FMI Message Summary

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FMI Concepts
The local node provides the SNA layers of path control, transmission control, and data flow control (DFC), as well as logical unit
(LU) services — see the following figure. In terms of the SNA layers, the FMI is between presentation services and DFC. This
means that most of the SNA protocol handling is performed by the local node. In particular, the local node's DFC layer is
responsible for the state changes associated with chaining, bracket, and quiesce protocols.

The FMI is defined in terms of the messages that are sent across the interface. Note that this is logically distinct from the definition
of the DL-BASE/DMOD interface, which defines the mechanism for sending messages between two components in Microsoft®
Host Integration Server or Microsoft SNA Server (for example, between the local node and the 3270 emulator).

The FMI is used by LU types 0, 1, 2, and 3, but not by LU type 6.2. It provides access to the SSCP-LU session as well as the main
PLU-SLU session (see Sessions and Connections for more information on these sessions). An application can use the FMI to
access multiple sessions and hence multiple LUs, simultaneously.

In this example, the 3270 emulator on the client communicates over the LAN with the local node on the server machine by
exchanging messages. The content and format of the messages are defined by the FMI. The DMOD component is used to
transport the messages, but does not interpret them. The local node provides the SNA service for formatting the message. The
link service and the data link control (DLC) driver are responsible for transferring data between the local node and the DLC
adapter.

This section contains:

Sessions and Connections
Application Flags

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sessions and Connections
An application using the FMI can communicate with the host on two SNA sessions:

The SSCP session, between an SNA server LU and the host system services control point (SSCP), provides information on
the activation of the LU and supports communication with the SSCP for commands such as character-coded and field-
formatted logon and logoff commands. There is one SSCP session for each SNA server LU.
The PLU session, between an SNA server LU and the host primary logical unit (PLU), is the main session for data transfer
between the local application and the host application. There is one PLU session for each SNA server LU.

The local node communicates directly with the host on the PU-SSCP session.

The PU-SSCP session, between the physical unit (local node) and the host SSCP, supports the reporting of alert information
and link statistics to the host SSCP.

The three sessions are illustrated in the following figure:

The application can communicate with the local node by means of two LPI connections. Rather than specifying the session on
which a message is to flow, the application sends the message to the local node on one of these connections; the local node then
routes it to the appropriate SNA session.

The connections are used as follows:

The SSCP connection is used for the initial start-up and logon information for a 3270 session. The Host Integration Server or
SNA Server 3270 emulation programs also send network management information, such as user alerts and Response Time
Monitor (RTM) statistics, to the local node on this session. See The SSCP Connection for more information on this
connection.
The PLU connection is used for the transfer of application data, and for status and flow control messages between the
application and the local node. See The PLU Connection for more information on this connection.

The connections are illustrated in the following figure.

These connections are specific to the local node and the application. Data and status messages passed across a connection result
in SNA data and SNA control requests being sent on the appropriate SNA session. Similarly, SNA data and SNA control responses
received on an SNA session result in data and control messages being passed to the application on the appropriate connection.

The relationship between the three SNA sessions and the two connections is as follows:

SNA messages on the SSCP session from the host to the local node result in messages from the local node to the
application on the SSCP connection. Messages from the application to the local node on the SSCP connection normally
result in SNA messages on the SSCP session from the local node to the host (with the exception of network management
information, which results in messages on the PU-SSCP session — see below).
SNA messages on the PLU session from the host to the local node result in messages from the local node to the application
on the PLU connection. Messages from the application to the local node on the PLU connection result in SNA messages on
the PLU session from the local node to the host.
SNA messages on the PU-SSCP session from the local node to the host are generated by messages from the application to

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

the local node on the SSCP connection. When the application sends network management information such as 3270 user
alerts on the SSCP connection, the local node distinguishes it from other data on this connection (which normally
corresponds to the SSCP session) and sends the appropriate information on the PU-SSCP session to the host. See
3270 User Alerts for more information.

Note the distinction between these SNA sessions and 3270 emulation sessions. A 3270 emulator can have more than one 3270
emulation session; for each emulation session, there are separate SSCP and PLU sessions.

Each connection between the application and the local node is opened, managed, and closed separately. This means that an
application must maintain a separate internal control block containing the LPI pair, message keys, and state of the connection for
each of the SNA sessions associated with each 3270 emulation session; for example, an application using three 3270 emulation
sessions, each with an SSCP session and a PLU session, will require six control blocks.

An application identifies the connection (and hence the session) to which a particular message belongs using the LPI pair present
in the message. On a received message, the destination index (I) value contains the application's identifier for the connection, and
the source I value contains the local node's identifier for the connection. These are reversed for messages sent by the application.

The application selects the LU within the local node that it can use for communications by the relationship in the configuration
table between the LU and APPL records (see Opening the SSCP Connection). The application may be unaware of which LU it
accesses if the LUs are arranged within LU groups.

Microsoft Host Integration Server 2000

Application Flags
Application flags are included on the following messages:

All Data messages (both inbound and outbound)
Status-Acknowledge(Ack) (outbound only)
Status-Acknowledge(Nack-1) (outbound only)
All Status-Controlmessages (both inbound and outbound)

These flags represent key indicators of the state of the session to which the message relates and are closely related (but not
always equivalent) to the request header or response header (RH) indicators in the SNA request or response. Note that for
inbound messages, applications need to set the flags on Data messages and Status-Control messages only.

For outbound messages, the local node sets the application flags to reflect the contents of the RH in the corresponding SNA
message. The local node performs checks on the SNA message before sending it to the application; therefore, the application can
assume that the RH indicators obey the SNA protocols and need not perform its own checks. The application's task in interpreting
the application flags is much simpler than if the local node presented the message with the uninterpreted RH. For example:

If the application specified the segment delivery option when the PLU connection was opened (see
Opening the PLU Connection), the end chain indicator (ECI) on an SNA request will occur on the first segment of the last
request unit (RU) in a chain, but the chain is not complete until the last segment of that RU is received. In this case, the local
node manipulates the application flags so that the ECI flag is set in the last segment rather than the first.
Applications using TS profile 4 (transmission service profile 4) on the PLU session can receive the DR2 (definite response 2)
RH indicator in combination with DR1 (definite response 1) or ER (exception response) to give RQD2, RQD3, RQE2, and
RQE3 requests. The local node interprets the RH indicators and sets the COMMIT application flag accordingly.

For inbound Data and Status-Control messages, the application should set the flags to control session characteristics such as
chaining, direction control, and brackets. For Status-Acknowledge messages, the local node generates an SNA response and
sets the RH indicators using information saved from the corresponding request; the application does not need to set the flags on
this message.

For information on application flag usage when FMI chunking is being used, see Chunking.

In most cases, the application will not need to consider the application flags on Status-Acknowledge(Ack) messages, which derive
from the RH indicators on the corresponding response. However, certain applications do require access to the RH flags on
responses — for example, transaction-processing applications using TS profile 4 can receive the DR2 flag on responses, which will
appear as the COMMIT flag in the application flags.

The application flag usage on Status-Control messages is derived from the RH indicators in the corresponding DFC or session
control (SC) RU. Applications may need to be aware of the RH flags for Status-Control messages. For example, LUSTAT request
type 6 is a "no-op" used solely to allow RH flags to be sent when no other request is allowed. The local node delivers the request
to the application as a Status-Control(LUSTAT) Request with the relevant application flags set. See SNA Format and Protocol
Reference Manual: Architectural Logic (IBM publication SC30-3112) for summaries of valid RH usage for DFC RUs and of valid RH
indicators for SC requests.

In the summary of the application flags below, bits are numbered with bit 0 as the most significant bit in a byte and bit 7 as the
least significant. An application flag is set if the relevant bit for the flag is 1 and not set if the bit is 0.

Flag 1 occurs in all messages. The meanings of the individual bits and values that can be ORed together to set them are listed
below.

Bits in f
lag 1

Meaning

FMHI [bi
t 0, flag
1]
Value: A
F_FMH (
0x80)

Function management header indicator — set if a function management header is present in the message, or if the mes
sage is a function management data network services (FMD NS) request. Only valid on Data messages. This flag is alway
s set for 3270 user alerts, which are sent on the SSCP connection (see 3270 User Alerts).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

BCI [bit
1, flag 1]
Value: A
F_BC (0x
40)

Begin chain indicator — set if this message starts a chain (see Outbound Chaining and Inbound Chaining).

ECI [bit
2, flag 1]
Value: A
F_EC (0x
20)

End chain indicator — set if this message ends a chain (see Outbound Chaining and Inbound Chaining).

COMMI
T [bit 3, f
lag 1]
Value: A
F_COM
M (0x10
)

Commit indicator — set if chain carries DR2 (definite response 2).

BBI [bit
4, flag 1]
Value: A
F_BB (0x
08)

Begin bracket indicator — set if chain carries BB (begin bracket). Note that this does not necessarily indicate that the bra
cket has been initiated (see Brackets).

EBI [bit
5, flag 1]
Value: A
F_EB (0x
04)

End bracket indicator — set if chain carries EB (end bracket). Note that this does not indicate that the bracket has termin
ated (see Brackets).

CDI [bit
6, flag 1]
Value: A
F_CD (0
x02)

Change direction indicator — set if chain carries CD (change direction); see Direction.

SDI [bit
7, flag 1]
Value: A
F_SD (0x
01)

System detected error indicator — set if the local node detects an error in outbound data; see Outbound Data.

Flag 2 occurs in all messages except Status-Control(STSN), where the indicators included in this byte are not applicable. The
meanings of the individual bits and values that can be ORed together to set them are listed below.

Bits in
flag 2

Meaning

CODE [
bit 0, fl
ag 2]
Value:
AF_CO
DE (0x8
0)

Alternate code indicator — set if the alternate code set (usually ASCII) is used for this Data message. Note that function m
anagement headers are unaffected by the code selection indicator.

ENCRY
P [bit 1,
flag 2]
Value:
AF_EN
CR (0x
40)

Enciphered data indicator — set to indicate that the information in the Data message is enciphered under session level cr
yptography protocols. Users should note that they must provide the necessary support for data encryption; the Host Inte
gration Server or SNA Server local node does not support cryptography.

ENPAD
[bit 2, fl
ag 2]
Value:
AF_EN
PD (0x
20)

Padded data indicator — set in conjunction with the ENCRYP flag to indicate that the data was padded at the end to the n
ext integral multiple of eight bytes before encipherment.

QRI [bit
3, flag
2]
Value:
AF_QRI
(0x10)

Queued response indicator — set if the response to this request is to be queued in the transmission control and data flo
w control layers. This flag is only significant for inbound messages.

CEI [bit
4, flag
2]
Value:
AF_CEI
(0x08)

Chain ending indicator — set on a message corresponding to an outbound SNA request with EC (end chain) and BBIU (b
egin basic information unit). This flag is provided solely for the use of SNA server components; your application should n
ot attempt to use it.

BBIUI [
bit 5, fl
ag 2]
Value:
AF_BBI
U (0x0
4)

Begin basic information unit indicator — set on a message corresponding to an outbound SNA request with BBIU (begin
basic information unit). This flag is provided for the use of SNA server components and for applications using segment d
elivery and outbound pacing together (see Pacing and Chunking); your application should not attempt to use it.

EBIUI [
bit 6, fl
ag 2]
Value:
AF_EBI
U (0x0
2)

End basic information unit indicator — set on a message corresponding to an outbound SNA request with EBIU (end basi
c information unit). This flag is provided solely for the use of SNA server components; your application should not attem
pt to use it.

RBI [bit
7, flag
2]
Value:
AF_RBI
(0x01)

Real BID indicator — set on Status-Control(BID) Request messages from the local node only. 0x01 indicates that the m
essage is due to an SNA BID RU, 0x00 indicates that the message is due to an outbound FMD (function management data
) RU with BB (begin bracket) set.

Microsoft Host Integration Server 2000

The SSCP Connection
The application's SSCP connection to the local node provides access to the SSCP session between the Microsoft Host Integration
Server or Microsoft SNA Server secondary LU and the host SSCP.

For simplicity, this section describes the SSCP connection as if an application only uses a single SNA server LU (and therefore a
single SSCP connection); in practice, applications can use multiple LUs.

This section contains:

Opening the SSCP Connection
Closing the SSCP Connection
Using the SSCP Session
RTM Parameters
3270 User Alerts

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Opening the SSCP Connection
An application gains access to the SSCP session by opening an SSCP connection to the local node. To do this an application sends
an Open(SSCP) Request message to the local node, which responds with an Open(SSCP) Response. The local node follows a
positive Open(SSCP) Response with a Status-Session message reporting the current state of the SSCP session (see
Using the SSCP Session).

The message flow is shown in the following figure. For a more detailed message flow diagram, including the LPI values used
during initialization of both the SSCP and PLU sessions, see Opening the PLU Connection.

This section contains:

LU Groups
Resource Location for Open SSCP

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LU Groups
Note that Host Integration Server and SNA Server supports LU groups; a group consists of a number of LUs of the same type
(3270 display LUs or LUA LUs) such that any of the LUs in the group can be used for the same task.

If an application sends an Open(SSCP) Request specifying the name of a 3270 display LU group, the local node can select any LU
within the group to be used by the application. LUA LU groups are used in the same way, except that the application can specify
either the name of the group or the name of any LU within the group to access the group.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Resource Location for Open SSCP
When attempting to find a free LU across more than one local node, the application does not need to be aware of which local
node owns the LU. The DL-BASE is responsible for finding a suitable local node, using the mechanism described below. This
mechanism need not concern the application; the description is intended to assist in interpreting traces of the message flows
involved.

The open force type field in the Open(SSCP) Request specifies either a forced or nonforced Open. If the LU for which the Open is
intended does not have an active SSCP session because its link is inactive, a forced Open instructs the local node to attempt to
activate the link and the SSCP session; a nonforced Open succeeds only if the SSCP session is already active, and otherwise
returns with an error code indicating the state of the LU's connection.

When the application issues the Open(SSCP) Request, it does not set the open force type field. The DL-BASE then issues a
nonforced Open to each node in turn until it finds an LU that already has an active SSCP session. If none of these Opens succeeds,
the DL-BASE issues a forced Open to the node that returned the "best" error code — that is, the one most likely to be able to
activate the session.

The sample message flows in the following figure illustrate this process for two local nodes. The DL-BASE tries each in turn, using
nonforced Opens; the error code from node #2 indicates that it is more likely to be able to activate the SSCP session than node
#1, so the DL-BASE sends a forced Open to node #2. The application is aware only of the first request and its response.

To allow applications to restart after a disastrous failure (such as terminating the 3270 emulation program), the local node will
also accept an Open(SSCP) Request from an application that has failed and restarts (providing the same source LPI fields are
used). In this case a TERM-SELF message is sent to the host if the LU is bound.

The SNA server LU through which the application communicates is selected by the relationship between the APPL record and the
LU or LU group record in the configuration file. The application specifies its name using the source name field on the Open(SSCP)
Request; the local node fills in the LU or LU group number, selects an unused LU within the LU group (if the association is to an
LU group), and informs the application of this LU number on the Open(SSCP) OK Response.

The Open(SSCP) Request specifies:

The source application name.
A resource identifier that can be used by the application to correlate the Open(PLU) Request that is sent to the application
(see Opening the PLU Connection).
A connection information control block (CICB) that specifies the RH usage checks that the local node should perform for the
LU. If the field for a code is set to 0x01, then that receive check will be carried out by the DFC layer of the local node on data
arriving from the host. The corresponding send checks are unaffected and are always performed. The CICB is provided
because these receive checks are optional in SNA; however, it is anticipated that most applications will require all these
checks to be performed (all values set to 0x01).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

An indicator that specifies whether the application is to be treated as high or low priority. All SNA server 3270 LUs are
marked as high priority (printers do not send significant data inbound). The effect of high priority is to allow data to be
progressed faster to the host when the link is busy.
An indicator that specifies whether the application is an LUA application. This determines whether the local node and the
application will communicate using the LUA variant of the FMI (see FMI Concepts).
An indicator that specifies a nonforced or forced Open. This determines whether the local node will attempt to activate the
SSCP session if it is not currently active.

The Open(SSCP) Request can fail for one of several reasons, which can be determined from the error codes on the
Open(SSCP) Response sent to the application:

The local node may still be initializing (retrieving information from the configuration file). In this case, the application can
retry immediately.
The configuration file may not have an entry for the application, or the application record in the configuration file may not
point to an LU or LU group record.
For a nonforced Open, the SSCP session may be inactive.

Microsoft Host Integration Server 2000

Closing the SSCP Connection
To close the SSCP connection, an application sends a Close(SSCP) Request to the local node, which responds with a
Close(SSCP) Response. The Close(SSCP) Request is unconditional; the Close(SSCP) Response always reports that the
connection was successfully closed. The Close(SSCP) Response is provided so that applications can determine when outstanding
data and status messages on the session have been delivered.

If the LU is bound, the local node sends a TERM-SELF message to the SSCP on behalf of the application to elicit an UNBIND. An
application that merely wishes to be unbound need only issue Close(PLU) (see Closing the PLU Connection). Normally the SSCP
connection can be maintained while the application task is active, even if it is idle.

Closing the connection invalidates the LPI pair for the connection but does not alter the state of the SSCP session. The message
flow is shown in the following figure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using the SSCP Session
When the application has opened an SSCP connection, it has access to the SSCP session and can send data to the host SSCP.

This section contains:

SSCP Session Characteristics
SSCP Session Status

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SSCP Session Characteristics
For SNA type 2.1 nodes, the SSCP session uses FM (function management) profile 0 and TS (transmission service) profile 1. This
combination of profiles gives the following session characteristics:

The primary and secondary half-sessions both use immediate request mode.
The primary and secondary half-sessions both use immediate response mode.
Only definite-response single RU chains are allowed.
The maximum RU size is limited to 256 bytes.
DFC RUs are not supported.
Pacing is not supported.
Identifiers are used (rather than sequence numbers) on the normal flows.

This implies that the SSCP connection has the following characteristics:

All Data messages have the ACKRQD (acknowledgment required) field set.
All Data messages have the BCI (begin chain indicator) and ECI (end chain indicator) application flags set.
Status-Control messages do not flow on the connection.
Status-Session messages from the local node to the application only report changes in the activation state of the session.
The chaining, bracket, confirmation, and recovery protocols (described in The PLU Connection) do not apply.

Using the SSCP connection, the application can send and receive Data messages corresponding to FMD NS (function
management data network services) (session services) requests and FMD data requests. Examples of FMD NS (session services)
requests are:

INIT-SELF: Requests from the secondary to the host SSCP requesting that the SSCP assist in the initiation of a session to the
host PLU, effectively requesting a BIND (see Opening the PLU Connection).
TERM-SELF: Requests from the secondary to the host SSCP requesting that the PLU-SLU session be terminated with an
UNBIND (see Closing the PLU Connection).
Character-coded requests: Requests such as logon, logoff, or test commands from the secondary display, or a logon prompt
from the host application.
NOTIFY: Requests used by the secondary to notify the host SSCP that a device is available after a BIND was rejected with
sense code 0x0845; for example, where a device emulator supports logical power-off.

The local node sends a NOTIFY request to the SSCP on behalf of the LU whenever the application's SSCP connection state
changes while the LU is active. A NOTIFY (vector key 0x0C with byte 5 set to 0x03), which can act as secondary LU, is sent in the
following cases:

When an Open(SSCP) Request is received when the LU is already active.
When an ACTLU request is accepted when the SSCP connection is already opened.

A NOTIFY (vector key 0x0C with byte 5 set to 0x01), which cannot currently act as secondary LU, is sent in the following cases:

When an ACTLU is received when the SSCP connection is not open.
When a Close(SSCP) Request is received when the PLU session is not bound.
When an UNBIND request is received when the SSCP connection is not open.
In addition, the long response including the NOTIFY vector is used to ACTLU requests.

These NOTIFY messages can be used by the host in conjunction with the negative response 0x0845 that the local node gives to a
BIND received when the SSCP connection is not open (see Opening the PLU Connection).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SSCP Session Status
While the SSCP connection is open, the local node reports the initial state and any subsequent changes of state of the SSCP
session to the application using Status-Session messages. There are four distinct Status-Session status codes that can occur for
the SSCP connection:

No-Session: The SSCP session between the SNA server LU and the host SSCP is not active because the SNA server PU
and/or LU is not activated. The Status-Session carries a qualifying status code to indicate why the SSCP session is inactive.
The application cannot use the SSCP connection to send data to the host SSCP. The qualifiers are:

PU-INACTIVE: ACTPU has not been received or DACTPU has been received.

PU-ACTIVE: ACTPU(COLD) has been received from the SSCP.

PU-REACTIVATED: ACTPU(COLD) has been received while the PU was active (the application is not informed if ACTPU(ERP)
is received while the PU is active).

LU-INACTIVE: ACTLU has not been received, or DACTLU has been received.

Link-Error: The SSCP session between the SNA server LU and the host SSCP is not active, due to a DLC link error. The
Status-Session carries a qualifying status code that gives the error code reported by DLC. The application cannot use the
SSCP connection to send data to the host SSCP.

Note that this session state is reported when the local node is informed that the locality containing the Host Integration
Server or SNA Server SDLC link service has been lost due to a path failure; the qualifier 0x0D is used. The link service will
close the link when it is informed of the path error so the application can treat this as an outage.

LU-Active: The SSCP session is active due to the receipt of ACTLU. The application can use the SSCP connection to send data
to the host SSCP.
LU-Reactivated: The SSCP session has been reactivated due to the receipt of an ACTLU from the host SSCP. The SSCP
connection is still active, but data may have been lost.

Status-Session Codes describes the Status-Session status codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RTM Parameters
The Status-RTM message is sent to the application by the local node to indicate the Response Time Monitor (RTM) parameters
being used by the host. The host can specify the following parameters:

Whether RTM measurement is active or inactive.
Whether local display of RTM data by the application is permitted.
The definition by which response times are to be measured:

Until the first character of a response is written to the screen.

Until the keyboard is unlocked.

Until the application is allowed to send data (CD or EB received).

The boundaries by which response times are to be classified into time bands.
The initial values of the counters, which indicate how many responses have been received in each time band (as defined by
the boundaries).

The local node is responsible for interpreting the response times reported to it by the application, and for sending RTM statistics
to the host when required; the application is responsible for measuring the response times and reporting them to the local node.
(The application reports response times to the local node using the Status-Acknowledge message — see
Response Time Monitor Data for more information on measuring and reporting response times).

If the application does not wish to provide a local display of RTM data, it only needs to determine whether RTM measurement is
active and, if so, the definition by which response times are measured; it can ignore the other parameters. If RTM measurement is
not active, the application need not measure and report response times.

If the application wishes to provide a local display of RTM data, it should use the information from the Status-RTM message to
ensure that the local interpretation of response times matches the interpretation used by the host. In particular, it should not
display RTM data at all if the Status-RTM message indicates that local display is not permitted (or if the "permission to view RTM
data" field in the 3270 user configuration record indicates that it is not permitted). The application is responsible for maintaining
its own RTM statistics for local display; that is, for classifying the response times according to the boundaries specified by the host
and maintaining counts of responses in each category. Although the local node maintains these statistics for sending to the host
when required, it does not report them to the application.

RTM statistics are maintained for a specific LU, not for a specific application's use of that LU. This means that when the
Status-RTM message is received at start of day the counters can be nonzero to include a previous use of the LU. The
counters are only reset when the host requests the local node to reset them or when the local node sends unsolicited
RTM data to the host.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

3270 User Alerts
A Host Integration Server or SNA Server 3270 emulation program can send 3270 user alerts to the local node on the SSCP
connection. This allows the local node to route each alert to the appropriate host for the 3270 session on which it was sent.

To send a 3270 user alert, the application should send it as a Data message on the SSCP connection. The local node will recognize
it as a 3270 user alert if both of the following are true:

The FMHI (function management header indicator) bit in the application flag 1 byte is set.
The first three bytes of the data are 0x41038D, indicating an NMVT (Network Management Vector Transport).

The local node sends the alert to the appropriate host for the 3270 session on which it was received. If a relative time subvector is
present (0x42) with increment type 0xEF (sequence), then the local node will set the sequence number in each message (starting
at 1 from power-up and incrementing by 1 for each message sent). Comm Server allows sequence number values up to 2^16.
Apart from this, the local node does not alter the contents of the alert.

Note that there can be some delay before the application receives a response to the alert; the response is sent on the SSCP
connection in the same way as other data on this connection. The application must not send further data on the SSCP connection
(including further alerts) until it has received a response to this alert.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The PLU Connection
The application's PLU connection to the local node provides access to the PLU session between the Microsoft Host Integration
Server or Microsoft SNA Server LU and a PLU (primary LU) in the host.

This section describes:

How an application opens and closes its PLU connection.
The use of the PLU connection.

For simplicity, this section describes the PLU connection as if an application uses only a single SNA server LU (and therefore a
single PLU connection); in practice, applications can use multiple LUs.

This section contains:

Opening the PLU Connection
Closing the PLU Connection
Using the PLU Session
Outbound Chaining
Inbound Chaining
Segment Delivery
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery
Application-Initiated Termination
LUSTATs
Response Time Monitor Data

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Opening the PLU Connection
The opening of the PLU connection is closely associated with the establishment of the PLU session. The local node opens the PLU
connection when it receives a BIND command from the host for an LU for which an application has previously opened an SSCP
connection. Possible sequences are:

An application opens its SSCP connection and sends a character-coded logon request or INIT-SELF request to the host SSCP.
A host PLU subsequently sends a BIND request to the SNA server LU, and the local node opens the PLU connection.
A host PLU sends an unsolicited BIND command to the SNA server LU. If the SSCP connection for the LU is open, the local
node opens the PLU connection. If the local node is supporting NOTIFY, then the host can be configured to send a BIND
when it receives the NOTIFY message sent by the local node when the application opens its SSCP connection (see
The SSCP Connection).
A host PLU sends a BIND command to the SNA server LU. If the SSCP connection for the LU is not open, the local node
returns a negative response to the BIND request. The sense code used is 0x0845 (NOTIFY will be sent). The local node does
not open the PLU connection. In this case the local node sends NOTIFY when the SSCP connection is opened (see The SSCP
Connection).

To successfully open the PLU connection, the local node sends an Open(PLU) Request to the application. The application responds
with an Open(PLU) OK Response. Finally the local node sends an Open(PLU) OK Confirm to the application. This exchange of
messages opens the PLU connection and establishes the PLU session. It should be noted that a successful PLU opening sequence
is a "three-way handshake," in comparison to the opening of the SSCP connection, which is a "two-way handshake."

The Open(PLU) Request is delivered to the application using the SSCP connection for the LU. The Open(PLU) Request contains the
application name and open resource identifier to allow applications to correlate the PLU and SSCP connections.

The Open(PLU) Request indicates the logical unit that the BIND request was directed to, references the resource identifier supplied
in the Open(SSCP) Request for that LU, and carries the actual BIND RU received from the host (see Open(PLU)). It also carries the
maximum RU sizes, chunk sizes (if appropriate), and pacing windows for the PLU session, to enable the application to determine
the initial credit if it wishes to be involved in outbound pacing (see Pacing and Chunking).

The message flow for a successful opening of the PLU connection (on receipt of a nonnegotiable BIND) is shown in the following
figure. Note that the BIND parameters are verified (at [1]) only when the application has supplied the BIND check table index as
part of the CICB.

The following figure shows the message sequence for the initiation of both the SSCP and PLU sessions, including details of where
the LPI values are assigned. (The application's source P value of 0x12 indicates that it is a 3270 emulator; see Open(SSCP) Request
for more details of how the source LPI values are set.) The message flow shown assumes that the connection to the host is already
established and that both the configuration and the BIND are valid.

After this message sequence, there are two valid sets of LPI values, one for the SSCP session and one for the PLU session. The
application can access either session at any time until UNBIND and can use the LPI values to distinguish between received data on
the two sessions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This section contains:

BIND Checking

Microsoft Host Integration Server 2000

BIND Checking
The Open(PLU) OK Response contains the connection information control block (CICB), which allows the application to tailor
certain characteristics of the connection and contains information used in BIND verification. Note that the local node verifies the
BIND parameters carried on the Open(PLU) OK Response; it does not maintain a copy of the original BIND RU from the host. If
the BIND is negotiable, the application is permitted to modify the parameters in the BIND RU, but if it is nonnegotiable the
application should return the BIND RU unmodified. A negotiable BIND flag is provided in the Open(PLU) Request.

While many characteristics of the PLU session are determined by the BIND parameters, the application can select certain
characteristics by specifying fields in the CICB; see the following table. More detailed information on CICB usage and the effect on
the PLU session of selecting various CICB options is given in context in the topics of this section that deal with PLU session
characteristics such as chaining and pacing.

The BIND is verified using a BIND check table entry (whose index is specified in the CICB); the entries in this correspond to the
various fields in the BIND. The BIND check table entries are stored in the configuration file. For example, the BIND check table
entry can specify that the BIND be accepted if the secondary chain response protocol is either "definite response" or "definite or
exception response" (byte 5 bits 2 and 3 = B10 or B11); this would be appropriate if the application did not want to send RQE
chains.

Connection Information Control Block Usage

Field Explanation
Segme
nt
delivery
option

A value of 0x00 indicates that the local node should perform outbound segment assembly and only deliver complete RU
s. A value of 0x01 indicates that the application wishes the local node to deliver RU segments. See Segment Delivery.

Applica
tion
pacing
option

A value of 0x00 indicates that the application requires the local node to handle pacing. A value of 0x01 indicates that the
application wishes to be involved with outbound pacing via Status-Resource messages. See Pacing and Chunking.

Applica
tion
cancel
option

A value of 0x00 indicates that the local node should automatically generate CANCEL. A value of 0x01 indicates that the a
pplication will generate CANCEL. See Inbound Chaining.

Applica
tion
transact
ion
number
s optio
n

A value of 0x00 indicates that the application does not support transaction numbers. A value of 0x01 indicates that the a
pplication does support transaction numbers. See Recovery.

BIND
check i
ndex

Gives the index of the BIND check table entry against which the BIND parameters should be verified. One of the followin
g values should be used:
0x01 — 3270 printer session
0x02 — 3270 display session
0x10 — LUA (LU type 0) application

The Open(PLU) Confirm from the local node to the application indicates whether the BIND verification was successful, and if so,
supplies the bind information control block (BICB). The BICB summarizes the session BIND parameters in a format suitable for
high-level languages and effectively defines the characteristics of the PLU session. The application not negotiating the BIND
should usually not require to examine the BIND on the Open(PLU) Request and should use the BICB on the
Open(PLU) OK Confirm.

The following table summarizes the fields in the BICB and their correspondence to the parameters in the BIND RU. For more
detailed information, see the IBM manual Systems Network Architecture: Formats, (GA27-3136). More detailed information is
given in context in the topics dealing with PLU session characteristics such as pacing and brackets.

Bind Information Control Block Usage

Position on Open(PLU) OK Confirm Position in Bind RU [byte,bi
t]

Description

dataru[0] [2,] FM profile
dataru[1] [3,] TS profile

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

dataru[2] [4, 0] Primary chaining use
dataru[3] [4, 1] Primary request control mode
dataru[4] [4,2-3] Primary chain response protocol
dataru[5] [4, 4] Primary two-phase commit
dataru[6] [4, 6] Primary compression indicator
dataru[7] [4, 7] Primary send EB indicator
dataru[8] [5, 0] Secondary chaining use
dataru[9] [5, 1] Secondary request control mode
dataru[10] [5,2-3] Secondary chain response protocol
dataru[11] [5, 4] Secondary two-phase commit
dataru[12] [5, 6] Secondary compression indicator
dataru[13] [5, 7] Secondary send EB indicator
dataru[14] [6, 1] FM header usage
dataru[15] [6, 2] Bracket usage1
dataru[16] [6, 2] Bracket reset state2
dataru[17] [6, 3] Bracket termination rule
dataru[18] [6, 4] Alternate code set indicator
dataru[19] [6, 5] Sequence number availability
dataru[20] [7,0-1] Normal-flow send/receive mode
dataru[21] [7, 7] Half-duplex flip-flop reset
dataru[22] [8,2-7] Secondary pacing send window
dataru[23] [9,2-7] Secondary pacing receive window
dataru[24-25]* [10,] Secondary send maximum RU size
dataru[26-27]* [11,] Primary send maximum RU size
dataru[28] [14,1-7] LU-LU session type
dataru[29] [27,] PLU name size
dataru[30-37] [28,] PLU name (in EBCDIC)
dataru[38] [15,0-3] Session type 1: PS FMH type
dataru[39] [15,4-7] PS data stream profile
dataru[40] [16, 0] Number of outstanding destination

s
dataru[41] [16, 1] Compacted data indicator
dataru[42] [16, 2] PDIR allowed indicator
dataru[43] [15, 0] Session type 2 or 3: query support
dataru[44] [24,1-7] Dynamic screen size
dataru[45] [20,] Basic row size
dataru[46] [21,] Basic column size
dataru[47] [22,] Alternate row size
dataru[48] [23,] Alternate column size
1 0x00 = Brackets not used
0x01 = Brackets used

2 0x01 = Bracket reset state is BETB (between-brackets)
0x02 = Bracket reset state is INB (in-bracket)

*These values are of type INTEGER (all others are of type CHA
R)

The opening PLU sequence can fail if the application rejects the Open(PLU) Request (for example, if the BIND parameters are
unacceptable on a nonnegotiable BIND) by sending Open(PLU) Error Response and appropriate sense codes. The local node
sends to the host a negative response to the BIND request containing the supplied sense codes. The PLU connection is considered
to be closed after an Open(PLU) Error Response, and the local node does not generate an Open(PLU) Confirm. The following
illustration shows a failure to open the PLU connection (for a nonnegotiable BIND), due to the application rejecting the
Open(PLU) Request.

The opening PLU sequence can also fail if the BIND verification against the BIND check table entry specified by the
application fails. In this case, the local node does the following: Sends to the host a negative response to the BIND request
with appropriate sense codes.
Sends to the application an Open(PLU) Error Confirm with the first word of the sense codes as the first error code and the
index of the BIND parameter in error as the second error code.

The PLU connection is considered to be closed after the Open(PLU) Error Confirm. The following illustration shows failure to
open the PLU connection due to BIND verification failure. Note that error code 2 gives the index in the RU of the BIND parameter
in error.

Microsoft Host Integration Server 2000

Closing the PLU Connection
Either the application or the local node can terminate the PLU connection. The criteria for closing are:

The local node closes the PLU connection if it receives an UNBIND request from the host PLU, which terminates the PLU
session. If the UNBIND type is "BIND forthcoming" (0x02), the local node sets the BIND-forthcoming indicator in the
Close(PLU) Request, so that the application can reserve any necessary resources.
The local node closes the PLU connection if it receives a DACTLU or DACTPU request from the SSCP.
The local node closes the PLU connection if it receives an outage notification from data link control.
The local node closes the PLU connection if it detects a critical error in a message from the application, putting the
application in a "critically failed" state. In this case the local node sends a TERM-SELF request to the host to elicit an UNBIND.
The application should close the PLU connection for logical power-off conditions — for example, if its resources are
temporarily unavailable, or when the user finishes using the session.

When the local node issues a Close(PLU) Request, the application can determine the reason from the Close control field. There
may be an associated Status message on either the PLU connection (a Status-Acknowledge(Nack-2)) or the SSCP connection (a
Status-Session message if the LU has been deactivated).

Whether the local node or the application closes the connection, the message is the same. The initiator of the Close sequence
sends a Close(PLU) Request to its partner, which responds with a Close(PLU) Response. The Close(PLU) Request is unconditional
— the Close(PLU) Response always reports that the connection was successfully closed.

The Close(PLU) Response is provided so that the initiator of the Close sequence can determine when outstanding data and status
messages have been delivered. To avoid possible race conditions, the application should discard all messages it receives on the
PLU connection after issuing a Close(PLU) Request, including any Close(PLU) Request messages from the local node, until it
receives the Close(PLU) Response.

Note that, if the application sends a Close(SSCP) Request while the PLU session is active, the local node will close the PLU
connection (as if Close(PLU) Request had been sent) as well as the SSCP connection.

The message sequence for an application-initiated Close is shown in the following figure. The local node sends a TERM-SELF
request to the host to elicit an UNBIND.

If the host generates an UNBIND automatically on receipt of a TERM-SELF, the application can view Close(PLU) as equivalent to
the termination of the PLU-SLU session.

The message flow for a local node-initiated Close after receiving an UNBIND request from the host is shown in the following
figure.

When an application is using the LUA variant of the FMI, issuing a Close(PLU) Request causes the node to immediately unbind the
PLU session by sending an UNBIND request to the PLU. The Close(PLU) Response is returned to the application on receipt of the
UNBIND response, as shown in the following figure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Using the PLU Session
When the PLU connection is open, the application has access to the PLU session and can communicate with the host PLU.

This section contains:

PLU Session Characteristics
PLU Session Status

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PLU Session Characteristics
The local node provides support on the PLU session for FM profiles 2, 3, 4, and 7 and TS profiles 2, 3, 4, and 7. Support of these
profiles means that the local node supports LU-LU session types 0, 1, 2, and 3. Using the PLU connection, the application can send
and receive any FM data that is valid for the LU-LU types above.

The protocols appropriate to a particular session are determined by the parameters in the BIND request that establishes the
session. The BIND parameters are reported to the application in the BICB on the Open(PLU) OK Confirm message. It is the
application's responsibility to conform to the session protocols reported in the BICB.

Due to the wide range of BIND parameters allowable on a session and the options available to an application in the CICB on the
Open(PLU) OK Response, this document does not attempt a complete description of the protocols for a particular session. The
remaining topics in this section describe the general protocol characteristics of the PLU session, such as chaining, brackets, and so
on.

Most of the protocol descriptions in the remainder of this section are accompanied by figures to illustrate the important features.
The figures show:

The relevant RH flags in SNA requests/responses.
The sequence number of SNA requests/responses.
Any sense data (shown as "SENSE=...") on SNA responses or Data messages.
The ACKRQD field in Data and Status-Controlmessages.
The relevant application flags (see Application Flags) in Data and Status-Control messages.
The message key field in Data messages.
Any error codes (shown as "ERROR=...") in Status-Acknowledge or Status-Control messages.

For simplicity, it is assumed that all messages are function management data flowing on the same PLU session that:

Uses half-duplex flip-flop protocols.
Uses brackets, with reset state of between-bracket.
Does not use the PLU CICB segment delivery option (see Segment Delivery).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PLU Session Status
While the PLU connection is open, the local node reports any changes of state to the application via Status-Session messages.
There is only one Status-Session status code that can occur on the PLU connection:

BETB The PLU session has made the transition from the in-bracket state to the between-bracket state (see Brackets).

Status-Session Codes describes the Status-Session status codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Outbound Chaining
The local node checks that outbound chains of requests conform to the correct SNA usage, to the chaining usage for the session,
and to the current state of the session. The local node will accept valid outbound chains of data from the host if one of the
following is true:

Data traffic is active on a full-duplex session.
The session is in a state where it can receive data.
The session is between brackets with neither half-session currently sending (see Brackets), or the session is in contention for
a half-duplex contention session.
The session is waiting for the host to initiate a recovery procedure (see Recovery); for example, the local node has sent a
negative response to an outbound chain.

The local node sends a Data message to the application for each outbound request — but note the effects of the application
specifying the segment delivery option in the connection information control block (see Segment Delivery). If the application does
not specify segment delivery, then the BCI and ECI application flags in the message header reflect the chaining indicators in the
RH of the request.

An outbound chain can terminate in several ways:

The chain is received complete and without error; all the requests in the chain have been passed to the application as Data
messages and have been acknowledged where applicable.
The application detects an error in a Data message while receiving the chain. The application should send a
Status-Acknowledge(Nack-1) with associated sense data to the local node, which sends a negative response plus the sense
data to the host for the request corresponding to the Data message in error. The local node will not purge the remainder of
the chain, so the application will see EC (end chain). Alternatively, the host can terminate the chain with a CANCEL, which is
delivered to the application as a Status-Control(CANCEL) with ACKRQD set.
The local node detects an error in a request and presents the application with a system detected error Data message to
report the premature termination of the chain. This message carries the SDI (system detected error indicator) and ECI (end
chain indicator) application flags, the sense codes for the error, and the ACKRQD indicator; it does not carry user data. When
the application responds with Status-Acknowledge(Ack), the local node generates a negative response to the chain using the
appropriate sense code. The application can use the reported sense codes to generate diagnostic information for the user
(for example, a 3270 emulator would generate PROG check codes). The local node will purge the remainder of the chain, so
the application may not see EC. Alternatively, the host can terminate the chain with a CANCEL, which is delivered to the
application as a Status-Control(CANCEL) with ACKRQD set.
The host can cancel the chain while sending, by sending the CANCEL request. The local node sends a Status-
Control(CANCEL) message to the application, which the application must acknowledge.

If an error occurs while receiving a chain, and the session uses half-duplex flip-flop protocols, then the application must assume
an error-recovery-pending state (see Recovery).

For a session using half-duplex flip-flop protocols, if the application flags in the last Data message of the chain have the CDI
(change direction) flag set, then:

If the chain was received without error, the application has direction.
If the application rejected any message in the chain, the host retains direction.

The following four figures illustrate outbound chaining protocols between the local node and the application and how those
protocols relate to the underlying SNA protocols.

In the first illustration, a complete outbound chain is received without error and accepted by the application; note that after
sending Status-Acknowledge(Ack) the application has direction.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, a complete outbound chain is received without error, but is rejected by the application; note that even
though the chain carried CD, the application does not have direction.

In the following illustration, the local node detects the invalid use of RQD without EC and converts the request to a Data message
with the SDI application flag set, plus ACKRQD and appropriate sense codes. The application's Status-Acknowledge(Ack) drives
the negative response to the host. This example assumes that the receive check 4007 has been specified in the CICB on the Open
(SSCP).

In the following illustration, the host cancels the outbound chain.

Microsoft Host Integration Server 2000

Inbound Chaining
The division of application data into Data messages and the control of inbound chaining are the responsibility of the application.

The secondary maximum send RU size for the session is a parameter in the BIND from the host and is available in the BICB on the
Open(PLU) OK Confirm message. The application should ensure that each inbound Data message corresponds to a single RU; that
is, it does not contain more data than the maximum RU size given in the BICB.

The application should use the BCI and ECI application flags in the Data message headers to control chaining (see
Application Flags). The chain is the unit of recovery, and if recoverable errors occur in the chain, then the application should
assume responsibility for recovery (see Recovery).

An inbound chain can terminate in the following ways:

The complete chain is sent without errors; that is, all the Data messages in the chain have been passed to the host. If the
session allows the secondary to send definite-response chains, and the application sets the ACKRQD field in the last Data
message of the chain, then the application receives a Status-Acknowledge(Ack) from the local node when the host supplies
a response.
The local node detects a critical error in the format of a Data message from the application or in the state of the session. The
local node rejects the Data message with a Status-Acknowledge(Nack-2) containing an error code and closes the PLU
connection. Note that the local node will generate an inbound CANCEL request before closing the PLU connection. The local
node will send a TERM-SELF request to the host to elicit an UNBIND.
The host sends a negative response to a request in the chain. The local node sends a Status-Acknowledge(Nack-1) message
to the application with the sense codes and sequence number from the negative response. Where the host rejects a request
that does not carry the ECI application flag, and the application did not specify the "application cancel," option in the PLU
CICB, the local node also generates an inbound CANCEL request. When the application specifies "application cancel," then it
must send EC or Status-Control(CANCEL) to terminate the chain. Any subsequent inbound chains are rejected with a
noncritical Status-Acknowledge(Nack-2), sense code 0x2002 or 0x2004 (chaining or direction). When the application
receives the Status-Acknowledge(Nack-1) message, it should stop sending data after this chain for half-duplex flip-flop
sessions because the direction has passed to the host (see Direction).
The application cancels the chain while sending, by sending a Status-Control(CANCEL) message to the local node. The local
node sends a CANCEL request to the host and sends a Status-Control(CANCEL) Acknowledge to the application on receiving
a positive response from the host. Responses from the host to requests sent before the CANCEL will generate appropriate
Status-Acknowledge messages to the application if the original Data messages had the ACKRQD field set.
The application closes the PLU connection while sending the chain. The local node sends a Close(PLU) Response to the
application. Responses from the host to requests sent before the Close(PLU) message will not generate Status-Acknowledge
messages to the application. Note that the local node will also generate an inbound CANCEL request and a TERM-SELF
request to elicit an UNBIND.

If the local node detects a noncritical error in the format of a Data message from the application or the state of the session, it
does not close the PLU connection. Instead, it rejects the Data message in error with a Status-Acknowledge(Nack-2) containing
an appropriate error code. No data is sent to the host.

If an inbound chain terminates with an error, then if the session uses half-duplex protocols, the application must assume a receive
state (see Recovery).

The following six figures illustrate inbound chaining protocols between the local node and the application, and how those
protocols relate to the underlying SNA protocols.

In the first illustration, a complete inbound chain is sent without error and accepted by the host; note that after receiving Status-
Acknowledge(Ack) the application relinquishes direction to the host.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, the local node detects a critical error in the format of the second Data message in the chain (ACKRQD
without the ECI application flag), sends a Status-Acknowledge(Nack-2) to the application with the appropriate error code, and
closes the PLU connection. Note that the local node only generates the CANCEL where the session's FM profile supports CANCEL.

In the following illustration, a complete inbound chain is sent without error, but is rejected by the host; after the negative
response, the application must enter receive state, pending error-recovery (see Recovery).

In the following illustration, the application cancels the chain by sending Status-Control(CANCEL); note that the application still
has direction and can start a new chain.

In the following illustration, the application closes the PLU session while sending the chain; the local node only generates the
CANCEL where the session's FM profile supports CANCEL.

In the following illustration, the local node detects a noncritical error in the format of the second Data message in the chain and
sends a Status-Acknowledge(Nack-2) to the application with the appropriate error code.

Microsoft Host Integration Server 2000

Segment Delivery
Where the maximum RU size for a session (supplied in the BIND parameters) allows RUs that are larger than the maximum size of
a data link control transmission unit (for example, an SDLC frame), then the local node's path control is responsible for
assembling outbound segments into RUs and segmenting inbound RUs where required.

However, certain IBM products (for example, SNA models of the 3270 controllers) do not perform outbound segment assembly,
to improve perceived response times at display terminals by displaying each segment as soon as it is received. This feature is
referred to as "window shading."

The local node allows an application to specify a segment delivery option in the CICB on the Open(PLU) OK Response. If an
application specifies this option, the local node's path control does not assemble outbound segments into complete RUs, and the
local node delivers the segments to the application in Data messages. This allows an application emulating a 3270 device to
reproduce the perceived response characteristics of the IBM device. In cases where throughput is high, such as 3270 file transfer,
segment delivery can give improved performance compared to RU delivery.

Note that there is no comparable feature for inbound data — the application must present Data messages containing complete
RUs to the local node. Also, there is no support for segment delivery on the SSCP session and connection (where the maximum
RU size is limited to 256 bytes).

The local node supports the segment delivery option in such a way that the constraints placed on an application receiving data in
either form are identical. If complete RUs are required, then the local node rebuilds the RUs from segments in path control. If
segments are required, the local node handles all segmentation indicators and modifies processing within its SNA layers to cater
for segmented RUs.

All Data messages delivered to the application contain application flags, whereas only the first segment in an RU contains an RH.
The local node delays the EC and CD indicators if they occur in the RH of the RU's first segment, and sets the corresponding ECI
and CDI application flags in the Data message corresponding to the last segment of the RU. Therefore the Data messages
corresponding to RU segments have application flags set as if they corresponded to whole RUs. This considerably simplifies the
handling of chaining, bracket, and half-duplex protocols for an application using the segment delivery option.

Note that EB is not delayed until EBIU, since the application should use the Status-Session between-brackets message to
determine when to enter the between-brackets state.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Brackets
This section primarily describes the bracket protocols between the local node and an application for a session supporting half-
duplex flip-flop with brackets.

The local node enforces no bracket protocols for full-duplex sessions; therefore, messages with BB are not presented as Status-
Control(BID) messages, and there are no Status-Session(BETB) messages.

The management of this protocol for a generalized application is complex, and there is a significant amount of code in the local
node to simplify the application's perception of the protocol. An application is only aware of two states:

In-bracket
Between-bracket

The local node, in addition to the states of in-bracket and between-bracket, maintains transient states with a large state transition
matrix, or finite-state machine, governing the half-session's state at a particular time.

This section contains:

Bracket Initiation
Bracket Termination

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Bracket Initiation
While a session is in the between-bracket state, contention exists. Either the application or the host PLU can attempt to initiate a
bracket, as follows:

The application initiates a bracket by sending a Data message with the BBI application flag and ACKRQD set while in the
between-bracket state. The local node sends a request corresponding to the Data message to the host PLU. The application
has successfully initiated a bracket and is in the in-bracket state. Flip-flop protocols are now in force until the bracket is
terminated.
The application initiates a bracket by sending a Status-Control(LUSTAT) with the BBI application flag set while in the
between-bracket state. The local node sends an LUSTAT request to the host PLU. The application has successfully initiated a
bracket and is in the in-bracket state. Flip-flop protocols are now in force until the bracket is terminated.
The host PLU sends a BID request while in the between-bracket state. The local node sends a Status-Control(BID) with
ACKRQD to the application (see Status-Control Message). The application replies with a Status-Control(BID) Acknowledge,
to indicate that it is willing to accept a bracket. The local node sends a positive response to the BID request. The host PLU has
successfully initiated a bracket, and the application's state is in-bracket, with flip-flop protocols applying until the bracket is
terminated.
The host PLU sends data in an RU carrying the BB indicator in the RH while in the between-bracket state. The local node
presents this method of initiating a bracket in the same way as if the host PLU had initiated the bracket with BID. The local
node sends a Status-Control(BID) with ACKRQD to the application. The application replies with a Status-Control(BID)
Acknowledge to indicate that it is willing to accept the bracket. The local node sends the Data message corresponding to the
RU to the application and sends a positive response to the data RU. The host PLU has successfully initiated a bracket, and
the application's state is in-bracket, with flip-flop protocols applying until the bracket is terminated.
The host PLU sends an LUSTAT request carrying the BB indicator in the RH. The local node presents this method of initiating
a bracket in the same way as if the host PLU had initiated the bracket with BID. The local node sends a Status-Control(BID)
with ACKRQD to the application. The application replies with a Status-Control(BID) Acknowledge to indicate that it is willing
to accept the bracket. The local node sends a Status-Control(LUSTAT) to the application, which requires an acknowledgment.
The host PLU has successfully initiated a bracket, and the application's state is in-bracket, with flip-flop protocols applying
until the bracket is terminated.
The host attempts to initiate a bracket using a BID request or an RU carrying BB, which the local node sends to the
application as a Status-Control(BID), but the application cannot accept the bracket. The application should send a negative
Status-Control(BID) response with an appropriate sense code. The local node sends a negative response to the BID carrying
the sense code supplied by the application. The application's state is still between-bracket. The application should use one of
the following sense codes:

0x081B if it has already committed resources for an inbound transfer; for example, a terminal operator has begun typing.

0x0814 if it currently cannot begin a bracket but will notify the host when resources become available; for example, a 3270
printer is being used for local copy in between-bracket printer sharing mode. At a later stage when the resources become
available, the application should temporarily reserve the resources and send a Status-Control(RTR) to the local node. If the
host rejects the RTR, the local node returns a Status-Control(RTR) Negative-Acknowledge-1 response, and the application
can release the resources. Otherwise, the host attempts to initiate a bracket that the application must now accept.

Where the application has successfully initiated a bracket, a bracket race may occur due to the host PLU attempting to
initiate a bracket. The application gets a Status-Control(BID) Request, which it should reject with 0x080B or 0x0813. The
application retains direction after race negative responses (see Recovery). The application's bracket state remains as in-
bracket.

The application needs to be aware of one further complication in bracket initiation. All the above cases relate to sessions whose
bracket reset state is between-bracket; that is, a state of contention exists, and either half-session can attempt to begin a bracket.

However, the BIND parameters for the session can specify a bracket reset state of in-bracket. Where the bracket reset state is in-
bracket, one half-session is considered to have already successfully initiated a bracket. Flip-flop protocols will then apply until a
Status-Session(BETB) is received, at which time the session reverts to a contention state and bracket initiation proceeds as
described above.

The application must set its bracket state when the PLU connection is opened (that is, on receipt of the Open(PLU) OK Confirm
message) and reset it each time the session is reset (that is, after receipt of a Status-Control(CLEAR) Request). The appropriate
bracket reset state for the session is supplied to the application in the BICB on the Open(PLU) OK Confirm message.

The following six figures illustrate bracket initiation protocols between the local node and the application and how those protocols

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

relate to the underlying SNA protocols.

In the first illustration, the application initiates a bracket by sending an inbound chain with the BBI application flag set when its
state is between-bracket. The application's state is in-bracket until it receives a Status-Session(BETB). (If the application can send
RQE chains, a bracket can be opened by sending an RQE chain.)

In the following illustration, the application initiates a bracket by sending a Status-Control(LUSTAT) with the BBI (begin bracket
indicator) application flag set when its state is between-bracket. The application's state is in-bracket until it receives a Status-
Session(BETB). The LUSTAT can be sent NOACKRQD (that is, RQE) if required.

In the following illustration, the host initiates a bracket by sending BID, which the application accepts. The application's state is in-
bracket and the host can send.

In the following illustration, the host PLU initiates a bracket by sending a request with BB (begin bracket), which the application
accepts. The application's state is in-bracket, and the host can send.

In the following illustration, the host initiates a bracket by sending an LUSTAT with BB, which the application accepts. The

application's state is in-bracket, and the host can send.

In the following illustration, the host and application both attempt to initiate a bracket in between-bracket state; the application
rejects the host bids with sense code 0x0813, and the local node delivers the application's data. After sending the data, the
application's state is in-bracket, and the application can send.

Microsoft Host Integration Server 2000

Bracket Termination
The local node supports bracket termination rule one (conditional) and bracket termination rule two (unconditional), as specified
in the BIND request. Some sessions only allow bracket termination by one session partner; this is a BIND option (supplied in the
BICB on Open(PLU) OK Confirm), and it is the application's responsibility to determine if (and when) it should request bracket
termination.

If an application is allowed by its BIND to terminate brackets, it does so by setting the EBI application flag in an inbound Data or
Status-Control(LUSTAT/CHASE/QC/CANCEL) message. The bracket is only terminated when the application receives a
Status-Session (BETB) from the local node.

If the host terminates a bracket successfully, the local node sends a Status-Session(BETB) to the application. Note that the EBI
application flag on outbound messages does not indicate bracket termination, but indicates that the corresponding RU carried EB.
The bracket is only terminated when the application receives Status-Session(BETB).

Note that if the application queues data, then it should also queue Status-Session(BETB) messages; they must not be processed as
expedited.

The following two figures illustrate bracket termination protocols between the local node and the application and how those
protocols relate to the underlying SNA protocols.

In the following illustration, the application successfully terminates a bracket by sending an EBI data chain when the application's
state is in-bracket, which the host accepts. The local node sends a Status-Session(BETB) to indicate that the application's state is
now between-bracket.

In the following illustration, the host successfully terminates a bracket by sending an EBI data chain when the application's state is
in-bracket, which the application accepts. The local node sends a Status-Session(BETB) to indicate that the application's state is
now between-bracket.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Direction
When an FMI application is communicating on its PLU connection with a normal flow request mode other than full-duplex (that is,
half-duplex flip-flop or half-duplex contention), it must obey the SNA direction protocol. These two modes are treated separately.

This section contains:

Half-Duplex Flip-Flop Direction
Half-Duplex Contention

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Half-Duplex Flip-Flop Direction
The BIND used to establish the session carries information about the initial state of the bracket and direction machines. This can
be specified in the BIND if either of the following conditions are satisfied:

Brackets are not used.
Brackets reset state is in-bracket.

If neither of the conditions hold, then the initial direction state is contention.

When the direction is specified in the BIND, the application should assume the direction state specified in the half-duplex reset
state as soon as data can flow. This field can be obtained indirectly by using a BIND check index that only accepts a particular
direction, or directly by reading the HDXRSET field in the BICB on the Open(PLU) OK Confirm message (see
Opening the PLU Connection), or by reading the BIND on the Open(PLU) Request.

When in contention state, either the PLU or the application can initiate a bracket (see Brackets); the successful initiator of the
bracket obtains direction (unless direction is relinquished when opening the bracket by sending BB, BC, EC, or CD). Since the
secondary is assumed to be the contention winner, the application can assume send state from contention sending BB and
rejecting any subsequent Status-Control(BID) Request from the local node before receiving Status-Session(BETB). When the
application accepts a Status-Control(BID) Request in contention state, then it must assume receive state.

Half-duplex flip-flop direction can change through the following actions:

Sending or receiving data with the change direction (CD) indicator in the RH (and the corresponding CDI (change direction
indicator) flag on the DATAFMI and Status-Control messages). Note that CD is only used at the end of a chain (and for
applications receiving segments will be delivered with ECI, EBIUI). Also note that CD is valid on the following normal flow
Status-Control requests: LUSTAT, CANCEL, CHASE and QC.
Receiving a negative response when the application should assume receive state (error recovery pending state — see
Recovery).
If the application rejects data from the host carrying CDI, then it must remain in receive state.

Providing the FM profile is correct (3, 4, or 7), the application can request direction from the host using a Status
Control(SIGNAL) Request with CODE1 set to 0x0001; CODE2 is set to a user-defined value.

The following three figures illustrate the direction protocol for applications using the half-duplex flip-flop mode.

In the first illustration, the application issues and receives the CD without error.

In the following illustration, the host sends a negative response to inbound data; the application assumes receive state, and then
the host sends CD to give the application direction.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, a complete outbound chain is received without error, but is rejected by the application; note that even
though the chain carried CD, the application does not have direction.

Microsoft Host Integration Server 2000

Half-Duplex Contention
For half-duplex contention, the initial direction state is contention. Half-duplex protocol operates during a chain (only one partner
can send), but the direction state normally returns to contention at the end of each chain. The CD indicator in the RH is thus not
required; however, if the CD indicator is used, direction is reserved for the receiving half-session. Therefore, if the application
receives CD, it should assume send state and not expect to receive data. Conversely, if the application sends CD, then it cannot
send again until it has received a chain from the host.

In the event of an error being discovered by either half-session, the application must assume receive state, since the host is
responsible for recovery.

If both half-sessions attempt to start a chain when the direction state is contention, the race is resolved in favor of the secondary
application using a sense code of 0x081B. However, the possible window between the local node and the application means that
the local node cannot determine when outbound RQE data is received by the application. Therefore, if the local node receives data
from the application while it determines that the half-duplex contention state is receive, it will reject it with a noncritical NACK-2
(0x2004 direction).

The following two figures illustrate the direction protocol for applications using half-duplex contention mode. The three figures in
the previous topic would also be valid although CD does not need to be specified.

In the following illustration, the application issues and receives data using half-duplex contention protocol without error.

In the following illustration, the half-duplex contention race is resolved in favor of the application.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Pacing and Chunking
The local node supports session pacing inbound and outbound, according to the pacing values in the BIND parameters for the
session. The application can be involved in outbound pacing through the use of the Status-Resource message; inbound pacing is
handled transparently by the local node and need not concern the application.

This section contains:

Outbound Pacing
Chunking

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Outbound Pacing
If the application has enough resources to handle outbound data as fast as the network can provide it (for example, a screen), or if
a higher level protocol (for example, immediate request mode) constrains the data flow, then the application need not be involved
in pacing, and it is possible for the local node to handle outbound pacing transparently.

However, certain types of applications may require involvement in outbound pacing. If the application has limited resources (for
example, a printer), then the application should specify the application pacing option in the CICB on the Open(PLU) OK Response
(see Opening the PLU Connection) and provide the local node with information on the state of these resources initially on the
Open(PLU) OK Response and periodically using Status-Resource messages.

To assist the application in calculating the initial credit field in the Open(PLU) OK Response, the local node delivers the pacing
window sizes and the primary and secondary maximum RU sizes on the Open(PLU) Request. The initial credit must be at least as
large as the primary to secondary pacing window size; otherwise the BIND will be rejected and the application will be sent an
Open(PLU) Error Confirm message. The local node fills in a suggested initial credit value of one more than the pacing window (to
try to avoid stop-start situations).

Note that the local node will also reject the BIND if the application specifies that it wishes to be involved in pacing (of whatever
initial credit), but the BIND specifies that there is no outbound pacing.

Only FMD (function management data) requests are part of the credit scheme, so the application must maintain space within its
buffer for one Status-Control request per RU in addition to the number of RUs specified by the initial credit count (a Status-
Control message takes up 36 bytes).

Each unit of credit that the application delivers to the local node allows the local node to give the application a single RU (or a
single chunk if chunking is being used). Note that if the application is receiving segments, then this may correspond to several
DATAFMI messages. The application can count RUs for the purpose of outbound flow control by using the BBIU (begin basic
information unit) and EBIU (end basic information unit) flags.

The application should maintain a credit-used count, which it should report to the local node on Status-Resource messages. The
application needs to take the following actions:

On processing (not receiving) DATAFMI messages with EBIU set (corresponding to FMD requests), increment the credit-
used count by one.
On processing Status-Control messages and all other messages from the local node, do not increment the credit-used
count.
Periodically report the current credit-used count on a Status-Resource message.
Report the credit-used count when its buffer becomes empty (whatever the last message processed was), unless the credit-
used count is zero.
When the credit-used count is reported to the local node, reset it to zero.

The frequency at which the application provides Status-Resource messages is not architected. However, the local node will only
send the application as many Data messages as it has received credit for, and so when the application's credit-used count reaches
the initial credit value, the local node will not send any more data. The application should attempt to send a Status-Resource
message before this happens, because if the local node cannot send a Data message to the application and the host is still
sending requests, the local node may not be able to send a pacing response to the host when required, with a consequent
degradation of performance.

If the pacing window is small, such as one or two, the application should send a Status-Resource after processing each DATAFMI
message to allow the local node to send the suitable pacing response.

The following figure shows the local node handling outbound pacing when the application is not involved (APPLPAC = 0x00); the
pacing window is assumed to be two.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The following figure shows the local node and the application handling outbound pacing with the outbound pacing window
assumed to be two and the initial credit from the local node to the application assumed to be four. Note that the local node can
send an isolated pacing response (IPR) to the host to get another window full of data as soon as the application has sufficient
credit for the rest of the present window and the next window.

Microsoft Host Integration Server 2000

Chunking
Previous versions of this document indicated this as a future feature. The support is enabled in Comm Server 1.2 (and
later) under OS/2, and is supported in Microsoft Host Integration Server and Microsoft SNA Server for Microsoft
Windows 2000, Windows NT, Windows 98, and Windows 95. Applications should therefore test the product version
returned on a call to sepdgetinfo for version 1.2 or later before using the chunking system.

In some cases, the RU size used by the local node may be too large for the length of the path between the local node and an FMI
application; for example, when using a 16MB token-ring link, which can support 16KB frames. The local node allows an FMI
application to specify that data transfer should be in smaller units, called chunks.

For example, consider an implementation using OS/2 named pipes, with a maximum pipe size of 4K. If the maximum RU size is
8K, the application can specify that data is to be transferred in smaller chunks of 1K. Together with a credit limit, this ensures that
the pipe will never be completely full. (It is important to ensure that the pipe is never filled, because if the local node attempts to
write to a full pipe, it will be blocked, causing severe performance problems.)

Chunking can be thought of as similar to segmentation (see Segment Delivery for more information); the distinction is that
segmentation is determined by the communications link between the local node and the remote system, whereas chunking is
determined by the communications link between the application and the local node.

The application indicates on the Open(SSCP) Request whether it supports chunking, and, if so, the chunk size in bytes that it
wishes to use. The local node then uses the RU size, the chunk size, and the segment size (if applicable) to determine whether
chunking is necessary. It then specifies the chunk sizes used for inbound and outbound flow (which need not be the same) on the
Open(PLU) Request; these values are specified in units of elements (see Messages for more information). A value of zero for
either of these sizes indicates that chunking is not necessary because the chunk size is not the limiting factor. Note that in
chunking data, an RU will not be split in the middle of an element; this avoids data copying.

For example, assume that the local node is using an RU size of 8K and segments of 2K, and the application's Open(SSCP) Request
specifies segment delivery and a chunk size of 4K. Chunking will be used on inbound data flow (because the chunk size is smaller
than the RU size), but is not necessary on outbound data flow (because data will be delivered in segments that are smaller than
the chunk size).

If chunking is being used in either direction, then all credit values specify the number of chunks that can be sent in that direction,
not the number of RUs. Note that the segment delivery option is included on the Open(SSCP) Request to allow the local node to
calculate the initial chunk credit values on the corresponding PLU connection. The application must also set this option on the
Open(PLU) Response; if the Open(SSCP) Request and the Open(PLU) Response have different settings of this option, the setting
from the Open(PLU) Response will be used. This can mean that the initial credit value used is not appropriate.

If session-level pacing is being used, the local node links this to the chunking credit. In particular, if the application withholds
credit, the local node will delay sending a pacing response to the host, thereby applying back pressure to the host. This linkage is
handled by the local node and need not concern the application.

Application flags (see Application Flags) on chunks of RUs are handled in the same way as those on segments (see
Segment Delivery for more information). In particular:

FMHI, BCI, COMMIT, BBI, EBI, CODE, ENCRYP, ENPAD, QRI, and CEI are only set on the first chunk of an RU.
ECI and CDI are only set on the last chunk of an RU.
BBIUI is always set on the first chunk of an RU.
EBIUI is always set on the last chunk of an RU.

Note that EBI is set on the first chunk of the last RU in a bracket and not on the last chunk as might be expected; this is the same
behavior as for segment delivery. The application should use the Status-Session(BETB) message, not the EBI flag, to determine
when a bracket has ended.

Chunks are identified using the segmentation flags BBIUI and EBIUI, and therefore the application cannot distinguish between
chunks and segments if both segmentation and chunking are being used outbound. However, there is generally no need for the
distinction; the application can perform window shading (see Segment Delivery for more information) by displaying each unit of
data as it is received, whether the unit of data is a segment or a chunk.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Confirmation and Rejection of Data
The following topics describe conditions under which inbound and outbound data is confirmed or rejected.

This section contains:

Confirmation and Rejection of Inbound Data
Confirmation and Rejection of Outbound Data

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Confirmation and Rejection of Inbound Data
For every SNA chain of data sent or received for which responses are outstanding (RQE or RQD), the local node maintains a
correlation table entry (CT). If the CTs become depleted, then the local node will terminate the session using the most CTs. A
Status-Error message (code 0x46) and a Close(PLU) Request are sent to the application, and a TERM-SELF message is sent to the
host. CT shortages (inbound) can be avoided by sending CD (for half-duplex) data, or data ACKRQD, or any Status-
Control(CHASE), or Status-Control(LUSTAT) with ACKRQD. Outbound shortages can be avoided by sending courtesy
acknowledge messages as described in Opening the PLU Connection.

The local node sends chains of data to the host with their chain response mode specified as follows:

1. Definite

If the application sends a Data message to the local node with the ACKRQD field set, and the BIND parameters specified
that the secondary uses definite or definite/exception response mode.

2. Exception

If the application sends a Data message to the local node without the ACKRQD field set, and the BIND parameters specified
that the secondary uses exception or definite/exception response mode.

3. No-Response

If the application sends a Data message to the local node without the ACKRQD field set, and the BIND parameters specified
that the secondary uses no-response mode.

If the setting of ACKRQD on a Data message from the application does not reflect the chain response mode specified in the BIND
parameters, the local node returns a Status-Acknowledge(Nack-2) indicating a noncritical error code; for example, if the
application specifies ACKRQD but the BIND parameters do not permit the local node to send definite response chains.

In case 1, the application receives an acknowledgment to all FMD chains it sends to the local node:

Positive responses from the host are returned to the application as Status-Acknowledge(Ack) messages.
Negative responses from the host are returned as Status-Acknowledge(Nack-1) messages carrying the SNA sense codes.
Errors detected by the local node when attempting to send the message are returned as Status-Acknowledge(Nack-2)
messages carrying the equivalent error code.

In case 2, the application only receives an acknowledgment of an FMD chain it sends to the local node for:

Negative responses from the host, which are returned as Status-Acknowledge(Nack-1) messages carrying the SNA sense
codes.
Errors detected by the local node when attempting to send the message, which are returned as Status-Acknowledge(Nack-
2) messages carrying the equivalent error code.

In case 3, the application only receives an acknowledgment of an FMD chain it sends to the local node when the node detects an
error in the message and sends the application a Status-Acknowledge(Nack-2). The only dissent that the host can make is to
send a subsequent LUSTAT 0x400A (no response not supported) with the sequence number of the request in the sense qualifier
field; this is presented to the application as a Status-Control(LUSTAT) as usual.

Whenever an application receives a Status-Acknowledge(Ack) or Status-Acknowledge(Nack-1), it implicitly confirms receipt by the
partner half-session in the host of all previously sent chains.

In case 2, the application does not usually receive such responses from the host to chains it has sent, and in case 3, the application
never receives such responses. Therefore, to get the host to confirm receipt of all previously sent chains, the application should
issue a Status-Control(CHASE) Request with ACKRQD set. This causes the local node to generate an SNA CHASE request to the
host. The receipt of the response to this CHASE confirms that the host has received this CHASE request and all previous chains
sent by the application. The local node issues a Status-Control(CHASE) Acknowledge to notify the application that this is so.

The following three figures illustrate the inbound data confirmation and rejection protocols between the local node and the
application, and how those protocols relate to the underlying SNA protocols.

In the first illustration, an application sets the ACKRQD field in an inbound data chain to get the host to confirm receipt of the
chain and all previously sent chains.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, the Status-Acknowledge(Nack-1) rejects the last chain, but confirms receipt by the host of all
previously sent data chains.

In the following illustration, the application uses a Status-Control(CHASE) to get the host to confirm receipt of the
corresponding CHASE request and all previously sent chains.

Microsoft Host Integration Server 2000

Confirmation and Rejection of Outbound Data
The local node sends chains of data from the host to the application with their ACKRQD field set as follows:

1. ACKRQD set

If the corresponding SNA request was received specifying definite response, and the BIND parameters specify that the
primary uses definite or definite/exception chain response mode.

2. ACKRQD not set, response mode

If the corresponding SNA request was received specifying exception response, and the BIND parameters specify that the
primary uses exception or definite/exception chain response mode.

3. ACKRQD not set, no-response mode

If the corresponding SNA request was received specifying no response, and the BIND parameters specify that the primary
uses no-response chain response mode.

In case 1, the application should always send an acknowledgment as follows:

If the application accepts the data, it should return a Status-Acknowledge(Ack) message.
If the application wishes to reject the data, it should return a Status-Acknowledge(Nack-1) message carrying the appropriate
SNA sense codes.

In case 2, the application should only send an acknowledgment in the following cases:

If the application wishes to reject the data, it should return a Status-Acknowledge(Nack-1) message carrying the
appropriate SNA sense codes.
The application can send a courtesy acknowledgement (see Outbound Data) to an RQE message to clear up correlation data
within the local node.

In case 3, the application should not send acknowledgments; however, the sending of a Status-Acknowledge(Ack) or Status-
Acknowledge(Nack-1) by the application has no effect — it is discarded.

Whenever an application sends a Status-Acknowledge(Ack) or Status-Acknowledge(Nack-1) to a received Data message, it
implicitly confirms receipt of this and all previously-received Data messages.

In case 2, the host can issue a CHASE request; the local node sends a Status-Control(CHASE) Request with ACKRQD set to the
application. When the application is in a position to confirm receipt of all outstanding data, it should issue a Status-
Control(CHASE) Acknowledge message, which the local node converts into a positive response to CHASE for the host.

In cases 1 and 2, if the local node detects an error in a received request, it converts the request into a special Data message, which
it passes to the application. Regardless of the chain response mode specified for the secondary in the BIND parameters, this Data
message has the following characteristics:

ACKRQD is set; that is, the application must confirm receipt using a Status-Acknowledge(Ack) message.
The SDI application flag is set to indicate that this is a special Data message used to inform the application of an error
detected by the local node.
The ECI application flag is set to indicate that the received chain has now terminated.
The first four bytes of the buffer element hold the SNA sense codes detected by the local node that caused the termination.

This mechanism allows:

The application to reject any previously-received Data messages.
The local node to inform the application of any errors it detects in received requests.
The local node to send negative responses in the correct order.

The following three figures illustrate the outbound data confirmation and rejection protocols between the local node and the
application and how those protocols relate to the underlying SNA protocols.

In the first illustration, the host sends a definite response chain to get the application to confirm receipt of the RQD request and all
previously sent RQE chains.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, a Status-Acknowledge(Nack-1) from the application rejects the last chain and confirms receipt of
all previously sent data chains.

In the following illustration, the host sends a CHASE request to get the application to confirm receipt of the CHASE and all
previously sent chains.

Microsoft Host Integration Server 2000

Shutdown and Quiesce
Both shutdown and quiesce protocols involve a half-session entering a quiesced state, in which it cannot send any more normal
flow requests, but must continue to receive and respond to requests from its session partner. The essential differences are that
shutdown can only be initiated by the host and only requires that the secondary quiesce as soon as is convenient (usually at the
end of a bracket); quiesce can be initiated by both the host and the application and requires that the recipient quiesce at the end of
the chain.

If the application has been quiesced but still attempts to send inbound Data messages, they will be rejected with
Status-Acknowledge(Nack-2) messages. The application can, however, continue to generate status messages.

This section contains:

Shutdown
Quiesce

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Shutdown
The shutdown protocol provides a means for the host application to stop the application from sending any further normal flow
requests. This protocol is used when the host application wishes to end the session in an orderly manner and is only available for
sessions using FM profile 3 or 4.

If the local node receives a SHUTD request from the host, it issues a Status-Control(SHUTD) Request (without ACKRQD) to request
the application to enter a quiesced state at a convenient time. The application determines what is convenient — for example, it
could be after a Status-Session(BETB) has been received.

When the application decides it is ready to quiesce, it should issue a Status-Control(SHUTC) Request (again without ACKRQD) to
indicate this transition. The local node will notify the host of this change by sending a SHUTC request. The host can continue
sending normal flow outbound requests and can subsequently take one of the following actions:

The host terminates the PLU session by sending an UNBIND request. The local node closes the PLU connection by sending a
Close(PLU) Request to the application. The SSCP session remains active.
The host abandons the shutdown procedure by sending an RELQ request. The local node sends a Status-Control(RELQ)
Request (with ACKRQD) to the application to indicate that it can now resume sending on the PLU session. RELQ is only
supported on sessions using FM profile 4.
The host resets the session by sending CLEAR (TS profile 3 or 4); one of the effects of this is to release the quiesced state
(see Recovery).

The following two figures illustrate the shutdown protocols between the local node and the application and how those protocols
relate to the underlying SNA protocols.

In the following illustration, the host sends SHUTD while the application is sending in the in-bracket state; the application
completes the bracket, sends Status-Control(SHUTC) Request, and the host terminates the PLU session by sending UNBIND. The
local node closes the PLU connection.

In the following illustration, the host sends SHUTD while the application is sending in the in-bracket state; the application
completes the bracket, sends Status-Control(SHUTC) Request, and then the host releases the application from the quiesced
state by sending RELQ. The local node sends a Status-Control(RELQ) Request to the application, which initiates a new bracket.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Quiesce
The quiesce protocol is only supported on sessions using FM profile 4. The quiesce protocol can be initiated by either half-session.

When an application wishes to quiesce its partner half-session in the host, it sends a Status-Control(QEC) Request to the local
node. The node generates a QEC request to the host, which asks the host to quiesce after completing the current outbound chain.

If the host quiesces, it sends a QC request, which the local node presents to the application as a Status-Control(QC) Request (with
ACKRQD). The host remains in a quiesced state until the application sends a Status-Control(RELQ) Request. The local node sends
the RELQ request to the host, and the host resumes communications on the PLU session.

If the attempt to quiesce the host fails, the host responds with a negative QEC response, which the local node presents to the
application as a Status-Control(QEC) Negative-Acknowledge-1.

Conversely, a Status-Control(QEC) Request (without ACKRQD) is presented to the application if a QEC request is received from
the host. In this direction QEC cannot be rejected; the local node will always force the application to quiesce after presenting it
with a Status-Control(QEC) Request by rejecting further attempts to send inbound data. When the application has quiesced, it
should send a Status-Control(QC) Request to the local node, which sends a QC request to the host. The application can
subsequently be released by an RELQ request from the host, which the local node presents to the application as a Status-
Control(RELQ) Request.

The receipt of a CLEAR or UNBIND–BIND sequence (Close(PLU)–Open(PLU)) causes the quiesced state to be released.

The following three figures illustrate the quiesce protocols between the local node and the application and how those protocols
relate to the underlying SNA protocols.

In the first illustration, the application quiesces the host and then releases the quiesce.

In the following illustration, the application attempts to quiesce the host, but the host rejects the quiesce and continues with the
next chain.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, the host sends QEC while the application is sending a chain; the application completes the chain and
sends a Status-Control(QC) Request. The host releases the quiesce by sending RELQ, and the local node sends a Status-
Control(RELQ) Request to the application, which then initiates a new chain.

Microsoft Host Integration Server 2000

Recovery
This section covers a variety of issues pertaining to error recovery.

This section contains:

Application of CANCEL
Direction After Receiving a Negative Response
Direction After Sending a Negative Response
Critical Failure
RQR and CLEAR
STSN
Link Service Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Application CANCEL
One of the parameters on the Open(PLU) OK Response, which the application sends to the local node, specifies whether the
application will generate CANCEL (or EC) to terminate an inbound chain that has received a negative response. If this option is not
selected, the local node will generate a CANCEL request when it receives a negative response from the host to an incomplete
chain.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Direction After Receiving a Negative Response
Within the local node, error recovery for a half-duplex application (as specified by byte 7 bit 2 of the BIND) is assumed to be the
responsibility of the host. However, the application must be aware of the fact that an error recovery state has been entered to
obey the direction protocol.

When an application using half-duplex protocols (flip-flop or contention) receives a negative response to an inbound chain that it
sent that does not refer to a race, it must assume receive state. The sense codes used for race conditions that do not require the
transition to receive state are:

0x080B Bracket race error
0x081B Receiver in transmit mode

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Direction After Sending a Negative Response
When an application using half-duplex flip-flop protocol sends a negative response to an outbound chain (or sends a
Status-Acknowledge (Ack) to a DATAFMI message with SDI set) that does not refer to a race, the application must assume an error
recovery pending state. The sense codes used for race conditions that do not require the transition to error recovery pending state
are:

0x080B Bracket race error
0x0813 Bracket bid reject (no RTR forthcoming)
0x0814 Bracket bid reject (RTR forthcoming)
0x081B Receiver in transmit mode

The application must therefore examine the sense code on an SDI message to detect such races.

Error recovery pending state differs from receive state only in one respect: The application can convey sense information to the
host using Status-Control(LUSTAT) — see LUSTATs. The LUSTAT must not have the CD or EB flags set (the host already has
direction, and the bracket must not be terminated prematurely by the application). Host Integration Server or SNA Server also
allow the FMI application to send Status-Control(LUSTAT) in receive state (see LUSTATs).

An application using the half-duplex contention protocol does not have an error recovery pending state, and must enter
contention state whenever it sends a negative response.

Note that if the chain is canceled by the host with CD on the CANCEL, the application must assume send state.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Critical Failure
When an application makes a protocol error in sending data, the local node rejects the data using a Status-Acknowledge(Nack-2)
with a sense code indicating the reason for failure. This message has a critical failure flag that indicates whether the local node has
marked the session as unrecoverable. The sense codes are listed in FMI Status, Error, and Sense Codes.

If the error is noncritical, the application can proceed as if the message that caused the error had not been sent. If the error is
critical, then the local node issues a Close(PLU) Request to the application (providing that the PLU connection is open), which
means that the application cannot communicate on the PLU-SLU session until an UNBIND–BIND sequence is received from the
host. The local node also sends a TERM-SELF request to the host to elicit an UNBIND; therefore, the application does not need to
issue a LOGOFF request on the SSCP session.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RQR and CLEAR
An application using TS profile 4 can request the session to be recovered by sending Status-Control(RQR); the local node
presents this to the host as an RQR request. Note that, if the application has received a critical Status-Acknowledge(Nack-2), this
option cannot be taken because the local node will send a Close(PLU) Request immediately following the Status-
Acknowledge(Nack-2) to the application, and the PLU connection will no longer be valid. The RQR message requests the host to
reset the session by sending a CLEAR request (see the following figure).

The receipt of CLEAR causes the application to reset its session state to that following the BIND (that is, the Open(PLU)).

Another way for the application to deal with error conditions is to ask for an UNBIND by sending Status-Control(RSHUTD) (see
Application-Initiated Termination). Note that this may not require the host to supply a new BIND, depending on the host
configuration. A new SSCP request may be required (such as LOGON).

In the following illustration, the application requests recovery by issuing Status-Control(RQR); the host sends CLEAR, and the
application must reset its session to state that it was in following the BIND (Open(PLU)). In this case, this means that the
application is now between brackets and awaiting SDT.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

STSN
STSN (set and test sequence numbers) is used on sessions with TS profile 4 for applications to maintain transaction processing
sequence numbers between sessions. This allows both partners on the session to discover the amount of data lost after a CLEAR
or UNBIND–BIND sequence.

The STSN message is the only one that can reset such transaction processing sequence numbers; BIND, UNBIND and CLEAR do
not affect them.

If the application wishes to maintain such transaction numbers, it must specify the APPLTRAN option in the
Open(PLU) OK Response. The host can send STSN after a BIND or CLEAR before sending SDT to set and/or test the application's
transaction numbers. The local node resets its internal session sequence numbers to zero on receipt of BIND or CLEAR. When the
local node receives an STSN specifying SET (or SET and TEST) for one half-session, it resets the corresponding internal session
sequence number.

Unless both half-session actions are ignore (the action byte is 0x00), the STSN request is passed to the application (provided that
it specified APPLTRAN), with the action byte and the two sequence numbers from the request, as a Status-Control(STSN) (see
Status-Resource). The application must examine the action byte to determine whether the action is ignore, set, test, or set and test.
The application must send a positive response (Status-Control(STSN) Acknowledge) to the STSN, with the sensed sequence
numbers if required (sense or set and test). The local node is responsible for generating the correct result code for the STSN RSP.

Note that the application should perform the sense part of STSN first (by examining bits 0 and 2 of the action byte for the
secondary-to-primary flow and primary-to-secondary flow respectively). The set part of the STSN is then performed (by
examining bits 1 and 3 of the action byte).

The application should increment its transaction numbers when sending and receiving normal flow RUs from the host (note that
Status-Control messages corresponding to normal flow DFC requests cause the transaction numbers to be incremented). The
sequence number is reported on DATAFMI messages and Status-Acknowledge messages. The application should be aware that, if
a message from the host fails receive checks (and is converted to an SDI message), SNAP-2.1 will purge the remainder of the
chain from the host, and the application may miss some sequence numbers. Therefore, the application should reset its primary-
to-secondary transaction number from the next outbound data after processing an SDI message.

Note that the second application flag byte is not valid for Status-Control(STSN); it is used for the STSN control byte.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Link Service Failure
When the server running a link service fails, the local node is informed of this; it treats the problem as a link outage with outage
code 0x0D. This is reported to any active 3270 emulation sessions as a communications check code (–+z_nnn). The local node will
attempt periodically to reconnect to the link service.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Local Node Failure
If the local node fails, applications are informed of this by the path error return code from the DMOD on the sbpurcvx call, or from
the routing procedure. All connections that use the destination locality value for which the path error is reported are closed. The
application must:

Tidy up resources related to the closed connections, including resetting presentation spaces and displaying a
communications check code
(–+z_nnn) on the status line.
Attempt to reestablish connection with a local node by reinitiating the resource location process.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Client Failure
If the client computer fails, the local node terminates the application's PLU-SLU session (if it is active) by sending TERM-SELF. The
SSCP and PLU connections are both marked as closed and cannot be reused without being reopened. Internally, the local node
treats such a failure in the same way as the receipt of a Close(SSCP) Request from the application.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Application-Initiated Termination
An application on a session with FM profile 3 or 4 can request termination of the PLU session. It should only do so if it has
previously ensured that it is in a state where the PLU session can be terminated, that is, between-chain and between-bracket.
Terminating the PLU session does not affect the state of the SSCP session.

Note that an application can issue a character coded or field formatted LOGOFF command on the SSCP session or send a
Close(PLU) Request to get the local node to send TERM-SELF on the application's behalf. All of these will elicit an UNBIND, either
immediately or after session tidy-up in the host.

The application requests termination of the PLU session by sending a Status-Control(RSHUTD) Request to the local node, which
generates an SNA RSHUTD request to the host.

After sending the Status-Control(RSHUTD) Request, the application must remain capable of accepting and responding to all
outbound data it receives. The application can now expect one of two messages, depending on whether the state of the PLU
session allows it to be terminated and whether the host wishes to terminate the PLU session:

If the state of the PLU session allows it to be terminated, and the host wishes to terminate the PLU session, the host
generates a positive response to the RSHUTD request, which can be followed by an UNBIND request. The local node closes
the PLU connection; see Closing the PLU Connection.
If the state of the PLU session does not allow it to be terminated (for example, if the session is in-bracket), or the host does
not want to terminate the PLU session at this time, the host generates a negative response to the RSHUTD request, which
the local node presents to the application as a Status-Control(RSHUTD) Negative-Acknowledge-1 carrying the sense codes
supplied on the negative response. This indicates that the request to terminate the PLU session has been rejected by the
host, and communication on the PLU session continues unaffected.

The following two figures illustrate the application-initiated termination protocol between the local node and the application and
how this protocol relates to the underlying SNA protocols.

In the first illustration, the application requests termination of the PLU session, and the host sends UNBIND. The local node closes
the PLU connection.

In the following illustration, the application requests termination of the PLU session, but the session is not in an appropriate state.
The host sends a negative response to the RSHUTD request, which the local node presents as Status-Control(RSHUTD)
Negative-Acknowledge-1. Communication continues on the PLU session.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LUSTATs
The DFC LUSTAT message is used within SNA to convey four bytes of sense data to the other session partner. It can also be used
simply to send an RH to the other session partner (for example, to open a bracket; see the figures in Bracket Initiation). The
message flows on the normal flow and so is subject to direction restrictions; however, it can be sent (without EB or CD) on a half-
duplex flip-flop session that is in error recovery pending state (see Recovery).

The local node allows the application to send Status-Control(LUSTAT) Request messages at any time that data traffic is active,
except while sending data in chain. If the application is in a receiving state (using half-duplex protocol), the LUSTAT is queued up
and used to provide the sense codes, which are filled into the next outbound request, and the SDI flag is set. The application can
therefore present the sense codes for an error state without waiting for the next outbound data if required.

The first byte of sense data must be 0x08 to generate a DATAFMI message with SDI (to be converted to a negative response).
Other LUSTATs are left queued on the session until they can be sent.

If multiple Status-Control(LUSTAT) messages are sent by the application while in a receive state, the local node will queue them
all. When outbound data has been delivered to the application with SDI set, as indicated above, and the application has converted
it to a Status-Acknowledge(Ack), the local node will send the negative response and the remaining LUSTATs (which can now flow
since the half-duplex flip-flop state is error recovery pending).

If the application intends to send multiple Status-Control(LUSTAT) messages to the host, it is possible that the host will attempt to
initiate recovery before the last LUSTAT has been sent; in this case, the error recovery chain will be rejected by the next LUSTAT.

Note that the application can send Status-Control(LUSTAT) Request with or without ACKRQD; the local node will map these to
RQD and RQE LUSTATs respectively.

The following three figures illustrate the use of Status-Control(LUSTAT) messages by an application using the half-duplex flip-flop
mode.

In the first illustration, the application issues Status-Control(LUSTAT) when it has direction.

In the following illustration, the application sends Status-Control(LUSTAT) request when receiving data between chain. Next
outbound data is delivered with SDI set which gets converted to negative RSP.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, the application sends several Status-Control(LUSTAT) requests when receiving data in chain. Next
outbound data is delivered with SDI set which gets converted to negative response. Subsequent LUSTATs are sent to host.

Microsoft Host Integration Server 2000

Response Time Monitor Data
For a 3270 display application, the local node maintains statistics on host response times — the time it takes the host to respond
after the 3270 user presses ENTER or an AID key to send data to the host. These statistics can then be sent to the host for analysis.

The Status-RTM message, sent by the local node to the application, informs the application of the Response Time Monitor
parameters specified by the host (see RTM Parameters for more information). These parameters specify whether RTM data is to
be collected, whether the application is permitted to display RTM statistics locally, the time boundaries by which response times
are to be grouped, and the definition of response time. The time can be measured until the first character of the host response
reaches the screen, until the keyboard is unlocked, or until the user can send further data (CD or EB received by the application).

If the host specifies that response times are to be measured for this session, the application is responsible for measuring response
times and for reporting them to the local node. This involves:

Starting a timer when the user presses the ENTER key or an AID key to send data to the host.
Stopping the timer when the host's response to the inbound data is received, as defined by the RTM definition specified on
the Status-RTM message.
Reporting the response time to the host on the Status-Acknowledge(Ack) message, which acknowledges the host's
response. One of the fields on this message specifies the last response time measured by the application, or specifies that
no response time is to be reported.
Optionally displaying the most recent response time as a last transaction time indicator (LTTI) on the 3270 emulation status
line.

If the application wishes to provide a local display of RTM data, it is responsible for maintaining its own response time statistics. It
should use the same definition and boundaries as those specified on the Status-RTM message to ensure that the local data
matches the data sent to the host by the local node. Note that the Status-RTM message can indicate that a local display of
response times is not permitted; in this case, the application should not display either the response times or the LTTI.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data Flow
The following topics describe data flows between the application and the local node.

This section contains:

Outbound Data
Inbound Data
Inbound Data from LUA Applications

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Outbound Data
This section describes the outbound data flows from the local node to the application. The overall structure of the protocols
described applies to the SSCP and PLU connections, but certain features (such as the use of delayed request mode) are only
applicable to the PLU connection.

The local node presents data originating at the host to the application on different connections, depending on the SNA session on
which the data flows, as follows:

FMD NS (session services) data and FMD data originating at the host SSCP and directed to the Microsoft® Host Integration
Server or Microsoft® SNA Server LU is sent to the application on the SSCP connection.
FMD data originating at the host PLU and directed to an SNA server LU is sent to the application on the PLU connection.

For all connections, only FMD requests are presented to the application as Data messages (that is, with message-type =
DATAFMI). DFC and session control requests are used to generate Status-Control messages (see Status-Control Message).

The local node performs the data flow control state changes required by the RH indicators in the request, before sending a Data
message to the application.

The SNA request TH (transmission header) and RH indicators are not available to the application on outbound Data messages.
Instead, the local node provides application flags in the Data message header that reflect the settings of a subset of the RH
indicators, but are interpreted by the local node to shield the application from the more obscure aspects of chaining and bracket
usage. See Application Flags for a description of the available flags and the way in which the local node uses them on outbound
data.

For outbound data, the first byte is RU[0] for standard FMI, and TH[0] for the LUA variant of FMI.

All Data messages from the local node to an application contain a message key. The local node maintains a unique message key
sequence for each outbound data flow to an application. When the local node sends a Data message to an application on a
particular connection, it places the next message key in the outbound sequence into the message header, sets the application
flags, and sends the message to the application. This means that the message key uniquely identifies a Data message on a
particular connection between the local node and the application. Note that the local node also places message keys on outbound
Status-Control Request messages.

The acknowledgment protocol enforced by SNA server reflects the chain response protocol and request mode in use on the SNA
session, as follows:

Outbound RQD requests generate Data messages with ACKRQD set in the message header.
Outbound RQE requests generate Data messages without ACKRQD set.
Outbound RQN requests generate Data messages without ACKRQD set.
If the session uses primary immediate request mode, a Data message with ACKRQD set must be acknowledged by the
application before further Data messages will be received.
If the session uses primary delayed request mode, a Data message with ACKRQD set need not be immediately
acknowledged by the application; Data messages will continue to be received.

Note that Host Integration Server or SNA Server enforce the equivalent of immediate response mode for the outbound data
acknowledgment protocol for all connections. That is, the application must send acknowledgments in order.

If the local node sets the ACKRQD field in the message header of a Data message to the application, it indicates that an
acknowledgment to this Data message is required. The application acknowledges an outbound Data message by sending a
Status-Acknowledge message to the local node on the same connection, which contains the same message key and sequence
number fields as the Data message.

On receipt of a Status-Acknowledge(Ack), the local node correlates the message key with outstanding outbound messages and
generates an SNA positive response to the appropriate SNA request.

The application should use the Status-Acknowledge(Nack-1) message as a negative acknowledgment. On receipt of a Status-
Acknowledge(Nack-1), the local node correlates the message with outstanding outbound messages and generates an SNA
negative response plus sense data to the appropriate SNA request. The application supplies the sense data that should
accompany the negative response as part of the Status-Acknowledge(Nack-1) message and must include the same message key,
application flags, and sequence number fields as the Data message to which this is a negative acknowledgment.

Status-Control messages caused by expedited-flow requests can be sent at any time and do not affect the sending of positive or
negative acknowledgment to normal flow outbound Data messages. The fact that they can occur between an outbound Data
message and the matching Status-Acknowledge message is purely coincidental. See Status-Control Message for details of which

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Status-Control messages correspond to SNA requests.

If errors are detected in the format of a normal flow request from the host or the request is inappropriate for the state of the
session, the local node generates an error Data message for the application with the following characteristics:

The SDI and ECI application flags are set.
The sense code associated with the error occupies the first four bytes of the Data message (see Status-Control Message).
ACKRQD is set.

The application should return a Status-Acknowledge(Ack), and the local node generates a negative response carrying the sense
code appropriate to the detected error. This mechanism:

Informs the application of the detected error.
Allows the application to respond to any previously-received data before the local node sends the negative response to this
Data message.

On sessions where the application is receiving a series of RQE chains, the local node will be retaining correlation information for
each chain (in case the application wishes to send negative responses to any of the chains). If the local node runs out of
correlation table entries, it will attempt to allocate more entries and (if this fails) will be forced to terminate sessions. To prevent
this, the application should provide Status-Acknowledge(Ack) messages for RQE data that it does not wish to reject in this case;
a response after five consecutive RQE chains should be sufficient. Such messages are referred to as courtesy acknowledgements
and do not give rise to a response to the host, but merely free internal correlation data.

The following six figures illustrate the data acknowledgment protocol enforced between the local node and the application, and
show the effects of the application generating positive and negative Status-Acknowledge messages.

The figures show:

The relevant RH flags in SNA requests/responses.
The sequence number of SNA requests/responses.
Any sense data (shown as "SENSE=...") on SNA requests/responses and Status-Acknowledge messages.
The ACKRQD field in Data messages.
The message key field in Data messages.

For simplicity, all messages are assumed to be FM data flowing on the same PLU session.

In the following illustration, the application accepts a Data message corresponding to a definite-response RU.

In the following illustration, the application accepts a Data message corresponding to a multi-RU definite-response chain.

In the following illustration, the application rejects a Data message corresponding to a definite-response chain.

In the following illustration, the application rejects a Data message corresponding to a multi-RU definite-response chain.

In the following illustration, the local node enforces immediate response mode; that is, responses must be sent in sequence. The
application rejects the second exception-response chain and accepts the definite-response chain, which implies acceptance of the
third exception-response chain.

In the following illustration, the local node detects a chaining error (RQD but not EC) in data destined for the application (this
example requires the receive check 0x4007 to be in force — see Opening the SSCP Connection).

Microsoft Host Integration Server 2000

Inbound Data
This section describes inbound data flows from the application to the local node. The overall structure of the protocols described
applies to the SSCP and PLU connections, but more complex aspects (such as the use of delayed request mode) are only
applicable to the PLU connection.

The application can send inbound data on any of the three connections, as follows:

FMD NS (session services) and FMD character-coded data intended for the host SSCP should be sent to the local node on
the SSCP connection.
FMD data intended for the host PLU should be sent to the local node on the PLU connection.

The application cannot use Data messages to send DFC or session control request messages to the host. Instead it must use
Status-Control messages (see Status-Control Message for further details).

For all three connections, the application must fill in certain key fields in the Data message's header. In particular it must:

Set the message-type to DATAFMI.
Allocate a new message key for inbound Data messages on this connection.
Set the ACKRQD field if required (see below).
Set the application flags (see Application Flags).

The nxtqptr, hdreptr and numelts fields in the message header, and the elteptr and startd fields in the message elements are
set up by the Host Integration Server or SNA Server buffer management routines (see The DL-BASE/DMOD Interface). The
application is responsible for setting the endd field.

Where the application does not have access to these routines (for example, where the operating environment does not support
intertask procedure calls and shared memory), all the fields in the header must be set by the application.

The TH and RH indicators are not available to the application on inbound Data messages. The application should set the
appropriate application flags in the message header to control chaining, direction, and so on — see Application Flags for a
description of the available application flags for inbound data and later topics in this section for a description of how the flags are
used to control inbound data flows.

For inbound data, the first byte is RU[0] for standard FMI.

The message key supplied by the application in the inbound Data message header is used by the local node to indicate which
Data message on this connection an outbound Status-Acknowledge refers to. The application should maintain a unique message
key sequence for the inbound data flow on each connection it has with the local node, so that the application can use the message
key to correlate inbound Data messages and outbound Status-Acknowledge messages on the connection. Note that the
application must also provide a message key on Status-Control Request messages to differentiate between multiple RQE LUSTAT
messages.

The inbound data acknowledgment protocol reflects the secondary chain response protocol and request mode in use on the
session, as follows:

Inbound Data messages with ACKRQD set in the header generate RQD requests.
Inbound Data messages without ACKRQD set in the header generate RQE or RQN requests depending on the chain
response protocol.
The application should only set ACKRQD on Data messages that have the ECI (end chain indicator) application flag set.
If the session specifies that the secondary uses immediate request mode, the application can still send further Data
messages after sending data with ACKRQD set, even though it has not received a Status-Acknowledge message for that
Data message. The messages are queued within the local node and are progressively sent as positive responses are
received.
If the session specifies that the secondary uses delayed request mode, then after sending a Data message with ACKRQD set,
the application can continue to send Data messages.

If the application sets the ACKRQD field in the message header of a Data message, it indicates that it requires an
acknowledgment to this Data message. The local node acknowledges an inbound Data message by sending a Status-
Acknowledge message to the application on the same connection and using the same message key as the Data message (see
the first figure at the end of this topic).

The local node processes inbound Data messages from the application through its internal state machines, assigns the correct
SNA sequence number or an identifier for this flow, and sends the data in a request to the host. The chain-response type of the

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

request depends on whether ACKRQD was set in the Data message and the session parameters.

The local node maps a positive response from the host to a Status-Acknowledge(Ack) to the application. The application can use
the message key in the Status-Acknowledge to correlate the acknowledgment with the original Data message. Therefore, receipt
of a Status-Acknowledge(Ack) for a particular Data message implies that the local node has received a positive SNA response
from the host to the inbound SNA request (see the second figure at the end of this topic).

Note that responses are absorbed on the SSCP-PU session.

Note that outbound Status-Acknowledge(Ack) messages contain application flags and a sequence number. The application flags
reflect the RH indicators in the response. The sequence number is the SNA sequence number from the response, and provides a
mechanism for applications using TS profile 4 to track the SNA secondary sequence number corresponding to a unit of work.

The local node maps a negative response from the host to a Status-Acknowledge(Nack-1) message to the application. The
application can use the message key in the Status-Acknowledge to correlate the negative acknowledgment with the original Data
message. The outbound Status-Acknowledge(Nack-1) message contains the SNA sense codes and sequence number from the
negative response (see the third and fourth figures at the end of this topic).

If the local node detects an error in the format of an inbound Data message, or the Data message is not appropriate to the current
state of the session, it sends a Status-Acknowledge(Nack-2) to the application containing an error code (see
Error and Sense Codes for a list of error codes). The local node does not send a request to the host corresponding to the Data
message in error and does not advance the SNA sequence number for the session. The application can use any message key in its
next inbound Data message (assuming the error does not cause a critical failure).

An example of a serious chaining error, where the application sends a Data message with ACKRQD but without ECI in the
application flags, is shown in the last figure at the end of this topic. Note that after detecting this particular error, the local node
marks the application's connection as critically failed, closes the connection, and sends a TERM-SELF request to the SSCP to elicit
an UNBIND (see Recovery).

Inbound Status-Control messages, which cause the generation of expedited-flow requests, can be sent at any time and do not
affect the sending of a positive or negative acknowledgment to inbound Data messages. See Status-Control Message for details
of which Status-Control messages correspond to SNA expedited-flow requests.

The following five figures illustrate examples of the inbound data acknowledgment protocols (and the underlying SNA protocols)
for different chain-response types and secondary session request modes.

The figures show:

The ACKRQD field on Data messages.
The message key on Data messages.
Any relevant application flags on Data messages.
Error codes (shown as "ERROR=...") on Data messages.
Relevant RH flags on SNA requests/responses.
Sequence numbers on SNA requests/responses.
Sense codes (shown as "SENSE=....") on SNA requests/responses.

For simplicity, all messages are assumed to be flowing on the same PLU session.

In the following illustration, the application successfully sends a Data message.

In the following illustration, the application successfully sends a chain of Data messages.

In the following illustration, the host rejects a chain of Data messages.

In the following illustration, the host rejects the first definite-response chain and rejects the third exception-response chain on a
delayed request session. Note that the negative response to the third chain implies a positive response to the second chain.

In the following illustration, the local node detects the application's invalid use of ACKRQD without the ECI application flag on a
Data message. Note that no data is sent to the host; however, since the error is critical, the local node will send a TERM-SELF
message to the SSCP.

Microsoft Host Integration Server 2000

Inbound Data from LUA Applications
As shown in the previous topic, the local node performs certain checks on data supplied by a client application before sending it
to the host and rejects it with a Status-Acknowledge(Nack-2) message if the checks fail; it does not return any acknowledgment to
the application if the data passes the checks (although the host may do so later).

Where the client application is providing an LUA API, the design of the API may require that an LUA verb sending data inbound to
the application does not complete until the local node has checked the data. Because of this, the local node will always respond to
a client application that uses the LUA variant of the FMI, after it has completed its send checking of the inbound message; this
allows the client application to complete processing of the LUA verb and return control to the LUA application program.

If the inbound message passed the local node's send checks and will be sent to the host, the local node sends a
Status-Acknowledge(ACKLUA) message to the client application to indicate this; the client application can then complete the LUA
verb processing with an OK return code. Note that the Status-Acknowledge(ACKLUA) message does not imply that the data was
successfully sent to the host or that the host received it; it may later be followed by a Status-Acknowledge(Nack-1) message
indicating that the host rejected the data.

If the inbound message fails the local node's send checking, a Status-Acknowledge(Nack-2) message will be returned as for non-
LUA client applications. The client application can then report this to the LUA application program by a non-OK return code to the
LUA verb that sent the message.

If the client application is providing an LUA API, it should therefore wait for either Status-Acknowledge(ACKLUA) or Status-
Acknowledge(Nack-2) to determine whether to return an OK or error return code to the LUA send verb. If this dependence on the
local node's send checks is not required, the client application can ignore the Status-Acknowledge(ACKLUA) message.

Note that there are certain race conditions in which the local node cannot complete its send checks before replying to the client
application. In these cases, the local node returns a Status-Acknowledge(ACKLUA), but may subsequently send a
Status-Acknowledge(Nack-2) if it detects an error during the remaining send checks. The client application may therefore receive
a Status-Acknowledge(ACKLUA) followed by a Status-Acknowledge(Nack-2) for the same inbound message.

In the TH for the LUA variant of FMI, the expedited flow indicator (EFI), the destination-address field (DAF), and the origin-address
field (OAF) are used. Other fields (including the sequence number field) are ignored. In the RH for the LUA variant of FMI, all fields
except the queued-response indicator (QRI) and pacing indicator (PI) are used.

For inbound data, the first byte is TH[0] for the LUA variant of FMI.

The following three figures illustrate the Status-Acknowledge(ACKLUA) acknowledgment protocol for different messages that the
application can send.

In the first illustration, the application sends a Data message that passes the local node's send checks.

In the following illustration, the application sends a Status-Acknowledge(Ack) message that passes the local node's send
checks.

In the following illustration, the application sends a Status-Acknowledge(Nack-1) message that passes the local node's send
checks.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status Messages
The local node uses status messages to provide the application with information about the state of its sessions and to give the
application control (in association with the host SSCP and PLU) over the progress of the session. The status messages are
designed to allow the application to use all the protocols allowed in the FM and TS profiles supported by the Microsoft Host
Integration Server or Microsoft SNA Server local node.

Most applications only need to use a subset of the available status messages — for example, a 3270 device emulator would not
require the status messages used in quiesce protocols.

This section contains:

Status-Acknowledge Message
Status-Control Message
Status-Error Message
Status-Resource Message
Status-Session Message
Status-RTM Message

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Acknowledge Message
Status-Acknowledge messages are the basic mechanism used to enforce inbound and outbound data acknowledgment
protocols on all three connections. See Outbound Data and Inbound Data for details of the use of Status-Acknowledge
messages.

For a 3270 emulation application, Status-Acknowledge messages sent from the application to the local node (acknowledging
outbound data from the host) can also carry information on host response times. This allows the local node to maintain response
time statistics for sending to the host when required. See Response Time Monitor Data for details.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Control Message
Status-Control messages provide access to session control and data flow control protocols on the PLU session using the PLU
connection; they are not used on either of the other connections. Status-Control messages map directly to the equivalent SNA
session control and data flow control RUs.

All Status-Control messages that correspond to SNA requests on the normal flow with the exception of LUSTAT-sent RQE, and
Status-Control messages corresponding to CLEAR and STSN request on the expedited flow, have the ACKRQD (acknowledgment
required) field set. Status-Control messages that correspond to SNA requests on the expedited flow (with the exception of CLEAR
and STSN) do not have the ACKRQD field set by the local node. However, the application can set ACKRQD when sending these
Status-Control messages. The last figure in this topic summarizes which Status-Control requests always have ACKRQD set.

If a Status-Control request has ACKRQD set in the message header, then the recipient must supply a Status-Control response
(that is, Acknowledge, Negative-Acknowledge-1 or Negative-Acknowledge-2) before the sender sends further Data messages or
further Status-Control requests on the flow; the sender can still send Status-Control responses, Status-Acknowledge, Status-Error,
and Status-Resource messages on the flow. This applies to both normal and expedited flows and all request modes (including
delayed-request mode). The message key received on the request must be returned on the response (this is to allow multiple RQE
LUSTAT messages to be outstanding). The local node increments the message key on Status-Control requests and DATAFMI
messages that it sends to the application on the PLU connection.

For the LUA variant of the FMI, the message key field is used in a different way, as follows:

For inbound expedited flow requests, the local node sets the SNA sequence number to the value supplied by the application
in the message key field. The application must ensure that this field is set to the correct sequence number.
For inbound Status-Control responses, the local node sets the SNA sequence number to the value supplied by the
application in the message key field. The application must ensure that this field is set to the sequence number of the request
for which a response is being sent.

Except in the case of Status-Control(LUSTAT), if a Status-Control request does not have ACKRQD set then the application
should not reply, since a positive response has already been sent by the local node.

For example, if the application sends a Status-Control(QC) Request with ACKRQD set (corresponding to an SNA request on the
normal flow), this blocks further data and Status-Control requests corresponding to the inbound normal flow until the Status-
Control(QC) response is received. It does not block other messages on the normal flow, or messages on the expedited flow; for
example, the application could still send Status-Control(SIGNAL).

The receipt of the Status-Control response implies an acknowledgment to all outstanding messages (including Data messages) on
the flow.

The use of ACKRQD on Status-Control messages effectively enforces definite-response and immediate request mode. This is
appropriate for:

Status-Control messages that correspond to the SNA requests CLEAR and STSN (because the expedited flow is RQD).
Status-Control messages corresponding to all the DFC requests (which are RQD) except LUSTAT (which can be RQE).

The application can set ACKRQD on Status-Control requests that correspond to SNA requests on the expedited flow, even where
ACKRQD is not required. For example, when an application is signaling for direction (for example, a 3270 emulator with a
terminal operator repeatedly pressing the ATTN key), it can generate multiple Status-Control(SIGNAL) Request messages,
which would adversely affect the performance of other users. The application can set ACKRQD on the first Status-
Control(SIGNAL) Request and ignore events that would cause further Status-Control(SIGNAL) Request messages until the
Status-Control(SIGNAL) Response is received from the local node.

The message flows in the following six figures show outbound and inbound Status-Control sequences with and without ACKRQD
and the corresponding SNA RUs:

In the first illustration, the application sends Status-Control(CHASE).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

In the following illustration, the host sends BID request.

In the following illustration, the application sends Status-Control(SHUTC).

In the following illustration, the host sends SNA SIGNAL request.

In the following illustration, the host sends multiple RQE LUSTAT requests; the application rejects the first one.

In the following illustration, the application sends Status-Control(LUSTAT) NOACKRQD.

The following table summarizes the Status-Control requests supported by the local node and SNA session control (SC) and data
flow control (DFC) requests. For each Status-Control request, the table gives:

The SNA category of the corresponding SNA request (SC or DFC).
The flow used by the corresponding SNA request (normal or expedited).
The TS or FM profiles on which the corresponding SNA request is supported.
The directions for which it is valid (NODE <–> APPL).
Whether it requires ACKRQD; note that the application can set ACKRQD on a Status-Control request that does not require it.
The hexadecimal code used in the control-type field of the Status-Control message (see FMI Message Formats).

Status-
Control

SNA RQ flow TS
profile

FM
profile

Direction node–appl
ACKRQD Code

CLEAR SC,Exp 2,3,4 – –> ACKRQD CCLEAR
(0x01)

SDT SC,Exp 3,4 – –> – CSDT
(0x02)

RQR SC,Exp 4 – <– – CRQR
(0x03)

STSN SC,Exp 4 – –> ACKRQD CSTSN
(0x04)

CANCEL DFC,Norm – 3,4,7 <–> ACKRQD CCANCEL
(0x10)

LUSTAT DFC,Norm – 3,4,7 <–> – CLUSTAT
(0x11)

SIGNAL DFC,Exp – 3,4,7 <–> – CSIGNAL
(0x12)

RSHUTD DFC,Exp – 3,4,7 <– – CRSHUTD
(0x13)

BID DFC,Norm – 3,4 –> ACKRQD CBID
(0x14)

CHASE DFC,Norm – 3,4 <–> ACKRQD CCHASE
(0x15)

SHUTC DFC,Exp – 3,4 <– – CSHUTC
(0x16)

SHUTD DFC,Exp – 3,4 –> – CSHUTD
(0x17)

RTR DFC,Norm – 3,4 <– ACKRQD CRTR
(0x18)

QC DFC,Norm – 4 <–> ACKRQD CQC
(0x20)

QEC DFC,Exp – 4 <–> – CQEC
(0x21)

RELQ DFC,Exp – 4 <–> – CRELQ
(0x22)

The following requests are used only with LUA (see FMI Concepts).

Status-
Control

SNA RQ flow TS
profile

FM
profile

Direction node–appl ACKRQD Code

CRV SC,Exp 3,4 – –> ACKRQD CCRV
(0x05)

BIS DFC,Norm – 18 <–> ACKRQD CBIS
(0x19)

SBI DFC,Exp – 18 <–> ACKRQD CSBI
(0x1A)

The use of particular Status-Control messages is described in following topics of this section, in the context of PLU session
protocols such as chaining, brackets, recovery, and so on. See also Status-Control for the formats of Status-Control messages.

This section contains:

Status-Control (ACKLUA) Message

Microsoft Host Integration Server 2000

Status-Control (ACKLUA) Message
When an LUA application sends a Status-Control message inbound to the local node, the LUA verb used to send the message
cannot complete until the local node acknowledges the message. Because of this, the local node will always respond to the LUA
application after it has completed its send checking of the inbound message. If the inbound message passes the local node's send
checks, and the corresponding SNA message will be sent to the host, the local node sends a Status-Control(...) ACKLUA message
to the application to indicate this. Note that the ACKLUA message does not imply that the SNA message was successfully sent to
the host, or that the host received it.

The format of the Status-Control(...) ACKLUA message is explained in Status-Control(...) ACKLUA. Note that the use of the message
key field in Status-Control(...) ACKLUA is different from other Status-Control messages; it contains the sequence number from the
TH of the Status-Control message sent by the LUA application, not the message key.

If the inbound message fails the local node's send checking, a Status-Control(...) Negative Acknowledge-2 message will be
returned as for non-LUA applications. (This is then reported to the LUA application by a non-OK return code to the LUA verb that
sent the message.)

The following three figures illustrate the ACKLUA acknowledgment protocol for different messages that the application can send.

In the first illustration, the application sends a Status-Control(...) Request message that passes the local node's send checks.

In the following illustration, the application sends a Status-Control(...) Acknowledge message that passes the local node's send
checks.

In the following illustration, the application sends a Status-Control(...) Negative-Acknowledge-1 message that passes the local
node's send checks.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Error Message
Status-Error messages flow from the local node to the application to report request reject and RH usage error conditions for:

Errors in outbound expedited data flow control (DFC) requests.
Errors in outbound session control (SC) requests.
Errors in inbound responses.

The Status-Error message contains four bytes of error code information that contain the appropriate SNA sense codes for the
detected error. See Error and Sense Codes for a list of error codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Resource Message
Status-Resource messages flow between an application and the local node to enable the local node to pace the application's PLU
session. They provide the local node with an indication of the buffer resources available at the application to receive outbound
messages. With this information, the local node can determine when to send a pacing response (see Pacing and Chunking).

Note that flow control is an option; inbound pacing is handled by the local node, transparently to the application, and outbound
pacing can be handled similarly. This is appropriate when only a limited number of messages flows from end to end of the SNA
session between definite responses, such as with a 3270 screen.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Session Message
Status-Session messages always flow from the local node to the application and provide information about changes in the state
of the session. There are separate Status-Session flows for each connection between the application and the local node.

The local node uses only one Status-Session message on the PLU connection; this is the Status-Session(BETB) message, used to
report when the PLU session returns to the between-bracket state after the application or the PLU initiated a bracket (see
Brackets).

The local node reports the activation and deactivation states of the SSCP session and PU-SSCP session using Status-Session
messages. For example, it reports the receipt of an ACTLU request from the host SSCP using a Status-Session (LU-Active)
message on the SSCP connection (see The SSCP Connection).

By providing Status-Session messages rather than requiring the application to interpret the relevant information in the SNA
request, the local node shields the application from decisions affecting conditional state transitions and from the necessity for a
detailed understanding of SNA protocols.

A Status-Session message contains a status code, and for some status codes, an additional status code that qualifies the meaning
of the primary status code. For example, the Link-Error status code, which occurs on the SSCP connection, is qualified by a status
code that reports the link outage code supplied by the data link control layer of the local node. Applications such as 3270 device
emulators use the qualifying status codes to display communications check codes (–+z_nnn) on the display's status line.

The Status-Session codes are summarized in Status-Session Codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-RTM Message
The Status-RTM message is used by the local node to inform the application of the RTM (Response Time Monitor) parameters
being used by the host. It flows from the local node to the application on the SSCP connection and is sent only for 3270 display
LUs (or LUs in a pool of display LUs).

The Status-RTM message is sent at the following times:

After the OK response to the Open(SSCP) Request message, to inform the application of the initial RTM parameters.
When the RTM counters are reset, either due to a request from the host or when the local node sends unsolicited RTM data
to the host.
When any of the RTM parameters are changed by the host.

See RTM Parameters for more information on the use of the Status-RTM message and Response Time Monitor Data for more
information on how the application supplies RTM data to the local node.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FMI Message Summary
This section lists each of the messages used at the FMI and gives a reference to a topic in the section where each message is
described. The formats of the messages are given in FMI Message Formats.

For each message the direction of flow is indicated; IN means from the application to the local node, and OUT means from the
local node to the application. The connection on which the message flows is also given.

Message Direction Connection Reference
Open(SSCP) Request IN SSCP Opening the SSCP Connection
Open(SSCP) OK Response OUT SSCP Opening the SSCP Connection
Open(SSCP) Error Response OUT SSCP Opening the SSCP Connection
Open(PLU) Request OUT PLU Opening the PLU Connection
Open(PLU) OK Response IN PLU Opening the PLU Connection
Open(PLU) Error Response IN PLU Opening the PLU Connection
Open(PLU) OK Confirm OUT PLU Opening the PLU Connection
Open(PLU) Error Confirm OUT PLU Opening the PLU Connection
Close(SSCP) Request IN SSCP Closing the SSCP Connection
Close(SSCP) OK Response OUT SSCP Closing the SSCP Connection
Close(PLU) Request IN/OUT PLU Closing the PLU Connection
Close(PLU) OK Response IN/OUT PLU Closing the PLU Connection
Data-FMI IN/OUT SSCP/PLU Data Flow
Status-Acknowledge(Ack) IN/OUT SSCP/PLU Data Flow, Confirmation and Rejection of Data
Status-Acknowledge(Nack-1) IN/OUT SSCP/PLU Data Flow, Confirmation and Rejection of Data
Status-Acknowledge(Nack-2) OUT SSCP/PLU Inbound Data
Status-Control(CLEAR) Request OUT PLU Recovery
Status-Control(CLEAR) Ack IN PLU Recovery
Status-Control(CLEAR) Nack-1 IN PLU Recovery
Status-Control(SDT) Request OUT PLU Status-Control Message
Status-Control(RQR) Request IN PLU Recovery
Status-Control(RQR) Ack OUT PLU Recovery
Status-Control(RQR) Nack-1 OUT PLU Recovery
Status-Control(RQR) Nack-2 OUT PLU Recovery
Status-Control(STSN) Request OUT PLU Recovery
Status-Control(STSN) Ack IN PLU Recovery
Status-Control(STSN) Nack-1 IN PLU Recovery
Status-Control(CANCEL) Request IN/OUT PLU Outbound Chaining, Inbound Chaining
Status-Control(CANCEL) Ack IN/OUT PLU Outbound Chaining, Inbound Chaining
Status-Control(CANCEL) Nack-1 IN/OUT PLU Outbound Chaining, Inbound Chaining
Status-Control(CANCEL) Nack-2 OUT PLU Inbound Chaining
Status-Control(LUSTAT) Request IN/OUT PLU LUSTATs
Status-Control(LUSTAT) Ack IN/OUT PLU LUSTATs
Status-Control(LUSTAT) Nack-1 IN/OUT PLU LUSTATs
Status-Control(LUSTAT) Nack-2 OUT PLU LUSTATs
Status-Control(SIGNAL) Request IN/OUT PLU Direction
Status-Control(SIGNAL) Ack OUT PLU Direction
Status-Control(SIGNAL) Nack-1 OUT PLU Direction
Status-Control(SIGNAL) Nack-2 OUT PLU Direction
Status-Control(RSHUTD) Request IN PLU Application-Initiated Termination
Status-Control(RSHUTD) Ack OUT PLU Application-Initiated Termination
Status-Control(RSHUTD) Nack-1 OUT PLU Application-Initiated Termination
Status-Control(RSHUTD) Nack-2 OUT PLU Application-Initiated Termination
Status-Control(BID) Request OUT PLU Brackets
Status-Control(BID) Ack IN PLU Brackets
Status-Control(BID) Nack-1 IN PLU Brackets

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Status-Control(CHASE) Request IN/OUT PLU Confirmation and Rejection of Data
Status-Control(CHASE) Ack IN/OUT PLU Confirmation and Rejection of Data
Status-Control(CHASE) Nack-1 IN/OUT PLU Confirmation and Rejection of Data
Status-Control(CHASE) Nack-2 OUT PLU Confirmation and Rejection of Data
Status-Control(SHUTC) Request IN PLU Shutdown and Quiesce
Status-Control(SHUTC) Ack OUT PLU Shutdown and Quiesce
Status-Control(SHUTC) Nack-1 OUT PLU Shutdown and Quiesce
Status-Control(SHUTC) Nack-2 OUT PLU Shutdown and Quiesce
Status-Control(SHUTD) Request OUT PLU Shutdown and Quiesce
Status-Control(RTR) Request IN PLU Brackets
Status-Control(RTR) Ack OUT PLU Brackets
Status-Control(RTR) Nack-1 OUT PLU Brackets
Status-Control(RTR) Nack-2 OUT PLU Brackets
Status-Control(QC) Request IN/OUT PLU Shutdown and Quiesce
Status-Control(QC) Ack IN/OUT PLU Shutdown and Quiesce
Status-Control(QC) Nack-1 IN/OUT PLU Shutdown and Quiesce
Status-Control(QC) Nack-2 OUT PLU Shutdown and Quiesce
Status-Control(QEC) Request IN/OUT PLU Shutdown and Quiesce
Status-Control(QEC) Ack OUT PLU Shutdown and Quiesce
Status-Control(QEC) Nack-1 OUT PLU Shutdown and Quiesce
Status-Control(QEC) Nack-2 OUT PLU Shutdown and Quiesce
Status-Control(RELQ) Request IN/OUT PLU Shutdown and Quiesce
Status-Control(RELQ) Ack OUT PLU Shutdown and Quiesce
Status-Control(RELQ) Nack-1 OUT PLU Shutdown and Quiesce
Status-Control(RELQ) Nack-2 OUT PLU Shutdown and Quiesce
Status-Error OUT SSCP/PLU Status-Error Message
Status-Resource IN PLU Pacing and Chunking
Status-Session OUT SSCP/PLU Status-Session Message, Status-Session Codes
Status-RTM OUT SSCP RTM Parameters

The following messages are used for LUA only:

Message Direction Connection Reference
Status-Acknowledge(ACKLUA) OUT SSCP/PLU Inbound Data from LUA Applications
Status-Control(...) ACKLUA OUT PLU Inbound Data from LUA Applications
Status-Control(CRV) Request OUT PLU Status-Control Message
Status-Control(CRV) Ack IN PLU Status-Control Message
Status-Control(CRV) Nack-1 IN PLU Status-Control Message
Status-Control(BIS) Request IN/OUT PLU Status-Control Message
Status-Control(BIS) Ack IN/OUT PLU Status-Control Message
Status-Control(BIS) Nack-1 IN/OUT PLU Status-Control Message
Status-Control(SBI) Request IN/OUT PLU Status-Control Message
Status-Control(SBI) Ack IN/OUT PLU Status-Control Message
Status-Control(SBI) Nack-1 IN/OUT PLU Status-Control Message

Microsoft Host Integration Server 2000

FMI Status, Error, and Sense Codes
This section lists the status codes, error codes, and sense codes used on Open messages, Status messages, and Data messages
with the system detected error indicator (SDI) set.

This section contains:

Status-Session Codes
Error and Sense Codes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Session Codes
For the status codes used on Status-Session messages, the following table lists:

The value for the status code.
The valid qualifying codes (if any) and their values.
On which sessions the combinations of primary and qualifying status codes can occur.

See Status-Session Message for an overall description of the role of the Status-Session message. The individual codes are
discussed in The SSCP Connection and The PLU Connection.

Status code Value Qualifying code Value Usage
STNOSESS
(no session)

0x01 STPUINAC
STPUACT
STPUREAC
STLUINAC

0x10
0x03
0x04
0x11

SSCP
SSCP
SSCP
SSCP

STLINERR
(link error)

0x02 DLC ERROR (See Note 1) SSCP

STLUACT
(LU active)

0x05 - - SSCP

STLUREAC
(LU reactivated)

0x06 - - SSCP

STBETB
(between brackets)

0x07 - - PLU

 Note The qualifying status code supplied on a Status-Session link error is the error code supplied by the data link control layer
of the local node.

Status-Session link error code 20 is generated by the node rather than by the link service. It indicates that the link service is not
yet available, but is being activated. Ignore this error code during session activation. Otherwise, all Status-Session link errors
(including 20) will cause the emulator to send a Close(SSCP). When the emulator receives the Close(SSCP) Response, it will start
again and send a new Open(SSCP).

 Note The session status identifier displayed by the Microsoft® SNA Server OS/2 and Microsoft MS-DOS®-based 3270
emulators is obtained by adding 484 (decimal) to the qualifying status code shown above.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error and Sense Codes
This section describes the error and sense codes that are reported to the application in the following messages:

Open(SSCP) Response
Open(PLU) Confirm
Status-Acknowledge(Nack-2)
Status-Control(...) Negative-Acknowledge-2
Status-Error
Appl-Data messages with SDI set.

Where the reported codes are SNA sense codes, a more complete description is given in Chapter 8 of the IBM document Systems
Network Architecture: Reference Summary (GA27-3136). These SNA sense codes are also documented in the separate SNA
Formats online Help file provided with Microsoft SNA Server.

In addition, the local node delivers negative responses from the host as Status-Acknowledge(Nack-1) and Status-Control(...)
Negative-Acknowledge-1, which can have any SNA sense codes.

Application designers should note that error codes listed here that are specific to Host Integration Server and SNA Server always
have an initial byte of value 0x00, and therefore can be easily distinguished from SNA sense codes, which have nonzero initial
bytes.

The error codes are listed in topics for each type of message with an indication of the reason for the error.

This section contains:

Error Codes for Open Messages
Error Codes for Nack-2 Messages
Error Codes for Status-Error Messages
Sense Codes for SDI Messages

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error Codes for Open Messages
The possible error codes for Open(SSCP) Error Response and Open(PLU) Error Confirm are shown in the following topics.

This section contains:

Error Codes for Open(SSCP) Error Response
Error Codes for Open(PLU) Error Confirm

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error Codes for Open(SSCP) Error Response
The following table gives the values for error code 1 and error code 2 that can be returned on the Open(SSCP) Error Response.

Error co
de 1

Description Error co
de 2

Description

0 No servers found. CSRENO
SR (0)

No servers found.

0x0053 LU not verified. CSRECBS
H (3)

LU not verified.

0x0055 SSCP connection already open. CSRECBS
H (3)

Control block / resour
ce shortage.

0x0057 No LU in group free.
0x0812 No free session control block available.
0x1001 A connection activation failed recently.
0x1002 The connection is inactive.
0x1008 The link service is active remotely. This error return code is not supported by this level

of Host Integration Server or SNA Server.

0x1009 The SNA server is active, but the connection on which the requested LU is defined is no
t active.

0x100B The connection is in the process of activating as the result of another Open(SSCP) or o
perator activation or recovery from an outage.

0x1010 The connection is active, but an ACTPU has not yet been received.
0x1011 The connection is active, but an ACTLU has not yet been received.
0x0063 Unrecognized Open request. CSRESER

V (1)
Service not present.

0x0A0E LU / LU group not found in configuration.

 Note The error code 1 values 0x1001 to 0x1011 are returned when the Open(SSCP) Request specifies a nonforced Open. They
do not indicate errors, but indicate that the LU-SSCP session is not active. The application can retry the Open(SSCP) Request
specifying a forced Open, in which case the local node will attempt to activate the connection if possible.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error Codes for Open(PLU) Error Confirm
The following table gives the values for error code 1 that can be returned on the Open(PLU) Error Confirm message. Error code 2
is zero, except when error code 1 is 0x0821; in this case it contains the byte offset in the BIND where the BIND failed to match the
BIND check table.

Error code Description
0x0051 Fewer than two buffer elements were present on Open(PLU) Response.
0x0052 SSCP connection no longer active.
0x0821 BIND checking failed: error code 2 gives byte offset in BIND at which the error occurred.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error Codes for Nack-2 Messages
The possible error codes delivered to the FMI application on Status-Acknowledge(Nack-2) and
Status-Control(...) Negative Acknowledge-2 messages are tabulated below. A Nack-2 is delivered to the application in response to
data that is sent in error (or a Status-Control(...) Request that is in error). The data has not been sent to the host. The table
indicates whether the error is critical or not (applying to the PLU connection only); if the error is critical, the critical failure
indicator will be set in the message, and the application will receive a Close(PLU) Request as the next message.

All Nack-2 messages have the second word of information as 0x0000.

Error /
Sense code

Critical
YES/NO

Description

0x0040 YES No buffer element on DATAFMI message.
0x0042 YES DATAFMI message sent when no credit.
0x0043 YES Invalid status-control for TS profile.
0x0044 YES Invalid status-control from application.
0x004A YES HDX contention and -QR,-BB,EB, or BKTFSM in pending-term-session.
0x0809 YES Mode inconsistency.
0x1002 YES RU length error.
0x1003 YES Function not supported, invalid FM profile.
0x2002 NO Chaining error.
0x2003 NO Bracket error.
0x2004 NO Direction error
0x2005 YES Data traffic reset.
0x2006 YES Data traffic quiesced.
0x200D YES Response owed before sending request (half-duplex).
0x4003 YES BB not allowed.
0x4004 YES EB not allowed.
0x4006 YES Exception response not allowed.
0x4007 YES Definite response not allowed.
0x4009 YES CD not allowed.
0x400A YES No-response not allowed.
0x400B YES Chaining not supported.
0x400C YES Brackets not supported.
0x400D YES CD not supported.
0x400F YES Incorrect use of FI.
0x4014 YES Incorrect use of DR1, DR2, ER.
0x8005 NO SSCP data sent when LU inactive.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error Codes for Status-Error Messages
The possible error codes delivered to the FMI application on Status-Error messages are tabulated below. A Status-Error message
is delivered to the application in one of several cases:

The local node detects an error in a response sent from the application (as a Status-Acknowledge or Status-Control
Ack/Nack-1 message).
The local node detects an error in some data from the host that will not be delivered to the application as an SDI message
(such as an expedited flow request).
The application sends an invalid Status message.

For inbound responses, the Status-Error codes have first byte 0x00. When the application is in error, the table indicates whether
the error is critical or not (applying to the PLU connection only); if the error is critical, the application will receive a
Close(PLU) Request as the next message.

The sense codes beginning with 0x40 will only be delivered if the corresponding receive check has been enabled in the CICB on
the Open(SSCP) Request from the application.

Where the sense code is marked with the * symbol, the second word of sense information carries the request code of the
expedited flow request that was in error (for example 0x00C9 for SIGNAL).

Error /
Sense code

Critical
YES/NO

Description

0x0008 NO Negative response already sent to this chain.
0x0040 YES Invalid Status message from application.
0x0046 YES Session failure due to correlation table shortage.
0x0050 YES Invalid sequence number on Status-Ack.
0x0053 YES Application may not send status control (STSN) negative acknowledge if it supports transaction numbers.
0x0056 YES Status-Ack sent when previous RQD chains are outstanding (see Outbound Data).
0x0801 NO Message received when pacing count is zero.
0x0805 NO BIND from another PLU when already bound.
0x0809 * NO Mode inconsistency (QEC or SHUTD).
0x0815 NO BIND from same PLU when already bound.
0x0821 NO Incorrect ACTLU type (SSCP connection).
0x1003 * NO Wrong profile / network control request / invalid session control message.
0x2005 NO Data traffic reset.
0x2007 NO Data traffic not reset (STSN after SDT).
0x4009 * NO CD not allowed.
0x400B * NO Chaining not supported.
0x400C * NO Brackets not supported.
0x400F * NO Incorrect use of FI.
0x4011 * NO Incorrect use of RU category.
0x4014 * NO Incorrect use of DR1, DR2, ER.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sense Codes for SDI Messages
When the local node detects an error in a normal flow request from the host, the message is converted into a DATAFMI message
with the system detected error indicator (SDI) set to inform the application and to allow data to be processed serially. The
application must convert the message to a Status-Acknowledge(Ack) to allow the local node to send the required negative
response to the host. The possible error codes delivered to the FMI application on such SDI messages are tabulated below.

The sense codes beginning with 0x40 will only be delivered if the corresponding receive check has been enabled in the CICB on
the Open(SSCP) Request from the application. If a receive check has been disabled, the message can still be converted to an SDI
message; for example, a message with BB, -BC would fail as 2002 or 2003 if 4003 were disabled.

When the application uses a Status-Control(LUSTAT) Request to reject outbound data (see LUSTATs), the sense codes supplied by
the application will be present on the SDI message generated by the local node.

Sense code Description
0x0809 Mode inconsistency.
0x080B Bracket race error.
0x081B Contention race condition.
0x1003 Incorrect FM profile for request.
0x2001 Sequence number error.
0x2002 Chaining error.
0x2003 Bracket error.
0x2004 Direction error.
0x2006 Data traffic quiesced.
0x4003 BB not allowed.
0x4004 EB not allowed.
0x4006 Exception response not allowed.
0x4007 Definite response not allowed.
0x4009 CD not allowed.
0x400B Chaining not supported.
0x400C Brackets not supported.
0x400D CD not supported.
0x400F Incorrect use of FI.
0x4011 Incorrect use of RU category.
0x4014 Incorrect use of DR1, DR2, ER.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuration Information
To obtain information about the Microsoft® Host Integration Server or Microsoft® SNA Server 3270 configuration, the
application uses the following calls:

sepdcrec Returns a data structure that contains the 3270 user record for this user and the diagnostics record from the running
configuration file.

sepdgetinfo Returns general information on the version of Host Integration Server or SNA Server currently running, such as the r
elease level, the network operating system, and the directory of the running configuration file.

If the return code from sepdcrec indicates that no 3270 user record was found for this user, the emulation program should
terminate and not allow the user to use 3270 emulation. The Host Integration Server or SNA Server error message COM0438 is
provided to log this error; see Diagnostics for more information on error logging.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

3270 User Record Format
The format of the 3270 user record is shown below. The first structure definition is an LU/session information record, which
includes details of a 3270 LU; the second is the 3270 user record, which includes a number of LU/session information records.

Note that the user record is not a fixed length, because the number of LU/session information records in the remap list is variable.
The structures used below are provided simply as a template to allow you to map to the correct offset in the record.

Members

cwshost[9]
LU/pool name accessed.

cwsestyp
Session type (M2, M3, M4, M5, printer).

cwsmodov
Whether or not the user has override permission.

cwspad
Two bytes of padding.

Members

cwlen
Length of record.

cwtype
Type of record.

cwname[21]
User name.

cwremark[26]
Comment field.

cwstylef[9]
Initial style file name.

cwvewrtm
Whether or not user can view RTM information.

cwalert
Whether or not user has ALERT permission.

cwchghan
Whether or not user can change LU/pool name accessed.

typedef struct tecwrksd {
 UCHAR cwshost[9];
 USHORT cwsestyp;
 USHORT cwsmodov;
 USHORT cwspad;
} TECWRKSD;

typedef struct tecwrkus {
 USHORT cwlen;
 USHORT cwtype;
 UCHAR cwname[21];
 UCHAR cwremark[26];
 UCHAR cwstylef[9];
 USHORT cwvewrtm;
 USHORT cwalert;
 USHORT cwchghan;
 USHORT cwmaxses;
 USHORT cwnumrec;
 TECWRKSD cwsesdat[10];
 USHORT cwmodisf;
 UCHAR cwstatus;
 UCHAR cwpad;
 USHORT cwnumrmp;
 TECWRKSD cwremap[1];
} TECWRKUS;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

cwmaxses
Maximum number of active sessions (1–10).

cwnumrec
Number of sessions for user.

cwsesdat[10]
Session information records.

cwmodisf
Permission to modify initial style.

cwstatus
Status byte: user or group.

cwpad
One byte of padding.

cwnumrmp
Number of LUs/pools in remap list.

cwremap[1]
LU/Pool remap list.

For Windows 2000, Windows NT, Windows 98, and Windows
95
Microsoft® Host Integration Server or Microsoft® SNA Server permit configuration of more than 10 sessions per user when
used with clients running Windows 2000, Windows NT, Windows 98, and Windows 95. If this is done, the first 10 sessions are
placed in the cwsesdat array with cwnumrec set to 10 and the remainder are placed in the location of the remap list. The
cwnumrmp member indicates the number of TECWRKSD structures in the remap list. Note that this permits cwmaxses to be
greater than cwnumrec.

The following paragraphs explain the meaning of each field in the structures, and indicate how the application should use it. The
sections on configuring 3270 users and LUs in the Installation and Configuration section of the Microsoft Host Integration Server
Guide should also be used as a cross-reference.(see the Microsoft SNA Server Administration Guide for SNA Server).

Members

cwshost
The name (up to eight characters) of the LU or LU pool that this session is configured to use. The application specifies this name
on the Open(SSCP) Request.

cwsestyp
The LU type (display or printer) of the LU used by this session and (if it is a display LU or a pool of display LUs) the screen
model. The possible values are:

CERTMOD2 (0) Model 2 display (24 by 80)
CERTMOD3 (1) Model 3 display (32 by 80)
CERTMOD4 (2) Model 4 display (43 by 80)
CERTMOD5 (3) Model 5 display (27 by 132)
CERTPRNT (4) Host printer

The application should use this value to distinguish between display and printer sessions and to set the appropriate screen
model for display sessions.

cwsmodov
TRUE if the user has permission to override the screen model for display sessions — that is, to change the session to use a
different screen model from the one configured. If this value is FALSE, the user should not be permitted to change the screen
model. This field is not used for printer sessions and should not be checked.

cwlen
The length of the 3270 user record (this is variable because it contains a variable number of LU/session records in the remap
list). The application should use this value to locate the start of the next 3270 user record when searching for the correct record.

cwtype
Identifies this as a 3270 user record.

cwname
The LAN Manager user name, or other identifying name, of the 3270 user (up to 20 characters). The application uses this to
search for the correct 3270 user record.

cwremark
An optional comment field (up to 25 characters), used in the configuration program to give more information about the user

(for example, the user’s full name).
cwstylef

The name (up to eight characters) of the default style file used by this user (a file containing the user’s 3270 customization
settings, used by the Host Integration Server or SNA Server 3270 emulation programs). This field can be used to identify the
equivalent file for your 3270 emulator, if appropriate.

If this field is blank, no style file is used and the 3270 emulator should revert to its default settings (unless overridden by a style
file specified by the user).

cwvewrtm
TRUE if this user is permitted to view a display of Response Time Monitor (RTM) statistics for his or her 3270 sessions. If this
field is FALSE, the application should not display RTM statistics and should not display a last transaction time indicator (LTTI) on
the status line of display sessions. See Diagnostics Record Format for more information on the use of RTM.

cwalert
TRUE if the user is permitted to send NetView user alerts. If this field is FALSE, the user should not be permitted to send alerts.
See Diagnostics Record Format for more information on the use of alerts.

cwchghan
TRUE if the user is permitted to remap a 3270 session to use a different LU (in which case it can be changed to use any LU in the
remap list—see cwremap). If this field is FALSE, the application should not allow the user to remap sessions.

cwmaxses
The maximum number of active sessions permitted to this user. If the number of sessions configured (see cwnumrec) is
greater than this, the user must not be allowed to activate more sessions at a time than this field specifies.

cwnumrec
The total number of sessions configured for this user. The user record always contains 10 LU/session records (see cwsesdat),
but only this number of the records will be used—the remainder will be filled with zeros.

cwsesdat
Ten LU/session records. Some of these records can be filled with zeros, indicating that they are unused (cwnumrec gives the
number of sessions that are used). The application should list, and allow the user to use, only the sessions that have valid
session records here.

cwmodisf
TRUE if the user is permitted to modify the initial 3270 customization. If this field is FALSE, the application should use the
customization defined by cwstylef (if specified); the user should not be allowed to make changes to this style, or to override it
by loading a different style file.

cwstatus
Indicates whether the user name in this record is to a LAN Manager user name or group name. The least significant bit of this
byte is CERTGRUP (1) for a group, and zero for a user. Other bits are not used.

cwpad
Pad byte—not used by the application.

cwnumrmp
The number of LU/session records in the remap list (see cwremap).

cwremap
The list of LU/session records, which indicates the LUs to which the user can remap sessions (if any). If the user is not permitted
to remap sessions (see cwchghan), this list is not used and should not be checked by the application.

Microsoft Host Integration Server 2000

Diagnostics Record Format
The format of the Diagnostics record is shown below. The first structure definition is an Alert information record, which includes
details of a 3270 NetView user alert; the second is the Diagnostics record, which includes a number of Alert information records.

Members

dalrtnam[53]
Description of the alert number.

daparam1[33]
Description of parameter 1.

daparam2[33]
Description of parameter 2.

daparam3[33]
Description of parameter 3.

Members

dilen
Length of record.

ditype
Type of record.

dinetmgt[9]
Network management connection name.

disrtmco
Send RTM data at counter overflow.

disrtmub
Send RTM data at UNBIND.

diwruldr
RTM timers run until:

dirtmth1
RTM threshold #1.

dirtmth2
RTM threshold #2.

dirtmth3
RTM threshold #3.

dirtmth4

typedef struct tedalert {
 UCHAR dalrtnam[53];
 UCHAR daparam1[33];
 UCHAR daparam2[33];
 UCHAR daparam3[33];
} TEDALERT;

typedef struct tediagns {
 USHORT dilen;
 USHORT ditype;
 UCHAR dinetmgt[9];
 USHORT disrtmco;
 USHORT disrtmub;
 USHORT diwruldr;
 USHORT dirtmth1;
 USHORT dirtmth2;
 USHORT dirtmth3;
 USHORT dirtmth4;
 TEDALERT dialerts[20];
 UCHAR diaudit[128];
 UCHAR dierror[128];
 USHORT diaudlev;
 UCHAR dipad[16];
} TEDIAGNS;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

RTM threshold #4.
dialerts[20]

Alert description records.
diaudit[128]

Audit log file name.
dierror[128]

Error log file name.
diaudlev

Default audit level.
dipad[16]

Sixteen bytes of padding.

The following paragraphs explain the meaning of each field in the structures that is relevant to the application and indicate how
the application should use it. Fields that are not included in the list below are used by other Microsoft® Host Integration Server or
Microsoft® SNA Server components and need not concern the application; in particular, the network management connection
name and the times at which RTM data is sent to the host are handled by the local node on behalf of the application.

Note that the application should determine whether the user is permitted to send NetView user alerts and/or view RTM data (see
3270 User Record Format); it should not display the appropriate information, as described below, if the user does not have
permission to use it. The host can also override whether the application is permitted to send and/or to display RTM data (see
RTM Parameters for more information).

For more information on how the application uses the RTM parameters, see RTM Parameters, Response Time Monitor Data, and
Status-RTM.

Members

dalrtnam
The description (up to 52 characters) of the alert corresponding to a particular alert number. The application should display this
information to help the user determine which alert to send.

daparam1
The descriptions (each up to 32 characters) of up to three parameters.

daparam2
Required for the alert; depending on the specific alert.

daparam3
One or more of these descriptions can be blank, indicating that the parameter is not used. For each of these descriptions that is
not blank, the application should display this string to prompt the user for the appropriate parameter.

diwruldr
The definition by which response times are to be measured. The application should measure the response time from the time
the user presses ENTER or an AID key to send data to the host, until one of the following events as defined by this field:

CERTWRIT (0) The first host data reaches the 3270 display.

CERTUNLK (1) The host unlocks the user’s keyboard.

CERTDIRE (2) The host gives the application direction so that the user can send further data.

Note that the host can override these definitions; see RTM Parameters for more information.

dirtmth1, dirtmth2, dirtmth3, dirtmth4
The thresholds that define the bands into which response times are to be classified. Note that the host can override these
definitions; see RTM Parameters for more information.

dialerts
Up to 20 alert records that define the alerts Host Integration Server or SNA Server users can send to a host. There are always 20
records, but some of these can be blank, indicating that they are not used; the application should display the descriptions of any
nonblank alerts together with the alert number (from 1 to 20) defined by the position of the alert record in this array.

Microsoft Host Integration Server 2000

Creating NetView User Alerts
You can create NetView user alerts for users to send. Users identify the alerts by number; each number corresponds to a specific
collection of information or requests that the user wants to send through NetView to a host operator.

Microsoft® Host Integration Server and Microsoft® SNA Server leave blank fields for the user alert information in the structure
that is returned from sepdcrec. To create specific user alerts, create appropriate data structures and call the TRANSFER_MS_DATA
common service verb to send the user alert to NetView.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Diagnostics
This section describes the diagnostics mechanisms available to Microsoft® SNA Server applications.

This section contains:

Error and Audit Log Messages
Internal Tracing
HLLAPI Parameter Tracing
FMI Tracing

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error and Audit Log Messages
This section discusses ways that an application can write to the Microsoft® Host Integration Server or Microsoft® SNA Server log
files, and describes macros for logging and tracing information.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Options for Logging
There are two ways in which an application can write messages to the Microsoft® Host Integration Server or SNA Server log files:

Use the SNA server DMOD (dynamic access module) logging macros presented in the following topic.
Use the LOG_MESSAGE common service verb.

Both of these options use log message files formatted with the OS/2 utility MKMSGF. A log message file contains a set of
messages that are referenced by a message number. If a component wishes to log an error, it specifies the appropriate message
number to extract the text from the message file, rather than including the message text within the component.

Host Integration Server and SNA Server have one message file that is used for all its error and audit logging. The messages in this
file are available for both of the preceding options. See the Administrator's Reference section of the Microsoft Host Integration
Server Guide for a list of all the SNA server error and audit log messages and their meanings (see the Microsoft SNA Server
Reference for SNA Server).

If extra messages are required, there are two options:

The messages COM0393 and COM0394 are provided as generic log messages for use by emulators. Each takes two
parameters, both of which are text strings: the first is an identifier for the specific emulator that logged the message, and the
second can contain any data or parameters to be logged. The difference between these messages is the level at which they
are logged; COM0393 is a level 10 information message, while COM0394 is a warning message that should be used to
report error conditions. See SNA Server DMOD Logging Macros for more information on message severity levels.
A second message file can be created, which is then specified as one of the parameters on the LOG_MESSAGE verb. This
cannot be used with the logging macros.

It is recommended that you use the Host Integration Server or SNA Server logging macros (with the Host Integration Server or
SNA Server emulator log messages if a suitable message is available, or with the generic messages COM0393 and COM0394)
rather than the LOG_MESSAGE verb. LOG_MESSAGE does not provide control over the severity level at which messages are
logged (all messages are logged at level 12 in the error log file); it is primarily intended for user applications such as APPC TPs.

The following topics explain the use of the Host Integration Server or SNA Server logging macros and the LOG_MESSAGE
common service verb.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Server DMOD Logging Macros
The logging macros provided with Host Integration Server or SNA Server are relatively easy to use because each log call is a
single line of code. In the simplest case, only a message number is required; the text of the logged message is taken from the
message file. Parameters can also be supplied as required.

For the text and meaning of each of the log messages included in the SNA Server message file, see the See the Administrator's
Reference section of the Microsoft Host Integration Server Guide (see the Microsoft SNA Server Reference for SNA Server).
Examples of messages logged by a Host Integration Server or SNA Server 3270 emulation program are shown in Examples.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Message Severities
The following severities are used in Host Integration Server and SNA Server:

6 Detailed problem analysis data
8 General information messages
10 Significant system events
12 Warnings/recoverable errors
16 Fatal errors

All logs are placed in the Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, or Microsoft®
Windows® 95 Application event log. The default level of event logs can be specified when configuring Host Integration Server or
SNA Server, so that all or some of the event logs can be suppressed; in addition, the system administrator can change the event
log level for a particular component using the Manage program or can filter out lower-level messages when viewing log files
using the Browse program.

Note that level 16 errors are always taken to be fatal errors; an application that logs a level 16 error will be terminated
automatically. In particular, the call to the logging routine will not return; the application should perform all required clean-up
processing, including any lower-level logs, before logging the fatal error.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Logging Macros
The following macros can be used to log messages at levels 6, 8, 10, 12, and 16:

COM_LOG6
COM_LOG8
COM_LOG10
COM_LOG12
COM_LOG16

Syntax

COM_LOGa (b) ""))
for a message with no parameters.

COM_LOGa (b) " %c " , e))
for a message with one parameter.

COM_LOGa (b) " %c | %d | . . ." , e , f , . . .))
for a message with more than one parameter.

Parameters

a
Severity: 6, 8, 10, 12, or 16.

b
Message number.

c, d, . . .
Format of the first, second, and so on up to nine variable parameters.

e, f, . . .
First, second, and so on up to nine variable parameters.

Remarks

Up to nine parameters can be supplied, according to the number of "%n" placeholders in the text of the message being logged.
The first parameter replaces %1, the second replaces %2, and so on.

The formats c and d must be valid formats for the C function sprintf, because the logging macro uses this function to generate
the complete text string to be logged.

Note that the unmatched parentheses on the macro call are deliberate; the expansion of the macro supplies the remaining
parentheses so that the resulting code is correct.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Examples
This syntax is illustrated in the following examples. The two messages below are taken from the Host Integration Server or SNA
Server message file; the first is a warning message with no parameters, and the second is a level 16 error message that includes
two parameters.

The following call:

gives the following message in the event log:

The following call:

where cfgfilename = COM.CFG, and rc = 17, gives the following message in the event log:

The complete message log entry contains the following information about the error or event and the service that logged it:

Message Number
Date/Time
COM name the name of the service
COM type the type of the service
Severity
Message with optional parameters

The COM name is the name in the service table when the DMOD initializes; this name is the name with which the user logged on
to the network operating system and is set by calling sepdcrec. The COM type is set on the call to sbpuinit. See The
DL-BASE/DMOD Interface for more information on these functions.

COM0392W: Warning — User Alert was not accepted by the host
COM0429E: Error trying to read from %1 (rc = %2)

COM_LOG12(392)""));

Warning — User Alert was not accepted by the host

COM_LOG16(429)"%s|%d", cfgfilename, rc));

Error trying to read from COM.CFG, rc = 17

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LOG_MESSAGE Common Service Verb
This verb is fully documented in LOG_MESSAGE in the APPC Applications section of the Microsoft Host Integration Server
Developer's Guide.

The main advantage of using this verb to log messages is that a user-defined message file can be specified, containing messages
specific to your application. This means that you are not restricted to the messages defined in the Host Integration Server or SNA
Server message file.

Note that all messages logged using this verb are logged at level 12 in the error log file; it is not possible to log messages to the
audit log file or to log at different severity levels.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Internal Tracing
Microsoft® Host Integration Server and Microsoft® SNA Server provide internal tracing macros that can be built into an
application. These can be used to check the operation of the application during development. Compile-time options determine
whether or not this tracing is included in object code; it should be compiled out when producing end-user products. Internal
tracing must be initialized before any TRACEnn macro calls are issued. This initialization is performed by initializing the DMOD
(dynamic access module) through the sbpuinit call. Internal Tracing Macros and Controlling Internal Tracing describe the use of
the tracing macros within application source code and the methods of controlling trace output using compile-time and run-time
options.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Internal Tracing Macros
The following topics describe macros used for internal tracing:

COM_ENTRY
TRACEn

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

COM_ENTRY
The COM_ENTRY macro is used at the start of any procedure in which internal tracing is required. It provides an identifier that is
used in the trace file to identify all trace calls made from this procedure.

The format of the COM_ENTRY call is as follows:

COM_ENTRY("str");

where str is a string of up to five characters that uniquely identifies this procedure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TRACEn
The TRACEn macro is used to specify data to be traced; this data can include variable parameters. The format of the TRACEn call
is one of the following, depending on whether parameters are included:

TRACEn()"string in sprintf format"));
TRACEn()"string in sprintf format containing parameters", parameters));

Note that the unmatched parentheses are deliberate; they are resolved by the expansion of the macro.

The value n identifies the severity level of the trace. It can take the values 2, 4, 6, 8, 10, 12, or 16, where levels 6 to 16 correspond
to the audit and error log levels (see Error and Audit Log Messages), and 2 and 4 are used for very low-level detail tracing. This
allows run-time filtering of trace information so that only information above a specified level is logged; see the following topic for
more information.

The following examples illustrate the use of the tracing macros:

COM_ENTRY("proc1");
TRACE4()"Start of error-handling routine"));
TRACE8()"Supplied parameters are %s, %d", parm1, parm2));

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Controlling Internal Tracing
The compiler option NOTRC defines whether internal tracing is included in object code. Compiling with /DNOTRC does not
include internal tracing (the TRACEn macros expand to a no-op); compiling without /DNOTRC includes internal tracing.

Under Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and Microsoft® Windows® 95, the
registry entries used to control tracing are now inserted by the Setup program. The SNATRACE.EXE program can be used to
enable or disable internal tracing dynamically at run time (assuming binaries have been compiled with internal tracing enabled).

For Windows 2000, Windows NT, Windows 98, and Windows
95
When running an executable program that was compiled with internal tracing, tracing is enabled by generating the following
entries in the Windows 2000, Windows NT, Windows 98, or Windows 95 registry:

The entries should be stored under:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Nap
\Parameters

For OS/2
When running an executable program that was compiled with internal tracing, the COMINT environment variable is used to
define the level of tracing required and the file or files to which it is traced. Set this variable as follows:

SET COMINT=n/file1[/file2]

For all operating systems
The value n is the severity level of the tracing required. All trace calls at this level or higher are included in the trace output; trace
calls at lower levels are ignored. For example, setting level 10 includes all trace calls at levels 10, 12, and 16, but excludes tracing
at levels 2, 4, 6, and 8. Use 0 to include all tracing at whatever level, or 20 to disable tracing entirely.

The parameters file1 and file2 are the names of files to which trace output is written. If two file names are specified, trace output is
sent to the first file until it reaches 250K (or 500K for Windows 2000, Windows NT, Windows 98, and Windows 95) and then to
the second file; when the second file also reaches 250K (or 500K for Windows 2000, Windows NT, Windows 98, and Windows
95), the first file is cleared and tracing continues to the first file. This process continues, changing to the other file every time the
current file reaches 250K (or 500K for Windows NT and Windows 95), so that only the most recent 250-500K (or 500-1000K for
Windows 2000, Windows NT, Windows 98, and Windows 95) of trace information is retained. If only one file name is specified,
tracing continues to this file regardless of file size.

InternalTraceLevel=n
InternalTraceFile1=file1
InternalTraceFile2=file2

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

HLLAPI Parameter Tracing
The COM_TRC_HLLAPI macro can be used within an HLLAPI (High-Level Language API) library to trace the parameters supplied
to an HLLAPI function and the returned values. It should be used at the following times:

At the start of the HLLAPI library routine, to trace the four parameters supplied by the HLLAPI application before beginning
to process them.
At the end of the HLLAPI library routine, to trace the values to be returned in each of the four parameters before control is
returned to the application.

The format of the COM_TRC_HLLAPI call is as follows:

COM_TRC_HLLAPI (type, func, data, len, retc);

Parameters

type (USHORT)
Either REQUEST or RESPONSE; use REQUEST when tracing the parameters supplied by the user application at the start of the
library routine and RESPONSE when tracing the parameters to be returned to the user application.

func, len, and retc (USHORT)
The values of the parameters func_number, data_length, and return_code that were supplied to HLLAPI by the user application,
or the values to be returned to the application. Note that the user application supplies pointers to these values, but the actual
values are required for the COM_TRC_HLLAPI call.

data (UCHAR FAR)
The data_string parameter supplied to HLLAPI by the user application, or the string to be returned to the application in this
parameter.

Remarks

To turn on tracing for an HLLAPI application, the environment variable COMTRC is used; see the Administrator's Reference
section of the Microsoft Host Integration Server Guide for more information on the use of COMTRC (see the Microsoft SNA Server
Administration Guide for SNA Server). Tracing can also be turned on and off from within the HLLAPI user application using the
trace control parameters of the Set Session Parameters function; see the HLLAPI Specification for more information.

The trace output lists the following:

The name of the HLLAPI function being called (this is determined from the function number, the first of the four parameters
to the HLLAPI call).
Whether the trace refers to a request or a response (determined from the type parameter to the COM_TRC_HLLAPI call).
The data_length and return_code/ps_position parameters to the HLLAPI call.
If the data_string parameter is used for this HLLAPI function, the address of the data as supplied to HLLAPI, followed by a
listing of the data in both hexadecimal and ASCII characters.

Note that Microsoft® SNA Server’s HLLAPI tracing is designed for use with the SNA Server implementation of HLLAPI on OS/2,
which is compatible with the implementation provided by OS/2 Extended Edition version 1.2. If your HLLAPI implementation
differs from this (for example, by including function numbers that are not supported by the SNA Server implementation, by using
a different name for a given function number, or in the usage of the data_string parameter for different verbs), the tracing output
obtained may not be correct.

For Microsoft® Windows 2000, Microsoft® Windows NT®, Microsoft® Windows® 98, and Microsoft® Windows® 95, you can
use SNATRACE.EXE to dynamically control HLLAPI and FMI tracing.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FMI Tracing
Microsoft® SNA Server provides the facility for tracing message flows at the Function Management Interface (FMI), both at the
local node and at the application’s DL-BASE. This allows you to track the messages being sent and received by the local node
and/or the application.

For Windows 2000, Windows NT, Windows 98, and Windows
95
Message tracing at the application’s DL-BASE is controlled by entries in the registry under:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Nap
\Parameters

Message tracing at the local node is controlled by placing similar entries under:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Node
\Parameters

The entries required in both cases are as follows:

SNATRACE.EXE can be used to dynamically control HLLAPI and FMI tracing.

For OS/2
Message tracing is controlled by the COMSNA environment variable. You set this variable before starting the local node using the
COMM START command, or before starting the client application; the application must be started in the screen group in which
COMSNA was set.

The syntax of COMSNA is described in the Microsoft SNA Server Administration Guide. To activate FMI tracing, you need to use
one of the options /A (all messages are traced) or /F (only FMI messages are traced).

For the local node, you can leave tracing initially inactive by not specifying any of the final options on COMSNA, and then activate
it when required using the Manage program; in this case you need to use the internal message tracing option in Manage, which is
the equivalent of the /A option on COMSNA. For the application, you need to specify either /A or /F to activate tracing at start of
day, because it cannot be activated from the Manage program.

You can also use the Manage program to start the local node with tracing, instead of setting COMSNA and then starting the local
node. Again, you need to use the internal message tracing option, which is the equivalent of COMSNA with the /A option.

MessageTraceFile1=file1
MessageTraceFile2=file2
DLCTraceState=on (or off)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Compiling and Linking 3270 Client Applications
This section describes the 3270 client samples included with the Microsoft® Host Integration Server 2000 and the Microsoft SNA
Server SDK. These samples are also supplied as part of the Microsoft Developer Network (MSDN®) Platform SDK. The samples
are located in the \SDK\Samples\SNA folder on the Host Integration Server 2000 CD-ROM (these samples are located under the
\SDK\SAMPLES folder on the earlier SNA Server CD-ROM).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\SNA subdirectory
below where the MSDN Platform SDK has been installed.

This section lists and explains the header files and libraries needed to develop 3270 client applications for use with Host
Integration Server 2000 and SNA Server client applications. The section also provides information on compiling and linking the
3270 client applications.

This section contains:

Building the 3270 Client Samples
Client Interface Files for 3270 Applications
3270 Include Files
Compiler Options for 3270 Applications
Linking 3270 Client Applications

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Building the 3270 Client Samples
When installed from the Host Integration Server CD-ROM, all the 3270 client samples are built in a similar way, as described in
this section. First, set the following environment variables:

Variable Description
ISVLIBS The directory containing the Microsoft Host Integration Server 2000 LIB files for Microsoft Windows® 2000, Window

NT®, Windows 98, and Windows 95.
ISVINCS The directory containing the Host Integration Server 2000 header files.
SAMPLER
OOT

The root directory where the sample code provided as part of the SDK has been installed on a local hard disk.

For example, after copying the contents of the SDK folder on the Host Integration Server 2000 CD-ROM to C:\SNASDK, use the
following lines to set the variables (assumes Intel binaries are being produced for Windows 2000, Windows NT on I386,
Windows 98, or Windows 95):

Next, run NMAKE on the .mak file in each subdirectory below this root directory containing the actual sample source code. For
example, for APING and APINGD, change to the Samples\aping directory and type the following:

nmake -f makeping.mak

Note that Windows NT on DEC Alpha is not supported by the Host Integration Server SDK. If you wish to build these samples on
Windows NT for DEC Alpha, the earlier SNA Server 4.0 SDK will be required for accessing the Windows NT import libraries for
DEC Alpha under the \SDK\LIB\WINNT\ALPHA folder.

When these samples are installed as part of the Microsoft Developer Network (MSDN) Platform SDK, the build process is simpler
and doesn't require that any environment variables be set. Open an MS-DOS Command Windows, navigate to the HIS\SNA
folder, and run NMAKE to build all of the SNA samples. To compile a specific sample (RUI3270, for example), navigate to the
appropriate subdirectory (SNA\RUI3270, for example) and run NMAKE.

ISVLIBS=C:\SNASDK\Lib
ISVINCS=C:\ SNASDK\Include
SAMPLEROOT=C:\SNASDK\Samples\SNA

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Client Interface Files for 3270 Applications
The following files are required to build 3270 client applications for use with Microsoft Host Integration Server or Microsoft SNA
Server:

File Description
FMI.H Main header file containing the definitions of buffer and message formats, function prototypes for the DL-BASE/DMO

D interface calls, and constant definitions.
TRACE.H Definitions of the logging and tracing macros (see Diagnostics for more information).
FMISTR3
2.LIB

Function Management Interface string library for use with Windows 2000, Windows NT, Windows 98, or Windows 95.

SNACLI.LI
B

Main interface library for developing 3270 client applications on Windows 2000, Windows NT, Windows 98, or Windo
ws 95.

The following additional files supplied with the SNA Server SDK are required to build 3270 client applications for Microsoft
Windows 3.x, MS-DOS, or OS.2:

File Description
COMCLI.LIB Main interface library for developing 3270 client applications on OS/2.
DOSACS.LIB Main interface library for developing 3270 client applications on Microsoft MS-DOS®.
FMISTR.LIB Function Management Interface string library for use with Microsoft Windows 3.x.
WINCLI.LIB Main interface library for developing 3270 client applications on Microsoft Windows 3.x.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

3270 Include Files
To compile the application, the header files FMI.H and TRACE.H are required. In addition, one of the standard operating system
header files may be required. To include the required files, the following lines should be used in your application:

For Windows 2000, Windows NT, Windows 98, and Windows 95

For Windows version 3.x, and MS-DOS

For OS/2

#include <fmi.h>
#include <trace.h>

#include <fmi.h>
#include <trace.h>

#include <os2.h>
#include <fmi.h>
#include <trace.h>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Compiler Options for 3270 Applications
When compiling the 3270 client application, the following compiler options are required:

Option Explanation
/c Compile only, without linking. Linking is normally done as a separate phase to include the required Host Integration Ser

ver or SNA Server libraries.
/D NOT
RC

The NOTRC macro specifies that internal tracing should not be compiled into the application. See Diagnostics for more
information on the use of internal tracing.

The /D NOTRC option should be used for building a final system (internal tracing should not be included because it will
degrade performance and require more memory and resources). For a development system, you may want to compile
with internal tracing; if so, remove the /D NOTRC option.

/D WIN
32_SUP
PORT
/D MSW
IN_SUP
PORT,
/D OS2_
SUPPOR
T,
/D DOS_
SUPPOR
T

These macros are used in the header files FMI.H and TRACE.H supplied with SNA Server to support variants of the client
interface for the different operating systems supported. One of these options must be defined, depending on the operat
ing system for which the application is intended.

For Windows 2000, Windows NT, Windows 98, and Windows 95

/Gzs c: Use stdcall calling conventions on i386/i486 and Pentium class processors.
 S: Remove stack check calls.
Note::
/Gcs c: On MIPS, Alpha, and PowerPC processors, use Pascal calling conventions.

For Windows 3.x, OS/2, and MS-DOS

/G2c
s

2: Use 286 instructions.

 c: Use Pascal calling convent
ions.

 s: Remove stack check calls.
/Zp Structures must be packed.
/J Default character type is unsigned. Not valid under Windows 2000, Windows NT, Windows 98, a

nd Windows 95.

For all operating systems

The following compiler flags are required, but any of the valid options for each flag may be used, as appropriate to your
application:

/A Compiler model (for Windows 3.x, MS-DOS, and OS/2 applications only)
/O Optimization
/W Warning level

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Linking 3270 Client Applications
The following describes how to link 3270 client applications using different platforms.

For Windows 2000, Windows NT, Windows 98, and Windows 95

The SNACLI.LIB library must be linked with the application.

The DMOD is implemented as a DLL. SNACLI.LIB contains import definitions for the APIs in the DLL, and some global variables
required for the logging and tracing macros.

For OS/2

The COMCLI.LIB library must be linked with the application.

The DMOD is implemented as a DLL. COMCLI.LIB contains import definitions for the APIs in the DLL, and some global variables
required for the logging and tracing macros.

For Windows 3.x

The WINCLI.LIB and WLOGTR.LIB libraries must be linked with the application.

The DMOD is implemented as a DLL. WINCLI.LIB contains import definitions for the APIs in the DLL, and some global variables
required for the logging and tracing macros. WLOGTR.LIB contains import definitions for log and trace routines.

For MS-DOS

The DOSACS.LIB library must be linked with the application. It contains DL_BASE, DMOD, and diagnostics code.

For all operating systems

It is possible to create a DLL that is dynamically loaded when the user starts a session for an LU. In this case, to make the log and
trace macros available, the application structure needs to be as shown below:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Support for 3270 Single Sign-On
This section describes the support for single sign-on for 3270 display sessions that is available in Microsoft® Host Integration
Server 2000 and in Microsoft® SNA Server version 3.0 with Service Pack 1 or higher.

Over 3270 LUs, a single sign-on feature is supported to automate the overall logon process. When configured for this feature,
Host Integration Server or SNA Server automatically replaces special keywords in the data stream with the actual host user name
and password at appropriate points in the session.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Prerequisites for 3270 Single Sign-On
In preparation for using 3270 single sign-on, the system administrator must define a host security domain containing host
connections. This host security domain must be initially created or modified to enable the single sign-on feature. The system
administrator must enable a user’s Microsoft® Windows 2000 or Microsoft® Windows NT® account in the host security domain
and either the administrator or the user must establish a mapped host account for the Windows 2000 or Windows NT domain
user name.

The user must be logged on to a Windows 2000 or Windows NT domain with a user name and password. Note that this single
sign-on feature is only supported over 3270 LUs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings Used for 3270 Single Sign-On
The 3270 single sign-on feature depends on Host Integration Server or SNA Server scanning 3270 LUs used in the logon process
for special keywords that are defined in the registry on the computer running Host Integration Server or SNA Server. The values
for these special keywords can be defined by the system administrator on the computer running Host Integration Server or SNA
Server.

The registry settings used by the 3270 single sign-on process are located under the
HKEY_LOCAL_MACHINE\CurrentControlSet\Services registry node. Installed under the SNASERVR\PARAMETERS subkey
are the following entries:

3270SSOPadByte
This entry should be set to an ASCIIZ string to use as the character for padding replacement text in the user name or password
if these strings are shorter than the length of the special tag strings defined below. The default value for this pad character is the
ASCII space character.

3270SSOPostReplaceCount
This entry should be set to a DWORD that represents the number of message chains of RUs to scan after replacement of text for
user name or password. The default value for this number is 10.

3270SSOPrefix
This entry should be set to an ASCIIZ string to use as the special prefix tag string in combination with the user name and
password tags. The default value of this string is MS$.

3270SSOPwdTag
This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special host password string that will be replaced. The default value of this string is SAMEP, so the default host
password string that is scanned for and replaced is MS$SAMEP. Note that length of the password string that is scanned for
(MS$SAMEP, for example) determines the maximum length of the password string that can sent to the host using single sign-
on. This limit occurs because the password substitution cannot change the length of the data message
Note that the value of this string must be different from the value of the 3270SSOUserTag entry for single sign-on to function
properly.

3270SSOReplaceCount
A DWORD value that affects the timeout value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries. The
timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceCount registry entry is defined and the 3270SSOReplaceTimer registry entry is not defined, the node
counts this number of RUs (on PLU-SLU session only) before timeout occurs. If both the 3270SSOReplaceCount and
3270SSOReplaceTimer registry entries are defined, the value for 3270SSOReplaceCount will be used to determine when a
timeout will occur. By default, this key is not defined and the node defaults to a timeout of 30 seconds.

3270SSOReplaceTimer
A DWORD value that affects the timeout value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries. The
timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceTimer registry entry is defined and 3270SSOReplaceCount is not defined, the node uses this value in
seconds before timeout occurs. If both the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries are defined,
the value for 3270SSOReplaceCount will be used to determine when a timeout will occur. By default, this key is not defined
and the node defaults to a timeout of 30 seconds.

3270SSOUserTag
This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special user name string that will be replaced. The default value of this string is SAMEU, so the default user name
string that is scanned for and replaced is MS$SAMEU.
Note that length of the user name string that is scanned for (MS$SAMEU, for example) determines the maximum length of the
username string that can sent to the host using single sign-on. This limit occurs because the username substitution cannot
change the length of the data message
Note that the value of this string must be different from the value of the 3270SSOPwdTag entry for single sign-on to function
properly.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

3270 User Name and Password Replacement
The SNA node on the host monitors the inbound session for a replacement sequence consisting of the 3270SSOPrefix string
immediately followed by one of the strings 3270SSOUserTag or 3270SSOPwdTag. Thus, the default user name string that
would be scanned for and replaced is MS$SAMEU. When this string is found in the inbound session data, the node looks up the
corresponding information (host user name in the current host security domain) and overwrites MS$SAMEU with this
information. The same process occurs for the password string that would be scanned for and replaced, which defaults to
MS$SAMEP.

Note that this operation cannot change the length of the data message. If the actual user name or password that is retrieved from
the current host security domain is shorter than the replacement sequence, it is padded out with the first character of the
3270SSOPadByte string used as a padding character. If the actual host user name or password string is longer than the string
that is scanned for, these strings are truncated to the length of the scanned string so that the data message length is not affected.

Note that since the username and password can be sent in any order, the registry string values for the 3270SSOUserTag and
3270SSOPwdTag entries must be different for single sign-on to function properly.

The SNA node monitors the SSCP-LU session for these special tag strings at all times and replaces all occurrences of these strings
with corresponding looked-up data. On the LU-LU session, the node starts monitoring at start of session (BIND). The node stops
monitoring when it has received 3270SSOPostReplaceCount chains of RUs without seeing a substitution tag. The node will not
restart monitoring until it receives an UNBIND–BIND sequence for that session.

Note that the node considers the sequence:

as a continuation of the same LU-LU session and does not restart monitoring on receipt of the second BIND. This sequence is
often used by host session managers handing off a session to an application subsystem, and is considered a single terminal
session.

User IDs and passwords will be substituted in each chain on the LU-SSCP and PLU-SLU sessions until the node has received
3270SSOPostReplaceCount chains of RUs without seeing a substitution tag or a timer expires. By default the timer is set to 30
seconds, but this behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer
registry entries. The timer is started when the OPEN SSCP is received by the node. After the timer expires, the node will stop
scanning messages for the 3270 replacements strings for the user ID and password. If the replacement strings arrive after the
timer expires, the replacement strings will be sent to the host unmodified causing the signon to fail. The application will not
receive any notification that the timer has expired. The only indication of a problem will likely be that the signon to the host
session has failed.

Note that all strings are specified in the registry in ASCII, but the node translates them to EBCDIC through AE character mapping
before scanning for a match.

BIND, data, UNBIND(BIND FORTHCOMING), BIND …

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

3270 Emulation Reference
This section contains the reference material for the 3270 Emulator.

This section contains:

DL-BASE/DMOD Entry Points
FMI Message Formats
FMI Extension for the Windows Environment

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DL-BASE/DMOD Entry Points
This section gives definitions for the entry points to the DL-BASE and DMOD.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CMDGoTSR
The CMDGoTSR function initiates a background thread for the emulator and then executes an MS-DOS TSR interrupt.

MS-DOS

Parameters

entryPoint
Pointer to the function where the background thread will start execution.

stack
Pointer to the stack of the background thread.

topOfRam
Top of RAM; all memory above this address will be released by the NAP for LAN Manager or the NAP for NetWare (LMBASE
and NWBASE, respectively).

Remarks

An MS-DOS-based emulator should complete its initialization, then execute this call to go resident. A thread of execution will be
created at the entry point specified.

This call will never return control to the calling program.

SHORT APIENTRY CMDGoTSR(
 ULONG entryPoint,
 UCHAR FAR *stack,
 UCHAR FAR *topOfRam
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CMDSemClear
The CMDSemClear function clears a RAM semaphore.

MS-DOS

Parameters

ramSem
Address of the semaphore.

USHORT FAR CMDSemClear(
 ULONG FAR *ramSem
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CMDSemRequest
The CMDSemRequest function requests a RAM semaphore.

MS-DOS

Parameters

ramSem
Address of the semaphore.

timeOut
Length of time in milliseconds to wait before returning.

Return Values

0
OK.

ERROR_SEM_TIMEOUT
Time-out expired before semaphore operation completed.

ERROR_SEM_OWNED
This thread or another thread owns the semaphore, and the calling thread specified zero time-out.

USHORT FAR CMDSemRequest(
 ULONG FAR *ramSem,
 ULONG timeOut
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CMDSemSet
The CMDSemSet function sets a RAM semaphore.

MS-DOS

Parameters

ramSem
Address of the semaphore.

USHORT FAR CMDSemSet(
 ULONG FAR *ramSem
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CMDSemWait
The CMDSemWait function waits until a RAM semaphore is cleared.

MS-DOS

Parameters

ramSem
Address of the semaphore.

timeOut
Length of time in milliseconds to wait before returning.

Return Values

0
OK.

ERROR_SEM_TIMEOUT
Time-out expired before semaphore operation completed.

ERROR_SEM_OWNED
This thread or another thread owns the semaphore, and the calling thread specified zero time-out.

USHORT FAR CMDSemWait(
 ULONG FAR *ramSem,
 ULONG timeOut
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CMDStartFG
The CMDStartFG function requests that scheduling of the foreground thread be resumed.

MS-DOS

Return Values

0
The foreground thread was successfully stopped.

nonzero
The foreground thread could not be stopped.

Remarks

The emulator should issue this call after restoring the screen contents when returning to background operation.

USHORT FAR CMDStartFG();

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CMDStopFG
The CMDStopFG function requests that the foreground thread be suspended.

MS-DOS

Parameters

timeOut
Maximum time to wait for the foreground thread to return from MS-DOS before stopping it.

Return Values

0
The foreground thread was successfully stopped.

nonzero
The foreground thread was stopped within MS-DOS.

Remarks

The emulator should issue this call when it wishes to enter the foreground. If the return value is nonzero, the foreground thread
has been stopped within MS-DOS and it is not safe for the emulator to come to the foreground. Under these circumstances, the
emulator should restart the foreground thread by calling CMDStartFG.

If the call was successful, the emulator should save the contents of the screen before writing to it. When returning to background
operation, the emulator must restore the screen and call CMDStartFG to allow the previous foreground application to continue.

USHORT FAR CMDStopFG(
 USHORT timeOut
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RegisterSwitchProc
The RegisterSwitchProc function registers an application procedure that will be called whenever the 3270 emulator is about to
be switched in or out of memory by the MS-DOS version 5, MS-DOS version 6, or Windows 3.x task-switching code.

MS-DOS

Parameters

switchProc
A far pointer to the function where task activity will be notified. The function is defined as follows:

Parameters

inOut
Zero if emulator is about to be switched out of memory, 1 if emulator is about to be switched back into memory.

USHORT FAR RegisterSwitchProc(
 ULONG switchProc
);

VOID FAR PASCAL SwitchProc(
 USHORT inOut
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

routproc
The routproc function is a sample routing procedure. It must be supplied as part of the application. It is called by the DMOD with
a message that may or may not be for this application; the DMOD calls routing procedures in turn until one accepts the message.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

msgptr
Pointer to the message passed by the DMOD to the routing procedure.

locl
Locality from which message was received (if retstat indicates message returned), or locality to which path was lost (if retstat
indicates path error).

retstat
Reason for call:

CEDINMSG (1)—message returned.

CEDINLLN (2)—path error (see Remarks below).

Return Values

TRUE
The routing procedure has accepted the message.

FALSE
The message is not for this routing procedure.

Remarks

The routing procedure should first call sbpurcvx, which handles any Open response messages, as follows:

sbpurcvx(&msgptr, locl, retstat)

A return code of TRUE from sbpurcvx indicates that sbpurcvx has accepted the message; an Open error response has been
received for this application, and resource location is continuing. The routing procedure should not process the message any
further and should return TRUE to prevent the DMOD from calling further routing procedures.

A return code of FALSE from sbpurcvx indicates that the routing procedure should:

If the message is for this application, take responsibility for the message and return TRUE to prevent the DMOD from calling
further routing procedures.
If the message is not for this application, return FALSE so that the DMOD tries further routing procedures.

If a path error is returned, msgptr will not point to a valid message, and no more FMI messages will be returned for the locality
value indicated. The application is responsible for ending all sessions using this locality. The routing procedure must return FALSE;
this ensures that the lost locality is reported to all other routing procedures.

If the message is for this application, the routing procedure can either process the message immediately or put the message on
an application queue and then post the application using a semaphore. See Receiving Messages for more information.

DWORD routproc(
 BUFHDR *msgptr,
 USHORT locl,
 USHORT retstat
);

USHORT FAR _loadds routproc(
 BUFHDR FAR *msgptr,
 USHORT locl,
 USHORT retstat
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sbpibegt
The application calls the sbpibegt function to get a buffer element to append to an existing buffer.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

eltptr
Pointer to a pointer to an element. On return this points to a pointer to the element obtained, or to NULL if an element was not
obtained (an internal error).

Remarks

This function should only be used to get extra elements for an existing buffer. The sepdbubl function should be used to get a new
buffer.

The new element should be added to the chain of elements from the existing buffer header and the count of the number of
elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is longer than the incoming
message.

VOID sbpibegt(
 PTRBFELT *eltptr
);

VOID FAR sbpibegt(
 PTRBFELT FAR *eltptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sbpiberl
The application calls the sbpiberl function to release a buffer element from an existing buffer.

WIn32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

eltptr
Pointer to a pointer to the element to be released.

Remarks

This function should only be used to release surplus elements from a buffer. The sepdburl function should be called to release the
entire buffer.

The released element should first be removed from the element chain and the count of the number of elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is shorter than the incoming
message.

VOID sbpiberl(
 PTRBFELT *eltptr
);

VOID FAR sbpiberl(
 PTRBFELT FAR *eltptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sbpuinit
The sbpuinit function initializes the DL-BASE.

Win32

MS-DOS

OS/2

Windows Version 3.x

Parameters

sema4ptr
Semaphore, created by DMOD, cleared by DMOD when a message is available. For MS-DOS, the application should supply the
address of a 4-byte (long) integer. This address is for internal use by Host Integration Server or SNA Server—the application
should not subsequently attempt to reference the address.

proctype
Type of process: CLIENT–2.

servtype
Type of service/client: CES3270–2.

uname
Pointer to a character buffer of length at least 21 characters; the LAN Manager user name, or other identifying name
appropriate to the network operating system, is returned to the application in this buffer. The application does not need to use
this parameter, but can use it for display or logging.

Return Values

NO_ERROR
Initialization successful.

Any other return value indicates that the initialization failed. This is usually an operating system return code. The following values
are also used:

DMLTABF (555)
L table is full.

USHORT sbpuinit(
 HANDLE *sema4ptr,
 USHORT proctype,
 USHORT servtype,
 UCHAR *uname
);

USHORT FAR sbpuinit(
 HSEM FAR *sema4ptr,
 USHORT proctype,
 USHORT servtype
);

USHORT FAR sbpuinit(
 HSEM FAR *sema4ptr,
 USHORT proctype,
 USHORT servtype,
 UCHAR *auname
);

USHORT FAR sbpuinit(
 USHORT proctype,
 USHORT servtype,
 UCHAR FAR *uname
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

DMMNWGI (562)
Failed to get network operating system information.

DMDSTFL (563)
Service table is full.

DMMPIPF (567)
Failed to make a named pipe.

DMCOMNM (582)
No name registered for this application.

DMCOMDUP (596)
A service is already running with the same name.

DMNOTLOG (598)
User is not logged on to network operating system.

DMCFGOPN (616)
Failed to open configuration file.

DMCFGREAD (618)
Failed to read from configuration file.

DMNONAP (625)
The NAP is not started.

DMMAXAPP (953)
Windows only:
Maximum number of concurrent applications exceeded.

Remarks

The sbpuinit entry point should always be called before any other DL-BASE/DMOD entry points except SNAGetVersion. For new
emulators, sepdcrec should be called after sbpuinit. (Because of the order of calls used in older emulators, a call to sepdcrec
before sbpuinit is still supported, but this order is not recommended.)

Microsoft Host Integration Server 2000

sbpurcvx
The sbpurcvx function processes Open responses from a routing procedure. An application can define a routing procedure that is
called by the DMOD when a message is received. This routing procedure should first call sbpurcvx to handle any Open response
messages received. This ensures that Open responses intended for the Resource Locator are handled correctly.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

msgptr
Pointer to the message returned by the DMOD to the routing procedure.

locl
Locality from which message was received (if retstat indicates message returned), or locality to which path was lost (if retstat
indicates path error).

retstat
Reason for call:

CEDINMSG (1—message returned.

CEDINLLN (2)—path error.

Return Values

TRUE
The Resource Locator has accepted the message; the application should not process it any further.

FALSE
The message should be processed by the application.

Remarks

This function is called by a routing procedure that is called by the DMOD; it is not called directly by the application.

The parameters for sbpurcvx should be taken from the parameters for routproc. Note, however, that the first parameter to
sbpurcvx is a pointer to a pointer to a buffer header (that is, a pointer to the corresponding parameter for the routing procedure,
not the parameter itself).

USHORT sbpurcvx(
 BUFHDR * *msgptr,
 INTEGER locl,
 INTEGER retstat
);

USHORT FAR sbpurcvx(
 BUFHDR FAR * FAR *msgptr,
 INTEGER locl,
 INTEGER retstat
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sbpusend
The sbpusend function sends a message from an application to a partner on an LPI connection.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

msgptr
Pointer to the message to be sent.

Remarks

The message buffer is released after transmission by the DMOD. It cannot be accessed by the application again.

For an Open request message, the destl parameter can be zero. In this case, the Resource Locator will attempt to find a suitable
destination for the Open message.

VOID sbpusend(
 PTRBFHDR msgptr
);

VOID FAR sbpusend(
 PTRBFHDR msgptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sbputerm
The sbputerm function must be called when the application terminates. It frees the DL-BASE/DMOD resources used by the
application.

For Win32, do not call sbputerm from an entry point in a detached DLL process because it may cause a deadlock inside the
SNADMOD.DLL.

Win32

MS-DOS, Windows Version 3.x, and OS/2

VOID sbputerm(void);

VOID FAR sbputerm(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sepdbubl
The application calls the sepdbubl function to get a buffer with a requested number of elements.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

noelts
Number of elements required.

Return Values

A pointer to the buffer obtained; NULL if a buffer could not be obtained.

Remarks

Each element has a size of 268—the constant SNANBEDA in the header file FMI.H.

The returned buffer consists of a header and the required number of elements. The header points to the first element, which
points to the next element, and so on to make an element chain.

It is possible to add an element to an existing buffer by calling sbpibegt to get the extra element. The new element should be
added to the element chain of the buffer, and the “number of elements” count should be updated.

The application must release any buffers that are not transmitted.

PTRBFHDR sepdbubl(
 USHORT noelts
);

PTRBFHDR FAR sepdbubl(
 USHORT noelts
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sepdburl
The application calls the sepdburl function to release a buffer.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

msgptr
Pointer to the buffer to be released.

Remarks

It is important that buffers are released after use. This is done automatically when a message is transmitted. For messages
received, it is the responsibility of the application to either release or reuse the buffer.

This function releases both the buffer header and any associated buffer elements. It is possible to release single elements from a
buffer by using the function sbpiberl.

VOID sepdburl(
 PTRBFHDR msgptr
);

VOID FAR sepdburl(
 PTRBFHDR msgptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sepdchnk
The sepdchnk function gets the FMI chunk size. The application calls this function to obtain the chunk size that should be used on
the FMI. See Pacing and Chunking for more information on FMI chunking. This feature is supported in Comm Server version 1.2
and later and in Host Integration Server and SNA Server by 3270 client applications developed for use on Windows 2000,
Windows NT, WIndows 98, and Windows 95.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

pipesizeptr
Size in bytes of the pipe between the application and the local node.

chunksizeptr
DMOD chunk size in bytes.

Remarks

The application does not need to use the pipe size returned by this call. (It is included on this call because the local node uses the
same call to obtain both the pipe size and the chunk size.)

VOID sepdchnk(
 USHORT *pipesizeptr,
 USHORT *chunksizeptr
);

VOID FAR sepdchnk(
 USHORT FAR *pipesizeptr,
 USHORT FAR *chunksizeptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sepdcrec
The sepdcrec function gets configuration information. The application calls this function to obtain the 3270 configuration
information for the name with which the user logged on to the network operating system. The call also registers this user name in
the service table.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

pBuffer
Pointer to a buffer supplied by the application, in which configuration information is returned.

length
Size of the supplied buffer.

numbytes
Used by Host Integration Server or SNA Server to return the number of bytes of information returned in the buffer.

Return Values

NO_ERROR (0)
OK.

NOCSSRVR (1)
No configuration file server available.

NODGNREC (2)
No diagnostics record found in configuration file.

NOUSRREC (3)
No user record found in configuration file for this user.

BUF2SMAL (4)
Supplied buffer was too small.

NONOS (5)
Network operating system is not started.

NOTLOGON (6)
User is not logged on to the network operating system.

READERR (7)
Failed to read from configuration file.

NONAP (8)
The NAP is not started.

MAXAPP (9)
Windows only:
Maximum number of concurrent applications exceeded.

ERROR_SERVER (14)
Error on the server end of the RPC.

ERROR_LOCAL_FAILURE (15)
Error on the local end of the RPC.

Remarks

The sbpuinit function should always be called before any other DL-BASE/DMOD entry points except SNAGetVersion. For new
emulators, sepdcrec should be called after sbpuinit. (Because of the order of calls used in older emulators, a call to sepdcrec

USHORT sepdcrec(
 UCHAR *pBuffer,
 USHORT length,
 USHORT *numbytes
);

USHORT FAR sepdcrec(
 UCHAR *pBuffer,
 USHORT length,
 USHORT *numbytes
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

before sbpuinit is still supported, but this order is not recommended.)

On successful return, the buffer contains pointers to the appropriate 3270 user record and the diagnostics record, followed by the
records themselves. It is formatted as follows:

Win32

(UserRecord—variable length)

(DiagRecord)

MS-DOS, Windows Version 3.x, and OS/2

(UserRecord—variable length)

(DiagRecord)

The two records should be accessed using the supplied pointers.

See Configuration Information for details of the format of these records and of how the application uses the configuration file
information.

If there is no 3270 user record for this user in the configuration file, or if no diagnostics record is found in the configuration file
(an internal error), the application should terminate and not allow the user to use 3270 emulation. The Host Integration Server or
SNA Server error log messages COM0438 and COM0437 can be used to report these failures.

If the supplied buffer is too small for the returned information, the contents of the buffer are undefined and should not be
examined, but the numbytes parameter will contain the total number of bytes of information available (that is, the size of the two
pointers plus the two configuration records). The application should retry with a buffer of at least this size.

 TECWRKUS *pUserRecord,
 TEDIAGNS *pDiagRecord
);

 TECWRKUS FAR *pUserRecord,
 TEDIAGNS FAR *pDiagRecord
);

Microsoft Host Integration Server 2000

sepdgetinfo
The sepdgetinfo function returns a structure containing the version number of Host Integration Server or SNA Server, the path
of the current configuration file, and the network operating system over which SNA server is running.

Win32

MS-DOS, Windows Version 3.x, and OS/2

Parameters

pCSInfo
Pointer to a buffer supplied by the application, containing a cs_info data structure in which system information is returned. The
application must set the length member in this data structure (see Remarks below); the other members should be set to nulls
or blanks.

The cs_info structure

The returned cs_info structure and its members are as follows:

Members

length
Length of the data structure supplied by the application.

major_ver
Major version number:

1 for CS 1.1
2 for CS 2.0

minor_ver
Minor version number (decimal):

10 for CS 1.1 (indicates 1.10)
00 for CS 2.0 (indicates 2.00)

config_share[80]
Path of the running configuration file: \\server\share\ (null terminated).

nos
Network operating system in use

1: LAN Manager / LAN Server
2: NetWare

Return Values

NO_ERROR (0)
OK.

USHORT sepdgetinfo(
 struct cs_info *pCSInfo
);

USHORT FAR sepdgetinfo(
 struct cs_info FAR *pCSInfo
);

struct cs_info {
 unsigned short length;
 unsigned char major_ver;
 unsigned char minor_ver;
 unsigned char config_share[80];
 unsigned short nos;
 } cs_info;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

NOCSSRVR (1)
No configuration file server available.

BADLNGTH (2)
Supplied buffer was too small.

Remarks
The application must set the length member to the length of the cs_info structure (86 bytes in the current version). Any other
value will be rejected. This parameter is used to ensure compatibility with future versions; an application supplying this length will
always obtain the information shown here, but in future versions it may be possible to specify larger values and obtain further
information.

On successful return, the data structure cs_info contains the version number of Host Integration Server or SNA Server, the path
of the current configuration file, and the network operating system over which SNA server is running.

Do not use the configuration file path returned by sepdgetinfo because NetWare clients will not be able to access this path.

If there is no configuration file server available, only the version number fields are valid; the other fields should not be checked.

Microsoft Host Integration Server 2000

sepdrout
The sepdrout function for Win32, MS-DOS, and OS/2 allows an application to perform its own routing of received messages by
setting up a procedure that is called by the DMOD when a message is received.

Win32

MS-DOS and OS/2

Parameters

proc_addr
The routing procedure.

Return Values

NO_ERROR (0)
Successful.

Anything else
Unsuccessful.

Remarks

This facility is only available to clients, as defined in the call to sbpuinit.

An application can have up to four routing procedures. Note that the APPC and CSV libraries each use a routing procedure. When
the DMOD receives a message, each routing procedure is called, until one accepts the message.

See routproc for an example of a routing procedure.

‹DWORD sepdrout(
DWORD (*proc_addr,)
(BUFHDR *, USHORT, USHORT
);
 ›
DWORD sepdrout(
 DWORD *proc_addr,
 (BUFHDR *, USHORT, USHORT
);

‹USHORT FAR sepdrout(
USHORT (FAR *FAR proc_addr)();
 ›
USHORT FAR sepdrout(

 USHORT (FAR *FAR proc_addr)();
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

sepwrout
The sepwrout function is the Windows version 3.x version of sepdrout; it has the same parameters and is used in exactly the
same way.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetVersion
The SNAGetVersion function returns the major version number in the low byte and minor version number in the high byte.

MS-DOS

USHORT FAR SNAGetVersion(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FMI Message Formats
This section describes the message formats for the Function Management Interface (FMI). The message formats are presented in a
language-independent notation. Details of the message format notation and key assumptions about the contents of the message
formats are as follows:

"Reserved" indicates that the field is set to zero (for a numeric field) or all nulls (for names) by the sender of the message.
"Undefined" indicates that the value of the field is indeterminate. The field is not set by the sender and should not be
examined by the receiver of the message.
Fields that occupy two bytes — such as opresid in the Open(PLU) Request — are represented with the most arithmetically
significant byte in the lowest byte address, irrespective of the normal orientation used by the processor on which the
software executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest byte address. However, the following
fields are exceptions:

The srci and desti fields in buffer headers are stored in the local format of the application that assigns them, since only the
assigning application needs to interpret these values.

The startd and endd fields in elements are always stored in low-byte, high-byte orientation (the normal orientation of an
Intel processor).

Messages are composed of buffers consisting of a buffer header and zero or more buffer elements; see Messages for more
information on buffer formats.
Applications must assign unique index (I) values for every active LPI connection within the node. In particular, the
Open(SSCP) Request must be different from the source index it sends in response to the Open(PLU). Additionally, zero
should not be used as an I value. An I value of zero means that the sender of the message is inviting the recipient of the
message to assign an I value.
The startd field in each element gives the offset of the first byte of data in the element after the trpad field.

For non-LUA applications, startd will either be 1 (data starts in the byte after the trpad field), 10 (nine bytes of padding are
included between the trpad field and the start of the data), or 13 (12 bytes of padding are included between the trpad field
and the start of the data).

For LUA applications, startd is 4 (three bytes of padding between the trpad field and the start of the data) in the first
element of a message and 13 (12 bytes of padding) in subsequent elements.

The extra bytes are used by the local node for additional header information; this avoids having to copy data into a new
buffer when adding this information.

Because startd indicates the index into dataru starting from 1, not 0, the first byte of valid data will always be at
dataru[startd–1].
If startd is greater than endd, there is no valid data in the message.
All fields within dataru are of type CHAR, except where the remarks indicate otherwise.

Note that where a buffer element has a startd of 1, 10, or 13, this only applies to the initial element in the chain of elements, and
subsequent elements in the chain have a startd of 1. Messages with two distinct linked element chains in the message formats
(for example Open(PLU) Request and Open(PLU) OK Response), have the startd field in the elements at the start of the chains as
the value (1, 10, or 13) given in the message format, and the startd fields in all other elements as 1.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(SSCP)
The Open(SSCP) message is used by the application to open the SSCP connection. The Open request is sent by the application to
the node, and the Open response comes from the node to the application.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(SSCP) Request
The Open(SSCP) Request message flows from the application to the node. It is used with an SSCP connection.

Element 1

Element 2

Members

nxtqptr
Pointer to next buffer header.

hdrept
Pointer to first buffer element.

numelts
Number of buffer elements (0x02).

msgtype
Message type OPENMSG (0x01).

srcl
Source locality.

srcp
Source partner (see Remarks).

srci
Source index.

struct Open(SSCP) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdrept;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
 CHAR ophdr.opnpad1;
};

struct Open(SSCP) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

struct Open(SSCP) Request {
 PTRBFELT hdreptr->elteptr->elteptr;
 INTEGER hdreptr->elteptr->startd;
 INTEGER hdreptr->elteptr->endd;
 CHAR hdreptr->elteptr->trpad;
 CHAR[268] hdreptr->elteptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

ophdr.openqual
Open qualifier REQU (0x01).

ophdr.opentype
Open type SSCPSEC (0x01).

ophdr.appltype
Application program interface type.

Possible values are:

FMI without chunking (0x02)

FMI with chunking (0x82) (see Remarks).

ophdr.opluno
Logical unit number (see Remarks).

ophdr.opresid
Resource identifier.

ophdr.icreditr
Reserved.

ophdr.icredits
Reserved.

ophdr.opninfo1
Reserved.

ophdr.opnpad1
Open force type (see Remarks).

Values can be:

OPEN_TEST (0x00)

OPEN_FORCE (0x01)

Element 1

hdreptr–>elteptr
Pointer to next buffer element.

hdreptr–>startd
Start of data in this buffer element (1).

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved (1 byte).

hdreptr–>dataru
Data RU

The bits of this member represent the following values:

dataru[0–9] Source name.

Should be filled with blanks.

dataru[10–19] Destination name.

Set to the LU you want to communicate with.

dataru[20] Sense 4003 flag.

dataru[21] Sense 4004 flag.

dataru[22] Sense 4006 flag.

dataru[23] Sense 4007 flag.

dataru[24] Sense 4009 flag.

dataru[25] Sense 400A flag.

dataru[26] Sense 400B flag.

dataru[27] Sense 400C flag.

dataru[28] Sense 400D flag.

dataru[29] Sense 400F flag.

dataru[30] Sense 4011 flag.

dataru[31] Sense 4012 flag.

dataru[32] Sense 4014 flag.

dataru[33] High priority indicator.

Possible values are:

HIGH (0x01)

LOW (0x02)

dataru[34] LUA supported indicator.

Possible values are:

Supported (0x01)

Not supported (0x00)

dataru[35–36] Chunk size obtained from DMOD (see Remarks).

dataru[37] Segment delivery option.

Possible values are:

Do not deliver RU segments (0x00)

Deliver RU segments (0x01)

dataru[38] HLLAPI session identifier (see Remarks).

Element 2

hdreptr–>elteptr–>elteptr
Pointer to next buffer element (NIL).

hdreptr–>elteptr–>startd
Start of data in this buffer element (1).

hdreptr–>elteptr–>endd
End of data in this buffer element.

hdreptr–>elteptr–>trpad
Reserved.

hdreptr–>elteptr–>dataru
Data RU, as follows:

dataru[0]

ASCII string identifying the 3270 emulator (see Remarks).

Remarks

The Open(SSCP) Request message consists of a buffer header and two buffer elements.
The source L value, the destination LPI values, and the source name are reserved.
For a 3270 emulator, the source P value must be set to S3PROD (0x12), which identifies the application as a 3270 emulator.
The destination name should be set to the LU name or pool name taken from the 3270 user record (right-filled with ASCII
spaces if fewer than 10 characters).
An LUA application uses the source P value LUAPROD (0x1D). This is independent of the value of the LUA supported
indicator (see below), which selects the LUA variant of the FMI.
The SNS4003 to SNS4014 fields together with the high priority indicator are referred to in the text (see
Opening the SSCP Connection) as the SSCP connection information control block (CICB). A value of 0x00 indicates that the

DFC receive check corresponding to the sense code is not supported for this LU. A value of 0x01 indicates that it is
supported. Note that the corresponding send checks are always performed regardless of these values.
The LU number is only used internally in the local node on the Open(SSCP) Request. It is generated from the destination
name in the first element.
The open force type field is used when locating resources across more than one server and for automatic activation of
connections when the application wishes to use an LU for which the connection is inactive. The application does not need to
set this flag; it is used by the DL-BASE. See Opening the SSCP Connection for details.
The application program interface type field defines whether RU chunking is used from the local node to the application;
this may be necessary if large RUs are being used. See Pacing and Chunking for more information on FMI chunking. This
feature is not yet supported in Host Integration Server or SNA Server but is described here for completeness because
support is planned for a future version.
The chunk size field (at dataru[35]) is an integer value.
The segment delivery option specifies whether the local node should deliver segments of RUs to the application as soon as
they are received or should assemble whole RUs before delivering them to the application. Segment delivery allows the
application to update the user's screen as soon as data is received ("window shading"), which can result in a faster perceived
response. See Segment Delivery for more information. This option is required only when chunking is being used; it is
included on this message so that the local node can calculate the initial chunk credit values on the corresponding PLU
connection. The option must still be set on the Open(PLU) Response; the setting specified on that message will override
the one specified here if there is a conflict. If this happens, the initial credit values may not be suitable.
The LUA supported indicator specifies whether the application uses the LUA variant of the FMI.
If the element is shorter than (s+34) bytes, Host Integration Server or SNA Server assumes no LUA and no chunking. This
ensures backward compatibility with previous versions of the local node software in which these options were not available.
The HLLAPI session identifier is a single ASCII character that identifies the 3270 display session to which the Open(SSCP)
applies. HLLAPI uses this to identify a particular 3270 presentation space to which an HLLAPI function refers; it is also
referred to by 3270 as the session's short name, or by HLLAPI as the presentation space identifier (PS identifier). If the 3270
emulator does not support session identifiers, this field should be set to zero.
The second element contains an ASCII string that you can use to identify the type of 3270 emulator, such as "Select SNA
Server OS/2 3270." This string will be logged in the audit log file by the client's DL-BASE and can also be seen in traces. The
startd and endd fields must be set up to define the limits of this string.

Microsoft Host Integration Server 2000

Open(SSCP) Response
The Open(SSCP) Response message flows from the node to the application. It is used with an SSCP connection.

Element 1

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to first buffer element.

numelts
Number of buffer elements (0x01).

msgtype
Message type OPENMSG (0x01).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

ophdr.openqual
Open qualifier.

Possible values are:

RSPOK (0x02)
RSPERR (0x03)

struct Open(SSCP) Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.operr1;
 INTEGER ophdr.operr2;
};

struct Open(SSCP) Response {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[256] dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

ophdr.opentype
Open type SSCPSEC (0x01).

ophdr.appltype
Application program interface type.

Possible values are:

0x02 (FMI application)

ophdr.opluno
Logical unit number.

ophdr.opresid
Resource identifier.

ophdr.operr1
Error code 1.

ophdr.operr2
Error code 2.

Element 1

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element (1).

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved (1 byte).

hdreptr–>dataru
Data RU

Bits in this member have the following values:

dataru[0–9] Source name.

dataru[10–19] Destination name.

dataru[20–27] Name of the local node that accepted the Open.

dataru[28–35] Name of the connection used by the LU.

dataru[36–37] The local node's internal identifier for the connection (see Remarks).

dataru[38] The type of link service used by the connection:

CESLINK (03) - SDLC
CESX25 (04) - X.25
CESDFT (10) - DFT
CESTR (11) - Token Ring
CESTCPIP (30) - TCP/IP
CESRELAY (31) - Frame Relay
CESCHANL (32) - Channel
CESISDN (33) - ISDN
CESETHER (34) - Ethernet 802.2

Remarks

The Open(SSCP) Response message consists of a buffer header and a single buffer element.
If the open qualifier is RSPERR, the error code is valid (see Error and Sense Codes), and the LPIs and names are undefined.
The LU number indicates the LU selected by the local node from the configuration data (see Opening the SSCP Connection.
When the Open(SSCP) is for an LU group, the source name contains the name of the selected LU.
The connection identifier is an integer value. It uniquely identifies a particular connection on this local node; all sessions
using the same connection will return the same identifier. This value is typically used when a link error is received on one
session to determine which other sessions will be affected.

Microsoft Host Integration Server 2000

Open(PLU)
The Open(PLU) message is used by the local node to open the PLU connection with the application on receipt of a BIND
command from the host.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(PLU) Request
The Open(PLU) Request message flows from the node to the application. It is used with a PLU connection.

Element 1

Element 2

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to first buffer element.

numelts
Number of buffer elements (0x02).

msgtype
Message type OPENMSG (0x01).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl

struct Open(PLU) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
};

struct Open(PLU) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

struct Open(PLU) Request {
 PTRBFELT hdreptr->elteptr->elteptr;
 INTEGER hdreptr->elteptr->startd;
 INTEGER hdreptr->elteptr->endd;
 CHAR hdreptr->elteptr->trpad;
 CHAR[] hdreptr->elteptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Destination locality.
destp

Destination partner.
desti

Destination index.
ophdr.openqual

Open qualifier REQU (0x01).
ophdr.opentype

Open type LUSEC (0x02).
ophdr.appltype

Application program interface type.

Possible values are:

0x02 (FMI application)

ophdr.opluno
Logical unit number.

ophdr.opresid
Resource identifier.

ophdr.icreditr
Initial credit for flow from application to local node: zero (no flow control).

ophdr.icredits
Recommended initial credit for flow from local node to application:
Pacing window + 1.

ophdr.opninfo1
Negotiable bind indicator

Possible values are:

Bind is not negotiable (0x00)

Bind is negotiable (0x01)

Element 1

hdreptr–>elteptr
Pointer to buffer element.

hdreptr–>startd
Start of data in this buffer element (1).

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU, as follows:

dataru[0–9] Source name.

dataru[10–19] Destination name.

dataru[20] Secondary pacing send window.

dataru[21] Secondary pacing receive window.

dataru[22–23] Secondary send maximum RU size (see Remarks).

dataru[24–25] Primary send maximum RU size (see Remarks).

dataru[26] Secondary send chunk size (in units of elements).

dataru[27] Primary send chunk size (in units of elements).

Element 2

hdreptr–>elteptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>elteptr–>startd
Start of data in this buffer element (13).

hdreptr–>elteptr–>endd

End of data in this buffer element.
hdreptr–>elteptr–>trpad

Reserved.
hdreptr–>elteptr–>dataru

Data RU, as follows:

dataru[13] The BIND RU received from the host.

Remarks

The Open(PLU) Request message consists of a buffer header, an initial element containing the source and destination
names, RU sizes, and so on, followed by a second element containing the BIND RU received from the host.
The source LPI and the L and P parts of the destination LPI are valid, but the I part of the destination LPI is reserved.
The two send maximum RU size fields (in dataru[22–25]) are both integer values.
The BIND RU can be up to 256 bytes in length.
If the application is using the LUA variant of the FMI (see FMI Concepts), the BIND RU is preceded by its TH and RH; the
startd field of the second element points to the TH.
The LU number matches that allocated to the named application on the Open(SSCP) Response.
The resource identifier matches the value used by the application on the Open(SSCP) Request.
If chunking was specified on the Open(SSCP) Request, the icredits (initial credit from local node to application) field
specifies the number of chunks, rather than RUs, that can be transmitted. The two send chunk size parameters are specified
in units of elements (each element contains up to 256 bytes of RU data). A value of zero indicates that the chunk size is not
the limiting factor in determining the size of messages; the limiting factor is the RU size or the segment size, so chunking is
not required. In this case, credit will still be used, with the unit of credit being a message.
The icreditr (initial credit from application to local node) field is not used and must be set to zero.

Microsoft Host Integration Server 2000

Open(PLU) OK Response
The Open(PLU) OK Response message flows from the application to the node. It is used with a PLU connection.

Element 1

Element 2

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to first buffer element.

numelts
Number of buffer elements (0x02).

msgtype
Message type OPENMSG (0x01).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl

struct Open(PLU) OK Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
};

struct Open(PLU) OK Response {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

struct Open(PLU) OK Response {
 PTRBFELT hdreptr->elteptr->elteptr;
 INTEGER hdreptr->elteptr->startd;
 INTEGER hdreptr->elteptr->endd;
 CHAR hdreptr->elteptr->trpad;
 CHAR[268] hdreptr->elteptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Destination locality.
destp

Destination partner.
desti

Destination index.
ophdr.openqual

Open qualifier RSPOK (0x02).
ophdr.opentype

Open type LUSEC (0x02).
ophdr.appltype

Application program interface type.

Possible values are:

0x02 (FMI application)

ophdr.opluno
Logical unit number.

ophdr.opresid
Resource identifier.

ophdr.icreditr
Initial credit for flow from application to local node: zero.

ophdr.icredits
Initial credit for flow from local node to application; only valid if APPLPAC = 0x01.

ophdr.opninfo1
Negotiable bind indicator.

Possible values are:

Bind is not negotiable (0x00)

Bind is negotiable (0x01)

Element 1

hdreptr–>elteptr
Pointer to buffer element.

hdreptr–>startd
Start of data in this buffer element (1).

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU, as follows:

dataru[0–9] Source name.

dataru[10–19] Destination name.

dataru[20] Segment delivery option.

Possible values are:

Do not deliver RU segments (0x00)

Deliver RU segments (0x01)

dataru[21] Application pacing option.

Possible values are:

No application pacing (0x00)

Application pacing (0x01)

dataru[22] Application cancel option

Cancel is generated by:

local node (0x00)

application (0x01)

dataru[23] Application transaction numbers option

Transaction numbers are:

not supported by application (0x00)

supported by application (0x01)

dataru[24] BIND table index

Possible values are:

BIND_TABLE_INDEX_PRT (1) (printer session)

BIND_TABLE_INDEX_CRT (2) (display session)

Element 2

hdreptr–>elteptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>elteptr–>startd
Start of data in this buffer element (13).

hdreptr–>elteptr–>endd
End of data in this buffer element.

hdreptr–>elteptr–>trpad
Reserved.

hdreptr–>elteptr–>dataru
Data RU, as follows:

dataru[13] The BIND RU.

Remarks

The Open(PLU) OK Response message consists of a buffer header, an initial element containing the source and destination
names and CICB, followed by elements containing the BIND RU received from the host.
The application should reflect the source and destination LPIs and the source and destination names from the
Open(PLU) Request and must supply the I part of the source LPI.

The fields from segment delivery option to bind table index (in the first element) are referred to in the text as the PLU connection
information control block (CICB). See Opening the PLU Connection for further information on the contents of the CICB.

The BIND RU can be up to 256 bytes in length.
For LUA, the BIND RU is not preceded by its TH and RH (contrast with the Open(PLU) Request, where the TH and RH are
included).
As in the Open(PLU) Request, the icredits value is in units of chunks if chunking is being used.

Microsoft Host Integration Server 2000

Open(PLU) Error Response
The Open(PLU) Error Response message flows from the application to the node. It is used with a PLU connection.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to first buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type OPENMSG (0x01).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

ophdr.openqual
Open qualifier RSPERR (0x03).

ophdr.opentype
Open type LUSEC (0x02).

ophdr.appltype
Application program interface type.

Possible values are:

0x02 (FMI application)

ophdr.opluno
Logical unit number.

ophdr.opresid
Resource identifier.

ophdr.operr1
Error code 1.

ophdr.operr2

struct Open(PLU) Error Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.operr1;
 INTEGER ophdr.operr2;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Error code 2.

Remarks

The Open(PLU) Error Response message consists of a buffer header only.
The application should reflect the source and destination LPIs.

Microsoft Host Integration Server 2000

Open(PLU) OK Confirm
The Open(PLU) OK Confirm message flows from the node to the application. It is used with a PLU connection.

Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to first buffer element.

numelts
Number of buffer elements (0x01).

msgtype
Message type OPENMSG (0x01).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

dsti
Destination index.

ophdr.openqual
Open qualifier CONFOK (0x04).

ophdr.opentype
Open type LUSEC (0x02).

ophdr.appltype

struct Open(PLU) OK Confirm {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER dsti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
};

struct Open(PLU) OK Confirm {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Application program interface type.

0x02 (FMI application)

ophdr.opluno
Logical unit number.

ophdr.opresid
Resource identifier.

ophdr.icreditr
Reserved.

ophdr.icredits
Reserved.

ophdr.opninfo1
PLU address.

Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element (1).

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU, as follows:

dataru[0] FM profile.

dataru[1] TS profile.

dataru[2] Primary chaining use.

dataru[3] Primary request control mode.

dataru[4] Primary chain response protocol.

dataru[5] Primary two-phase commit.

dataru[6] Primary compression indicator.

dataru[7] Primary send end bracket (EB) indicator.

dataru[8] Secondary chaining use.

dataru[9] Secondary request control mode.

dataru[10] Secondary chain response protocol.

dataru[11] Secondary two-phase commit.

dataru[12] Secondary compression indicator.

dataru[13] Secondary send EB indicator.

dataru[14] FM header usage.

dataru[15] Bracket usage.

Possible values are:

Brackets not used (0x00)

Brackets used (0x01)

dataru[16] Bracket reset state.

Possible values are:

Bracket reset state between-brackets (BETB) (0x01)

Bracket reset state in-bracket (INB) (0x02)

dataru[17] Bracket termination rule.

dataru[18] Alternate code set indicator.

dataru[19] Sequence number availability.

dataru[20] Normal-flow send/receive mode.

dataru[21] Half-duplex flip-flop reset.

dataru[22] Secondary pacing send window.

dataru[23] Secondary pacing receive window.

dataru[24–25] Secondary send maximum RU size (INTEGER value).

dataru[26–27] Primary send maximum RU size (INTEGER value).

dataru[28] LU-LU session type.

dataru[29] PLU name size.

dataru[30–37] PLU name (EBCDIC).

dataru[38] Session type 1: PS FMH type.

dataru[39] PS data stream profile.

dataru[40] Number of outstanding destinations.

dataru[41] Compacted data indicator.

dataru[42] PDIR allowed indicator.

dataru[43] Session type 2 or 3: query support.

dataru[44] Dynamic screen size.

dataru[45] Basic row size.

dataru[46] Basic column size.

dataru[47] Alternate row size.

dataru[48] Alternate column size.

Remarks

The Open(PLU) OK Confirm message consists of a buffer header and one element.
The message does not carry source and destination names; both LPIs are valid.
The contents of dataru are referred to in the text as the PLU bind information control block (BICB). The BICB is only valid for
an open-qualifier of CONFOK. See Opening the PLU Connection for further information on the contents of the BICB.

Microsoft Host Integration Server 2000

Open(PLU) Error Confirm
The Open(PLU) Error Confirm message flows from the node to the application. It is used with a PLU connection.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to first buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type OPENMSG (0x01).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

ophdr.openqual
Open qualifier CONFERR (0x05).

ophdr.opentype
Open type LUSEC (0x02).

ophdr.appltype
Application program interface type

Possible values are:

0x02 (FMI application)

ophdr.opluno
Logical unit number.

ophdr.opresid
Resource identifier.

ophdr.operr1
Error code 1.

ophdr.operr2

struct Open(PLU) Error Confirm {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.operr1;
 INTEGER ophdr.operr2;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Error code 2.

Remarks

The Open(PLU) Error Confirm message consists of a buffer header only.
The error codes are valid (see Error and Sense Codes. An Open(PLU) Error Confirm closes the connection.

Microsoft Host Integration Server 2000

Close(SSCP)
The Close(SSCP) message closes an open SSCP connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(SSCP) Request
The Close(SSCP) Request message flows from the application to the node. It is used with an SSCP connection.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type CLOSEMSG (0x02).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

clhdr.closqual
Close qualifier REQU (0x01).

clhdr.clstype
Close subtype SSCPSEC (0x01).

Remarks

The Close(SSCP) Request message consists of a buffer header only; there is no buffer element.

struct Close(SSCP) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER destr;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(SSCP) Response
The Close(SSCP) Response message flows from the node to the application. It is used with an SSCP connection.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type CLOSEMSG (0x02).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

clhdr.closqual
Close qualifier RSPOK (0x02).

clhdr.clstype
Close subtype SSCPSEC (0x01).

Remarks

The Close(SSCP) Response message consists of a buffer header only; there is no buffer element.
The Close(SSCP) protocol is unconditional. It is not possible for the local node to keep the SSCP connection open after the
application sends Close(SSCP).

struct Close(SSCP) Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(PLU)
The Close(PLU) message closes an open PLU connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(PLU) Request
The Close(PLU) Request message flows from the node to the application and from the application to the node. It is used with a
PLU connection.

LUA only (see Remarks):
Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL if not using LUA).

numelts
Number of buffer elements (0x00 if not using LUA).

msgtype
Message type CLOSEMSG (0x02).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

clhdr.closqual
Close qualifier REQU (0x01).

clhdr.clstype
Close subtype LUSEC (0x02).

clhdr.clsctl

struct Close (PLU) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
 CHAR clhdr.clsctl;
 CHAR clhdr.clspad1;
 INTEGER clhdr.clspad2;
 INTEGER clhdr.clserr1;
};

struct Close (PLU) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Close control

Possible values are:

CLNORMAL (0x01) - normal
CLBIND (0x02) - bind forthcoming
CLCFAERR (0x03) - CFA error
CLPUINAC (0x04) - PU inactive
CLLUINAC (0x05) - LU inactive
CLLNKERR (0x06) - link error
CLBFSHRT (0x07) - node buffer shortage
CLRCVCHK (0x08) - DFC receive check
CLSLUTRM (0x09) - SLU termination

clhdr.clspad1
Reserved.

clhdr.clspad2
Reserved.

clhdr.clserr1
Error code (only valid for close control = link error).

LUA only (see Remarks):
Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element (13).

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
The UNBIND RU received from the host, with its TH and RH.

Remarks

If the application is using the LUA variant of the FMI (see FMI Concepts), and the Close(PLU) Request was generated by
receipt of an UNBIND from the host, then the element is included and startd points to the TH of the UNBIND message.
In all other cases (for example, if the Close(PLU) Request was generated by the local node as a result of a link outage), the
message consists of a buffer header only; there is no buffer element.
The close control field is only valid on messages from the local node to the application.
If the close control field specifies link error, then the error code field gives the link outage code.

Microsoft Host Integration Server 2000

Close(PLU) Response
The Close(PLU) Response message flows from the node to the application and from the application to the node. It is used with a
PLU connection.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type CLOSEMSG (0x02).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

clhdr.closqual
Close qualifier RSPOK (0x02).

clhdr.clstype
Close subtype LUSEC (0x02).

Remarks

The Close(PLU) Response message consists of a buffer header only; there is no buffer element.
The Close(PLU) protocol is unconditional. It is not possible for the recipient of a Close(PLU) Request (either the local node
or an application) to keep the PLU connection open; the only valid response is Close(PLU) Response with the close
qualifier as RSPOK.

struct Close(PLU) Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Data
Data messages carry both inbound and outbound data between the application and the local node on all three connections. See
Data Flow for a detailed description of outbound and inbound data flows.

The Data message flows from the node to the application and from the application to the node. It is used with both the SSCP and
the PLU connections.

Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element.

numelts
Number of buffer elements.

msgtype
Message type DATAFMI (0x20).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

dfhdr.fhackrqd
Acknowledgment required indicator.

struct Data {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR dfhdr.fhackrqd;
 CHAR dfhdr.fhpad1;
 INTEGER dfhdr.fhmsgkey;
 CHAR dfhdr.fhflags1;
 CHAR dfhdr.fhflags2;
 INTEGER dfhdr.fhpad2;
 INTEGER dfhdr.fhpad3;
 INTEGER dfhdr.fhseqno;
};

struct Data {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Possible values are:

NOACKREQ (0x00)
ACKREQ (0x01)

dfhdr.fhpad1
Reserved.

dfhdr.fhmsgkey
Message key.

dfhdr.fhflags1
Application flag 1.

dfhdr.fhflags2
Application flag 2.

dfhdr.fhpad2
Reserved.

dfhdr.fhpad3
Reserved.

dfhdr.fhseqno
Sequence number.

Element

hdreptr–>elteptr
Pointer to buffer element.

hdreptr–>startd
Start of data in this buffer element.

Possible values are:

Non-LUA:

13, or 10 for second and subsequent segments of outbound segmented RUs.
LUA, inbound data:

4 in first element, 13 in subsequent elements.

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU.

Remarks

The use of the acknowledgment required indicator in both inbound and outbound data acknowledgment protocols is
described in Data Flow.

The use of the application flag fields is described in Application Flags (see note below for LUA).

The sequence number is undefined for inbound data but contains the corresponding SNA sequence number for outbound
data.
If the application is using the LUA variant of the FMI (see FMI Concepts), the TH and (if appropriate) RH are included in the
data, and the startd field points to the TH. The fhmsgkey, fhflags1, fhflags2, and fhseqno fields are undefined and should
not be used; the corresponding data from the element should be used instead.

Microsoft Host Integration Server 2000

Status-Acknowledge
Status-Acknowledge messages flow between the application and the local node as part of the outbound and inbound data
acknowledgment protocols. See Data Flow for a detailed description of outbound and inbound acknowledgment protocols.

 Note The format of this message is slightly different for messages from the application to the local node on the
PLU connection, as is explained in the following topic.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Acknowledge(Ack)
The Status-Acknowledge(Ack) message flows from the node to the application and from the application to the node, and is
used with both SSCP and PLU connections.

The following structure shows the message format for all SSCP messages and for PLU messages flowing from the node to the
application.

LUA only (see Remarks):
Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL if not using LUA).

numelts
Number of buffer elements (0x00 if not using LUA).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stackhdr.akstat

struct Status-Acknowledge(Ack) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
 INTEGER sfhdr.stackhdr.akseqno;
};

struct Status-Acknowledge(Ack) {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Status type ACK (0x01).
sfhdr.stackhdr.akqual

Acknowledgment type ACKPOS (0x02).
sfhdr.stackhdr.akmsgkey

Message key.
sfhdr.stackhdr.akflags1

Application flag 1.
sfhdr.stackhdr.akflags2

Application flag 2.
sfhdr.stackhdr.aknumb1

Undefined.
sfhdr.stackhdr.aknumb2

Reserved.
sfhdr.stackhdr.akseqno

SNA sequence number.

LUA only (see Remarks):
Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented RUs

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU.

The message format for PLU messages flowing from the application to the node is identical to the preceding format, except that
the application flag 1 and application flag 2 fields are not used. They are replaced by the following INTEGER field:

sfhdr.stackhdr.akmsgtim
Last host response time

Possible values are:

0xFFFF - no response time measured
0xnnnn - last response time measured, in units of 0.1 second

INTEGER sfhdr.stackhdr.akmsgtim Last host response time
0xFFFF - no response time
measured
0xnnnn - last response time
measured, in units of 0.1
second

Remarks

The message key and application flags reflect the message key and application flags of the data message to which this is an
acknowledgment (see note on LUA below).
For outbound Status-Acknowledge(Ack) messages from the local node to the application, the SNA sequence number
gives the sequence number of the inbound data message to which this is an acknowledgment (see note on LUA below); it is
normally used only by TS profile 4 applications.
For inbound Status-Acknowledge(Ack) messages from the application to the local node, the SNA sequence number
reflects the sequence number of the outbound data message to which this is an acknowledgment.
If the host specified that response time statistics are to be maintained (see RTM Parameters and
Response Time Monitor Data for details), the application is responsible for measuring and reporting response times to the
local node, using the akmsgtim field of this message.
If the application is using the LUA variant of the FMI (see FMI Concepts), the TH and (if appropriate) RH are included in the
data, and the startd field points to the TH. The akmsgkey, akflags1, and akflags2 fields are undefined and should not be

used; the corresponding data from the element should be used instead. The akseqno field is similarly undefined on
messages from the local node to the application; it must be set on messages from the application to the local node. The
akseqno field is used to hold the sequence number of the request being acknowledged.
If the application is not using the LUA variant of the FMI, the message consists of a buffer header only; there is no buffer
element.

Microsoft Host Integration Server 2000

Status-Acknowledge(Nack-1)
The Status-Acknowledge(Nack-1) message flows from the node to the application and from the application to the node. It is
used with both SSCP and PLU connections.

LUA only (see Remarks):
Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL if not using LUA).

numelts
Number of buffer elements (0x00 if not using LUA).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stackhdr.akstat
Status type ACK (0x01).

struct Status-Acknowledge(Nack-1) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
 INTEGER sfhdr.stackhdr.akseqno;
};

struct Status-Acknowledge(Nack-1) {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

sfhdr.stackhdr.akqual
Acknowledgment type ACKNEG1 (0x03).

sfhdr.stackhdr.akmsgkey
Message key.

sfhdr.stackhdr.akflags1
Application flag 1.

sfhdr.stackhdr.akflags2
Application flag 2.

sfhdr.stackhdr.aknumb1
Sense data 1.

sfhdr.stackhdr.aknumb2
Sense data 2.

sfhdr.stackhdr.akseqno
SNA sequence number.

LUA only (see Remarks):
Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented RUs

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU.

Remarks

The message key and application flags reflect the message key and application flags of the data message to which this is a
negative acknowledgment (see note on LUA below).
For Status-Acknowledge(Nack-1) messages from the local node to the application, the sense data reflects the sense data
in the SNA negative response.
For Status-Acknowledge(Nack-1) messages from the application to the local node, the sense data fields are those
intended for the SNA negative response to the host.
For outbound Status-Acknowledge(Nack-1) messages from the local node to the application, the SNA sequence number
gives the sequence number of the inbound data message to which this is a negative acknowledgment (see note on LUA
below).
For inbound Status-Acknowledge(Nack-1) messages from the application to the local node, the SNA sequence number
reflects the sequence number of the outbound data message to which this is a negative acknowledgment.
If the application is using the LUA variant of the FMI (see FMI Concepts), the TH and (if appropriate) RH are included in the
data, and the startd field points to the TH. The akmsgkey, akflags1, and akflags2 fields are undefined and should not be
used; the corresponding data from the element should be used instead. The akseqno field is similarly undefined on
messages from the local node to the application; it must be set on messages from the application to the local node.
If the application is not using the LUA variant of the FMI, the message consists of a buffer header only; there is no buffer
element.

Microsoft Host Integration Server 2000

Status-Acknowledge(Nack-2)
The Status-Acknowledge(Nack-2) message flows from the node to the application. It is used with both SSCP and PLU
connections.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stackhdr.akstat
Status type ACK (0x01).

sfhdr.stackhdr.akqual
Acknowledgment type ACKNEG2 (0x04).

sfhdr.stackhdr.akmsgkey
Message key.

sfhdr.stackhdr.akflags1
Reserved.

sfhdr.stackhdr.akflags2
Critical failure indicator.

Possible values are:

Noncritical failure (0x00)
Critical failure (0x01)

sfhdr.stackhdr.aknumb1

struct Status-Acknowledge(Nack-2) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Error code 1.
sfhdr.stackhdr.aknumb2

Error code 2.

Remarks

The Status-Acknowledge(Nack-2) message consists of a buffer header only; there is no buffer element.
The message key refers to the message key in the inbound data message to which this is a negative acknowledgment.
See Error and Sense Codes for error codes.

Microsoft Host Integration Server 2000

Status-Acknowledge(ACKLUA)
The Status-Acknowledge(ACKLUA) message is for LUA applications only. It flows from the node to the application, and is used
with both the SSCP and PLU connections.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stackhdr.akstat
Status type ACK (0x01).

sfhdr.stackhdr.akqual
Acknowledgment type.

sfhdr.stackhdr.akmsgkey
Message key.

sfhdr.stackhdr.akflags1
Application flag 1.

sfhdr.stackhdr.akflags2
Application flag 2.

sfhdr.stackhdr.aknumb1
Number of replies.

sfhdr.stackhdr.aknumb2
Reserved.

struct Status-Acknowledge(ACKLUA) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
 INTEGER sfhdr.stackhdr.akseqno;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

sfhdr.stackhdr.akseqno
SNA sequence number.

Remarks

The message key and application flags are undefined and should not be checked.
The SNA sequence number gives the sequence number of the inbound data message to which this is an acknowledgment.

Microsoft Host Integration Server 2000

Status-Control
See Status-Control Message for details of Status-Control message usage and for a summary of control type codes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Control(...) Request
The Status-Control(...) Request message flows from the node to the application and from the application to the node. It is used
with a PLU connection.

LUA only (see Remarks):
Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL if not using LUA).

numelts
Number of buffer elements (0x00 if not using LUA).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stctlhdr.ctlstat
Status type STCNTRL (0x02).

struct Status-Control(...) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlthdr.ctltype
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};

struct Status-Control(...) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

sfhdr.stctlhdr.ctlqual
Control qualifier (0x01).

sfhdr.stctlhdr.ctltype
Control type.

sfhdr.stctlhdr.ctlack
Acknowledgment required indicator.

Possible values are:

No acknowledgment required (0x00)
Acknowledgment required (0x01)

sfhdr.stctlhdr.ctlflag1
Application flag 1.

sfhdr.stctlhdr.ctlflag2
Application flag 2 (see STSN).

sfhdr.stctlhdr.ctlnumb1
Code 1.

sfhdr.stctlhdr.ctlnumb2
Code 2.

sfhdr.stctlhdr.ctlmsgk
Message key.

LUA only (see Remarks):
Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element.

Possible values are:

13 or 10 for second and subsequent segments of outbound segmented RUs

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU.

Remarks

If the application is using the LUA variant of the FMI (see FMI Concepts), the TH, RH, and RU are included in the data
element, and the startd field points to the TH. The ctlflag1 and ctlflag2 bytes are not defined and should not be used; the
appropriate values from the data should be used instead.
If the application is not using the LUA variant of the FMI, the message consists of a buffer header only; there is no buffer
element.
See the table in Status-Control Message for a summary of Status-Control control type codes.
The code 1 and code 2 fields apply only for Status-Control LUSTAT, SIGNAL, and STSN messages.
The application flag byte 2 is used for the Status-Control STSN control byte (see Recovery).

Microsoft Host Integration Server 2000

Status-Control(...) Acknowledge
The Status-Control(...) Acknowledge message flows from the node to the application and from the application to the node. It is
used with a PLU connection.

LUA only (see Remarks):
Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL if not using LUA).

numelts
Number of buffer elements (0x00 if not using LUA).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stctlhdr.ctlstat
Status type STCNTRL (0x02).

struct Status-Control(...) Acknowledge {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype;
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};

struct Status-Control(...) Acknowledge {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

sfhdr.stctlhdr.ctlqual
Control qualifier ACKPOS (0x02).

sfhdr.stctlhdr.ctltype
Control type.

sfhdr.stctlhdr.ctlack
Reserved.

sfhdr.stctlhdr.ctlflag1
Application flag 1.

sfhdr.stctlhdr.ctlflag2
Application flag 2 (see STSN).

sfhdr.stctlhdr.ctlnumb1
Code 1.

sfhdr.stctlhdr.ctlnumb2
Code 2.

sfhdr.stctlhdr.ctlmsgk
Message key.

LUA only (see Remarks):
Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element.

Possible values are:

13 or 10 for second and subsequent segments of outbound segmented RUs

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU.

Remarks

If the application is using the LUA variant of the FMI (see FMI Concepts), the TH, RH, and RU are included in the data
element, and the startd field points to the TH. The ctlflag1 and ctlflag2 bytes are not defined and should not be used; the
appropriate values from the data should be used instead.
If the application is not using the LUA variant of the FMI, the message consists of a buffer header only; there is no buffer
element.
See the table in Status-Control Message for a summary of Status-Control control type codes.
The code 1 and code 2 fields apply only for Status-Control(STSN) Acknowledge messages, where they are the
application's secondary-to-primary and primary-to-secondary sequence numbers respectively.
For messages from the application to the local node, the message key field must match the message key in the
corresponding Status-Control Request.

Microsoft Host Integration Server 2000

Status-Control(...) Negative-Acknowledge-1
The Status-Control(...) Negative-Acknowledge-1 message flows from the node to the application and from the application to
the node. It is used with a PLU connection.

LUA only (see Remarks):
Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL if not using LUA).

numelts
Number of buffer elements (0x00 if not using LUA).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stctlhdr.ctlstat
Status type STCNTRL (0x02).

struct Status-Control(...) Negative-Acknowledge-1 {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};

struct Status-Control(...) Negative-Acknowledge-1 {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

sfhdr.stctlhdr.ctlqual
Control qualifier ACKNEG1 (0x03).

sfhdr.stctlhdr.ctltype
Control type.

sfhdr.stctlhdr.ctlack
Reserved.

sfhdr.stctlhdr.ctlflag1
Application flag 1.

sfhdr.stctlhdr.ctlflag2
Application flag 2.

sfhdr.stctlhdr.ctlnumb1
Sense code 1.

sfhdr.stctlhdr.ctlnumb2
Sense code 2.

sfhdr.stctlhdr.ctlmsgk
Message key.

LUA only (see Remarks):
Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented RUs

hdreptr–>endd
End of data in this buffer element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU.

Remarks

If the application is using the LUA variant of the FMI (see FMI Concepts), the TH, RH, and RU are included in the data
element, and the startd field points to the TH. The ctlflag1 and ctlflag2 bytes are not defined and should not be used; the
appropriate values from the data should be used instead.
If the application is not using the LUA variant of the FMI, the message consists of a buffer header only; there is no buffer
element.
See the table in Status-Control Message for a summary of Status-Control control type codes.
For messages from the application to the local node, the message key field must match the message key in the
corresponding Status-Control request.

Microsoft Host Integration Server 2000

Status-Control(...) Negative-Acknowledge-2
The Status-Control(...) Negative-Acknowledge-2 message flows from the node to the application. It is used with a PLU
connection.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stctlhdr.ctlstat
Status type STCNTRL (0x02).

sfhdr.stctlhdr.ctlqual
Control qualifier ACKNEG2 (0x04).

sfhdr.stctlhdr.ctltype
Control type.

sfhdr.stctlhdr.ctlack
Reserved.

sfhdr.stctlhdr.ctlflag1
Reserved.

sfhdr.stctlhdr.ctlflag2
Reserved.

sfhdr.stctlhdr.ctlnumb1

struct Status-Control(...) Negative-Acknowledge-2 {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Error code 1.
sfhdr.stctlhdr.ctlnumb2

Error code 2.
sfhdr.stctlhdr.ctlmsgk

Message key.

Remarks

The Status-Control(…) Negative-Acknowledge-2 message consists of a buffer header only; there is no buffer element.
See the table in Status-Control Message for a summary of Status-Control control type codes.
See Error and Sense Codes for a list of error codes.
The message key field matches the message key in the corresponding Status-Control request.

Microsoft Host Integration Server 2000

Status-Control(...) ACKLUA
The Status-Control(...) ACKLUA message is for LUA applications only. It flows from the node to the application, and is used with
a PLU connection.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stctlhdr.ctlstat
Status type STCNTRL (0x02).

sfhdr.stctlhdr.ctlqual
Control qualifier ACKLUA (0x05).

sfhdr.stctlhdr.ctltype
Control type.

sfhdr.stctlhdr.ctlack
Reserved.

sfhdr.stctlhdr.ctlflag1
Application flag 1.

sfhdr.stctlhdr.ctlflag2
Application flag 2.

sfhdr.stctlhdr.ctlnumb1

struct Status-Control(...) ACKLUA {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlthdr.ctltype
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Code 1.
sfhdr.stctlhdr.ctlnumb2

Code 2.
sfhdr.stctlhdr.ctlmsgk

Message key (used for the SNA sequence number, see Remarks).

Remarks

The Status-Control(…) ACKLUA message consists of a buffer header only; there is no buffer element.
See the table in Status-Control Message for a summary of Status-Control control type codes.
The application flags and the code 1 and code 2 fields are undefined and should not be used.
The message key field gives the sequence number from the TH of the inbound data message to which this is an
acknowledgment.

Microsoft Host Integration Server 2000

Status-Error
The Status-Error message is used to report "request reject" and "RH usage" error conditions in outbound SNA RUs to the
application. It flows from the node to the application and is used with both SSCP and PLU connections.

See Status-Error Message for further information.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.sterrhdr.errstat
Status type STERROR (0x03).

sfhdr.sterrhdr.errpad1
Reserved.

sfhdr.sterrhdr.errpad2
Reserved.

sfhdr.sterrhdr.errpad3
Reserved.

sfhdr.sterrhdr.errcode1
Error code 1.

sfhdr.sterrhdr.errcode2
Error code 2.

Remarks

struct Status-Error {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.sterrhdr.errstat;
 CHAR sfhdr.sterrhdr.errpad1;
 CHAR sfhdr.sterrhdr.errpad2;
 CHAR sfhdr.sterrhdr.errpad3;
 CHAR sfhdr.sterrhdr.errcode1;
 CHAR sfhdr.sterrhdr.errcode2;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The Status-Error message consists of a buffer header only; there is no buffer element.
The error codes are listed in Error and Sense Codes.

Microsoft Host Integration Server 2000

Status-Resource
The Status-Resource message is used to provide a simple flow control mechanism between the local node and the application to
prevent the application from exhausting its resources. It flows from the application to the node, and is used with a PLU
connection.

It is only used on the PLU connection where the application specifies in the PLU CICB that pacing requires application
participation. See Pacing and Chunking for further details.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.streshdr.resstat
Status type STRESRCE (0x04).

sfhdr.streshdr.respad
Reserved.

sfhdr.streshdr.rescred
Application credit.

Remarks

The Status-Resource message consists of a buffer header only; there is no buffer element.
The rescred (application credit) field indicates that the application can receive a further "credit" RUs of the maximum RU
size, or a further "credit" chunks if chunking is being used.

struct Status-Resource {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.streshdr.resstat;
 CHAR sfhdr.streshdr.respad;
 CHAR sfhdr.streshdr.rescred;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-RTM
The Status-RTM message provides the application with information on the Response Time Monitor (RTM) measurement
parameters used by the host. This allows the application to match its local display of RTM statistics, if it provides such a display,
with the statistics used by the host. It flows from the node to the application and is used with an SSCP connection.

See Response Time Monitor Data for further details.

Element

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element.

numelts
Number of buffer elements.

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.strtmhdr.rtmstat
Status type STRTM (0x06).

sfhdr.strtmhdr.strbndry
RTM boundaries.

struct Status-RTM {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.strtmhdr.rtmstat;
 CHAR sfhdr.strtmhdr.strbndry;
 CHAR sfhdr.strtmhdr.strcount;
 CHAR sfhdr.strtmhdr.strtmdef;
 CHAR sfhdr.strtmhdr.strtmact;
 CHAR sfhdr.strtmhdr.strtmdsp;
};

struct Status-RTM {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Possible values are:

0x00 - No RTM boundaries follow in element.
0x01 - RTM boundaries follow in element.

sfhdr.strtmhdr.strcount
RTM counters.

Possible values are:

0x00 - No RTM counters follow in element.
0x01 - RTM counters follow in element.

sfhdr.strtmhdr.strtmdef
RTM definition.

Possible values are:

0x00 - No change: use last received definition.
0x01 - Timers run until first data is written to screen.
0x02 - Timers run until keyboard is unlocked.
0x03 - Timers run until application can send (CD or EB received).

sfhdr.strtmhdr.strtmact
RTM measurement.

Possible values are:

0x00 - not active
0x01 - active

sfhdr.strtmhdr.strtmdsp
Local RTM display.

Possible values are:

0x00 - disabled
0x01 - enabled

Element

hdreptr–>elteptr
Pointer to buffer element (NIL).

hdreptr–>startd
Start of data in this element.

hdreptr–>endd
End of data in this element.

hdreptr–>trpad
Reserved.

hdreptr–>dataru
Data RU, as follows:

dataru[0–1] Number of boundaries in element

Possible values are:

0x0000 - no boundaries included

m - number of boundaries included

dataru[2–3] Number of counters in element

Possible values are:

0x0000 - no counters included

n - number of counters included

dataru[4–(2m+3)] m boundary values.

dataru[(2m+4)–(2m+2n+3)] n counter values.

dataru[(2m+2n+4) RTM total time.

Remarks

A Status-RTM message is sent after the Open(SSCP) OK Response to give the initial RTM parameters. It is sent again
when the RTM counters are reset (either on request from the host or when the local node sends unsolicited RTM data to the
host), or when the host changes any of the RTM parameters.
The message is sent only for applications that use LUs with type video display unit (VDU) or LUs in a VDU pool, since the
RTM feature applies only to 3270 display sessions.
All the values in the data RU are integer values.
The RTM counter values in this message can be nonzero at startup, since RTM statistics are maintained for a specific LU and
not for a specific application's use of that LU. If zero counter values are included, this indicates that the counters are to be
reset.
The RTM total time field is present only if the number of counters in the element is nonzero.

Microsoft Host Integration Server 2000

Status-Session
The Status-Session message provides the application with information on changes in the state of a session between the local
node and the host. It flows from the node to the application and is used with both SSCP and PLU connections.

See Status-Session Message for further details.

Members

nxtqptr
Pointer to next buffer header.

hdreptr
Pointer to buffer element (NIL).

numelts
Number of buffer elements (0x00).

msgtype
Message type STATFMI (0x21).

srcl
Source locality.

srcp
Source partner.

srci
Source index.

destl
Destination locality.

destp
Destination partner.

desti
Destination index.

sfhdr.stseshdr.sesstat
Status type STSESSN (0x05).

sfhdr.stseshdr.sesspad
Reserved.

sfhdr.steeshdr.sesscode
Session code.

sfhdr.stseshdr.sessqual
Session code qualifier.

Remarks

The Status-Session message consists of a buffer header only; there is no buffer element.
The session codes are listed in Status-Session Codes.
The SNA Server OS/2 and MS-DOS-based 3270 emulators display a session status identifier (–+z_nnn), where nnn is
obtained by adding 484 to the value of sessqual from this message.

struct Status-Session {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stseshdr.sesstat;
 CHAR sfhdr.stseshdr.sesspad;
 CHAR sfhdr.steeshdr.sesscode;
 CHAR sfhdr.stseshdr.sessqual;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FMI Extension for the Windows Environment
This section describes the API extension to the Microsoft® Windows® 3270 Emulator Interface that converts link status and error
codes to a printable string.

Following is a definition of the function, syntax, returns, and remarks for using the extension. Refer to
FMI Status, Error, and Sense Codes for more information.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GetFmiReturnCode
The GetFmiReturnCode function converts link status and error codes to a printable string. This function provides a standard set
of error strings for use by Function Management Interface (FMI) applications.

Parameters

errcode1
Supplied parameter; see Remarks.

errcode2
Supplied parameter; see Remarks.

buffer_length
Supplied parameter; specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256.

buffer_addr
Supplied/returned parameter; specifies the address of the buffer that will hold the formatted, null-terminated string.

Return Values

0x20000001
The parameters are invalid; the function could not read the specified error codes or could not write to the specified buffer.

0x20000002
The specified buffer is too small.

Remarks

The errcode1 and errcode2 parameters are set according to the way that GetFmiReturnCode is used:

Codes to be translated Value for errc
ode1

Value for errc
ode2

The errcode1 and errcode2 values specified in Error and Sense Codes which includes messages f
or:
Open(SSCP) Response, Open(PLU) Confirm, Status-Acknowledge(Nack-2), Status-Contro
l(...) Nack2, Status-Error, and Appl-Data messages with SDI set

Unchanged fro
m message

Unchanged fro
m message

The status and qualifier codes returned from a
Status-Session message

status*256
+ qualifier

0xFFFF

The return code from WinLUAGetLastInitStatus The return code 0xFFFF

int WINAPI GetFmiReturnCode (
 UINT errcode1,
 UINT errcode2,
 UINT buffer_length,
 unsigned char FAR *buffer_addr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP File Transfer Protocol
The Advanced Program-to-Program Communications (APPC) Application Suite provides application programming interfaces
(APIs) to its APPC File Transfer Protocol (AFTP) functions. This guide provides the information you will need to write an application
program to implement AFTP client functions. It is written for application programmers, and assumes that you are familiar with
writing C-language applications. Although the APPC Application Suite API is based on APPC and the Common Programming
Interface for Communications (CPI-C), you do not need to know these concepts to successfully write applications based on this
API.

This section contains:

About the AFTP Guide
AFTP Programmer's Guide
AFTP Reference
AFTP Sample Applications

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

About the AFTP Guide
The Advanced Program-to-Program Communications (APPC) Application Suite provides application programming interfaces
(APIs) to its APPC File Transfer Protocol (AFTP) functions. This guide provides the information you will need to write an application
program to implement AFTP client functions. It is written for application programmers, and assumes that you are familiar with
writing C-language applications. Although the APPC Application Suite API is based on APPC and the Common Programming
Interface for Communications (CPI-C), you do not need to know these concepts to successfully write applications based on this
API.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP Programmer's Guide
The APPC File Transfer Protocol (AFTP) API is a set of C routines that provides file transfer capabilities for Advanced Program-to-
Program Communications (APPC). This API makes file transfer programming easier by allowing you to access routines that
interact with any AFTP server.

This section contains:

Defined Constants
Standard Types
Null-Terminated Strings
AFTP_ENTRY
AFTP_PTR
AFTP Line Flows
AFTP File and Directory Concepts
Compiling the AFTP Application
Linking the AFTP Application
Overview of API Calls

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Defined Constants
The AFTP API has a number of calls that take buffers as parameters. Each buffer is used by one or more entry points and has a
required minimum size that is defined by a constant in the AFTP API header file. When developing AFTP applications on
Microsoft® Windows® 2000, Windows NT®, Windows 98, and Windows 95, this header file is called APPFFTP.H.

The following table provides information about these buffer parameters.

The first column shows the entry points that take buffers as parameters.
The second column shows the buffer used by each entry point.
The third column shows the constant defining the minimum buffer size.
The fourth column shows the minimum size.

Entry point Buffer name Constant name Value
aftp_dir_open path_buffer

_length
AFTP_FILE_NAME
_SIZE

512

aftp_dir_read dir_entry_size AFTP_FILE_NAME
_SIZE

512

aftp_extract_destination destination
_size

AFTP_FQLU_NAME
_SIZE

64

aftp_extract_mode
_name

mode_name
_size

AFTP_MODE_NAME
_SIZE

8

aftp_extract_partner_lu
_name

partner_LU
_name_size

AFTP_FQLU_NAME
_SIZE

64

aftp_extract_password password_size AFTP_PASSWORD
_SIZE

10

aftp_extract_tp_name tp_name_size AFTP_TP_NAME
_SIZE

64

aftp_extract_userid userid_size AFTP_USERID_SIZE 10
aftp_format_error error_str_size AFTP_MESSAGE

_SIZE
2048

aftp_get_data_type
_string

data_type_size AFTP_DATA_TYPE
_SIZE

64

aftp_get_date_mode
_string

date_mode_size AFTP_DATE_MODE
_SIZE

64

aftp_get_record_format
_string

record_format
_size

AFTP_RECORD
_FORMAT_SIZE

64

aftp_get_write_mode
_string

write_mode_size AFTP_WRITE_MODE
_SIZE

64

aftp_local_dir_open path_buffer
_length

AFTP_FILE_NAME
_SIZE

512

aftp_local_dir_read dir_entry_size AFTP_FILE_NAME
_SIZE

512

aftp_query_local
_system_info

system_info
_size

AFTP_SYSTEM_INFO
_SIZE

512

aftp_query_system_info system_info
_size

AFTP_SYSTEM_INFO
_SIZE

512

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Standard Types
Type definitions are available for many parameters to the AFTP API calls. For example, the AFTP type AFTP_LENGTH_TYPE is an
alias for the C type unsigned long.

Use the AFTP types instead of the corresponding C types. Doing so protects you from changes to the parameters in future
releases. If you use the AFTP types, you only need to recompile your code to use new API definitions. If you use the C types, you
need to modify your program source code to reflect changes to new C types.

The AFTP API avoids complex structures and pointers to structures for type definitions. These complex structures might not be
supported in all languages. The only exception is the string construct that is found in many languages.

The AFTP standard types are shown in the following table.

Type Description
AFTP_HANDLE_TYPE AFTP connection object identifier
AFTP_ALLOCATION_SIZE_TYPE File allocation size
AFTP_BLOCK_SIZE_TYPE File block size
AFTP_BOOLEAN_TYPE Boolean type (FALSE=0, TRUE=1)
AFTP_DATA_TYPE_TYPE File data types that can be transferred
AFTP_DATE_MODE_TYPE Date mode used for transferred files
AFTP_DETAIL_LEVEL_TYPE Amount of information to be output when AFTP generates error messages
AFTP_FILE_TYPE_TYPE Kind of file (directory or file) listed by AFTP
AFTP_INFO_LEVEL_TYPE Amount of information listed for a file by AFTP
AFTP_LENGTH_TYPE Size of input buffers, and actual returned length of buffers in AFTP
AFTP_RETURN_CODE_TYPE Return codes output by AFTP
AFTP_RECORD_FORMAT_TYPE File record formats
AFTP_RECORD_LENGTH_TYPE File record length
AFTP_SECURITY_TYPE APPC security types
AFTP_TRACE_LEVEL_TYPE Levels of tracing information output by AFTP
AFTP_VERSION_TYPE AFTP program version numbers
AFTP_WRITE_MODE_TYPE Different ways that AFTP can write to a file

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Null-Terminated Strings
The AFTP API does not require input strings to be null-terminated and does not guarantee that output strings are null-terminated.
If there is a null terminator, it is not included in the return size.

The C programmer should be aware of the fact that strings are handled differently in AFTP than they are in the C standard library.
All API calls receiving strings as input require both the string itself and the length of the string. The strlen function can be used for
this. The null terminator must not be counted as part of the string length. API calls that output strings require three string-related
parameters:

The string.
The length of the string buffer that has been allocated by the calling program.
The actual length of the string that is output. AFTP output strings are not null-terminated. For the C programmer to use
them as standard C strings, a null character must be added to the end of the string.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP_ENTRY
The AFTP API calls do not return a value. Rather, the return_code parameter is set to indicate the success or failure of the call. You
should check the return_code parameter after each call and handle error values appropriately.

The C keyword void is not used for entry points in the AFTP API. Instead, AFTP_ENTRY has been defined. AFTP_ENTRY is defined
differently depending on the operating system on which the AFTP client is created.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP_PTR
The C pointer indicator (*) is not used in the AFTP API. Instead, AFTP_PTR has been defined. AFTP_PTR is defined differently
depending on the operating system on which the AFTP client is created.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP Line Flows
The term "line flows" refers to the data formatting method used by the AFTP client and the AFTP server to communicate with each
other. The AFTP API adheres to the AFTP line flow standards. All AFTP client applications send the same set of line flows over the
network to the AFTP server. An application using the AFTP API does not need to be aware of the details of this line flow format.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP File and Directory Concepts
The concept of a file and a directory can vary under the AFTP API depending on the supporting operating system. This section
describes the AFTP file and directory concept as supported on the following operating environments:

Microsoft Windows 2000
Microsoft Windows NT
Microsoft Windows 98
Microsoft Windows 95

This section contains:

AFTP File Transfer Types
AFTP and Special File Structures
Working with AFTP Directories
Directories on Windows 2000, Windows NT, Windows 98, and Windows 95

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP File Transfer Types
The AFTP API supports both text and binary file transfers. A binary file transfer treats a file as a stream of bytes. None of the
characters within the file are interpreted. Executable programs and other nontext files are usually transferred as binary files.

In an ASCII file transfer, files are transferred using ASCII characters and the text file format is preserved. If either the source or
destination is an EBCDIC computer (an IBM host system, for example), AFTP on the EBCDIC computer translates from ASCII to
EBCDIC when it receives a file and from EBCDIC to ASCII when it sends a file.

 Note Text files on Windows 2000, Windows NT, Windows 98, Windows 95, OS/2, and Microsoft MS-DOS® can
contain an end-of-file (EOF) character (0x1a) which is the last character in the file. When AFTP transfers a text file
containing an EOF character, AFTP does not send the EOF character, so the file appears to be one character smaller
when it is received by the server. If the file is transferred in binary mode, AFTP sends the EOF character.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP and Special File Structures
If a file to be transferred has a special file structure based on record format and record length, AFTP may limit your ability to
transfer that file.

If you want to send the file to a system that supports the record format and record length of the file, use the
aftp_set_record_format and aftp_set_record_length functions first to ensure the file is correctly transferred.

If you send the file to a system that does not maintain the record format and length, you may lose critical information and be
unable to restore it when the file is copied back to the client.

 Note You might be able to use an archiving tool to convert the special file into a format that can be transferred to
other platforms. When the file is to be used again on the original platform, use the archiving tool to restore the file to
its original format.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Working with AFTP Directories
In the AFTP API, directories represent the structures used to divide a file system into multiple portions. An AFTP directory can
contain one or more files. Directories are organized in a hierarchical structure. The topmost node in the directory structure is
called the root.

The AFTP API allows you to designate a directory as the current directory. The primary advantage of setting a current directory is
that when you are working with files in this directory, it is not necessary to include the full directory specification in AFTP API
functions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Directories on Windows 2000, Windows NT, Windows 98, and
Windows 95
The native Windows 2000, Windows NT, Windows 98, and Windows 95 operating systems use a hierarchical directory structure
based on the drive letter. The AFTP API builds on this structure by making the drive the first segment of the directory path. For an
AFTP application operating on Windows 2000, Windows NT, Windows 98, or Windows 95, the AFTP root directory represents all
of the drives available on the computer. In the native Windows 2000, Windows NT, Windows 98, or Windows 95 operating
system, a current directory setting is maintained for each drive. This difference of interpretation can have some surprising
consequences.

For example, the following series of commands issued on Windows 2000, Windows NT, Windows 98, or Windows 95 will delete
the files in the C:\WORK\AFTP directory:

AFTP, however, uses a virtual root that encompasses all of the drives, and the Windows 2000, Windows NT, Windows 98, or
Windows 95 drive letter is treated as the first segment of a path. Only one current directory setting is maintained by the AFTP API.
If a path is not specified to an AFTP API function, the root directory of that drive is used.

The equivalent set of functions issued using the AFTP API will erase all of the files on drive C, not only the files in the
C:\WORK\AFTP directory:

If it becomes necessary to manipulate files on a drive other than the drive set as the current directory, always use fully qualified
file names to ensure that the correct directory and files are used.

[C:\] cd \work\aftp
[C:\WORK\AFTP\] cd e:\new\data\
[C:\WORK\AFTP\] erase C:*.*

aftp> cd c:\work\aftp
aftp> cd e:\new\data
aftp> delete c:*.*

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Compiling the AFTP Application
This section describes procedures for developing and compiling an application for the AFTP API on Microsoft Windows 2000,
Windows NT, Windows 98, Windows 95, IBM MVS, and IBM VM.

To develop an application that uses the AFTP API on Windows 2000, Windows NT, Windows 98, or Windows 95

1. Include the APPFFTP.H header file in your source modules. For consistency with the file naming conventions on other
platforms, you can rename this header file to AFTPAPI.H and use this file name for your AFTP include file.

2. Define CM_WINNT when you compile your source code.

To develop an application that uses the AFTP API on MVS

 Note This process assumes that all AFTP program files have been successfully installed with the JCL provided for
installing AFTP.

1. Include the APPFFTP.H header file in your source modules.
2. Define CM_MVS when you compile your source code.
3. Edit the APPFAPIJ JCL file and make the changes indicated in the prolog comments at the top of the file.
4. Submit the APPFAPIJ JCL.

To access the AFTP API calls from your application using VM

1. Include the APPFFTP.H header file in your source modules.
2. Define CM_VM when you compile your source code.
3. Add APPFAPIL TXTLIB to your GLOBAL TXTLIB statement. All textdecks are packaged into this textlib.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Linking the AFTP Application
This section describes the procedure for linking an application for the AFTP API on Microsoft Windows 2000, Windows NT,
Windows 98, or Windows 95.

To link an application that uses the AFTP API on Windows 2000, Windows NT, Windows 98, or Windows 95

1. The AFTP application must be statically linked with the AFTPAPI.LIB import library supplied as part of the Host Integration
Server 2000 SDK or the earlier SNA Server 4.0 SDK.

2. Include the appropriate AFTPAPI.DLL with your application when it is installed on the target machine if this DLL is not
already installed.

Note that Host Integration Server 2000 does not support the DEC Alpha and the Host Integration Server SDK does not include the
DEC Alpha version of the AFTPAPI.LIB and AFTPAPI.DLL files. The DEC Alpha versions of these files are included as part of the
earlier SNA Server 4.0 SDK.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Overview of API Calls
This section provides a brief description of each AFTP API call.

This section contains:

Creating or Destroying an AFTP Connection Object
Establishing a Connection to the AFTP Server Computer
Querying Connection Characteristics
Transferring Files
Specifying File Transfer Characteristics
Querying File Transfer Characteristics
Listing Files on the AFTP Server Computer
Listing Files on the AFTP Client Computer
Performing Directory Manipulation
Performing File Manipulation
Querying System Information
Generating Message Strings
Controlling Trace Information
Loading the Initialization File

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Creating or Destroying an AFTP Connection Object
The connection object represents an object-oriented approach to AFTP. An AFTP connection object represents a connection (not
necessarily active) to a partner computer. Many of the AFTP API calls require an AFTP connection object as input. When the
program has finished using AFTP API calls, it should destroy the connection object.

aftp_create
Creates an AFTP connection object and assigns a unique identifier to it. The connection object is accessed by its connection
identifier. The connection object is never automatically destroyed. This allows you to connect to an AFTP server once or
reconnect numerous times using the same AFTP connection object.

aftp_destroy
Destroys the AFTP connection object and recovers all resources associated with it. When an AFTP connection object has been
destroyed, that object must not be used again. If you need a connection object again, create another one.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Establishing a Connection to the AFTP Server Computer
For the AFTP client to communicate with an AFTP server, certain communications parameters must be set. Most of the
communications parameters have default values. The destination does not have a default value and must be set explicitly. When
the parameters are set as desired, the connection to the server can take place.

Use these API calls to manage your connection to the AFTP server.

aftp_close
Closes a connection to the AFTP server when processing is complete.

aftp_connect
Establishes the connection to the AFTP server for file transfer.

aftp_set_destination
Identifies the server computer name to which the AFTP connection will be established. This server computer will run the AFTP
server program.

aftp_set_mode_name
Sets the mode name to be used for this connection. The default mode name is #BATCH.

aftp_set_password
Sets the password used for APPC security type PROGRAM. Using this call automatically sets the security type to PROGRAM.

aftp_set_security_type
Sets the APPC security used for the AFTP connection to the AFTP server.

aftp_set_tp_name
Sets the transaction program (TP) name to be used for this connection. The default TP name is AFTPD.

aftp_set_userid
Sets the user identifier used for APPC security type PROGRAM. Using this call automatically sets the security type to PROGRAM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Querying Connection Characteristics
Use these API calls to query the characteristics of the connection to the AFTP server.

aftp_extract_destination
Extracts the identity of the server computer on which the AFTP server runs.

aftp_extract_mode_name
Extracts the mode name used for this connection.

aftp_extract_partner_lu_name
Extracts the fully qualified logical unit name of the AFTP server computer.

aftp_extract_password
Extracts the password used for this connection.

aftp_extract_security_type
Extracts the security type used for this connection.

aftp_extract_tp_name
Extracts the transaction program name used for this connection.

aftp_extract_userid
Extracts the user identifier used for this connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Transferring Files
The primary purpose of the file transfer protocol is to exchange files between the AFTP client and AFTP server programs. Through
the API, the AFTP client program can send a file to the AFTP server and receive a file from the AFTP server.

Use these API calls to transfer files between the client and server.

aftp_query_bytes_transferred
Outputs the number of bytes transferred by either the aftp_send_file or aftp_receive_file call.

aftp_receive_file
Receives a single file from the AFTP server.

aftp_send_file
Sends a single file to the AFTP server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Specifying File Transfer Characteristics
AFTP supports a variety of file transfer attributes. Both text and binary files can be transferred. The programmer can set the data
structure of the files for mainframe applications. This allows several variations of record-based files to be transferred.

Use these API calls to specify file transfer characteristics.

aftp_set_allocation_size
Sets the amount of space allocated for the file that is being written.

aftp_set_block_size
Sets the size of a data block for the file that is being written.

aftp_set_data_type
Sets the way in which the transmitted data is interpreted.

aftp_set_date_mode
Sets how the date will be represented when the file is written (either received or sent). The new file can use the current
date/time stamp or the date/time stamp of the original file.

aftp_set_record_format
Sets the record format of the transmitted file.

aftp_set_record_length
Sets the length of the transmitted file record.

aftp_set_write_mode
Sets the type of write operation that will occur when the transmitted file is written (either received or sent).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Querying File Transfer Characteristics
Use these API calls to query the file transfer attributes.

aftp_extract_allocation_size
Extracts the amount of space allocated for the file that is being transmitted.

aftp_extract_block_size
Extracts the size of a data block for the file that is being transmitted.

aftp_extract_data_type
Extracts the way in which the transmitted data is interpreted.

aftp_extract_date_mode
Extracts how the date will be represented when the file is written.

aftp_extract_record_format
Extracts the record format of the transmitted file.

aftp_extract_record_length
Extracts the length of the transmitted file record.

aftp_extract_write_mode
Extracts the type of write operation that will occur when the transmitted file is written.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Listing Files on the AFTP Server Computer
File list facilities can be used to support wildcard transfers from the AFTP server. Wildcard processing is not allowed by the
aftp_send_file and aftp_receive_file functions to make these functions as portable as possible. Obtaining a complete directory
listing requires three calls: open, read, and close. The read function can be called multiple times to support wildcard processing.

aftp_dir_close
Closes an active directory listing on the AFTP server.

aftp_dir_open
Begins a directory listing operation on the AFTP server. The directory open call sets up the search specifications:

File specification that is to be matched.
Whether directories, files, or both should be included in the search.
The type of information desired (file names only or file names with attributes).

aftp_dir_read
Gets the next file from the directory listing on the AFTP server. A text string describing the file is returned. The format of the
information returned depends on the parameters specified on the aftp_dir_open call.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Listing Files on the AFTP Client Computer
File list facilities can be used to support wildcard transfers to the AFTP server. Wildcard processing is not allowed by the
aftp_send_file and aftp_receive_file functions to make these functions as portable as possible. Obtaining a complete directory
listing requires three calls: open, read, and close. The read function can be called multiple times to support wildcard processing.

aftp_local_dir_close
Closes an active directory listing on the AFTP client.

aftp_local_dir_open
Begins a directory listing operation on the AFTP client. The directory open call sets up the search specifications:

File specification to be matched.
Whether directories, files, or both should be included in the search.
The type of information desired (file names only or file names with attributes).

aftp_local_dir_read
Gets the next file from the directory listing on the AFTP client. A text string describing the file is returned. The format of the
information returned depends upon the parameters specified on the aftp_local_dir_open call.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Performing Directory Manipulation
Server Directories:

AFTP provides methods of traversing and modifying the directory structure on the AFTP server computer. It is possible to build
recursive copy routines for entire directory trees using these calls. AFTP also maintains the current directory on the AFTP server.
This enables the user to specify a file name without specifying the entire directory path to that file on the AFTP server.

Use these API calls to manage directories on the server.

aftp_change_dir
Changes the current working directory on the AFTP server.

aftp_create_dir
Makes a new directory on the AFTP server.

aftp_query_current_dir
Outputs the current working directory on the AFTP server.

aftp_remove_dir
Removes an existing directory on the AFTP server.

Client Directories:

AFTP provides methods to query and traverse the directory structure on the AFTP client computer. AFTP maintains the current
directory on the AFTP client. This enables the user to specify a file name without specifying the entire directory path to that file on
the AFTP client.

Use these API calls to manage directories on the client.

aftp_local_change_dir
Changes the current working directory on the AFTP client.

aftp_local_query_current_dir
Outputs the current working directory on the AFTP client.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Performing File Manipulation
The following two calls provide additional file functions that allow modifications to files on the AFTP server without using the
aftp_send_file call. It is possible to rename a file on the AFTP server computer as long as the rename does not cross device
boundaries. It is also possible to delete files on the AFTP server computer.

aftp_delete
Deletes a file on the AFTP server.

aftp_rename
Renames a file on the AFTP server.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Querying System Information
The query system calls can be used to obtain more information about the AFTP client and AFTP server computers.

aftp_query_local_system_info
Outputs a string describing the AFTP client operating system.

aftp_query_local_version
Outputs the major and minor AFTP client version numbers.

aftp_query_system_info
Outputs a string describing the AFTP server operating system.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Generating Message Strings
AFTP allows the caller to use consistent strings for AFTP transfer characteristics. AFTP will output the string to use when queried. It
is also possible to output standard text messages for AFTP errors. The other API calls return an AFTP return code that can be
queried to determine if an error message should be output.

Use these API calls to get text strings to use in messages issued by your application.

aftp_format_error
Generates text output for the current AFTP error. This should be used to output error information to the user when an AFTP call
returns an error code.

aftp_get_data_type_string
Outputs the string corresponding to an input data type value.

aftp_get_date_mode_string
Outputs the string corresponding to an input date mode value.

aftp_get_record_format_string
Outputs the string corresponding to an input record format value.

aftp_get_write_mode_string
Outputs the string corresponding to an input write mode value.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Controlling Trace Information
Use these API calls to control tracing of AFTP activity.

aftp_extract_trace_level
Extracts the current trace level.

aftp_set_trace_filename
Sets the name of the file to be used for trace output.

aftp_set_trace_level
Sets the amount of trace data to be captured.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Loading the Initialization File
AFTP provides a method of loading the AFTP initialization file that contains user permission and file mapping information.

aftp_load_ini_file
Loads the AFTP initialization file into memory.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP Reference
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides information about the APPC File Transfer
Protocol (AFTP) calls, return codes, and entry point mappings.

This section contains:

AFTP API Call Reference
AFTP Return Codes
Entry Point Mappings

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP API Call Reference
This section provides an alphabetic reference for all of the API calls for the APPC File Transfer Protocol (AFTP). Code fragments are
provided for each call to illustrate its use.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_change_dir
The aftp_change_dir call changes the current working directory on the AFTP server. A connection to the AFTP server must be
established before using this call.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

directory
The new current working directory name. The format of this name can be either the native syntax on the AFTP server or the
AFTP common naming convention described in the APPC Application Suite User's Guide. The directory specified can be either
an absolute or a relative path name.

length
The length of the directory parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_change_dir(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR directory,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 /* The value used will vary based on platform:
 * VM common naming: directory = "/d"
 * VM native naming: directory = "/d"
 * MVS PDS common naming: directory = "/user.clist/"
 * MVS PDS native naming: directory = "'user.clist'"
 * MVS data set prefix common: directory = "/user.qual.a."
 * MVS data set prefix native: directory =
 "'user.qual.a.'"
 * NT* common naming: directory = "/c:/nt"
 * NT native naming: directory = "c:\\nt"
 */
 static unsigned char AFTP_PTR directory = "/user.clist/"; /*
 MVS */

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 /*
 * Specify the new current working directory name
 * using the COMMON name format.
 */

 aftp_change_dir(
 connection_id,
 directory,
 (AFTP_LENGTH_TYPE)strlen(directory),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error changing AFTP directory.\n");

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

The directory name is sent to the AFTP server and the call waits for a response indicating the success or failure of the change
directory operation.

 }
}

Microsoft Host Integration Server 2000

aftp_close
The aftp_close call closes an active connection. A connection to the AFTP server must be established before using this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

The close operation causes a DEALLOCATE verb to be issued with an AP_FLUSH parameter, forcing any buffer contents to flow to
the server before deallocating the conversation.

AFTP_ENTRY aftp_close(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 aftp_close(connection_id, &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(
 stderr,
 "Error on aftp_close(): %s\n",
 aftp_rc);
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_connect
The aftp_connect call establishes a connection to the AFTP server. You must identify the destination of the AFTP server with the
aftp_set_destination call before issuing this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

The aftp_connect call causes an ALLOCATE verb to be issued to the server. When a conversation is established, an exchange of
version numbers and capabilities occurs between the client and the server. Therefore, this call does not return until either AFTP
verifies that the server program is running correctly on the remote system or an error occurs.

AFTP_ENTRY aftp_connect(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a destination, use: aftp_set_destination()
 */

 /*
 * Establish a connection to the server
 */

 aftp_connect(connection_id, &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(
 stderr,
 "Error on aftp_connect(): %s\n",
 aftp_rc);
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_create
The aftp_create call creates an AFTP connection object that can be used to connect to an AFTP server.

Parameters

connection_id
Handle of the AFTP connection object that was created by this call. All subsequent AFTP calls must use a previously-created
AFTP connection object.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_create(
 OUT AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_HANDLE_TYPE connection_id;

 /*
 * There are no prerequisite calls for this call.
 */

 /*
 * Create the connection object that we will use for AFTP.
 */

 aftp_create(connection_id, &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error creating an AFTP object.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_create_dir
The aftp_create_dir call creates a new directory on the AFTP server. A connection to the AFTP server must be established before
using this call.

Platform differences are as follows:

On VM, this call is not supported. If issued, the call fails with return code AFTP_RC_FAIL_NO_RETRY.
On MVS, partitioned data sets act as the directory structure. This call creates a partitioned data set with the name specified.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

directory
The name of the directory to be created. The format of this name can be either the native syntax on the AFTP server or the AFTP
common naming convention described in the APPC Application Suite User's Guide. The directory specified can be either an
absolute or relative path name.

length
The length of the directory parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_create_dir(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR directory,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /* The value used for filespec will vary based on platform:
 * VM not supported
 * MVS PDS common naming: directory="/user.clist/"
 * MVS PDS native naming: directory="'user.clist'"
 * NT native naming: directory="d:\\newdir"
 * NT common naming: directory="/d:/newdir"
 */
 static unsigned char AFTP_PTR directory = "/user.clist/";

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 aftp_create_dir(
 connection_id,
 directory,
 (AFTP_LENGTH_TYPE)strlen(directory),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error creating directory.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

The directory name is sent to the AFTP server and the call waits for a response indicating the success or failure of the create
directory operation.

Microsoft Host Integration Server 2000

aftp_delete
The aftp_delete call deletes a single file on the AFTP server. A connection to the AFTP server must be established before using
this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

filename
The name of the file to be removed. The format of this name can be either the native syntax on the AFTP server or the AFTP
common naming convention described in the APPC Application Suite User's Guide. The file specified can contain either an
absolute or relative path name.

length
The length of the filename parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_delete(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR filename,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /* The value used for filespec will vary based on platform:
 * VM common naming: filespec="/a/foo*"
 * VM native naming: filespec="foo*.*.a"
 * MVS PDS common naming: filespec="/user.clist/foo*"
 * MVS PDS native naming: filespec="'user.clist(foo*)'"
 * MVS sequential common: filespec="/user.qual*.a*.**"
 * MVS sequential native: filespec="'user.qual*.a*.**'"
 */
 static unsigned char AFTP_PTR filespec = "/user.clist/foo*";

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 /*
 * Delete a file
 */

 aftp_delete(
 connection_id,
 filespec,
 (AFTP_LENGTH_TYPE)strlen(filespec),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error deleting AFTP file.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

The file name is sent to the AFTP server and the call waits for a response indicating the success or failure of the delete file
operation.

Microsoft Host Integration Server 2000

aftp_destroy
The aftp_destroy call destroys an AFTP connection object. When an AFTP connection object is destroyed, it cannot be used again.

You should issue the aftp_close call to end the connection before you issue this call.

Parameters

connection_id
An AFTP connection object to be destroyed. This object was originally created with aftp_create.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_destroy(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_HANDLE_TYPE connection_id;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 *
 * If you have opened a connection with aftp_connect()
 * you must also issue an aftp_close()
 */

 aftp_destroy(connection_id, &aftp_rc);

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_dir_close
The aftp_dir_close call cancels a directory listing that is in progress on the AFTP server or ends a directory listing on the AFTP
server after a nonzero no_more_entries has been returned from an aftp_dir_read call. A connection to the AFTP server must be
established before using this call. A directory listing on the AFTP server must be started by calling aftp_dir_open before issuing
this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

See aftp_dir_read for a complete example showing the related calls aftp_dir_open, aftp_dir_read, and aftp_dir_close.

Line Flows

None.

AFTP_ENTRY aftp_dir_close(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR filespec,
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_dir_open
The aftp_dir_open call begins a directory listing and specifies the file search parameters on the AFTP server. The aftp_dir_read
call is used to read individual directory entries. The aftp_dir_close call is used to end the directory listing. A connection to the AFTP
server must be established before using this call.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

filespec
The search string that the server uses to generate the directory listing. The files in the listing must match the search string. The
format of this name can be either the native syntax on the AFTP server or the AFTP common naming convention described in
the APPC Application Suite User's Guide. The file specified can be either an absolute or relative path name and can contain
wildcard characters.

length
The length of the filespec parameter in bytes.

file_type
The type of information (directory names or file names) to be returned.

AFTP_FILE Only file entries.

AFTP_DIRECTORY Only directory entries.

AFTP_ALL_FILES Both file and directory entries.

info_level
The level and format of information to be returned about each file or directory entry.

AFTP_NATIVE_NAMES Native names without attributes.

AFTP_NATIVE_ATTRIBUTES Native names and native file attributes.

path
The fully qualified directory name in which of all of the directory entries exist. The actual directory entries will be returned when
the aftp_dir_read call is used. The path can be used along with the returned directory entry file name to create a fully qualified
path name to use on another AFTP file call.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

path_buffer_length
The size in bytes of the buffer pointed to by the path parameter.

path_returned_length
The number of bytes returned in the path parameter.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

See aftp_dir_read for a complete example showing the related calls aftp_dir_open, aftp_dir_read, and aftp_dir_close.

Line Flows

AFTP_ENTRY aftp_dir_open(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR filespec,
 IN AFTP_LENGTH_TYPE length,
 IN AFTP_FILE_TYPE_TYPE file_type,
 IN AFTP_INFO_LEVEL_TYPE info_level,
 OUT unsigned char AFTP_PTR path,
 IN AFTP_LENGTH_TYPE path_buffer_length,
 OUT AFTP_LENGTH_TYPE AFTP_PTR path_returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Sends a request for a directory listing to the AFTP server and waits for a response that includes the fully specified path of the
directory listing or an error indicator. If the path of the directory listing is received, the AFTP server sends all of the directory
entries as well. When the list is complete, a special end-of-list indicator is sent to the AFTP client.

Microsoft Host Integration Server 2000

aftp_dir_read
The aftp_dir_read call gets an individual directory entry based on the search parameters specified in the aftp_dir_open call. A
connection to the AFTP server must be established before using this call. The aftp_dir_open call must be issued before listing the
directory entries.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

dir_entry
Pointer to a buffer into which the procedure will write the directory entry.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

dir_entry_size
The size in bytes of the dir_entry buffer.

returned_length
The number of bytes returned in the dir_entry buffer.

no_more_entries
Whether or not an entry was returned on this call.

A value of zero indicates that there are more directory entries and that an entry was returned on this call.

A nonzero value indicates that there are no more directory entries and no entry was returned on this call. The returned_length
parameter is set to zero. Subsequent calls to aftp_dir_read will also result in no_more_entries being nonzero. To end the
directory listing, your next call should be aftp_dir_close.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

This example shows how to use the aftp_dir_open, aftp_dir_read, and aftp_dir_close calls together.

AFTP_ENTRY aftp_dir_read(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR dir_entry,
 IN AFTP_LENGTH_TYPE dir_entry_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_BOOLEAN_TYPE AFTP_PTR no_more_entries,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char dir_entry[AFTP_FILE_NAME_SIZE +1];
 AFTP_LENGTH_TYPE dir_entry_length;

 /* The value used for filespec will vary based on platform:
 * VM common naming: filespec="/a/foo*"
 * VM native naming: filespec="foo*.*.a"
 * MVS PDS common naming: filespec="/user.clist/foo*"
 * MVS PDS native naming: filespec="'user.clist(foo*)'"
 * MVS sequential common: filespec="/user.qual*.a*.**"
 * MVS sequential native: filespec="'user.qual*.a*.**'"
 */
 static unsigned char AFTP_PTR filespec = "/user.clist/foo*";

 unsigned char path[AFTP_FILE_NAME_SIZE+1];
 AFTP_LENGTH_TYPE path_length;
 AFTP_BOOLEAN_TYPE no_more_entries;

 /*

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 /*
 * Open a new directory listing on the AFTP server. Both files and
 * directory names will be listed along with their attributes.
 */

 aftp_dir_open(
 connection_id,
 filespec,
 (AFTP_LENGTH_TYPE)strlen(filespec),
 AFTP_DIRECTORY | AFTP_FILE,
 AFTP_NATIVE_ATTRIBUTES,
 path,
 (AFTP_LENGTH_TYPE)sizeof(path)-1,
 &path_length,
 &aftp_rc);

 if (aftp_rc == AFTP_RC_OK) {
 path[path_length] = '\0';

 printf("Directory listing of %s.", path);

 do {
 /*
 * Read one directory entry from the AFTP server
 */

 aftp_dir_read(
 connection_id,
 dir_entry,
 (AFTP_LENGTH_TYPE)sizeof(dir_entry)-1,
 &dir_entry_length,
 &no_more_entries,
 &aftp_rc);

 if (aftp_rc == AFTP_RC_OK && no_more_entries == 0) {
 dir_entry[dir_entry_length] = '\0';
 printf("File: %s\n", dir_entry);
 }
 /*
 * Loop until we either run out of directory
 * entries or an error occurs.
 */

 } while (aftp_rc == AFTP_RC_OK && no_more_entries == 0);

 /*
 * Terminate the directory listing by executing
 * a close.
 */

 aftp_dir_close(connection_id, &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(
 stderr,
 "Error closing AFTP directory.\n");
 }
 }
 else {
 fprintf(stderr, "Error opening AFTP directory.\n");
 }
}

Line Flows

None.

Microsoft Host Integration Server 2000

aftp_extract_allocation_size
The aftp_extract_allocation_size call extracts the AFTP file allocation size. If the aftp_set_allocation_size call has not been
invoked, the AFTP default allocation size value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

allocation_size
The allocation size in bytes that was set for the AFTP file transfer operation.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_allocation_size(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_ALLOCATION_SIZE_TYPE AFTP_PTR allocation_size,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_ALLOCATION_SIZE_TYPE allocation_size;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 aftp_extract_allocation_size(
 connection_id,
 &allocation_size,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP allocation size.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_block_size
The aftp_extract_block_size call extracts the file block size. If the aftp_set_block_size call has not been invoked, the AFTP default
block size value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

block_size
The AFTP file block size in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_block_size(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_BLOCK_SIZE_TYPE AFTP_PTR block_size,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_BLOCK_SIZE_TYPE block_size;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 aftp_extract_block_size(
 connection_id,
 &block_size,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP block size.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_data_type
The aftp_extract_data_type call extracts the data type for file transfers. If the aftp_set_data_type call has not been invoked, the
AFTP default data type value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

data_type
The data type to be used for data transfers.

AFTP_ASCII Transfer files as text files in ASCII.

AFTP_BINARY Transfer files as a binary sequence of bytes without translation.

AFTP_DEFAULT_DATA_TYPE Use the data transfer type set in the .INI file. If no type is set in the .INI file, use AFTP_ASCII.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_data_type(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_DATA_TYPE_TYPE AFTP_PTR data_type,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_DATA_TYPE_TYPE data_type;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 aftp_extract_data_type(
 connection_id,
 &data_type,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP data type.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_date_mode
The aftp_extract_date_mode call extracts the way file dates are handled for data transfer. If the aftp_set_date_mode call has not
been invoked, the AFTP default date mode value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

date_mode
The type of date given to the new file after transfer.

AFTP_NEWDATE Assign the time/date stamp of the time of transfer.

AFTP_OLDDATE Assign the time/date stamp of the source file.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_date_mode(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_DATE_MODE_TYPE AFTP_PTR date_mode,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_DATE_MODE_TYPE date_mode;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 aftp_extract_date_mode(
 connection_id,
 &date_mode,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP date mode.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_destination
The aftp_extract_destination call extracts the destination of the AFTP server. If the aftp_set_destination call has not been
invoked, the AFTP default destination value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

destination
Buffer into which the name of the AFTP server is written. This parameter can be either a symbolic destination name or a partner
LU name.

See the APPC Application Suite User's Guide for information about specifying destinations in the APPC Application Suite.

destination_size
The size of the buffer in which the destination will be stored.

Use the AFTP_FQLU_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

returned_length
The actual length of the destination parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

AFTP_ENTRY aftp_extract_destination(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR destination,
 IN AFTP_LENGTH_TYPE destination_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char destname[AFTP_FQLU_NAME_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the destination name for AFTP.
 */

 aftp_extract_destination(
 connection_id,
 destname,
 (AFTP_LENGTH_TYPE)sizeof(destname)-1,
 &returned_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP destination.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

None.

Microsoft Host Integration Server 2000

aftp_extract_mode_name
The aftp_extract_mode_name call extracts the mode name specified for the connection to the AFTP server. If the
aftp_set_mode_name call has not been invoked, the AFTP default mode name value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

mode_name
The buffer in which the mode name is to be stored.

Use the AFTP_MODE_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

mode_name_size
The size of buffer in which the mode name will be stored.

returned_length
The actual length of the mode_name parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_mode_name(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR mode_name,
 IN AFTP_LENGTH_TYPE mode_name_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char AFTP_PTR mode_name[AFTP_MODE_NAME_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the APPC mode name for AFTP.
 */

 aftp_extract_mode_name(
 connection_id,
 mode_name,
 (AFTP_LENGTH_TYPE)sizeof(mode_name)-1,
 &returned_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP mode name.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_partner_lu_name
The aftp_extract_partner_lu_name call extracts the fully qualified LU name of the server. A connection to the AFTP server must
occur before this call can be invoked.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

partner_lu_name
Buffer to which the fully qualified LU name is written.

Use the AFTP_FQLU_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

partner_lu_name_size
The size of the buffer to which the partner LU name will be written.

returned_length
The actual length of the partner_lu_name parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_partner_lu_name(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR partner_lu_name,
 IN AFTP_LENGTH_TYPE partner_lu_name_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char partner[AFTP_FQLU_NAME_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 /*
 * Extract the partner LU name for AFTP.
 */

 aftp_extract_partner_lu_name(
 connection_id,
 partner,
 (AFTP_LENGTH_TYPE)sizeof(partner)-1,
 &returned_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP destination.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_password
The aftp_extract_password call extracts the password specified for the connection to the AFTP server. If the aftp_set_password
call has not been invoked, the AFTP default password value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

password
The buffer in which the password used on the connection is written.

Use the AFTP_PASSWORD_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

password_size
The size of the buffer in which the password is to be written.

returned_length
The actual length of the password parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_password(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR password,
 IN AFTP_LENGTH_TYPE password_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char password[AFTP_PASSWORD_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the password for AFTP.
 */

 aftp_extract_password(
 connection_id,
 password,
 (AFTP_LENGTH_TYPE)sizeof(password)-1,
 &returned_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP password.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_record_format
The aftp_extract_record_format call extracts the record format for the data transfer. If the aftp_set_record_format call has not
been invoked, the AFTP default record format value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

record_format
The record format used for file transfer.

AFTP_DEFAULT_RECORD_FORMAT

Specifies that the system on which the file will be written should use its own default setting for record format. This is the initial
setting.

AFTP_V

Variable length record, unblocked.

AFTP_VA

Variable length record, unblocked, ASA print-control characters.

AFTP_VB

Variable length record, blocked.

AFTP_VBA

Variable length record, blocked, ASA print-control characters.

AFTP_VBM

Variable length record, blocked, machine print-control codes.

AFTP_VBS

Variable length record, blocked, spanned.

AFTP_VBSA

Variable length record, blocked, spanned, ASA print-control characters.

AFTP_VBSM

Variable length record, blocked, spanned, machine print-control codes.

AFTP_VM

Variable length record, unblocked, machine print-control codes.

AFTP_VS

Variable length record, unblocked, spanned.

AFTP_VSA

Variable length record, unblocked, spanned, ASA print-control characters.

AFTP_VSM

Variable length record, unblocked, spanned, machine print-control codes.

AFTP_F

AFTP_ENTRY aftp_extract_record_format(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RECORD_FORMAT_TYPE AFTP_PTR record_format,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Fixed length record, unblocked.

AFTP_FA

Fixed length record, unblocked, ASA print-control characters.

AFTP_FB

Fixed length record, blocked.

AFTP_FBA

Fixed length record, blocked, ASA print-control characters.

AFTP_FBM

Fixed length record, blocked, machine print-control codes.

AFTP_FBS

Fixed length record, blocked, standard.

AFTP_FBSA

Fixed length record, blocked, standard, ASA print-control characters.

AFTP_FBSM

Fixed length record, blocked, standard, machine print-control codes.

AFTP_FM

Fixed length record, unblocked, machine print-control codes.

AFTP_U

Undefined length record.

AFTP_UA

Undefined length record, ASA print-control characters.

AFTP_UM

Undefined length record, machine print-control codes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_RECORD_FORMAT_TYPE record_format;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the file record format for AFTP.
 */

 aftp_extract_record_format(
 connection_id,
 &record_format,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP record format.\n");
 }
}

Line Flows

None.

Microsoft Host Integration Server 2000

aftp_extract_record_length
The aftp_extract_record_length call extracts the record length for fixed length records, or the maximum possible record length
for variable length records used for data transfer. If the aftp_set_record_length call has not been invoked, the AFTP default record
length value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

record_length
The record length for the data transfer specified in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_record_length(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RECORD_LENGTH_TYPE AFTP_PTR record_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_RECORD_LENGTH_TYPE record_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the file record length for AFTP.
 */

 aftp_extract_record_length(
 connection_id,
 &record_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP record length.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_security_type
The aftp_extract_security_type call extracts the type of APPC conversation security used. If the aftp_set_security_type call has
not been invoked, the AFTP default security type value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

security_type
The security to be used when connecting to the AFTP server.

AFTP_SECURITY_NONE

No APPC conversation security is used.

AFTP_SECURITY_SAME

The local security information determined at logon time will be transferred to the AFTP server.

AFTP_SECURITY_PROGRAM

A user identifier and password will be sent to be verified by the AFTP server. You must use the aftp_set_userid and
aftp_set_password calls with this security type, or the connection attempt will fail.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_security_type(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_SECURITY_TYPE AFTP_PTR security_type,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_SECURITY TYPE sec_type;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the APPC security type for AFTP.
 */

 aftp_extract_security_type(
 connection_id,
 &sec_type,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr,
 "Error extracting AFTP security type.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_tp_name
The aftp_extract_tp_name call extracts the transaction program (TP) name of the AFTP server. If the aftp_set_tp_name call has
not been invoked, the AFTP default TP name value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

tp_name
The buffer into which the TP name of the AFTP server will be written.

Use the AFTP_TP_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

tp_name_size
The size of the buffer to which the TP name will be written.

returned_length
The actual length of the tp_name parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_tp_name(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR tp_name,
 IN AFTP_LENGTH_TYPE tp_name_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char tp_name[AFTP_TP_NAME_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the TP name for AFTP.
 */

 aftp_extract_tp_name(
 connection_id,
 tp_name
 (AFTP_LENGTH_TYPE)sizeof(tp_name)-1,
 &returned_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP TP name.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_trace_level
The aftp_extract_trace_level call extracts the current trace level setting. If the aftp_set_trace_level call has not been invoked, the
AFTP default trace level value is returned. The default value is AFTP_LVL_NO_TRACING.

Parameters

trace_level
The current setting of the trace level in AFTP. The constants from AFTP_LVL_NO_TRACING to AFTP_LVL_MAX_TRACE_LVL
incrementally increase the amount of trace information.

AFTP_LVL_NO_TRACING

Writes no data to the trace log.

AFTP_LVL_API

Traces crossings of the API boundary.

AFTP_LVL_MAX_TRACE_LVL

Provides the maximum amount of trace information.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_trace_level(
 OUT AFTP_TRACE_LEVEL_TYPE AFTP_PTR trace_level,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE rc;
 AFTP_TRACE_LEVEL_TYPE trace_level;

 /*
 * There are no prerequisite calls for this call.
 */

 aftp_extract_trace_level(&trace_level, &rc);

 if (rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting trace level\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_userid
The aftp_extract_userid call extracts the user identifier specified for the connection to the AFTP server. If the CPI-C
Extract_Conversation_Security_User_ID function is not supported, the AFTP default user identifier value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

userid
The buffer into which the user identifier used on the connection will be written.

Use the AFTP_USERID_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

userid_size
The size of the buffer into which the user identifier will be written.

returned_length
The actual length of the userid parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_userid(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR userid,
 IN AFTP_LENGTH_TYPE userid_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char userid[AFTP_USERID_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the user ID for AFTP.
 */

 aftp_extract_userid(
 connection_id,
 userid,
 (AFTP_LENGTH_TYPE)sizeof(userid)-1,
 &returned_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting userid.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_extract_write_mode
The aftp_extract_write_mode call extracts the way that existing files are treated when a data transfer writes to them. If the
aftp_set_write_mode call has not been invoked, the AFTP default write mode value is returned.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

write_mode
The method used to write a file if a copy of the file already exists. If the file does not exist on the target, a new file is created.

AFTP_REPLACE

Transferred file replaces the existing file.

AFTP_APPEND

Transferred file is appended to the existing file.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_extract_write_mode(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_WRITE_MODE_TYPE AFTP_PTR write_mode,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_WRITE_MODE_TYPE write_mode;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Extract the file write mode for AFTP.
 */

 aftp_extract_write_mode(
 connection_id,
 &write_mode,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error extracting AFTP write mode.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_format_error
The aftp_format_error call retrieves the current AFTP error information to a text buffer. The AFTP return code for the current
error must not be AFTP_RC_HANDLE_NOT_VALID. If the current status is AFTP_RC_OK and the aftp_format_error call is invoked,
the return_code value output by this call is AFTP_RC_STATE_CHECK. The aftp_format_error call should only be invoked when an
error has occurred.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

detail_level
The detail in which the error string will describe the AFTP error. These values can be OR’ed together to retrieve specific sets of
information. For example, to return the primary message and the error log information, specify (AFTP_DETAIL_RC |
AFTP_DETAIL_LOG).

AFTP_DETAIL_RC

The AFTP return code, error category, index, and primary error message will be output.

AFTP_DETAIL_SECOND

The AFTP secondary error message will be output.

AFTP_DETAIL_LOG

The error logging information will be output.

AFTP_DETAIL_INFO

The informational message associated with the error will be output.

AFTP_DETAIL_ALL

All of the previous detail levels will be output in the error string.

error_str
The buffer into which the error information string will be written.

Use the AFTP_MESSAGE_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

error_str_size
The size of the buffer into which the error information will be written.

returned_length
The actual length of the error_str parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_format_error(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_DETAIL_LEVEL_TYPE detail_level,
 OUT unsigned char AFTP_PTR error_str,
 IN AFTP_LENGTH_TYPE error_str_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char error_string[AFTP_MESSAGE_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

None.

 * There are no specific prerequisite calls for this call,
 * but you must issue a call that returns an error return code
 */

 if (aftp_rc != AFTP_RC_OK) {
 /*
 * We had an AFTP error - so let's get
 * the description that corresponds to
 * the error.
 */

 aftp_format_error(
 connection_id,
 AFTP_DETAIL_ALL,
 error_string,
 (AFTP_LENGTH_TYPE)sizeof(error_string)-1,
 &returned_length,
 &aftp_rc);
 }
}

Microsoft Host Integration Server 2000

aftp_get_data_type_string
The aftp_get_data_type_string call gets a string that corresponds to the input AFTP data type value. This string is available to
allow all users of the AFTP API to have consistent strings for each data type. It is not necessary to create an AFTP connection object
before issuing this call.

Parameters

data_type
An AFTP data type value.

AFTP_ASCII

Transfer files as text files in ASCII.

AFTP_BINARY

Transfer files as a binary sequence of bytes without translation.

AFTP_DEFAULT_DATA_TYPE

Use the data transfer type set in the .INI file. If no type is set in the .INI file, use AFTP_ASCII.

data_type_string
The buffer into which the data type string will be written.

Use the AFTP_DATA_TYPE_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

data_type_size
The size of the buffer into which the data type string will be written.

returned_length
The actual length of the data_type_string parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_get_data_type_string(
 IN AFTP_DATA_TYPE_TYPE data_type,
 OUT unsigned char AFTP_PTR data_type_string,
 IN AFTP_LENGTH_TYPE data_type_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char data_type[AFTP_DATA_TYPE_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * There are no prerequisite calls for this call.
 */
 /*
 * Get the data type string.
 */

 aftp_get_data_type_string(
 AFTP_ASCII,
 data_type,
 (AFTP_LENGTH_TYPE)sizeof(data_type)-1,
 &returned_length,
 &aftp_rc);
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

None.

Microsoft Host Integration Server 2000

aftp_get_date_mode_string
The aftp_get_date_mode_string call gets a string that corresponds to the input AFTP date mode value. This string is available to
allow all users of the AFTP API to have consistent strings for each date mode type. It is not necessary to create an AFTP connection
object before issuing this call.

Parameters

date_mode
An AFTP date mode value.

AFTP_NEWDATE

Assign the time/date stamp of the time of transfer.

AFTP_OLDDATE

Assign the time/date stamp of the source file.

date_mode_string
The buffer into which the date mode string will be written.

Use the AFTP_DATE_MODE_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

date_mode_size
The size of the buffer into which the date mode string will be written.

returned_length
The actual length of the date_mode_string parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

AFTP_ENTRY aftp_get_date_mode_string(
 IN AFTP_DATE_MODE_TYPE date_mode,
 OUT unsigned char AFTP_PTR date_mode_string,
 IN AFTP_LENGTH_TYPE date_mode_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char date_mode[AFTP_DATE_MODE_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * There are no prerequisite calls for this call.
 */

 /*
 * Get the date mode string.
 */

 aftp_get_date_mode_string(
 AFTP_OLDDATE,
 date_mode,
 (AFTP_LENGTH_TYPE)sizeof(date_mode)-1,
 &returned_length,
 &aftp_rc);
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

None.

Microsoft Host Integration Server 2000

aftp_get_record_format_string
The aftp_get_record_format_string call gets a string that corresponds to the input AFTP record format value. This string is
available to allow all users of the AFTP API to have consistent strings for each record format type. It is not necessary to create an
AFTP connection object before issuing this call.

Parameters

record_format
An AFTP record format value.

AFTP_DEFAULT_RECORD_FORMAT

Specifies that the system on which the file will be written should use its own default setting for record format. This is the initial
setting.

AFTP_V

Variable length record, unblocked.

AFTP_VA

Variable length record, unblocked, ASA print-control characters.

AFTP_VB

Variable length record, blocked.

AFTP_VBA

Variable length record, blocked, ASA print-control characters.

AFTP_VBM

Variable length record, blocked, machine print-control codes.

AFTP_VBS

Variable length record, blocked, spanned.

AFTP_VBSA

Variable length record, blocked, spanned, ASA print-control characters.

AFTP_VBSM

Variable length record, blocked, spanned, machine print-control codes.

AFTP_VM

Variable length record, unblocked, machine print-control codes.

AFTP_VS

Variable length record, unblocked, spanned.

AFTP_VSA

Variable length record, unblocked, spanned, ASA print-control characters.

AFTP_VSM

Variable length record, unblocked, spanned, machine print-control codes.

AFTP_F

AFTP_ENTRY aftp_get_record_format_string(
 IN AFTP_RECORD_FORMAT_TYPE record_format,
 OUT unsigned char AFTP_PTR record_format_string,
 IN AFTP_LENGTH_TYPE record_format_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Fixed length record, unblocked.

AFTP_FA

Fixed length record, unblocked, ASA print-control characters.

AFTP_FB

Fixed length record, blocked.

AFTP_FBA

Fixed length record, blocked, ASA print-control characters.

AFTP_FBM

Fixed length record, blocked, machine print-control codes.

AFTP_FBS

Fixed length record, blocked, standard.

AFTP_FBSA

Fixed length record, blocked, standard, ASA print-control characters.

AFTP_FBSM

Fixed length record, blocked, standard, machine print-control codes.

AFTP_FM

Fixed length record, unblocked, machine print-control codes.

AFTP_U

Undefined length record.

AFTP_UA

Undefined length record, ASA print-control characters.

AFTP_UM

Undefined length record, machine print-control codes.

record_format_string
The buffer into which the record format string will be written.

Use the AFTP_RECORD_FORMAT_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to
add a null terminator to the text in the buffer.

record_format_size
The size of the buffer into which the record format string will be written.

returned_length
The actual length of the record_format_string parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char recfm[AFTP_RECORD_FORMAT_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * There are no prerequisite calls for this call.
 */

 /*
 * Get the record format string.
 */

Line Flows

None.

 aftp_get_record_format_string(
 AFTP_F,
 recfm,
 (AFTP_LENGTH_TYPE)sizeof(recfm)-1,
 &returned_length,
 &aftp_rc);
}

Microsoft Host Integration Server 2000

aftp_get_write_mode_string
The aftp_get_write_mode_string call gets a string that corresponds to the input AFTP write mode value. This string is available
to allow all users of the AFTP API to have consistent strings for each write mode type. It is not necessary to create an AFTP
connection object before issuing this call.

Parameters

write_mode
The method used to write a file if a copy of the file already exists. If the file does not exist on the target, a new file will be created.

AFTP_REPLACE

Transferred file will replace the existing file.

AFTP_APPEND

Transferred file will be appended to the existing file.

write_mode_string
The buffer into which the write mode string will be written.

Use the AFTP_WRITE_MODE_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

write_mode_size
The size of the buffer into which the write mode string will be written.

returned_length
The actual length of the write_mode_string parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

AFTP_ENTRY aftp_get_write_mode_string(
 IN AFTP_WRITE_MODE_TYPE write_mode,
 OUT unsigned char AFTP_PTR write_mode_string,
 IN AFTP_LENGTH_TYPE write_mode_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char write_mode[AFTP_WRITE_MODE_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * There are no prerequisite calls for this call.
 */

 /*
 * Get the write mode string.
 */

 aftp_get_write_mode_string(
 AFTP_REPLACE,
 write_mode
 (AFTP_LENGTH_TYPE)sizeof(write_mode)-1,
 &returned_length,
 &aftp_rc);
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

None.

Microsoft Host Integration Server 2000

aftp_load_ini_file
The aftp_load_ini_file call reads the AFTP initialization file into memory. This file includes information required to map file
names on the current platform. When the AFTP initialization file is stored in memory, AFTP automatically consults the data it
contains before proceeding with any operations. It is not necessary to create an AFTP connection object before issuing this call.

The name of the initialization file varies by operating system:

MVS: DD:APPFTPI
VM: AFTP INI
Win32®: AFTP.INI

Parameters

filename
The file name of the AFTP initialization file.

filename_size
The length of the filename parameter in bytes.

program_path
For Win32, the fully qualified file specification of the program that is running. The path from the file specification will be used to
locate the AFTP initialization file.

For MVS or VM where this information is not available, provide a zero-length string (not a null string) for this parameter.

path_size
The length of the program_path parameter in bytes.

error_string
The buffer into which any error messages will be written during loading of the initialization file.

Use the AFTP_INI_MESSAGE_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

error_string_size
The size of the buffer into which the error information will be written.

returned_length
The actual size of the error information in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_load_ini_file(
 IN unsigned char AFTP_PTR filename,
 IN AFTP_LENGTH_TYPE filename_size,
 IN unsigned char AFTP_PTR program_path,
 IN AFTP_LENGTH_TYPE path_size,
 OUT unsigned char AFTP_PTR error_string,
 IN AFTP_LENGTH_TYPE error_string_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 static unsigned char AFTP_PTR init_file_name = "DD:APPFTPI";
 static unsigned char AFTP_PTR program_name = ""
 unsigned char error_string[AFTP_INI_MESSAGE_SIZE+1];
 AFTP_LENGTH_TYPE returned_length;

 /*
 * There are no prerequisite calls for this call.
 */

 /*
 * Load the AFTP initialization file into memory.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

None.

 */
 aftp_load_ini_file(
 init_file_name,
 (AFTP_LENGTH_TYPE)strlen(init_file_name),
 program_name,
 (AFTP_LENGTH_TYPE)strlen(program_name),
 error_string,
 (AFTP_LENGTH_TYPE)sizeof(error_string),
 &returned_length,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK {
 error_string[returned_length]='\0';
 printf(stderr, error_string);
 }
}

Microsoft Host Integration Server 2000

aftp_local_change_dir
The aftp_local_change_dir call changes the current working directory on the AFTP client. A connection to the AFTP server is not
required before using this call.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

directory
The new directory name. The format of this name can be either the native syntax on the AFTP client or the AFTP common
naming convention described in the APPC Application Suite User's Guide. The directory specified can be either an absolute or
relative path name.

length
The length of the directory parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_local_change_dir(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR directory,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /* The value used will vary based on platform:
 * VM common naming: directory = "/d"
 * VM native naming: directory = "/d"
 * MVS PDS common naming: directory = "/user.clist/"
 * MVS PDS native naming: directory = "'user.clist'"
 * MVS data set prefix common: directory = "/user.qual.a."
 * MVS data set prefix native: directory = "'user.qual.a.'"
 * NT common naming: directory = "/c:/nt"
 * NT native naming: directory = "c:\\nt"
 */
 static unsigned char AFTP_PTR directory = "/user.clist/"; /* MVS */

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Specify the new current working directory name on the AFTP
 * client.
 */

 aftp_local_change_dir(
 connection_id,
 directory,
 (AFTP_LENGTH_TYPE)strlen(directory),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error changing AFTP directory.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

None.

Microsoft Host Integration Server 2000

aftp_local_dir_close
The aftp_local_dir_close call cancels a directory listing that is in progress on the AFTP client or ends a directory listing on the
AFTP client after a nonzero no_more_entries has been returned from an aftp_local_dir_read call. A connection to the AFTP server is
not required before using this call. A directory listing on the AFTP client must be started by calling aftp_local_dir_open before
making this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

See aftp_local_dir_read for a complete example showing the related calls aftp_local_dir_open, aftp_local_dir_read, and
aftp_local_dir_close.

Line Flows

None.

AFTP_ENTRY aftp_local_dir_close(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_local_dir_open
The aftp_local_dir_open call begins a directory listing and specifies the file search parameters on the AFTP client. The
aftp_local_dir_read call is used to read individual directory entries. The aftp_local_dir_close call is used to end the directory listing.
A connection to the AFTP server is not required before using this call.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

filespec
The search string that the client uses to generate the directory listing. The files in the listing must match the search string. The
format of this name can be either the native syntax on the AFTP client or the AFTP common naming convention described in the
APPC Application Suite User's Guide. The file specified can be either an absolute or relative path name and can contain wildcard
characters.

length
The length of the filespec parameter in bytes.

file_type
The type of information (directory names or file names) to be returned.

AFTP_FILE

Only file entries.

AFTP_DIRECTORY

Only directory entries.

AFTP_ALL_FILES

Both file and directory entries.

info_level
The level and format of information to be returned about each file or directory entry.

AFTP_NATIVE_NAMES

Native names without attributes.

AFTP_NATIVE_ATTRIBUTES

Native names and native file attributes.

path
The fully qualified directory name in which of all of the directory entries exist. The actual directory entries will be returned when
the aftp_local_dir_read call is used. The path can be used along with the returned directory entry file name to create a fully
qualified path name to use on another AFTP file call.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

path_buffer_length
The size in bytes of the buffer pointed to by the path parameter.

path_returned_length

AFTP_ENTRY aftp_local_dir_open(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR filespec,
 IN AFTP_LENGTH_TYPE length,
 IN AFTP_FILE_TYPE_TYPE file_type,
 IN AFTP_INFO_LEVEL_TYPE info_level,
 OUT unsigned char AFTP_PTR path,
 IN AFTP_LENGTH_TYPE path_buffer_length,
 OUT AFTP_LENGTH_TYPE AFTP_PTR path_returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The number of bytes returned in the path parameter.
return_code

The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

See aftp_local_dir_read for a complete example showing the related calls aftp_local_dir_open, aftp_local_dir_read, and
aftp_local_dir_close.

Line Flows

None.

Microsoft Host Integration Server 2000

aftp_local_dir_read
The aftp_local_dir_read call gets an individual directory entry from the AFTP client, based on the search parameters specified on
the aftp_local_dir_open call. A connection to the AFTP server is not required before using this call. The aftp_local_dir_open call
must be issued before listing the directory entries.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

dir_entry
Pointer to a buffer into which the procedure will write the directory entry.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

dir_entry_size
The size in bytes of the dir_entry buffer.

returned_length
The number of bytes returned in the dir_entry parameter.

no_more_entries
Whether or not an entry was returned on this call.

A value of zero indicates that there are more directory entries and that an entry was returned on this call.

A nonzero value indicates that there are no more directory entries and that no entry was returned on this call. The
returned_length parameter is set to zero. Subsequent calls to aftp_local_dir_read will also result in no_more_entries being
nonzero. To end the directory listing, your next call should be aftp_local_dir_close.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_local_dir_read(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR dir_entry,
 IN AFTP_LENGTH_TYPE dir_entry_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_BOOLEAN_TYPE AFTP_PTR no_more_entries,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char dir_entry[AFTP_FILE_NAME_SIZE+1];
 AFTP_LENGTH_TYPE dir_entry_length;

 /* The value used for filespec will vary based on platform:
 * VM common naming: filespec="/a/foo*"
 * VM native naming: filespec="foo*.*.a"
 * MVS PDS common naming: filespec="/user.clist/foo*"
 * MVS PDS native naming: filespec="'user.clist(foo*)'"
 * MVS sequential common: filespec="/user.qual*.a*.**"
 * MVS sequential native: filespec="'user.qual*.a*.**'"
 */
 static unsigned char AFTP_PTR filespec = "/user.clist/foo*";

 unsigned char path[AFTP_FILE_NAME_SIZE+1];
 AFTP_LENGTH_TYPE path_length;
 AFTP_BOOLEAN_TYPE no_more_entries;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

None.

 */

 /*
 * Open a new directory listing on the AFTP client. Both files and
 * directory names will be listed along with their attributes.
 */

 aftp_local_dir_open(
 connection_id,
 filespec,
 (AFTP_LENGTH_TYPE)strlen(filespec),
 AFTP_DIRECTORY | AFTP_FILE,
 AFTP_NATIVE_ATTRIBUTES,
 path,
 (AFTP_LENGTH_TYPE)sizeof(path)-1,
 &path_length,
 &aftp_rc);

 if (aftp_rc == AFTP_RC_OK) {
 path[path_length] = '\0';

 printf("Directory listing of %s.", path);

 do {
 /*
 * Read one directory entry from the AFTP client
 */

 aftp_local_dir_read(
 connection_id,
 dir_entry,
 (AFTP_LENGTH_TYPE)sizeof(dir_entry)-1,
 &dir_entry_length,
 &no_more_entries,
 &aftp_rc);

 if (aftp_rc == AFTP_RC_OK && no_more_entries == 0) {
 dir_entry[dir_entry_length] = '\0';
 printf("Local file: %s\n", dir_entry);
 }
 /*
 * Loop until we either run out of directory
 * entries or an error occurs.
 */

 } while (aftp_rc == AFTP_RC_OK && no_more_entries == 0);

 /*
 * Terminate the directory listing by executing
 * a close.
 */

 aftp_local_dir_close(connection_id, &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(
 stderr,
 "Error closing local AFTP directory.\n");
 }
 }
 else {
 fprintf(stderr, "Error opening local AFTP directory.\n");
 }
}

Microsoft Host Integration Server 2000

aftp_local_query_current_dir
The aftp_local_query_current_dir call queries the current working directory on the AFTP client. A connection to the AFTP server
is not required before using this call.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

directory
The buffer into which the current working directory on the AFTP client will be written.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

directory_size
The size in bytes of the directory buffer.

returned_length
The actual length of the directory parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_local_query_current_dir(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR directory,
 IN AFTP_LENGTH_TYPE directory_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char directory[AFTP_FILE_NAME_SIZE+1];
 AFTP_LENGTH_TYPE length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Query the current working directory on the
 * AFTP client.
 */

 aftp_local_query_current_dir(
 connection_id,
 directory,
 (AFTP_LENGTH_TYPE)sizeof(directory)-1,
 &length,
 &aftp_rc);

 directory[length] = '\0';

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error in query of local current directory.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

None.

Microsoft Host Integration Server 2000

aftp_query_bytes_transferred
The aftp_query_bytes_transferred call queries the total number of bytes transferred after either an aftp_send_file or
aftp_receive_file call has completed. The number of bytes transferred is valid only after a file transfer operation has completed. A
connection to the AFTP server must be established before using this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

bytes_transferred
The number of bytes of data transferred during the last send or receive file operation.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_query_bytes_transferred(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT AFTP_LENGTH_TYPE AFTP_PTR bytes_transferred,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_LENGTH_TYPE number_bytes;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 * completed a send or receive, use: aftp_send()
 * or aftp_receive()
 */

 aftp_query_bytes_transferred(
 connection_id,
 &number_bytes,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error getting number bytes transferred.\n");
 } else {
 fprintf(stdout, "Number of bytes %d.\n", (int)number_bytes);
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_query_current_dir
The aftp_query_current_dir call queries the current directory on the AFTP server. A connection to the AFTP server must be
established before using this call.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

directory
The buffer into which the current working directory on the AFTP server will be written.

Use the AFTP_FILE_NAME_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a null
terminator to the text in the buffer.

directory_size
The size in bytes of the directory buffer.

returned_length
The actual length of the directory parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

AFTP_ENTRY aftp_query_current_dir(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR directory,
 IN AFTP_LENGTH_TYPE directory_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char directory[AFTP_FILE_NAME_SIZE+1];
 AFTP_LENGTH_TYPE length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 /*
 * Query the current working directory on the AFTP server.
 */

 aftp_query_current_dir(
 connection_id,
 directory,
 (AFTP_LENGTH_TYPE)sizeof(directory)-1,
 &length,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error in query of current directory.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The request for the directory name is sent to the AFTP server and the call waits for a response indicating the success or failure of
the query current working directory operation. The directory name of the current working directory on the AFTP server is sent as
the response if the query was successful.

Microsoft Host Integration Server 2000

aftp_query_local_system_info
The aftp_query_local_system_info call gets information about the AFTP client and the computer it is running on. A connection
to the AFTP server is not required before using this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

system_info
Buffer to store a text string describing the operating system and AFTP client version.

Use the AFTP_SYSTEM_INFO_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

system_info_size
Size in bytes of the system_info parameter.

returned_length
Number of bytes stored in the system_info parameter.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_query_local_system_info(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR system_info,
 IN AFTP_LENGTH_TYPE system_info_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char system_info[AFTP_FILE_NAME_SIZE+1];
 AFTP_LENGTH_TYPE system_info_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Query the AFTP client computer for more information.
 */

 aftp_query_local_system_info(
 connection_id,
 system_info,
 (AFTP_LENGTH_TYPE)sizeof(system_info)-1,
 &system_info_length,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error querying AFTP client system.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_query_local_version
The aftp_query_local_version call queries the AFTP version number on the AFTP client computer. A connection to the AFTP
server is not required before using this call.

Parameters

major_version
The major version number of the AFTP code on the client computer. In version 5.4, the major version number is 5.

minor_version
The minor version number of the AFTP code on the client computer. In version 5.4, the minor version number is 4.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_query_local_version(
 OUT AFTP_VERSION_TYPE AFTP_PTR major_version,
 OUT AFTP_VERSION_TYPE AFTP_PTR minor_version,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE aftp_rc;
 AFTP_VERSION_TYPE major_version;
 AFTP_VERSION_TYPE minor_version;

 /*
 * There are no prerequisite calls for this call.
 */

 /*
 * Query the AFTP version number on the
 * AFTP client computer.
 */

 aftp_query_local_version(
 &major_version,
 &minor_version,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error in query of local version.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_query_system_info
The aftp_query_system_info call gets information about the AFTP server and the computer it is running on. A connection to the
AFTP server must be established before using this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

system_info
Buffer to store a text string describing the operating system and AFTP server version.

Use the AFTP_SYSTEM_INFO_SIZE constant to define the length of this buffer. Add 1 to the size if you want to be able to add a
null terminator to the text in the buffer.

system_info_size
Size in bytes of the system_info parameter.

returned_length
Number of bytes stored in the system_info parameter.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

AFTP_ENTRY aftp_query_system_info(
 IN AFTP_HANDLE_TYPE connection_id,
 OUT unsigned char AFTP_PTR system_info,
 IN AFTP_LENGTH_TYPE system_info_size,
 OUT AFTP_LENGTH_TYPE AFTP_PTR returned_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;
 unsigned char system_info[AFTP_SYSTEM_INFO_SIZE+1];
 AFTP_LENGTH_TYPE system_info_length;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 /*
 * Query the AFTP server computer for more information.
 */

 aftp_query_system_info(
 connection_id,
 system_info,
 (AFTP_LENGTH_TYPE)sizeof(system_info)-1,
 &system_info_length,
 &aftp_rc);

 system_info[system_info_length] = '\0';

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error querying AFTP server system.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The request for the system information is sent to the AFTP server and the call waits for a response indicating the success or failure
of the query system information operation. The system information of the AFTP server computer is sent as the response if the
query was successful.

Microsoft Host Integration Server 2000

aftp_receive_file
The aftp_receive_file call receives a single file from the AFTP server. A connection to the AFTP server must be established before
using this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

local_file
The name given to the file received on the AFTP client. The format of this name can be either the native syntax on the AFTP
client or the AFTP common naming convention described in the APPC Application Suite User's Guide. The file specified can
contain either an absolute or relative path name.

local_file_length
The length of the local_file parameter in bytes.

remote_file
The name of the file sent from the AFTP server. The format of this name can be either the native syntax on the AFTP server or
the AFTP common naming convention described in the APPC Application Suite User's Guide. The file specified can contain either
an absolute or relative path name.

remote_file_length
The length of the remote_file parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_receive_file(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR local_file,
 IN AFTP_LENGTH_TYPE local_file_length,
 IN unsigned char AFTP_PTR remote_file,
 IN AFTP_LENGTH_TYPE remote_file_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /* The value used for filespec will vary based on platform:
 * VM common naming: filespec="/a/myfile.dat"
 * VM native naming: filespec="myfile.dat.a"
 * MVS PDS common naming: filespec="/user.mypds/myfile"
 * MVS PDS native naming: filespec="'user.mypds(myfile)'"
 * MVS sequential common: filespec="/user.qual.myfile"
 * MVS sequential native: filespec="'user.qual.myfile'"
 */
 static unsigned char AFTP_PTR local_file = "/user.mypos/myfile";
 /* MVS */
 static unsigned char AFTP_PTR remote_file = "/a/myfile.dat";
 /* VM */

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 aftp_receive_file(
 connection_id,
 local_file,
 (AFTP_LENGTH_TYPE)strlen(local_file),
 remote_file,
 (AFTP_LENGTH_TYPE)strlen(remote_file),

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

The request to receive the file is sent to the AFTP server. A send file indicator is returned to the AFTP client. All records of the file
are then sent from the AFTP server to the AFTP client.

 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error receiving AFTP file.\n");
 }
}

Microsoft Host Integration Server 2000

aftp_remove_dir
The aftp_remove_dir call removes a directory from the AFTP server. A connection to the AFTP server must be established before
using this call.

Platform differences are as follows:

On VM, this call is not supported. If issued, the call fails with return code AFTP_RC_FAIL_NO_RETRY.
On MVS, partitioned data sets act as the directory structure. This call deletes a partitioned data set with the name specified.

See AFTP File and Directory Concepts for details on how the directory concept is handled for supported operating systems.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

directory
The directory to be removed. The format of this name can be either the native syntax on the AFTP server or the AFTP common
naming convention described in the APPC Application Suite User's Guide. The directory specified can be either an absolute or
relative path name.

length
The length of the directory parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_remove_dir(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR directory,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /* The value used for filespec will vary based on platform:
 * VM not supported
 * MVS PDS common naming: directory="/user.clist/"
 * MVS PDS native naming: directory="'user.clist'"
 */
 static unsigned char AFTP_PTR directory = "/user.clist/";

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 aftp_remove_dir(
 connection_id,
 directory,
 (AFTP_LENGTH_TYPE)strlen(directory),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error removing AFTP directory.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

The remove directory request and the directory name to remove are sent to the AFTP server and the call waits for a response
indicating the success or failure of the remove directory operation.

Microsoft Host Integration Server 2000

aftp_rename
The aftp_rename call renames a file on the AFTP server. A connection to the AFTP server must be established before using this
call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

oldfile
The name of the file to be renamed.

The format of this name can be either the native syntax on the AFTP server or the AFTP common naming convention described
in the APPC Application Suite User's Guide. The file specified can be either an absolute or relative path name.

oldlength
The length in bytes of the oldfile parameter.

newfile
The new name of the file.

The format of this name can be either the native syntax on the AFTP server or the AFTP common naming convention described
in the APPC Application Suite User's Guide. The file specified can be either an absolute or relative path name.

newlength
The length in bytes of the newfile parameter.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_rename(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR oldfile,
 IN AFTP_LENGTH_TYPE oldlength,
 IN unsigned char AFTP_PTR newfile,
 IN AFTP_LENGTH_TYPE newlength,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /* The value used for filespec will vary based on platform:
 * VM common naming: newfile="/a/foo.file"
 * VM native naming: newfile="foo.file.a"
 * MVS PDS common naming: newfile="/user.clist/foo"
 * MVS PDS native naming: newfile="'user.clist(foo)'"
 * MVS sequential common: newfile="/user.qual.a.foo"
 * MVS sequential native: newfile="'user.qual.a.foo'"
 */
 static unsigned char AFTP_PTR newfile = "/user.clist/foo";
 static unsigned char AFTP_PTR oldfile = "/user.clist/abc";

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 aftp_rename(
 connection_id,
 oldfile,
 (AFTP_LENGTH_TYPE)strlen(oldfile),
 newfile,
 (AFTP_LENGTH_TYPE)strlen(newfile),

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

The rename request and the old and new file names are sent to the AFTP server and the call waits for a response indicating the
success or failure of the rename operation.

 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error renaming AFTP file.\n");
 }

}

Microsoft Host Integration Server 2000

aftp_send_file
The aftp_send_file call sends a single file to the AFTP server. A connection to the AFTP server must be established before using
this call.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

local_file
The name of the file sent from the AFTP client. The format of this name can be either the native syntax on the AFTP client or the
AFTP common naming convention described in the APPC Application Suite User's Guide. The file specified can contain either an
absolute or relative path name.

local_file_length
The length of the local_file parameter in bytes.

remote_file
The name given to the file received on the AFTP server. The format of this name can be either the native syntax on the AFTP
server or the AFTP common naming convention described in the APPC Application Suite User's Guide. The file specified can
contain either an absolute or relative path name.

remote_file_length
The length of the remote_file parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

AFTP_ENTRY aftp_send_file(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR local_file,
 IN AFTP_LENGTH_TYPE local_file_length,
 IN unsigned char AFTP_PTR remote_file,
 IN AFTP_LENGTH_TYPE remote_file_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /* The value used for filespec will vary based on platform:
 * VM common naming: filespec="/a/myfile.dat"
 * VM native naming: filespec="myfile.dat.a"
 * MVS PDS common naming: filespec="/user.mypds/myfile"
 * MVS PDS native naming: filespec="'user.mypds(myfile)'"
 * MVS sequential common: filespec="/user.qual.myfile"
 * MVS sequential native: filespec="'user.qual.myfile'"
 */
 static unsigned char AFTP_PTR local_file = "/user.mypos/myfile";
 /* MVS */
 static unsigned char AFTP_PTR remote_file = "/a/myfile.dat";
 /* VM */

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 * a connection to server, use: aftp_connect()
 */

 aftp_send_file(
 connection_id,
 local_file,
 (AFTP_LENGTH_TYPE)strlen(local_file),
 remote_file,
 (AFTP_LENGTH_TYPE)strlen(remote_file),

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Line Flows

The send file request is sent to the AFTP server, immediately followed by all records of the files. The call waits for a response
indicating the success or failure of the send file operation.

 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error sending AFTP file.\n");
 }
}

Microsoft Host Integration Server 2000

aftp_set_allocation_size
The aftp_set_allocation_size call sets the AFTP file allocation size. A connection to the AFTP server is not required before using
this call. The file allocation size can be changed at any time.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

allocation_size
The allocation size in bytes to set for the AFTP file. The default allocation size value is zero.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_allocation_size(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_ALLOCATION_SIZE_TYPE allocation_size,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Set the file allocation size for AFTP file
 * transfers.
 */

 aftp_set_allocation_size(
 connection_id,
 500,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP allocation size.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_block_size
The aftp_set_block_size call sets the file block size. A connection to the AFTP server is not required before using this call. The file
block size can be changed at any time.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

block_size
The AFTP file block size in bytes. The default block size value is zero.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_block_size(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_BLOCK_SIZE block_size,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Set the file block size for AFTP file
 * transfers.
 */

 aftp_set_block_size(
 connection_id,
 512,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP block size.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_data_type
The aftp_set_data_type call sets the data type for file transfers. A connection to the AFTP server is not required before using this
call. The data type can be changed at any time.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

data_type
The data type to be used for subsequent data transfers.

AFTP_ASCII

Transfer files as text files in ASCII.

AFTP_BINARY

Transfer files as a binary sequence of bytes without translation.

AFTP_DEFAULT_DATA_TYPE

Use the data transfer type set in the .INI file. If no type is set in the .INI file, use AFTP_ASCII.

This is the default setting.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_data_type(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_DATA_TYPE_TYPE data_type,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Set the data type for AFTP file
 * transfers.
 */

 aftp_set_data_type(
 connection_id,
 AFTP_BINARY,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP data type.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_date_mode
The aftp_set_date_mode call sets the way file dates are handled during data transfer. A connection to the AFTP server is not
required before using this call. The date mode can be changed at any time.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

date_mode
Specifies the way file dates are handled during data transfer.

AFTP_NEWDATE

Assign the time/date stamp of the time of transfer.

AFTP_OLDDATE

Assign the time/date stamp of the source file. This is the default.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_date_mode(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_DATE_MODE_TYPE date_mode,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Set the date mode for AFTP file
 * transfers.
 */

 aftp_set_date_mode(
 connection_id,
 AFTP_OLDDATE,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP date mode.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_destination
The aftp_set_destination call specifies the destination of the AFTP server. This call must be issued before establishing a
connection to the AFTP server. After a connection is established, the destination cannot be changed.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

destination
Identifies the location of the AFTP server. This parameter can be either a symbolic destination name or a partner LU name.

See the APPC Application Suite User's Guide for information about specifying destinations in the APPC Application Suite.

length
The length of the destination parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_destination(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR destination,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 static unsigned char AFTP_PTR destination = "NETWORK.SERVER";
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 *
 * You cannot have an open connection.
 */

 /*
 * Set the partner we want to communicate with - who will
 * be running the AFTP server.
 */

 aftp_set_destination(
 connection_id,
 destination,
 (AFTP_LENGTH_TYPE)strlen(destination),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP destination.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_mode_name
The aftp_set_mode_name call specifies the mode name for the connection to the AFTP server. This call can only be invoked prior
to the establishment of a connection to the AFTP server. When a connection is open, the mode name cannot be changed.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

mode_name
Specifies the mode name to be used on the connection. The default is #BATCH. The mode name must be from 1 through 8 bytes
long.

length
The length of the mode_name parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_mode_name(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR mode_name,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 static unsigned char AFTP_PTR mode_name = "#INTER";
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 *
 * You cannot have an open connection.
 */

 /*
 * Set the mode name for the AFTP connection.
 */

 aftp_set_mode_name(
 connection_id,
 mode_name,
 (AFTP_LENGTH_TYPE)strlen(mode_name),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP mode name.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_password
The aftp_set_password call specifies the password for the connection to the AFTP server. This call can only be invoked prior to
the establishment of a connection to the AFTP server. When a connection is open, the password cannot be changed. If a password
is set, a user identifier also must be set using aftp_set_userid before connecting to the AFTP server. Use of this call sets the
security type to AFTP_SECURITY_PROGRAM.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

password
The password to be used on the connection. The password can be from 1 through 8 bytes long.

length
The length of the password parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_password(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR password,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 static unsigned char AFTP_PTR password = "MYPASS";
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 *
 * You cannot have an open connection.
 */

 /*
 * Set the password for the AFTP connection.
 */

 aftp_set_password(
 connection_id,
 password,
 (AFTP_LENGTH_TYPE)strlen(password),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP password.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_record_format
The aftp_set_record_format call sets the record format for the data transfer. A connection to the AFTP server is not required
before using this call. The record format can be changed at any time.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

record_format
The record format used for file transfer.

AFTP_DEFAULT_RECORD_FORMAT

Specifies that the system on which the file will be written should use its own default setting for record format. This is the initial
setting.

AFTP_V

Variable length record, unblocked.

AFTP_VA

Variable length record, unblocked, ASA print-control characters.

AFTP_VB

Variable length record, blocked.

AFTP_VBA

Variable length record, blocked, ASA print-control characters.

AFTP_VBM

Variable length record, blocked, machine print-control codes.

AFTP_VBS

Variable length record, blocked, spanned.

AFTP_VBSA

Variable length record, blocked, spanned, ASA print-control characters.

AFTP_VBSM

Variable length record, blocked, spanned, machine print-control codes.

AFTP_VM

Variable length record, unblocked, machine print-control codes.

AFTP_VS

Variable length record, unblocked, spanned.

AFTP_VSA

Variable length record, unblocked, spanned, ASA print-control characters.

AFTP_VSM

Variable length record, unblocked, spanned, machine print-control codes.

AFTP_F

AFTP_ENTRY aftp_set_record_format(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_RECORD_FORMAT_TYPE record_format,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Fixed length record, unblocked.

AFTP_FA

Fixed length record, unblocked, ASA print-control characters.

AFTP_FB

Fixed length record, blocked.

AFTP_FBA

Fixed length record, blocked, ASA print-control characters.

AFTP_FBM

Fixed length record, blocked, machine print-control codes.

AFTP_FBS

Fixed length record, blocked, standard.

AFTP_FBSA

Fixed length record, blocked, standard, ASA print-control characters.

AFTP_FBSM

Fixed length record, blocked, standard, machine print-control codes.

AFTP_FM

Fixed length record, unblocked, machine print-control codes.

AFTP_U

Undefined length record.

AFTP_UA

Undefined length record, ASA print-control characters.

AFTP_UM

Undefined length record, machine print-control codes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Set the record format value for the file transfer.
 */

 aftp_set_record_format(
 connection_id,
 AFTP_VSA,
 &aftp_rc);
 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP record format.\n");
 }

}

Line Flows

None.

Microsoft Host Integration Server 2000

aftp_set_record_length
The aftp_set_record_length call sets the record length for fixed length records, or the maximum possible record length for
variable length records used for data transfer. A connection to the AFTP server is not required before using this call. The record
length can be changed at any time.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

record_length
The record length for the data transfer specified in bytes. The default value is zero.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_record_length(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_RECORD_LENGTH_TYPE record_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Set the record length for the file transfer.
 */

 aftp_set_record_length(
 connection_id,
 64,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP record length.\n");
 }

}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_security_type
The aftp_set_security_type call specifies the type of APPC conversation security to be used. This call can only be invoked prior to
the establishment of a connection to the AFTP server. When a connection is open, the APPC security type cannot be changed. If
AFTP_SECURITY_PROGRAM is used for the security type, a user identifier and password must also be set using aftp_set_userid
and aftp_set_password before connecting to the AFTP server.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

security_type
The security to be used when connecting to the AFTP server.

AFTP_SECURITY_NONE

No APPC conversation security is used. This is the default unless CPI-C side information is set otherwise.

AFTP_SECURITY_SAME

The local security information determined at logon time will be transferred to the AFTP server.

AFTP_SECURITY_PROGRAM

A user identifier and password will be sent to be verified by the AFTP server. You must use the aftp_set_userid and
aftp_set_password calls with this security type, or the connection attempt will fail.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

AFTP_ENTRY aftp_set_security_type(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_SECURITY_TYPE security_type,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 *
 * You cannot have an open connection.
 */

 /*
 * Set the APPC conversation security type for the
 * AFTP connection.
 */

 aftp_set_security_type(
 connection_id,
 AFTP_SECURITY_SAME,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP security type.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

None.

Microsoft Host Integration Server 2000

aftp_set_tp_name
The aftp_set_tp_name call specifies the transaction program (TP) name of the AFTP server. This call can only be invoked prior to
the establishment of a connection to the AFTP server. When a connection is open, the TP name cannot be changed. The AFTP API
defaults the TP name on the server to be AFTPD. This call is not necessary unless you want to experiment with a server that might
not have the same behavior as AFTPD.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

tp_name
The TP name of the AFTP server. The TP name can be from 1 through 64 bytes long. The default TP name is AFTPD.

length
The length of the tp_name parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_tp_name(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR tp_name,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 static unsigned char AFTP_PTR tp_name = "AFTPME";
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 *
 * You cannot have an open connection.
 */

 /*
 * Set the TP name for the AFTP server.
 */

 aftp_set_tp_name(
 connection_id,
 tp_name,
 (AFTP_LENGTH_TYPE)strlen(tp_name),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP TP name.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_trace_filename
The aftp_set_trace_filename call sets the name of the file to which trace information will be written. The default value for the
trace level is AFTP_LVL_NO_TRACING. If trace is turned on by the aftp_set_trace_level call and the aftp_set_trace_filename call is
not issued, the trace file generated is:

On MVS: DD:SYSOUT
On VM: ASUITE TRC
On Win32®: ASUITE.TRC

Parameters

filename
The name of the file to be used for trace output.

filename_length
The length of the filename parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_trace_filename(
 IN unsigned char AFTP_PTR filename,
 IN AFTP_LENGTH_TYPE filename_length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_RETURN_CODE_TYPE rc;

 /* The value used for filespec will vary based on platform:
 * VM common naming: filename="/a/aftp.trace"
 * VM native naming: filename="aftp.trace.a"
 * MVS PDS common naming: filename="/user.clist/aftptrac"
 * MVS PDS native naming: filename="'user.clist(aftptrac)'"
 * MVS sequential common: filename="/user.qual.a.aftptrac"
 * MVS sequential native: filename="'user.qual.a.aftptrac'"
 */
 static unsigned char AFTP_PTR filename = "/user.clist/aftptrac";

 /*
 * There are no prerequisite calls for this call.
 */

 aftp_set_trace_filename(
 filename,
 (AFTP_LENGTH_TYPE)strlen(filename),
 &rc);

 if (rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting tracing filename\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_trace_level
The aftp_set_trace_level call sets the level of tracing to use for AFTP activities. The new trace level will take effect immediately
upon making this call. The trace output is captured in the file specified in the aftp_set_trace_filename call that must be issued
before this call.

Parameters

trace_level
The amount of trace information to be generated. The constants from AFTP_LVL_NO_TRACING to AFTP_LVL_MAX_TRACE_LVL
incrementally increase the amount of trace information.

AFTP_LVL_NO_TRACING

Writes no data to the trace log.

AFTP_LVL_API

Traces crossings of the API boundary.

AFTP_LVL_MAX_TRACE_LVL

Provides the maximum amount of trace information.

Other trace levels are reserved for diagnosing problems with the assistance of vendor support.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_trace_level(
 IN AFTP_TRACE_LEVEL_TYPE trace_level,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{

 /*
 * The following calls must be issued here:
 * aftp_set_trace_filename()
 */

 /*
 * Turn on the tracing.
 */

 aftp_set_trace_level(trace_level, &rc);

 if (rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting the trace level\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_userid
The aftp_set_userid call specifies the user identifier for the connection to the AFTP server. This call can only be invoked prior to
the establishment of a connection to the AFTP server. When a connection is open, the user identifier cannot be changed. If a user
identifier is set, a password also must be set using aftp_set_password before connecting to the AFTP server. Use of this call sets
the security type to AFTP_SECURITY_PROGRAM.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

userid
The user identifier to be used on the connection. The user identifier can be from 1 through 8 bytes long.

length
The length of the userid parameter in bytes.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_userid(
 IN AFTP_HANDLE_TYPE connection_id,
 IN unsigned char AFTP_PTR userid,
 IN AFTP_LENGTH_TYPE length,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 static unsigned char AFTP_PTR userid = "LBONANNO";
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 *
 * You cannot have an open connection.
 */

 /*
 * Set the user ID for the AFTP connection.
 */

 aftp_set_userid(
 connection_id,
 userid,
 (AFTP_LENGTH_TYPE)strlen(userid),
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting user ID.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

aftp_set_write_mode
The aftp_set_write_mode call sets the way existing files will be handled during data transfer. A connection to the AFTP server is
not required before using this call. The write mode can be changed at any time.

Parameters

connection_id
An AFTP connection object originally created with aftp_create.

write_mode
The method used to write a file if a copy of the file already exists. If the file does not exist on the target, a new file is created.

AFTP_REPLACE

Transferred file will replace the existing file. This is the default.

AFTP_APPEND

Transferred file will be appended to the existing file.

return_code
The return code issued for this function. See AFTP Return Codes for the list of possible return codes.

Example

Line Flows

None.

AFTP_ENTRY aftp_set_write_mode(
 IN AFTP_HANDLE_TYPE connection_id,
 IN AFTP_WRITE_MODE_TYPE write_mode,
 OUT AFTP_RETURN_CODE_TYPE AFTP_PTR return_code
);

{
 AFTP_HANDLE_TYPE connection_id;
 AFTP_RETURN_CODE_TYPE aftp_rc;

 /*
 * Before issuing the example call, you must have:
 * a connection_id, use: aftp_create()
 */

 /*
 * Set the write mode for the AFTP
 * file transfer.
 */

 aftp_set_write_mode(
 connection_id,
 AFTP_REPLACE,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 fprintf(stderr, "Error setting AFTP write mode.\n");
 }
}

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AFTP Return Codes
These are the possible return codes that can be issued for each AFTP API call.

AFTP_RC_BUFFER_TOO_SMALL
The buffer supplied by the caller for output data was too small to hold the data.

AFTP_RC_COMM_CONFIG_LOCAL
The call failed due to a local configuration error. Communications will fail until the configuration problem is resolved.

AFTP_RC_COMM_CONFIG_REMOTE
The call failed due to a remote configuration error. Communications will fail until the configuration problem is resolved.

AFTP_RC_COMM_FAIL_NO_RETRY
The call failed due to a communications problem. The call will not successfully complete using the current parameters.

AFTP_RC_COMM_FAIL_RETRY
The call failed due to a communications problem. The call might successfully complete if tried again.

AFTP_RC_FAIL_FATAL
A serious system error has occurred. No calls can complete successfully.

AFTP_RC_FAIL_INPUT_ERROR
The call might successfully complete after new input parameters are supplied.

AFTP_RC_FAIL_NO_RETRY
The call will not successfully complete using the current parameters.

AFTP_RC_FAIL_RETRY
The call might successfully complete if tried again.

AFTP_RC_HANDLE_NOT_VALID
The call failed because the AFTP connection object passed into the AFTP API was not valid.

AFTP_RC_OK
The call completed successfully.

AFTP_RC_PARAMETER_CHECK
The call failed due to an error in one of the parameters passed into the AFTP API.

AFTP_RC_PROGRAM_INTERNAL_ERROR
The call failed due to a programming error.

AFTP_RC_SECURITY_NOT_VALID
The call failed because of APPC security.

AFTP_RC_STATE_CHECK
The call failed because the current AFTP API call was made when AFTP was not in the state required for the call. For example,
you will get a state check error if you try to use aftp_format_error when no error has occurred.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Entry Point Mappings
The following table shows the C function entry point associated with each AFTP API call.

Call name Entry point
aftp_change_dir ftcd
aftp_close ftclose
aftp_connect ftconn
aftp_create ftcreate
aftp_create_dir ftcrtdir
aftp_delete ftdel
aftp_destroy ftdestry
aftp_dir_close ftdircls
aftp_dir_open ftdiropn
aftp_dir_read ftdirrd
aftp_extract_allocation_size fteas
aftp_extract_block_size ftebs
aftp_extract_data_type ftedt
aftp_extract_date_mode ftedm
aftp_extract_destination ftedst
aftp_extract_mode_name ftemn
aftp_extract_partner_lu_name fteplu
aftp_extract_password ftepw
aftp_extract_record_format fterf
aftp_extract_record_length fterl
aftp_extract_security_type ftest
aftp_extract_tp_name ftetpn
aftp_extract_trace_level ftetl
aftp_extract_userid fteui
aftp_extract_write_mode ftewm
aftp_format_error ftfe
aftp_get_data_type_string ftgdts
aftp_get_date_mode_string ftgdms
aftp_get_record_format_string ftgrfs
aftp_get_write_mode_string ftgwms
aftp_load_ini_file ftlif
aftp_local_change_dir ftlcd
aftp_local_dir_close ftldc
aftp_local_dir_open ftldo
aftp_local_dir_read ftldr
aftp_local_query_current_dir ftlqcd
aftp_query_bytes_transferred ftqbt
aftp_query_current_dir ftqcd
aftp_query_local_system_info ftqlsi
aftp_query_local_version ftqlv
aftp_query_system_info ftqsys
aftp_receive_file ftrecv
aftp_remove_dir ftrd
aftp_rename ftren
aftp_send_file ftsend
aftp_set_allocation_size ftsas
aftp_set_block_size ftsbs
aftp_set_data_type ftsdt
aftp_set_date_mode ftsdm

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

aftp_set_destination ftsdest
aftp_set_mode_name ftsmn
aftp_set_password ftsp
aftp_set_record_format ftsrp
aftp_set_record_length ftsrl
aftp_set_security_type ftsst
aftp_set_tp_name ftstp
aftp_set_trace_filename ftstf
aftp_set_trace_level ftstl
aftp_set_userid ftsu
aftp_set_write_mode ftswm

Microsoft Host Integration Server 2000

AFTP Sample Applications
This sample code is made available by Microsoft Corporation on an as-is basis. Anyone receiving this code is considered to be
licensed under Microsoft copyrights to use the Microsoft-provided source code in any way he or she deems fit, including copying
it, compiling it, modifying it, and redistributing it, with or without modifications. No license under any Microsoft patents or patent
applications is to be implied from this copyright license.

A user of this sample code should understand that Microsoft cannot provide technical support for the code and will not be
responsible for any consequences of its use.

This sample program shows a simple exercise of using the AFTP programming interface. It gets a single file from a remote
machine. The user must know the machine name and the file name. Comments are inserted in bold text throughout the sample.

To link this sample code on Windows 2000, Windows NT, Windows 98, or Windows 95

1. The AFTP application must be statically linked with the AFTPAPI.LIB import library supplied as part of the Microsoft® Host
Integration Server 2000 SDK or the earlier SNA Server 4.0 SDK.

2. Include the appropriate AFTPAPI.DLL with your application when it is installed on the target machine if this DLL is not
already installed.

Note that Host Integration Server 2000 does not support the DEC Alpha and the Host Integration Server SDK does not include the
DEC Alpha version of the AFTPAPI.LIB and AFTPAPI.DLL files. The DEC Alpha versions of these files are included as part of the
earlier SNA Server 4.0 SDK.

System include files:

AFTP API include file:

 Note If you want to use the header file as it was shipped, change the file name in this include statement to
APPFFTP.H. Otherwise, rename the member APPFFTP.H to AFTPAPI.H for consistency with other platforms.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "aftpapi.h"

int main(int argc, char *argv[])
{
 AFTP_HANDLE_TYPE connection_id; /* connection id */
 AFTP_RETURN_CODE_TYPE aftp_rc; /* return code */
 AFTP_SECURITY_TYPE sec_type; /* security type */
 unsigned char * LU_name; /* partner LU name */
 unsigned char * srcfilename; /* source file name */
 unsigned char * destfilename; /* destination file name */

 printf("\n");

 if(argc != 4) {
 printf("Usage : aget <LU name> <source filename>" \
 " <destination filename> \n");
 exit(-1);
 }

 LU_name = argv[1];
 srcfilename = argv[2];
 destfilename = argv[3];
/* Create the connection object */
 aftp_create (connection_id, &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 printf ("Error creating connection object.\n");

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Set the partner LU name as the destination.

Set the security to NONE unless you need security.

Establish a connection with AFTPD server.

Set up file transfer mode.

Extract the security type and display it.

 exit (-1);
 }

 aftp_set_destination (
 connection_id,
 (unsigned char AFTP_PTR)LU_name,
 (AFTP_LENGTH_TYPE)strlen (LU_name),
 &aftp_rc);

 if(aftp_rc != AFTP_RC_OK) {
 printf ("Error setting the destination.\n");
 exit (-1);
 }

 aftp_set_security_type (
 connection_id,
 AFTP_SECURITY_NONE,
 &aftp_rc);

 if (aftp_rc == AFTP_RC_OK) {
 printf ("Setting security type to NONE.\n");
 } else {
 printf ("Error setting security type.\n");
 }

 aftp_connect (connection_id, &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 printf ("Error establishing the connection.\n");
 exit (-1);
 }

 aftp_set_write_mode (
 connection_id,
 AFTP_REPLACE,
 &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 printf ("Error setting write mode.\n");
 }

 aftp_extract_security_type (
 connection_id,
 &sec_type,
 &aftp_rc);

 if (aftp_rc == AFTP_RC_OK) {
 printf ("Security type is : %lu\n", sec_type);

Transfer the file from the server to the client.

This is an example of how to show error reporting.

Specify a detail level according to how much information you want returned. In this case, return code information is
requested.

Add a null terminator.

Close a connection with AFTPD server.

Destroy the connection identifier.

 } else {
 printf ("Error extracting security type.\n");
 }

 aftp_receive_file (
 connection_id,
 (unsigned char AFTP_PTR)destfilename,
 (AFTP_LENGTH_TYPE)strlen (destfilename),
 (unsigned char AFTP_PTR)srcfilename,
 (AFTP_LENGTH_TYPE)strlen (srcfilename),
 &aftp_rc);

 if (aftp_rc == AFTP_RC_OK) {
 printf ("File successfully transfered.\n");
 }

 AFTP_LENGTH_TYPE return_length;
 char error_string[AFTP_MESSAGE_SIZE];

 printf ("Error %lu transfering the file.\n", aftp_rc);

 aftp_format_error (
 connection_id,
 (AFTP_DETAIL_LEVEL_TYPE)AFTP_DETAIL_RC,
 (unsigned char AFTP_PTR)error_string,
 (AFTP_LENGTH_TYPE)(sizeof (error_string)-1),
 &return_length,
 &aftp_rc);

 error_string[return_length] = '\0';
 printf ("%s", error_string);
 }

 aftp_close (connection_id, &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {
 printf ("Error closing the connection.\n");
 exit (-1);
 }

 aftp_destroy (connection_id, &aftp_rc);

 if (aftp_rc != AFTP_RC_OK) {

 printf ("Error destroying the connection id.\n");
 exit (-1);
 }

 return(0);
}

/* END SAMPLE PROGRAM */

Microsoft Host Integration Server 2000

Internationalization
This section describes the features available in Microsoft® Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0 for
supporting international languages and different national language character sets. Introduced with SNA Server version 3.0, the
SNANLS API available on Microsoft Windows® XP, Windows 2000, Windows NT®, Windows Millennium Edition, Windows 98,
and Windows 95 can be used to support international languages in applications for Host Integration Server 2000, SNA Server 4.0,
and SNA Server 3.0 by means of a standardized and consistent interface. The SNANLS API uses the language support features
provided with Windows XP/2000/NT and extends these same features to Windows Millennium Edition, Windows 98, and
Windows 95 clients. SNANLS supports European languages that use single-byte encoding as well as East Asia languages that use
double-byte or Unicode encoding.

In Windows 3.x and MS-DOS® environments where SNANLS is not supported, developers can use the TrnsDT API for supporting
East Asia languages such as Japanese, Korean, and Chinese, and Windows code page support for single-byte conversions.

This section contains:

SNA National Language Support
SNALIS API Functions
The TrnsDT API
Host Integration Server 2000 Components and NLS Support
SNA Server Components and NLS Support

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA National Language Support
Microsoft® Host Integration Server 2000 is composed of many components, including 3270 Client, 5250 Client, NetView
services, MSMQ-MQSeries bridge, COM Transaction Integrator, and OLE DB providers. In past versions of SNA Server, most
components used a variety of methods for supporting different national languages and character sets and for converting between
EBCDIC host character code sets and ANSI code pages for the PC. For East Asia languages such as Japanese, Korean, and Chinese,
the TrnsDT API was used for double-byte character stream (DBCS) conversions. For other languages, a component's own
proprietary functions were often used for single-byte character stream (SBCS) conversions. It was common for two components
or applications to use different functions for converting strings from EBCDIC to ANSI and from ANSI to EBCDIC. The methods
used were quite varied and the code page support was not entirely consistent across products.

All of this changed with the release of SNA Server version 3.0 which introduced a standard SNA National Language Support
(SNANLS) API for supporting national languages. The SNANLS API was developed to standardize the way in which national
languages and locales are supported on SNA Server. SNANLS was designed to handle string conversion necessary for supporting
a wide range of host and PC code pages. The new components developed for SNA Server 3.0 and later, such as the Host Print
Service and Shared Folders Service, use SNANLS API to convert strings from EBCDIC to ANSI and from ANSI to EBCDIC.

The SNA National Language Support API is the standard means to convert strings in Host Integration Server 2000, SNA Server
4.0, and SNA Server 3.0. SNANLS presents a single interface to applications that need strings converted from one code page to
another. These conversions may be EBCDIC-to-ANSI, ANSI-to-EBCDIC, EBCDIC-to OEM code pages, OEM-to-EBCDIC, EBCDIC-to-
ISO code pages, and ISO-to-EBCDIC. Additionally, SNANLS supports the broadest possible range of host and PC code page
conversions.

SNANLS provides a uniform interface for programmers, hiding the details and difficulties of string conversion. SNANLS supports
both SBCS and DBCS conversions. The actual string conversion is handled by two other lower-level APIs. For SBCS conversions,
SNANLS uses the system-provided Win32® NLS API that is resident on Microsoft Windows® XP, Windows 2000, Windows NT®
4.0, and Windows NT 3.51. For use on Windows Millennium Edition, Windows 98, and Windows 95 systems, Host Integration
Server 2000 and SNA Server include a version of the SNANLS DLL which provides integrated support for NLS and Unicode
conversions. For DBCS conversions, SNANLS uses the TrnsDT API developed by the SNA Server team. The TrnsDT API is installed
with Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS is supported on Windows XP, Windows 2000, Windows NT, Windows Millennium Edition, Windows 98, and Windows
95. The goal for all future development is to use only SNANLS.

This section contains:

National Language Support in Windows 2000 and Windows NT
SNANLS Code Page Support
SNANLS Dependencies

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

National Language Support in Windows 2000 and Windows NT
National Language Support (NLS) provides a standardized method of supporting multiple international locales, code pages, input
methods, sort orders, and number/currency/time/date formats. The Win32 NLS API provides developers with a way to access
system-provided Unicode-to-ANSI and ANSI-to-Unicode conversion services. Windows 2000 and Windows NT 4.0 are supplied
with EBCDIC-to-Unicode and Unicode-to-EBCDIC translation tables for all of the popular host code pages.

The SNANLS API leverages the existing work done to support the NLS API on Windows 2000 and on Windows NT 3.51 and 4.0.
Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0 take advantage of these EBCDIC-to-Unicode-to-ANSI and
ANSI-to-Unicode-to-EBCDIC code page conversion services. Currently, the Win32 NLS API only supports SBCS EBCDIC code
pages. However, future versions of the NLS API will support DBCS EBCDIC. SNANLS currently uses TrnsDT for DBCS conversions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNANLS Code Page Support
The SNANLS API provides functions for converting single-byte character stream (SBCS) EBCDIC-to-Unicode-to-ANSI and SBCS
ANSI-to-Unicode-to-EBCDIC by leveraging the Win32 National Language Support (NLS) API. The Win32 NLS API uses resource
files containing NLS conversion tables that are installed on the target PC when Windows is installed or by the setup program for
Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0 (the setup program also adds the required registry entries). The
SNANLS DLL is supplied with Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS supports conversions for the following groups of code pages:

ANSI code pages
ANSI/OEM code pages
EBCDIC code pages
OEM PC code pages
Open Systems code pages
ISO code pages

The following tables list the code page support by category provided using SNANLS in Host Integration Server 2000, SNA Server
4.0, and SNA Server 3.0.

This section contains:

ANSI Code Page Support Using SNANLS
ANSI/OEM Code Page Support Using SNANLS
EBCDIC Code Page Support Using SNANLS
ISO Code Page Support Using SNANLS
OEM PC Code Page Support Using SNANLS
Open Systems Code Page Support Using SNANLS

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ANSI Code Page Support Using SNANLS
The following table shows the ANSI code pages and character code set identifiers (CCSIDs) supported by SNANLS in Host
Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS Display Name NLS Code Page HOST CCSID Type NLS Filename Comments
ANSI - Arabic 1256 1256 SBCS c_1256.nls
ANSI - Baltic 1257 1257 SBCS c_1257.nls
ANSI - Cyrillic 1251 1251 SBCS c_1251.nls
ANSI - Central Europe 1250 1250 SBCS c_1250.nls
ANSI - Greek 1253 1253 SBCS c_1253.nls
ANSI - Hebrew 1255 1255 SBCS c_1258.nls
ANSI - Latin I 1252 1252 SBCS c_1252.nls
ANSI - Turkish 1254 1254 SBCS c_1254.nls

Note that all of these ANSI code pages support the Euro.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ANSI/OEM Code Page Support Using SNANLS
The following table shows the ANSI/OEM code pages and character code set identifiers (CCSIDs) supported by SNANLS in Host
Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS Display Name NLS Code Page Host CCSID Type NLS Filename Comments
ANSI/OEM - Japanese Shift-JIS 932 932 SBCS c_932.nls Japanese JIS-8 Bit + Shift-JIS
ANSI/OEM - Korean 949 949 DBCS c_949.nls Korean Hangul (Extended Wansung)
ANSI/OEM - Simplified Chinese GBK 936 936 DBCS c_936.nls Simplified Chinese GBK
ANSI/OEM - Thai 874 874 SBCS c_874.nls Thai
ANSI/OEM - Traditional Chinese Big5 950 950 DBCS c_950.nls Traditional Chinese Big5
ANSI/OEM - Viet Nam 1258 1258 SBCS c_1258.nls Viet Nam

Note that none of these code pages support the Euro.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EBCDIC Code Page Support Using SNANLS
The following table shows the EBCDIC code pages and character code set identifiers (CCSIDs) supported by SNANLS in Host
Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS Display Name NLS Code Pag
e

Host CCSI
D

Eur
o

Supported by SNANLS in SNA Server 3.0 and l
ater

EBCDIC - Arabic 20420 420 partial (See Note)
EBCDIC - Cyrillic (Russian) 20880 880 yes
EBCDIC - Cyrillic (Serbian, Bulgarian) 21025 1025 yes
EBCDIC - Denmark/
Norway (Euro)

1142 277 yes yes

EBCDIC - Denmark/
Norway

20277 277 yes

EBCDIC - Finland/
Sweden (Euro)

1143 278 yes yes

EBCDIC - Finland/
Sweden

20278 278 yes

EBCDIC - France (Euro) 1147 297 yes yes
EBCDIC - France 20297 297 yes
EBCDIC - Germany (Euro) 1141 273 yes yes
EBCDIC - Germany 20273 273 yes
EBCDIC - Greek (Modern) 875 875 yes
EBCDIC - Greek 20423 423 yes
EBCDIC - Hebrew 20424 424 partial (See Note)
EBCDIC - Icelandic (Euro) 1149 871 yes yes
EBCDIC - Icelandic 20871 871 yes
EBCDIC - International (Euro) 1148 500 yes yes
EBCDIC - International 500 500 yes
EBCDIC - Italy (Euro) 1144 280 yes yes
EBCDIC - Italy 20280 280 yes
EBCDIC - Japan English (Extended) 1027
EBCDIC - Japan English/Kanji (Extended) 939 939 yes
EBCDIC - Japan English/Kanji (Extended) 5035
EBCDIC - Japan Katakana (Extended) 290 290 yes
EBCDIC - Japan Katakana/Kanji (Extend Katak
ana)

930 930 yes

EBCDIC - Japan Katakana/Kanji (Extend Katak
ana)

5026

EBCDIC - Japanese 931 931 yes
EBCDIC - Korea (Extended) 933 933 yes
EBCDIC - Latin America/

Spain (Euro)

1145 284 yes yes

EBCDIC - Latin America/

Spain

20284 284 yes

EBCDIC - Multilingual/
ROECE (Latin-2)

870 870 yes

EBCDIC - Simplified Chinese (Extended) 935 935 yes
EBCDIC - Thai 20838 838 yes
EBCDIC - Traditional Chinese (Extended) 937 937 yes
EBCDIC - Turkish (Latin-3) 20905 905 yes
EBCDIC - Turkish (Latin-5) 1026 1026 yes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

EBCDIC - U.S./
Canada (Euro)

1140 37 yes yes

EBCDIC - U.S./
Canada

37 37 yes

EBCDIC - United Kingdom (Euro) 1146 285 yes yes
EBCDIC - United Kingdom 20285 285 yes

None of the code pages supporting the Euro are supplied or installed with SNA Server 3.0

Support for Arabic and Hebrew code page conversions are limited to left-to-right output. Bidirectional output
including the default Arabic and Hebrew right-to-left output is not supported in this release of Host Integration
Server 2000.

Microsoft Host Integration Server 2000

ISO Code Page Support Using SNANLS
The following table shows the ISO NLS code pages and host character code set identifiers (CCSIDs) supported by SNANLS in Host
Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS Display Name NLS Code Pag
e

Host CCSI
D

Eur
o

Supported by SNANLS in SNA Server 3.0 and late
r

ISO 6937 Non-Spacing Accent 20269 6937
ISO 8859-1 Latin-1 28591 819
ISO 8859-15 Latin 9 (Euro) 20865 923 yes
ISO 8859-2 Central Europe 28592 912
ISO 8859-3 Latin 3 28593 913
ISO 8859-4 Baltic 28594 914
ISO 8859-5 Cyrillic 28595 915
ISO 8859-6 Arabic 28596 1089
ISO 8859-7 Greek 28597 813
ISO 8859-8 Hebrew (Visually Ordered) 28598 916
ISO 8859-9 Hebrew (Logically Ordered
)

28599 920

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OEM PC Code Page Support Using SNANLS
The following table shows the OEM PC code pages and character code set identifiers (CCSIDs) supported by SNANLS in Host
Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS Display Name NLS Code Page Host CCSID Type NLS Filename Comments
OEM - Arabic 864 864 SBCS c_864.nls
OEM - Baltic 775 775 SBCS c_775.nls
OEM - Canadian French 863 863 SBCS c_863.nls OEM - Canada (850 subset)
OEM - Cyrillic 855 855 SBCS c_855.nls
OEM - Cyrillic II 866 866 SBCS c_866.nls OEM - Russian
OEM - Greek 437G 737 737 SBCS c_737.nls
OEM - Hebrew 862 862 SBCS c_862.nls
OEM - Icelandic 861 861 SBCS c_861.nls OEM - Iceland
OEM - Modern Greek 869 869 SBCS c_869.nls
OEM - Multilingual Latin I 850 850 SBCS c_850.nls
OEM - Multilingual Latin II 852 852 SBCS c_852.nls
OEM - Nordic 865 865 SBCS c_865.nls OEM - Denmark, Norway, Finland, Sweden
OEM - Portuguese 860 860 SBCS c_860.nls OEM - Portugal (850 subset)
OEM - Turkish 857 857 SBCS c_857.nls
OEM - United States 437 437 SBCS c_437.nls

Note that none of these code pages support the Euro.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open Systems Code Page Support Using SNANLS
The following table shows the Open Systems NLS code pages and host character code set identifiers (CCSIDs) supported by
SNANLS in Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0.

SNANLS Display Name NLS Code Page Host CCSID Euro Supported by SNANLS in SNA Server 3.0 and later
Latin-1/Open System (Euro) 20924 924 yes
Latin-1/Open System 1047 1047

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNANLS Dependencies
The only file required to support SNANLS API on Windows XP, Windows 2000, and Windows NT is SNANLS.DLL. To link to this
DLL use the SNANLS.H header (located under the \SDK\INCLUDE subdirectory) and the SNANLS.LIB library file (located under the
\SDK\LIB subdirectory) supplied with the Host Integration Server 2000 SDK. The SNANLS.H include file and the SNANLS.LIB file
are also provided as part of the Microsoft Developer Network (MSDN) Platform SDK and with Visual Studio 6.0 or later. Note that
individual Win32 NLS resource files must be installed in order to support the various languages and code pages on Windows XP,
Windows 2000, Windows NT, Windows Millennium Edition, Windows 98, and Windows 95.

The Win32 NLS files needed to support various languages are normally installed when the operating system is installed during
setup for Windows XP or Windows 2000. On Windows NT 3.51 or 4.0, the individual Win32 NLS files needed to support various
languages are not normally installed during setup. The EBCDIC Win32 NLS files were delivered as part of the Windows NT 4.0
Language Pack (see the \LANGPACK subdirectory on the Windows NT 4.0 CD-ROM). Copies of these Win32 NLS support files are
bundled with Host Integration Server 2000. The Win32 NLS resource files for EBCDIC code pages are installed on the server
machine and client computers by the setup program for Host Integration Server 2000. Win32 NLS files for EBCDIC code pages
are also bundled with SNA Server 4.0 and SNA Server 3.0, but the list of code pages is a subset of those supplied with Host
Integration Server 2000. The Win32 NLS resource files are installed on the server machine and client computers by the setup
program for SNA Server 4.0. The required Win32 NLS resource files are installed on only server machine by the setup program
for SNA Server 3.0 when the Print Service option is selected. No Win32 NLS resource files are installed on the client computers by
setup for SNA Server 3.0.

For SNA Server 3.0 client applications that use SNA NLS on Windows NT, the necessary NLS files may need to be copied from the
SNA Server CD-ROM to the client machine. For Windows NT clients, the NLS files must be copied to the Windows NT system
directory (default location is C:\WINNT\SYSTEM32) from the \SDK\SNANLS\WINNT directory on the SNA Server CD-ROM.
Windows NT 4.0 includes a number of NLS files for some ANSI, ISO, and OEM code pages that are copied to the system directory
(default location is C:\WINNT\SYSTEM32) when the operating system is installed. But if additional NLS files (EBCDIC code pages,
for example) are required, these must be copied from the SNA Server CD-ROM.

For SNA Server 3.0 client applications that use SNA NLS on Windows Millennium Edition, Windows 98, and Windows 95, the
necessary NLS files will need to be copied from the SNA Server CD-ROM to the client machine. For SNA clients running on
Windows Millennium Edition, Windows 98, and Windows 95, the NLS files must be copied to the \WINDOWS\SYSTEM
subdirectory from the \SDK\SNANLS\WIN9X directory on the SNA Server CD-ROM. Windows Millennium Edition and Windows
98 include a number of NLS files for some ANSI, ISO, and OEM code pages that are copied to the Windows system directory
(default location is C:\WINDOW\SYSTEM) when the operating system is installed. But if additional NLS files (EBCDIC code pages,
for example) are required, these must be copied from the SNA Server CD-ROM.

The registry settings required to use specific NLS files are enabled on Windows XP and Windows 2000 when the operating
system is installed. When the End-user client or Administrator clients from Host Integration Server 2000 are installed, the registry
settings required to use specific NLS files are automatically created. On Windows NT server computer, the registry settings
required to use specific NLS files are enabled by the setup program for Host Integration Server 2000 or by the setup program for
SNA Server 4.0 or SNA Server 3.0.

For SNA Server 3.0 clients on Windows NT, Windows Millennium Edition, Windows 98, and Windows 95, the appropriate registry
settings will need to be set manually or by a vendor-supplied client installation program for EBCDIC code pages and other NLS
code pages not installed by the operating system. The registry settings required for common EBCDIC code pages are shown in the
table below.

File name SNANLS Display Name NLS Code Page Host CCSID Registry setting
c_037.nls EBCDIC - U.S./

Canada
37 37 Value Name=37

Type=REG_SZ
Data=c_037.nls

c_500.nls EBCDIC - International 500 500 Value Name=500
Type=REG_SZ
Data=c_500.nls

c_870.nls EBCDIC - Multilingual/
ROECE (Latin-2)

870 870 Value Name=870
Type=REG_SZ
Data=c_870.nls

c_875.nls EBCDIC - Greek (Modern) 875 875 Value Name=875
Type=REG_SZ
Data=c_875.nls

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

c_1026.nls EBCDIC - Turkish (Latin-5) 1026 1026 Value Name=1026
Type=REG_SZ
Data=c_1026.nls

c_20273.nls EBCDIC - Germany 20273 273 Value Name=20273
Type=REG_SZ
Data=c_20273.nls

c_20277.nls EBCDIC - Denmark/
Norway

20277 277 Value Name=20277
Type=REG_SZ
Data=c_20277.nls

c_20278.nls EBCDIC - Finland/
Sweden

20278 278 Value Name=20278
Type=REG_SZ
Data=c_20278.nls

c_20280.nls EBCDIC - Italy 20280 280 Value Name=20280
Type=REG_SZ
Data=c_20280.nls

c_20284.nls EBCDIC - Latin America/

Spain

20285 284 Value Name=20284
Type=REG_SZ
Data=c_20284.nls

c_20285.nls EBCDIC - United Kingdom 20285 285 Value Name=20285
Type=REG_SZ
Data=c_20285.nls

c_20297.nls EBCDIC - France 20297 297 Value Name=20297
Type=REG_SZ
Data=c_20297.nls

c_20420.nls EBCDIC - Arabic 20420 420 Value Name=28596
Type=REG_SZ
Data=c_20420.nls

c_20423.nls EBCDIC - Greek 20423 423 Value Name=20423
Type=REG_SZ
Data=c_20423.nls

c_20424.nls EBCDIC - Hebrew 20424 424 Value Name=20424
Type=REG_SZ
Data=c_20424.nls

c_20838.nls EBCDIC - Thai 20838 838 Value Name=20838
Type=REG_SZ
Data=c_20838.nls

c_20871.nls EBCDIC - Icelandic 20871 871 Value Name=20871
Type=REG_SZ
Data=c_20871.nls

c_20880.nls EBCDIC - Cyrillic (Russian) 20880 880 Value Name=20880
Type=REG_SZ
Data=c_20880.nls

c_20905.nls EBCDIC - Turkish (Latin-3) 20905 905 Value Name=20905
Type=REG_SZ
Data=c_20905.nls

c_21025.nls EBCDIC - Cyrillic (Serbian, Bulgarian) 21025 1025 Value Name=21025
Type=REG_SZ
Data=c_21025.nls

 Note On Windows XP, Windows 2000, Windows NT, Windows Millennium Edition, Windows 98, and Windows 95,
the registry settings are located under the HKEY_LOCAL_MACHINE under the following subkey:
SYSTEM\CurrentControlSet\Control\Nls\CodePage

Windows Millennium Edition, Windows 98, and Windows 95 do not natively support Unicode, which is necessary to support the
Win32 NLS API. Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0 include the necessary support for Unicode in
the SNANLS.DLL file supplied for these platforms. Since Windows Millennium Edition, Windows 98, and Windows 95 do not
come with the Win32 NLS files needed to support various languages (EBCDIC code pages, for example), these NLS files are
supplied with Host Integration Server 2000, SNA Server 4.0, and SNA Server 3.0. Host Integration Server 2000 and SNA Server
4.0 automatically install these files on client computers. For use with SNA Server 3.0 clients, these files are located in the
\SDK\SNANLS\WIN9X subdirectory on the SNA Server CD-ROM. Note that because of system differences, the NLS files for

Windows XP, Windows 2000, and Windows NT and the NLS files for Windows Millennium Edition, Windows 98, and Windows 95
are different and may not be interchanged.

Microsoft Host Integration Server 2000

SNANLS API Functions
The SNANLS API is documented in the SNANLS.H file in the software development kit (SDK) provided with Microsoft® Host
Integration Server 2000 and SNA Server 3.0 and SNA Server 4.0.

The following functions are supported by SNANLS on Host Integration Server 2000:

CloseNlsRegistry
FindCloseCodePage
FindFirstCodePage
FindNextCodePage
GetCodePage
GetCodePageDisplayStr
IsInstalledCodePage
OpenNlsRegistry
SnaNlsInit
SnaNlsMapString

The following functions are supported by SNANLS on SNA Server 4.0 and SNA Server 3.0:

CloseNlsRegistry
IsInstalledCodePage
OpenNlsRegistry
SnaNlsInit
SnaNlsMapString

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CloseNlsRegistry
The SNANLS CloseNlsRegistry function closes an open registry key on a local or remote computer.

Parameters

KeyHandle
Supplied parameter. The handle to a key in the registry opened using OpenNlsRegistry.

Return Values

The CloseNlsRegistry function returns zero on success, otherwise a non-zero value is returned on failure.

Remarks

The KeyHandle parameter passed to this function is the handle returned from a previous call to the OpenNlsRegistry function.
This function is primarily used by the Print Service in Host Integration Server 2000 and SNA Server 3.0 and later to determine
what code pages are supported on a remote computer providing the print services function.

This function is supported by SNANLS on Host Integration Server 2000 and SNA Server 3.0 and later.

BOOL WINAPI CloseNlsRegistry(
 HKEY KeyHandle
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FindCloseCodePage
The SNANLS FindCloseCodePage function closes the handle allocated by a call to the FindFirstCodePage function.

Parameters

hInfo
Supplied parameter. The handle allocated and returned using FindFirstCodePage.

Return Values

The FindCloseCodePage function returns TRUE on success, otherwise the returned value on failure is FALSE.

Remarks

The hInfo parameter passed to this function is the handle returned from a previous call to the FindFirstCodePage function.

This function is supported by SNANLS on Host Integration Server 2000.

BOOL WINAPI FindCloseCodePage(
 const HANDLE hInfo
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FindFirstCodePage
The SNANLS FindFirstCodePage function finds the first instance of a code page satisfying the condition specified, copies the
code page information to a structure passed as a parameter, opens and returns a handle used in subsequent calls to the
FindNextCodePage function.

Parameters

dwEnumOption
Supplied parameter. The set of conditions that a code page should satisfy. These conditions can be any combination of the
following values defined in the SNANLS.h include file:

ENUM_CP_AVAILABLE (0x01)

The code page is installed and available for use.

ENUM_CP_HOST (0x02)

The code page is a host code page (EBCDIC, for example).

ENUM_CP_EURO (0x04)

The code page contains support for the Euro character.

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

Note that some of these combinations represent cases that will not match any installed code pages used by SNANLS.

pPage
Supplied and returned parameter. A pointer to a struct CodePage where the code page information should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the information for the first code
page satisfying the conditions in dwEnumOption. On failure, no changes will be made to the memory pointed to by this
parameter.

The CodePage struct is defined in the SNANLS.H include file as follows:

The members of this CodePage structure are as follows:

CodePageKey

A numeric value that represents the index into the array of CodePage structures. This value should be used as an opaque value,
since this value can be changed arbitrarily by Service Packs when additional code pages are supported.

const HANDLE WINAPI FindFirstCodePage(
 DWORD dwEnumOption,
 struct CodePage *pPage
);

struct CodePage {
 BYTE CodePageKey;
 DWORD CodePageID;
 WCHAR szFriendlyName[CP_SIZE];
 short eGroup;
 BOOL bAvailable;
 BYTE bccsid;
 BOOL bEuro;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

CodePageID

The NLS code page number.

szFriendlyName

The SNANLS display name for this code page.

eGroup

The group that this code page is represented by. .This value can be one of the following enumerations defined in the SNANLS.h
include file for code groups:

ENUM_CP_EBCDIC

This code page is a member of the EBCDIC code page group.

ENUM_CP_ANSI

This code page is a member of the ANSI code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEMPC

This code page is a member of the OEM PC code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEM PC

This code page is a member of the OEM PC code page group.

ENUM_CP_OPEN

This code page is a member of the Open Systems code page group.

ENUM_CP_UCS

This code page is a member of the UCS code page group.

bAvailable

A boolean used to indicate that this code page is installed on the computer. A value of FALSE for this member indicates that the
computer will not be queried to determine if this code page is installed. A value of TRUE indicated the code page is installed.

bccsid

A flag used to indicate the type of code page. This flag can be one of the following:

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

bEuro

A boolean value used to indicate if this code page supports the Euro symbol. If this value is TRUE, then the Euro symbol is
supported.

Return Values

The FindFirstCodePage function returns a handle used in calls to the FindNextCodePage or FindCloseCodePage on success.

On failure, INVALID_HANDLE_VALUE is returned for the value of this handle.

Remarks

The handle returned by this function should not be tampered with by the user.

This function is supported by SNANLS on Host Integration Server 2000.

Microsoft Host Integration Server 2000

FindNextCodePage
The SNANLS FindNextCodePage function finds the next instance of code page satisfying the condition specified in the initial call
to the FindFirstCodePage function, and copies the code page information to a structure passed as a parameter.

Parameters

hInfo
Supplied parameter. The handle allocated and returned using FindFirstCodePage.

pPage
Supplied and returned parameter. A pointer to struct CodePage where the code page information should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the information for the next code
page satisfying the conditions in dwEnumOption parameter passed to the FindFirstCodePage function.

On failure, no changes will be made to the memory pointed to by this parameter.

The CodePage struct is defined in the SNANLS.H include file as follows:

The members of this CodePage structure are as follows:

CodePageKey

A numeric value that represents the index into the array of CodePage structures. This value should be used as an opaque value,
since this value can be changed arbitrarily by Service Packs when additional code pages are supported.

CodePageID

The NLS code page number.

szFriendlyName

The SNANLS display name for this code page. The character string is null terminated.

eGroup

The group that this code page is represented by. .This value can be one of the following enumerations defined in the SNANLS.h
include file for code groups:

ENUM_CP_EBCDIC

This code page is a member of the EBCDIC code page group.

ENUM_CP_ANSI

This code page is a member of the ANSI code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEMPC

This code page is a member of the OEM PC code page group.

BOOL WINAPI FindNextCodePage(
 const HANDLE hInfo
 struct CodePage *pPage
);

struct CodePage {
 BYTE CodePageKey;
 DWORD CodePageID;
 WCHAR szFriendlyName[CP_SIZE];
 short eGroup;
 BOOL bAvailable;
 BYTE bccsid;
 BOOL bEuro;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEM PC

This code page is a member of the OEM PC code page group.

ENUM_CP_OPEN

This code page is a member of the Open Systems code page group.

ENUM_CP_UCS

This code page is a member of the UCS code page group.

bAvailable

A boolean used to indicate that this code page is installed on the computer. A value of FALSE for this member indicates that the
computer will not be queried to determine if this code page is installed. A value of TRUE indicated the code page is installed.

bccsid

A flag used to indicate the type of code page. This flag can be one of the following:

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

bEuro

A boolean value used to indicate if this code page supports the Euro symbol. If this value is TRUE, then the Euro symbol is
supported.

Return Values

The FindNextCodePage function returns a value of TRUE on success. On failure, the returned value is FALSE.

Remarks

This function is supported by SNANLS on Host Integration Server 2000.

Microsoft Host Integration Server 2000

GetCodePage
The SNANLS GetCodePage function copies the code page information identified by a key to a structure passed as a parameter.

Parameters

nKey
Supplied parameter. The numeric key to a code page. This value is an opaque index into an array containing the code pages
supported by SNANLS. This value is normally the CodePageKey member of a CodePage structure returned from a previous call
to FindFirstCodePage or FindNextCodePage.

pPage
Supplied and returned parameter. A pointer to struct CodePage where the code page information should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the information for the specific code
page.

On failure, no changes will be made to the memory pointed to by this parameter.

The CodePage struct is defined in the SNANLS.H include file as follows:

The members of this CodePage structure are as follows:

CodePageKey

A numeric value that represents the index into the array of CodePage structures. This value should be used as an opaque value,
since this value can be changed arbitrarily by Service Packs when additional code pages are supported.

CodePageID

The NLS code page number.

szFriendlyName

The SNANLS display name for this code page. The character string is null terminated.

eGroup

The group that this code page is represented by. .This value can be one of the following enumerations defined in the SNANLS.h
include file for code groups:

ENUM_CP_EBCDIC

This code page is a member of the EBCDIC code page group.

ENUM_CP_ANSI

This code page is a member of the ANSI code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEMPC

BOOL WINAPI GetCodePage(
 int nKey
 struct CodePage *pPage
);

struct CodePage {
 BYTE CodePageKey;
 DWORD CodePageID;
 WCHAR szFriendlyName[CP_SIZE];
 short eGroup;
 BOOL bAvailable;
 BYTE bccsid;
 BOOL bEuro;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This code page is a member of the OEM PC code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEM PC

This code page is a member of the OEM PC code page group.

ENUM_CP_OPEN

This code page is a member of the Open Systems code page group.

ENUM_CP_UCS

This code page is a member of the UCS code page group.

bAvailable

A boolean used to indicate that this code page is installed on the computer. A value of FALSE for this member indicates that the
computer will not be queried to determine if this code page is installed. A value of TRUE indicated the code page is installed.

bccsid

A flag used to indicate the type of code page. This flag can be one of the following:

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

bEuro

A boolean value used to indicate if this code page supports the Euro symbol. If this value is TRUE, then the Euro symbol is
supported.

Return Values

The GetCodePage function returns a value of TRUE on success. On failure, the returned value is FALSE.

Remarks

This function is supported by SNANLS on Host Integration Server 2000.

Microsoft Host Integration Server 2000

GetCodePageDisplayStr
The SNANLS GetCodePageDisplayStr function copies the SNANLS code page display name identified by a key to a character
string passed as a parameter.

Parameters

nKey
Supplied parameter. The numeric key to a code page. This value is an opaque index into an array containing the code pages
supported by SNANLS. This value is normally the CodePageKey member of a CodePage structure returned from a previous call
to FindFirstCodePage or FindNextCodePage.

szDisplayStr
Supplied and returned parameter. A pointer to a wide-character array where the SNANLS display name for the specific code
page should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the SNANLS display name for the
specific code page. The character string is null terminated.

On failure, no changes will be made to the memory pointed to by this parameter.

Return Values

The GetCodePageDisplayStr function returns a value of TRUE on success. On failure, the returned value is FALSE.

Remarks

This function is supported by SNANLS on Host Integration Server 2000.

BOOL WINAPI GetCodePageDisplayStr(
 int nKey
 WCHAR *szDisplayStr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IsInstalledCodePage
The SNANLS IsInstalledCodePage function determines if a code page is installed on a local or remote computer.

Parameters

CodePage
Supplied parameter. The NLS code page.

KeyHandle
Supplied parameter. The registry key returned from a call to the OpenNlsRegistry function.

Return Values

The IsInstalledCodePage function returns non-zero if a code page is installed, otherwise a zero value is returned on failure.

Remarks

This function is primarily used by the Print Service in Host Integration Server 2000 and SNA Server 3.0 and later to determine if
what code pages are supported on a remote computer providing the print services function.

This function is supported by SNANLS on Host Integration Server 2000 and SNA Server 3.0 and later.

BOOL WINAPI IsInstalledCodePage(
 UINT CodePage,
 HKEY KeyHandle
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OpenNlsRegistry
The SNANLS OpenNlsRegistry function opens a registry key on a local or remote computer pointing to the NLS Codepage
registry entries.

Parameters

MachineName
Supplied parameter. The name of the remote computer on which to open the registry. If this parameter is NULL, the registry on
the local computer is opened.

hKey
Supplied parameter. The key to the registry to open. If this parameter is NULL, the HKEY_LOCAL_MACHINE key is used.

Path
Supplied parameter. The path to the key value in the registry hive to open. If this parameter is NULL, the following key is
opened:

SYSTEM\CurrentControlSet\NLS\CodePage.

Return Values

The OpenNlsRegistry function returns a handle to the opened registry key on success, otherwise a NULL value is returned on
failure.

Remarks

This function is primarily used by the Print Service in Host Integration Server 2000 and SNA Server 3.0 and later to determine if
what code pages are supported on a remote computer providing the print services function.

This function is supported by SNANLS on Host Integration Server 2000 and SNA Server 3.0 and later.

HKEY WINAPI OpenNlsRegistry(
 char *MachineName,
 HKEY hkey,
 LPSTR Path
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SnaNlsInit
The SnaNlsInit function is called to determine if the code page needed is supported by code page translations using SNANLS.
This allows an application to determine if the necessary NLS language files containing code page translation tables are installed
on the local system.

Parameters

CodePage
Supplied parameter. The number of the NLS code page for which support is requested. The CodePage parameter corresponds
with the registry settings on Windows 2000/NT located under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage subkey.

Return Values

The SnaNlsInit function returns non-zero if code page translations are supported; otherwise 0 is returned.

Remarks

If CP_ACP (the current ANSI code page) is passed as the CodePage parameter, this functions returns non-zero.

This function is supported by SNANLS on Host Integration Server 2000 and SNA Server 3.0 and later.

int WINAPI SnaNlsInit(
 UINT CodePage
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SnaNlsMapString
The SnaNlsMapString function is called to translate a string from one code page to another.

Parameters

lpSrcStr
Supplied parameter. The input source string to be translated.

lpDestStr
Returned parameter. The translated string which may be NULL if out_length was zero.

inCodePage
Supplied parameter. Specifies the code page of the incoming source string; ignored if the input is Unicode.

outCodePage
Supplied parameter. Specifies the code page of the output translated string; ignored if the output is Unicode.

in_length
Supplied parameter. Specifies the length of the input source string in characters if the input is multibyte or in wide characters if
the input is Unicode.

out_length
Supplied parameter. Specifies the maximum length available for the output translated string in characters if the output is
multibyte or in wide characters if the output is Unicode.

in_type
Supplied parameter. Specifies the type of the input source string. Possible values for in_type are SNA_MULTIBYTE for multibyte
and SNA_UNICODE for Unicode.

out_type
Supplied parameter. Specifies the type of the output translated string. Possible values for out_type are SNA_MULTIBYTE for
multibyte and SNA_UNICODE for Unicode.

Options
Supplied and returned parameter. As a supplied parameter, this specifies a set of options that may be applied to the translation
process, including TrnsDT options and the default character for the translation. On return, this parameter indicates the required
buffer length for the output translated string if the function call failed.

Return Values

The SnaNlsMapString function returns the number of characters or wide characters written to lpDestStr on success; otherwise 0
is returned on failure.

On failure, the Win32® GetLastError function should be used to return an error code indicating the cause of the failure. Possible
values returned by GetLastError are as follows:

ERROR_NOT_SUPPORTED

This error is returned for two possible reasons—either the NLS language resource file is not available or the in_type and out_type
of the source and destination strings are not of the same type.

ERROR_BUFFER_OVERFLOW

This error is returned if the output buffer is too small. In such cases, the Options parameter returns with the value needed for
out_length.

ERROR_INVALID_PARAMETER

This error is returned if a bad value was passed in a parameter; for example, if the in_type or out_type parameters contained
undefined values.

int WINAPI SnaNlsMapString(
 LPCTSTR lpSrcStr,
 LPTSTR lpDestStr,
 UINT inCodePage,
 UINT outCodePage,
 int in_length,
 int out_length,
 UINT in_type,
 UINT out_type,
 WORD *Options
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

ERROR_INVALID_DATA

This error is returned if a bad value was passed in the lpSrcStr parameter; for example, if the input string has a lead byte at the
end.

ERROR_OUTOFMEMORY

This error is returned if memory could not be allocated for use by the SNANLS DLL.

Microsoft Host Integration Server 2000

The TrnsDT API
The SNANLS API also allows applications to convert double-byte character stream (DBCS) EBCDIC-to-ANSI and DBCS ANSI-to-
EBCDIC by leveraging another Host Integration Server 2000 API called TrnsDT. The TrnsDT API has its own mechanism to
translate East Asia code pages using conversion table resource files (*.TBL files) that the setup program for Microsoft® SNA
Server version 3.0 and later installs on the target PC.

In Microsoft Windows® version 3.x and Microsoft MS-DOS® environments where SNANLS is not supported, developers can use
the TrnsDT API for supporting East Asia languages such as Japanese, Korean, and Chinese, and Windows code page support for
single-byte conversions.

This section contains:

TrnsDT Code Page Support
TrnsDT Resource Files
TrnsDT API Functions

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TrnsDT Code Page Support
The TrnsDT API is used to perform all DBCS EBCDIC-to- ASCII conversions throughout Host Integration Server 2000. To a degree,
TrnsDT has been and continues to be a uniform translation method and cross-component resource. TrnsDT also handles mixed
DBCS and SBCS, plus SBCS for Japan.

This section contains:

Host EBCDIC SBCS Using TrnsDT
Host EBCDIC DBCS Using TrnsDT
Host EBCDIC Mixed SBCS and DBCS Using TrnsDT
TrnsDT Conversions Possible

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host EBCDIC SBCS Using TrnsDT
The following table shows the character code set identifiers (CCSIDs) for EBCDIC single byte character sets (SBCS) supported by
TrnsDT in Host Integration Server 2000 and in SNA Server 3.0 and later.

Code Page Display Name Type CCSID Character Set Comments
IBM EBCDIC - U.S./Canada SBCS 037 697 IBM English lowercase
IBM EBCDIC - Japan Katakana (Extended) SBCS 290 1172 IBM Extended English Katakana
IBM EBCDIC - Korean (Extended) SBCS 833 934 Korean (Extended)
IBM EBCDIC - Simplified Chinese (Extended) SBCS 836 935 Simplified Chinese single-byte
IBM EBCDIC - Japan English (Extended) SBCS 1027 1172 IBM Extended lowercase English
IBM EBCDIC - Traditional Chinese (Extended) SBCS 28709 937 Traditional Chinese (Extended)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host EBCDIC DBCS Using TrnsDT
The following table shows the character code set identifiers (CCSIDs) for EBCDIC double byte character sets (DBCS) supported by
TrnsDT in Host Integration Server 2000 and in SNA Server 3.0 and later.

Code Page
Display Name

Typ
e

CCSI
D

Character S
et

Comments

IBM EBCDIC - Japan DBC
S

300 1001 IBM Japanese (including 4370 user-defined characters).

IBM EBCDIC - Korea DBC
S

834 933 IBM Korean (including 1880 user-defined characters).

IBM EBCDIC - Traditional Chin
ese

DBC
S

835 937 Traditional Chinese Host double-byte (including 6204 user-defined char
acters)

IBM EBCDIC - Simplified Chine
se

DBC
S

837 837 Simplified Chinese Host double-byte

IBM EBCDIC - Japan DBC
S

4396 930, 931, 93
9

IBM Japanese (including 1880 user-defined characters).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host EBCDIC Mixed SBCS and DBCS Using TrnsDT
The following table shows the character code set identifiers (CCSIDs) for EBCDIC mixed single byte character sets (SBCS) and
double byte character sets (DBCS) supported by TrnsDT in Host Integration Server 2000 and in SNA Server 3.0 and later.

Code Page
Display Name

Type CCSI
D

Comments

IBM EBCDIC - Japan Katakana/Kanji (Extende
d)

Mixe
d

930 Japanese Katakana-Kanji mixed with 4370 user-defined characters.

IBM EBCDIC - Japanese Mixe
d

931 Japan (English Lower-Case & Japanese)

IBM EBCDIC - Korea (Extended) Mixe
d

933 Korean Mixed with 1880 user-defined characters.

IBM EBCDIC - Simplified Chinese (Extended) Mixe
d

935 Simplified Chinese Host mixed with 1880 user-defined characters.

IBM EBCDIC - Traditional Chinese (Extended) Mixe
d

937 Traditional Chinese Host mixed with 4370/6204 user-defined characte
rs.

IBM EBCDIC - Japan English/Kanji (Extended) Mixe
d

939 Japanese Latin Kanji mixed with 4370 user-defined characters.

IBM EBCDIC - Japan Katakana/Kanji (Extende
d)

Mixe
d

5026 A subset of CCSID 930 Japanese Katakana-Kanji mixed.

IBM EBCDIC - Japan English/Kanji (Extended) Mixe
d

5035 A subset of CCSID 939 Japanese Latin Kanji mixed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TrnsDT Conversions Possible
The following table describes conversions possible for TrnsDT.

Country/
Region

Conversion From CCSID To CCSID

Japan Host-PC 930 932
Japan Host-PC 931 932
Japan Host-PC 939 932
Japan Host-PC 290 932
Japan Host-PC 1027 932
Japan Host-PC 5026 932
Japan Host-PC 5035 932
Japan PC-Host 932 930
Japan PC-Host 932 931
Japan PC-Host 932 939
Japan PC-Host 932 290
Japan PC-Host 932 1027
Japan PC-Host 932 5026
Japan PC-Host 932 5035
Taiwan PC-Host 950 937
Taiwan Host-PC 937 950
Korea PC-Host 949 933
Korea Host-PC 933 949
China PC-Host 936 935
China Host-PC 935 936

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TrnsDT Resource Files
The TrnsDt API uses a series of resource files that contain the necessary translation tables. These files are supplied on the CD-
ROM for SNA Server 3.0 and later.

File name Description
TRNSDT.DLL Core global resource used by all TrnsDT conversions
TRNSDTJ.DLL Core Japanese resource
TRNSDTS.DLL Core Simplified Chinese (PRC) resource
TRNSDTK.DLL Core Korean resource
TRNSDTT.DLL Core Traditional Chinese (Taiwanese) resource
SNADBC.TBL Japanese double-byte translation tables
SNADBCS.TBL Simplified Chinese (PRC) double-byte translation tables
SNADBCT.TBL Simplified Chinese (Taiwanese) double-byte translation tables
SNADBCK.TBL Korean double-byte translation tables
SNASBC.TBL Japanese single-byte translation tables
SNASBCS.TBL Simplified Chinese (PRC) single-byte translation tables
SNASBCK.TBL Korean single-byte translation tables
SNASBCT.TBL Traditional Chinese (Taiwanese) single-byte translation tables

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TrnsDT API Functions
The TrnsDT API consists of a single function described in this section.

This section contains:

TrnsDT

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TrnsDT
The TrnsDT function is called to translate a string from one code page to another.

Parameters

PassParm
Supplied parameter. A pointer to a PASSSTRUCT structure containing members that must be supplied as well as members that
are returned by the function.

The PASSSTRUCT structure

The PASSSTRUCT structure is defined as follows:

Members

parm_length
Supplied parameter. The length of the structure passed, normally set to 26. If the type member is not needed, parm_length
can be set to 24. If the option member and the type member are not needed, then parm_length can be set to 22.

exit_code
Supplied and returned parameter. On entry this member must be set to zero. On return, this member indicates the exit status.
Legal values for returned exit_code values are as follows:

0

Normal exit code indicating function completed successfully.

1

The requested conversion is not supported.

12

The exit_code field was not properly initialized to zero.

128

The last character in the source input string was a DBCS lead byte.

256

The conversion could not be successfully completed since the length of the resulting converted destination string exceeds
65535 bytes.

257

An error occurred when trying to load one and initialize one of the TrnsDTx.DLL files.

in_length

WORD WINAPI TrnsDt(
 PASSSTRUCT far* PassParm
);

typedef struct tagPassParm {
 WORD parm_length;
 WORD exit_code;
 WORD in_length;
 LPBYTE in_addr;
 WORD out_length;
 LPBYTE out_addr;
 WORD trns_id;
 WORD in_page;
 WORD out_page;
 WORD option;
 WORD type;
} PASSSTRUCT;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Supplied parameter. Specifies the length of the input source string in bytes.
in_addr

Supplied parameter. A pointer to the buffer containing the source string to be converted.
out_length

Supplied and returned parameter. Specifies the maximum length available for the output translated string in bytes. On return,
this member is set to the length of the converted output string on success or the output buffer length needed if the buffer was
too small.

out_addr
Supplied parameter. A pointer to the buffer that will contain the output destination string after conversion.

trns_id
Supplied parameter. The conversion identifier, which is always zero.

in_page
Supplied parameter. Specifies the code page of the incoming source string.

out_page
Supplied parameter. Specifies the code page of the output translated string.

option
Supplied and returned parameter if parm_length was set to 24 or higher. As a supplied parameter, this specifies a set of
options that may be applied to the translation process. Possible values for these options are as follows:

Bits 15-9

Reserved.

Bit 8

Add shift out (SO)/shift in (SI) bytes to the converted output strings.

Bits 3-7

Reserved.

Bit 2

If this bit is set, then convert the input string using the IBM-specified one-byte code table. This option is only valid when
converting from code page 932 to one of the following code pages: 037, 290, 930, or 931.

If this bit is zero, then convert the input source string using the conversion table that is created using the SYSCTBL utility.

In case of double-byte characters, always use the conversion table created by the SYSCTBL utility.

The SYSCTBL.EXE file is a utility program included with Host Integration Server 2004 that provides a tool that can be used to
create custom conversion tables for use with the TrnsDT function.

Bit 1

If this bit is set, then it indicates that the input source string starts with a 2-byte character. Generally, the host data always
includes SO/SI control characters in pairs. But when converting part of mixed data strings, it is necessary to start the conversion
from a double-byte character without the SO control character. In this case, the data itself does not have adequate information
to determine if it is double-byte or not, so bit 1 must be set.

Bit 0

If this bit is set, then it indicates that the input source string contains SO/SI control characters. Bit 8 and bit 0 should be set as
follows:

Conversion from PC to host Bit 8=1, bit 0 =0
Conversion from host to PC Bit 8=0, bit 0=1

OP_BLANK_PAD (0x0008)
This option forces the output buffer to be filled with blank characters. The character used depends on the parameter type:

SNA_DBCS: from ANSI to EBCDIC - double byte blanks (x4040) are used to fill the buffer, and SI (x0f) is set at the end of the
buffer.

SNA_EITHER or SNA_BOTH: single byte blank (x40) are used to fill the buffer.

From EBCDIC to ANSI - single byte blank (x20) are used to fill the buffer, regardless of the parameter type.

OP_TRUNCATE (0x0010)
This option forces the function to exit without sending an error when the output buffer overflows.

OP_OMITNULL (0x0020)
This value is a no-op.

On return, option is set to 4 if the last character was a double-byte character.

type
Supplied parameter if parm_length was set to 26. Possible values for this option are as follows:

SNA_DBCS (0x0100)

Always has SO/SI.

SNA_EITHER (0x0200)

Only one set of SO/SI can be present. This can be DBCS or SBCS, but not both.

SNA_BOTH (0x0400)

A mixture of DBCS/SBCS is allowed.

Return Values

The TrnsDT function returns zero on success. On failure, possible values returned by this function are as follows:

ERR_FILE_NOT_FOUND

This error is returned if the TrnsDT table files (*.TBL) could not be found. Normally TrnsDT uses the conversion tables located in
the Host Integration Server\System directory on Microsoft® Windows 2000. If TrnsDT cannot find these tables, it searches for
them in the current directory.

ERR_INVALID_PARAMETER

This error is returned if a bad value was passed for one or more of the members of the PassParm structure. Invalid parameters
can include not zeroing the exit_code member, passing an in_length for the input source string of zero or less or greater than
65535 bytes, passing an out_length for the output string buffer of zero or less, passing in_page or out_page members
containing undefined codepage values.

ERR_BUFFER_OVERFLOW

This error is returned if the output buffer is too small for the converted output string. In such cases, the out_length member
returns with the necessary value in bytes for the output buffer. This error is also returned if the length of the output buffer needed
to convert the source string would exceed 65535 bytes.

ERR_MEMORY_ALLOCATE

This error is returned if memory could not be allocated for use by the TrnsDT DLL.

Microsoft Host Integration Server 2000

Host Integration Server 2000 Components and NLS Support
The following table lists the conversion methods and types used by the various components in Microsoft® Host Integration
Server 2000.

Component Conversion meth
od

Conversion typ
es

Description

3270 Applet SNANLS & TrnsDT SBCS & DBCS
5250 Applet SNANLS & TrnsDT SBCS & DBCS
Security Integration Service SNANLS & TrnsDT SBCS & DBCS
Host Security SBCS User identifiers and passwords are converted from PC t

o host.

Only Latin I code pages supported.

Shared Folders Service SNANLS SBCS Folder names.

Files are not converted.

AFTP Service Host computer
NetView Alert Service Proprietary DBCS
NetView RunCmd Service Proprietary DBCS
CSV Convert Verb Proprietary
ODBC Driver for DB2 SNANLS & TrnsDT SBCS & DBCS
OLE DB Provider for DB2 SNANLS & TrnsDT SBCS & DBCS
OLE DB Provider for AS/400 and V
SAM

SNANLS & TrnsDT SBCS & DBCS

VSAM File Transfer SNANLS & TrnsDT SBCS & DBCS
Data Queues ActiveX Control SNANLS & TrnsDT SBCS & DBCS
Host File Transfer ActiveX Control SNANLS & TrnsDT SBCS & DBCS

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Server Components and NLS Support
The following table lists the conversion methods and types used by the various components in Microsoft® SNA Server 4.0.

Component Conversion meth
od

Conversion typ
es

Description

3270 Applet Proprietary & Trns
DT

SBCS & DBCS

5250 Applet Proprietary & Trns
DT

SBCS & DBCS

Security Integration Service SNANLS & TrnsDT SBCS & DBCS
Host Security SBCS User identifiers and passwords are converted from PC t

o host.

Only Latin I code pages supported.

Shared Folders Service SNANLS SBCS Folder names.

Files are not converted.

AFTP Service Host computer
NetView Alert Service Proprietary DBCS
NetView RunCmd Service Proprietary DBCS
CSV Convert Verb Proprietary
ODBC Driver for DB2 SNANLS and Trans

DT
SBCS & DBCS

OLE DB Provider for DB2 SNANLS & TrnsDT SBCS & DBCS
OLE DB Provider for AS/400 and V
SAM

SNANLS & TrnsDT SBCS & DBCS

VSAM File Transfer SNANLS & TrnsDT SBCS & DBCS

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Print Server Data Filters
The Host Print Service feature of Microsoft® Host Integration Server 2000 and SNA Server provides server-based 3270 and 5250
printer emulation, allowing host applications to print to a LAN printer supported by Microsoft Windows® 2000 Server, Windows
NT® Server, and Novell NetWare. This section introduces the SNA Print Server Data Filter API (sometimes referred to as the Print
Exit API) that can be used to extend the capabilities of the Host Print Service in Host Integration Server 2000 and SNA Server. The
user can provide a print data filter DLL that will be called by Host Print Service when a print job is initiated, when data is sent to
the printer, and when the print job is completed. This print data filter DLL can:

Send data to the printer when a job starts (print a banner page, for example).
Perform special processing on the data to be printed.
Send data to the printer upon print job completion (print a trailer page, for example)

This section contains:

SNA Print Server Data Filter
Sample Programs for SNA Print Server Data Filter

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Print Server Data Filter
The Host Print Service feature of Host Integration Server 2000 and SNA Server provides server-based 3270 and 5250 printer
emulation, allowing host applications to print to a LAN printer supported by Windows 2000 Server, Windows NT Server, and
Novell NetWare. This section introduces the SNA Print Server Data Filter API (sometimes referred to as the Print Exit API) that can
be used to extend the capabilities of the Host Print Service in Host Integration Server 2000 and SNA Server. The user can provide
a print data filter DLL that will be called by Host Print Service when a print job is initiated, when data is sent to the printer, and
when the print job is completed. This print data filter DLL can:

Send data to the printer when a job starts (print a banner page, for example).
Perform special processing on the data to be printed.
Send data to the printer upon print job completion (print a trailer page, for example).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Print Server Data Filter API
The user configures the path to the print data filter DLL. This DLL is used by all sessions actively using the Host Print Service.
However, the print data filter DLL can specify whether or not it wants a given session's print data passed to it.

The entry points to this DLL are:

PrtFilterAlloc
Obtains a data buffer in which to pass print data.

PrtFilterFree
Indicates that a data buffer obtained previously from the DLL is no longer needed and the DLL can free the memory allocated
for this resource.

PrtFilterJobData
Allows the DLL to manipulate print data.

PrtFilterJobEnd
Informs the DLL that a print job has ended.

PrtFilterJobStart
Informs the DLL that a new print job has started and enables the DLL to send special data to the Print Server at the start of a job.

A description of the example sequence of calls during an ordinary print job is listed below to illustrate how these functions are
normally used.

PrtFilterStartJob is called when a new print job is started. The DLL can return a data buffer with special data that will be
sent to the printer (a special banner page or special printer initialization strings, for example) before printing data.
PrtFilterFree is called if special data was sent in the PrtFilterStartJob function and indicates that the data buffer used to
pass special data can be freed.

The next sequence of function calls is repeated until all of the print data has been sent.

PrtFilterAlloc is called to allocate a data buffer used to pass print data in the subsequent call to PrtFilterJobData.
PrtFilterJobData is called to pass print data to the DLL for possible modification. This allows the user DLL the opportunity
to manipulate the printer data before it is sent to the printer. If the modified print data to be returned requires a larger data
buffer or the DLL needs to use a different data buffer for returning data, the DLL may need to allocate a new data buffer to
return this data. The DLL may also choose to free the data buffer used to pass the incoming print data if a different data
buffer is used to return modified print data. The PrtFilterFree function will not be called with the pointer to the original data
buffer if a different data buffer is returned by PrtFilterJobData.
PrtFilterFree is called to indicate that the data buffer allocated by PrtFilterAlloc for passing incoming data to the
PrtFilterJobData function can be freed. If a different data buffer was returned by PrtFilterJobData, then PrtFilterFree
would be called to indicate that a data buffer allocated by the DLL used to return modified print data in the
PrtFilterJobData function can be freed.

The final sequence occurs when all of the print data has been processed.

PrtFilterEndJob is called to indicate the end of the print job and allows the DLL the option to return special data (a trailer
page, for example) that should be sent to the printer.
PrtFilterFree is called if special data was sent in the PrtFilterEndJob function and indicates that the data buffer used to
pass special data can be freed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PrtFilterAlloc
The PrtFilterAlloc function is called to obtain a data buffer from the user filter DLL in which to pass it the print data.

Parameters

BufLen
Supplied parameter. Indicates the length of buffer required.

Return Values

The PrtFilterAlloc function allocates a memory block of BufLen size and returns a pointer to the buffer. This function should
return a NULL pointer on failure.

See Also

PrtFilterFree

void * WINAPI PrtFilterAlloc(
 DWORD BufLen
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PrtFilterFree
The PrtFilterFree function is called to indicate that a data buffer obtained previously from the DLL is no longer needed and the
DLL can free the memory allocated for this resource. This function is called for data buffers returned from calls to PrtFilterAlloc
as well as buffers that were allocated by the DLL to pass data in the PrtFilterStartJob, PrtFilterJobData, and PrtFilterEndJob
functions.

Parameters

pBuf
Supplied parameter. Points to the data buffer that can be be freed.

See Also

PrtFilterAlloc

void WINAPI PrtFilterFree(
 void *pBuf
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PrtFilterJobData
The PrtFilterJobData function is called to give the user DLL the opportunity to manipulate the printer data before it is printed.
This allows the DLL to provide custom processing for print data sent to the print server.

Parameters

UniqueID
Supplied parameter. The UniqueID value returned by the PrtFilterJobStart function to identify a print job.

pBufPtr
The print server passes the print data received from the host to the user DLL for processing in this incoming buffer. The user
DLL returns to the print server a pointer to an outgoing buffer of data to be printed. This outgoing buffer pointer can be
different from the received buffer pointer because the print data filter DLL can modify the data. Note that in this case
PrtFilterFree will only be called by the Host Print Service for the outgoing buffer pointer. If necessary, the print data filter DLL
must call its own free function on the incoming buffer pointer that was supplied to the PrtFilterJobData function. This
incoming buffer was allocated by a Host Print Service by a previous call to PrtFilterAlloc.

pBufLen
Indicates the length of the data passed in the buffer to the print server and the length of the buffer returned to the print server
by the user-provided DLL.

Remarks

The data in the buffer is printable ASCII and/or printer control sequences if these are being sent in the print jobs. The buffer
returned by the user DLL does not have to be the same as the buffer passed in. The returned buffer will always be freed by calling
PrtFilterFree after the data has been spooled. The unique identifier parameter UniqueID is the identifier returned from a previous
call to the PrtFilterJobStart function.

See Also

PrtFilterFree, PrtFilterJobStart

void WINAPI PrtFilterJobData(
 void *UniqueID,
 char **pBufPtr,
 DWORD *pBufLen
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PrtFilterJobEnd
The PrtFilterJobEnd function is called to inform the print data filter DLL that a print job is about to end. This allows the DLL to
provide custom processing and send special data to the print server at the end of a print job.

Parameters

UniqueID
Supplied parameter. The UniqueID value returned by the PrtFilterJobStart function to identify a print job.

pBufPtr
Returned parameter. Specifies a pointer to a buffer pointer holding additional data to be printed by the print server.

pBufLen
Returned parameter. Pointer to the length of the data provided by the print data filter DLL in the buffer.

Remarks

No data is passed in the buffer, but the user DLL can return print data which will be sent to the printer before the print job is
ended.

See Also

PrtFilterJobStart

void * WINAPI PrtFilterJobEnd(
 void *UniqueID,
 char **pBufPtr,
 DWORD *pBufLen
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

PrtFilterJobStart
The PrtFilterJobStart function is called to inform the print data filter DLL that a new job has just been started. This allows the DLL
to provide custom processing and send special data to the print server at the beginning of a job.

Parameters

SessionName
Supplied parameter. The name of the print session which has just started a print job. The SessionName is the same as that
configured in using the SNA Print Server Admin tool.

LUType
Supplied parameter. Specifies the printer type. Valid values are LU 1, LU 3, or LU 6.2 printers, represented by an LUType value of
1, 3, or 6.

pBufPtr
Returned parameter. Specifies a pointer to a buffer pointer holding additional data to be printed by the print server.

pBufLen
Returned parameter. Pointer to the length of the data provided by the print data filter DLL in the buffer.

Return Values

The PrtFilterJobStart function returns a unique identifier (cast to a pointer to a void) if it wants the opportunity to filter the data
for this print job.

If the user DLL returns a NULL pointer, it is indicating that it is not interested in filtering this job. No further calls to the user DLL
will be made for this print job.

Remarks

No data is passed in the data buffer to the print data filter DLL in this call, but the DLL can return data in pBufPtr (for example, a
banner page). The data returned from this call should be printable ASCII and/or printer control sequences.

void * WINAPI PrtFilterJobStart(
 char *SessionName,
 DWORD LUType,
 char **pBufPtr,
 DWORD *pBufLen
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Programs for SNA Print Server Data Filter
The source code for a sample program that illustrates using the SNA Print Server Data Filter API is included on the Microsoft®
Host Integration Server 2000 CD-ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. The sample
program illustrates features of the SNA Print Server Data Filter API that can be used to extend the capabilities of the Host Print
Service in Host Integration Server 2000 and SNA Server. The sample code illustrates how to write a print data filter DLL that will
be called by Host Print Service when a print job is initiated, when data is sent to the printer, and when the print job is completed.

The SNA Print Server Data Filter sample program is located in the \SDK\Samples\SNA\PrnFltr subdirectory on the Host
Integration Server 2000 CD-ROM. These files are copied to your hard drive during Host Integration Server software or Host
Integration Client software installation when the Host Integration Server Software Development Kit option is selected. These
samples are installed in the Samples\SNA\PrnFltr subdirectory below where the Host Integration Server SDK software is installed
(C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\SNA\PrnFltr
subdirectory below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

This sample program include the following files:

Subdirect
ory

Description

NTFilter.c The sample program written in Visual C that illustrates use of the SNA Print Server Data Filter API.
NTFilter.h An include file with function defines.
NTFilter.d
ef

A DEF file for use by the compiler and linker. Note that exported functions from the SNA Print Server Data Filter DLL
must not be decorated.

NTFIlter.r
c

A resource file.

Makefile A command-line Makefile that can be used with nmake. This Makefile can be used with Microsoft® Visual Studio .NE
T or Microsoft® Visual Studio 6.0.

prnfltr.vc
proj

A project file for use with Visual C++ 7.0 and the Visual Studio .NET IDE.

The PrnFltr sample is designed to be built using Microsoft® Visual C/C++ 6.0 or later using the command-line compiler or using
the Microsoft® Visual Studio 6.0 or Microsoft® Visual Studio .NET interactive development environment (IDE).

To build the PrnFltr sample using the command-line compiler, set up your build environment as follows:

Open an MS-DOS Command Prompt window.
Run VCVARS32.bat (for VS6) or VSVARS32.bat (for VS.NET) from the Visual Studio bin directory(by default, C:\Program
Files\Microsoft Visual Studio\VC98\Bin for VS6 or C:\Program Files\Microsoft Visual Studio .NET\Common7\Tools for
VS.NET))
Navigate to SNA\PrnFltr subdirectory, and invoke NMAKE.

To build the PrnFltr sample using the Visual Studio .NET IDE, start Microsoft Visual Studio .NET 7.0 and open the appropriate
Visual C++ 7.0 project file (SNA\PrnFltr\ntfilter.vcproj) from the File menu. Select a configuration and build the sample from the
Build menu. Each VC7 project file has two configurations, one for a DEBUG build and one for a RETAIL build.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Device Interface Specification Drivers
This section of the documentation is intended for OEMs and adapter vendors who are developing their own SNALink software to
work with Microsoft® Host Integration Server 2000 and Microsoft SNA Server 4.0.

This section contains:

About the SNADIS Guide
SNADIS Programmer’s Guide
SNADIS Reference

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

About the SNADIS Guide
This guide is intended for OEMs and adapter vendors who are developing their own SNALink software to work with Microsoft®
Host Integration Server 2000 and Microsoft SNA Server 4.0.

SNALink software for use on Microsoft Windows® 2000 must be written as a Windows 2000 device driver. See the Windows
2000 Device Driver Kit (DDK) for information on writing Windows 2000 device drivers.

Before using this section, you should be familiar with SNA Server concepts. This section provides the following information:

Internal concepts of Host Integration Server 2000 and SNA Server 4.0 that are required to integrate new communications
adapters into the server environment.
Definitions of the interfaces used by Host Integration Server 2000 and SNA Server 4.0 to communicate with SNALinks.
Information on using the configuration and diagnostics features included in Host Integration Server 2000 and SNA Server
4.0.
Instructions for compiling and linking the SNALink support software.

The network operating systems currently supported by Host Integration Server 2000 and SNA Server 4.0 include Microsoft LAN
Manager (as implemented in Microsoft Windows 2000, Windows NT®, Windows 98, and Windows 95), Novell NetWare, Banyan
VINES on Windows NT 4.0, and TCP/IP. Future versions of Host Integration Server may support other network operating systems.
You are advised to develop link support that is independent of the network operating system in order to take advantage of this
support in future versions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNADIS Programmer's Guide
This section of the Microsoft® Host Integration Server 2000 Developer's Guide provides the programmatic techniques and
procedures for creating SNALink applications.

This section contains:

SNALink Concepts in Host Integration Server and SNA Server
The SNALink Interface
SNALink Configuration Information
The Data Link Control Interface
Setup Information
Diagnostics
Compiling and Linking a SNALink
Synchronous Dumb Card Interface
SNA Modem Status Interface
SNA Performance Monitor Interface

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALink Concepts in Host Integration Server and SNA Server
This section describes some key concepts used in Microsoft® Host Integration Server 2000 and SNA Server. Since the purpose of
this document is to enable original equipment manufacturers (OEMs) and adapter vendors to develop link support software (an
SNALink) to integrate their hardware adapters into a Host Integration Server 2000 or SNA Server system, only the relevant parts
of the Host Integration Server 2000 and SNA Server architecture are described.

This section contains:

Overview of SNALink
SNALink Configuration and Management
Structure of Host Integration Server and SNA Server Components
Messages
LPI Connections

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Overview of SNALink
A Microsoft Host Integration Server 2000 or SNA Server SNALink must implement an SNA-compatible data transport mechanism
capable of connecting the local type 2.1 node to remote host (PU4/5) and/or peer (PU2.1) systems.

The local node provides the SNA layers of path control, transmission control, data flow control, and logical unit (LU) services. The
following figure shows an example of a Host Integration Server 2000 system.

The local node uses the data link control interface (DLC) to communicate with an SNALink. This interface is defined in
The Data Link Control Interface. The SNALink and the DLC driver are responsible for transferring data between the path control
layer of the node and the DLC adapter.

The routing of messages that flow between Host Integration Server 2000 or SNA Server components is handled by the SnaBase
and DMOD (dynamic access module) components. Refer to The SNALink Interface for details of how to send and receive
messages.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALink Configuration and Management
The configuration information for a Microsoft Host Integration Server 2000 or SNA Server system is stored in two forms:

A centralized configuration file containing details of logical units (LUs), physical units (PUs), and connections.
Entries in the Microsoft Windows® 2000, Windows NT®, or Windows 95/98 registry containing configuration information
for the SNALinks supported on that machine. This information contains a few parameters required by Host Integration
Server 2000 or SNA Server and any other parameters that independent hardware vendor (IHV) code may require.

A Host Integration Server or SNA Server SNALink is defined when a Host Integration Server or SNA Server system is installed. A
SNALink can support only one physical connection from the server. If a single adapter is capable of supporting multiple physical
connections, Host Integration Server or SNA Server requires multiple SNALinks to be configured.

To reconfigure a server's SNALink support (for example, after installing a new adapter), the administrator uses either the
Windows Network Control Panel applet or the Host Integration Server or SNA Server setup program. For further details of how
this operates, refer to Setup Information.

All other configuration of a Host Integration Server or SNA Server system is performed using SNA Manager. Refer to the
Administrator's Reference for further details. As part of the configuration process, logical connections to remote PUs are
associated with one or more SNALinks.

All configured SNALinks are automatically started when the Host Integration Server or SNA Server system is started. At this stage,
the SNALink performs any initialization required and then waits for instructions from local nodes.

When a connection is activated, either from SNA Manager or automatically (for example, in response to a 3270 user's request for
a session with a remote host), the SNALink receives an Open(LINK) message from the local node. The SNALink should then
perform whatever action is required to initiate that connection. This can involve dialing a telephone number for a switched
Synchronous Data Link Control (SDLC) connection or bringing up level 2 on an X.25 link and sending a CALL packet.

If the IHV wants the same physical adapter to be available for use by multiple SNALinks (for example, a dumb SDLC card can be
used to communicate using SDLC or X.25 protocols), the SNALink should not attempt to access the hardware until it has received
an Open(LINK) message from the local node.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Structure of Host Integration Server and SNA Server
Components
The components of Microsoft Host Integration Server 2000 or SNA Server are local nodes, SNALinks, 3270 emulators, and so on.
This section introduces the structure of these components and explains terms used to refer to the structure.

This section contains:

The Role of the Base
Localities and DMODs
Component Localities
Partners
SNALink Structure

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Role of the Base
The Base is a part of each Host Integration Server 2000 or SNA Server component, such as a local 2.1 node or an SNALink, that
provides the operating environment for that component. It passes messages between components and provides functions
common to all components, such as diagnostic tracing.

This document is concerned with the link Base, which is the type of Base used by Host Integration Server or SNA Server SNALinks.
The Base has entry points for initialization, sending messages, receiving messages, and termination.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Localities and DMODs
A Base and its components (that is, a Host Integration Server 2000 or SNA Server executable program) is called a locality. The
Host Integration Server or SNA Server system therefore consists of one or more communicating localities (all the running Host
Integration Server 2000 or SNA Server executable programs within the LAN Manager domain). For each Host Integration Server
or SNA Server system, there is a central configuration file. In addition, each Host Integration Server or SNA Server machine
maintains configuration information about the SNALinks it supports (see Diagnostics).

In a system such as Host Integration Server or SNA Server, where the number of localities and their types are not configured in
advance, the relationships between the localities are set up dynamically as individual localities come and go. Localities that can
enter and leave a system in this way are called dynamic localities.

Dynamic localities communicate using the DMOD (dynamic access module) component, which provides the communications
facilities needed to pass messages between the Bases. This is illustrated in the following figure.

This diagram shows a system consisting of three dynamic localities. Dynamic localities can enter or leave this system at any time.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Component Localities
SNALinks can enter dynamically into a Host Integration Server 2000 or SNA Server system. The SNALink, in conjunction with the
Base, acts as a whole locality and communicates with the other localities in the system using a DMOD.

The SNALink Interface describes the interface to the Base and the DMOD that allows an SNALink (or any other CS component) to
participate in a Host Integration Server 2000 system.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Partners
For Host Integration Server 2000 or SNA Server components and applications to communicate with each other, it must be
possible to identify a partner within a locality. A partner is an addressable component of a locality; that is, code to which messages
can be sent. In a Host Integration Server or SNA Server system, there is generally only one partner within a locality (such as an
SNALink or the 3270 emulation program); however, separate functions within the local 2.1 node (such as the 3270 and APPC
functions) can be considered to be separate partners.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALink Structure
A Host Integration Server 2000 or SNA Server SNALink consists of:

The link-specific protocol code provided by the IHV
A Base
A DMOD

The DMOD, Base, and the IHV link-specific component of a Host Integration Server or SNA Server SNALink are implemented as
dynamic-link libraries (DLLs). The executable component SNALINK.EXE is used to start an SNALink. This component determines
from the Host Integration Server or SNA Server configuration information which link support DLL (for example, IHVLINK.DLL) is
required for the SNALink and dynamically loads it before entering the Base scheduler.

The executable structure of an SNALink is shown in the following figure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Messages
Messages are used to pass data between partners in the Microsoft Host Integration Server 2000 or SNA Server system. This
section provides information about message structure and formats.

This section contains:

Overview of Message Formats
Buffer Header Format
Buffer Element Format

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Overview of Message Formats
A message always contains fixed-format header information such as a message type and addressing information. It can also
contain other header information specific to a particular message type (such as the message subtype) and an indefinite amount of
extra data.

Messages are saved in buffers that consist of one header and zero or more elements:

The header contains the fixed-format information and a pointer to an element. (This pointer will be NULL if there are no
elements associated with the message.)
An element contains any extra data for a message and a pointer to another element if the data continues into another
element.

Buffer headers and elements are regarded as contiguous (8-bit) byte sequences. Messages of any length can be built up by
chaining sufficient elements to a header.

The following figure illustrates a typical message with two elements. The individual fields in the header and elements are
explained in the following topics.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Buffer Header Format
This topic lists the common fields that always occur at the start of a buffer header. These are followed by further fields specific to
the particular message; see Message Formats for details of individual message formats.

Fiel
d

Ty
pe

Description

PTR
BFH
DR

nxt
qpt
r

When the buffer is in a queue, this field points to the header of the next buffer in the queue (NULL if it is the last buffer in
the queue). When the buffer is not in a queue, this field points to itself; the Host Integration Server 2000 buffer managem
ent routines use this to check for buffer corruption.

PTR
BFE
LT

hd
rep
tr

Pointer to the first buffer element in the associated chain of buffer elements; NULL if the message consists only of a buff
er header.

CH
AR

nu
me
lts

Number of buffer elements chained from the header; zero if the message consists only of a buffer header.

CH
AR

ms
gty
pe

Message type. See individual message descriptions in Message Formats.

CH
AR

src
l

Source locality. See LPI Addresses.

CH
AR

src
p

Source partner. See LPI Addresses.

INT
EGE
R

src
i

Source index. See LPI Addresses.

CH
AR

de
stl

Destination locality. See LPI Addresses.

CH
AR

de
stp

Destination partner. See LPI Addresses.

INT
EGE
R

de
sti

Destination index. See LPI Addresses.

Members

nxtqptr
When the buffer is in a queue, this field points to the header of the next buffer in the queue (NULL if it is the last buffer in the
queue). When the buffer is not in a queue, this field points to itself; the Host Integration Server 2000 buffer management
routines use this to check for buffer corruption.

hdreptr
Pointer to the first buffer element in the associated chain of buffer elements; NULL if the message consists only of a buffer
header.

numelts
Number of buffer elements chained from the header; zero if the message consists only of a buffer header.

msgtype
Message type. See individual message descriptions in Message Formats.

srcl
Source locality. See LPI Addresses.

PTRBFHDR nxtqptr;
PTRBFELT hdreptr;
CHAR numelts;
CHAR msgtype;
CHAR srcl;
CHAR srcp;
INTEGER srci;
CHAR destl;
CHAR destp;
INTEGER desti;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

srcp
Source partner. See LPI Addresses.

srci
Source index. See LPI Addresses.

destl
Destination locality. See LPI Addresses.

destp
Destination partner. See LPI Addresses.

desti
Destination index. See LPI Addresses.

 Note Fields that occupy two bytes, such as opresid in the Open(LINK) request, are normally represented with the
arithmetically most significant byte in the lowest byte address, irrespective of the normal orientation used by the
processor on which the software executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest byte
address. However, the following fields are exceptions:

The srci and desti fields in buffer headers are stored in the local format of the application that assigns them (only the
assigning application needs to interpret these values).
The startd and endd fields in elements are always stored in low-byte, high-byte orientation (the normal orientation of an
Intel processor).

Microsoft Host Integration Server 2000

Buffer Element Format
This topic lists the common fields that always occur at the start of a buffer element. The dataru field contains information specific
to the particular message; see Message Formats for details of individual message formats.

Field Type Description
PTRBF
ELT

hdrep
tr–>el
teptr

Pointer to next buffer element in the chain; NULL if this element is the last or only element in the chain.

INTEGE
R

hdrep
tr–>st
artd

Start of valid data in this element. The index into dataru of the first byte of valid data.

INTEGE
R

hdrep
tr–>e
ndd

End of valid data in this element. The index into dataru of the last byte of valid data.

CHAR hdrep
tr–>tr
pad

Pad byte (reserved).

CHAR[
SNAN
BEDA]

hdrep
tr–>d
ataru

An array of characters that contains the data for this element. Note that the valid data might not occupy the whole
of the element; startd and endd (see above) give the indexes into this array of the start and end of the valid data. T
he constant SNANBEDA is defined in SNA_DLC.H as 268.

Members

hdreptr–>elteptr
Pointer to next buffer element in the chain; NULL if this element is the last or only element in the chain.

hdreptr–>startd
Start of valid data in this element. The index into dataru of the first byte of valid data.

hdreptr–>endd
End of valid data in this element. The index into dataru of the last byte of valid data.

hdreptr–>trpad
Pad byte (reserved).

hdreptr–>dataru
An array of characters that contains the data for this element. Note that the valid data might not occupy the whole of the
element; startd and endd give the indexes into this array of the start and end of the valid data. The constant SNANBEDA is
defined in SNA_DLC.H as 268.

The following information will help you to interpret the message formats:

Fields that occupy 2 bytes are represented with the arithmetically most significant byte in the lowest byte address,
irrespective of the normal orientation used by the processor on which the software executes. That is, the 2-byte value
0x1234 has the byte 0x12 in the lowest byte address. The exceptions to this are the startd and endd fields in elements,
which are always stored in low-byte, high-byte orientation (the normal orientation of an Intel processor).
The offsets indicated by the startd and endd fields are expressed in terms of the first byte of dataru being offset 1; the first
byte of valid data is at dataru(startd–1). For example, if startd is 11 and endd is 18, then dataru begins with 10 bytes that are
not valid data, followed by 8 bytes of valid data.

In the example message format illustrated in Overview of Message Formats, each element has a startd of 13, indicating 12 bytes
of padding before the start of the valid data. This leaves room for 256 bytes of data, and hence the element data (300 bytes long
in this example) requires two elements.

PTRBFELT hdreptr–>elteptr;
INTEGER hdreptr–>startd;
INTEGER hdreptr–>endd;
CHAR hdreptr–>trpad;
CHAR[SNANBEDA] hdreptr–>dataru;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LPI Connections
Partners communicate by passing messages to each other. If two partners wish to communicate with each other, an LPI
connection is set up between the two partners. Messages then flow between the partners over this connection. The term "LPI
connection" is explained in LPI Addresses; note that this is not related to the Microsoft Host Integration Server 2000 concept of a
connection between the local node and a remote system.

This section contains:

Paths and DMODs
LPI Addresses
Making Connections

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Paths and DMODs
Dynamic access modules (DMODs) are responsible for the communication between localities. When the DMODs in two localities
can successfully pass messages between them, a path is said to exist between the two localities. A path must exist between two
localities before a connection can exist between partners in those localities.

In Host Integration Server 2000 or SNA Server, a path is implemented using reliable LAN connections (named pipes, SPX, TCP,
AppleTalk, VINES IP)—one LAN connection for each path. When the two localities are on the same PC, a local pipe is used; this is
implemented using shared buffers to increase performance, but is used by the application in exactly the same way as
communication with a remote locality.

The DMOD provides communication between dynamic localities and provides guaranteed in-order delivery of messages flowing
over paths between localities. If the DMOD loses its path to another locality, it informs the Base.

The following figure illustrates the paths and connections between a Host Integration Server or SNA Server local node and two
SNALinks. X.25 service A has two connections to the local node (one for each of two virtual circuits); SDLC service B has one
connection to the local node.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LPI Addresses
An LPI address is used to identify each end of a connection. It has three components: locality (L), product (P), and index (I).

Locality is a 1-byte identifier that uniquely identifies a locality within a system. This locality corresponds to a Host
Integration Server 2000 or SNA Server component (local node, SNALink, 3270 emulator, and so on).
Product is a 1-byte identifier for the type of service. Each type of service has a unique value. A Host Integration Server or
SNA Server local type 2.1 node has a defined value of 0x11. A Host Integration Server or SNA Server emulator has a defined
product identifier of 0x12. A Host Integration Server or SNA Server link service (X.25. SDLC, Token Ring, Ethernet, Twinax, or
Channel, for example) has a defined value of 0x16.
Index is a 2-byte identifier that uniquely identifies a logical entity within the product. The meaning and use of this field is
defined by the communicating services; it is used to distinguish multiple connections between the same services (for
example, to identify one of many virtual circuits available from an X.25 SNALink). The value of zero should not be used as an
index. Applications must assign unique index values for every active LPI connection within the node.

A message flowing over a connection carries a pair of LPIs, identifying the source and destination of the message. These are the
source LPI and destination LPI of the message; together they identify the connection on which the message is flowing.

Note that more than one connection can exist between any pair of services. The Index values are then used to distinguish the
connections. For example, in communications between the local node and an SNALink, the L and P values identify the message as
being DLC data for that local node, and the I value indicates which connection the data is intended for.

The LPIs are assigned by a combination of the products and the DMODs when the connection is opened, as described in
Making Connections.

Because they are assigned dynamically for each component, the L values are not the same across a whole system. For example, a
local 2.1 node locality could be known as locality 4 to one SNALink locality and locality 6 to a second SNALink locality. However,
from the viewpoint of any locality there exists a unique L value for each remote locality within which a path exists; this L value is
used as an index into an internal table that identifies the path to that locality.

The following three figures show an example of the L values that could be used between the components shown in
Paths and DMODS, and examples of the LPI values that would be used by the local node on messages flowing between the
components.

The first illustration shows sample L values.

The following illustration shows L values specified on messages between the local node and SNALink A.

The following illustration shows LPI values specified on messages flowing on two different connections between the local node
and SNALink A.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The Base is called by any piece of code that wishes to send a message. It uses the destination L value on the message to determine
where to send it. When the message gets to the remote locality, the Base in that locality routes it to the appropriate service if the
locality contains more than one service.

Microsoft Host Integration Server 2000

Making Connections
Before messages can flow across connections, the connections must be established, or opened. This is necessary because a service
does not initially know the LPI address of the service with which it wishes to communicate; indeed, there may not even be a
suitable service for it to communicate with.

When a local node wishes to communicate with an SNALink, it attempts to open a connection by sending an Open(LINK) request
to the SNALink. This message will have LPI values already set up by the Base, which the SNALink should save for referencing the
connection in the future.

The DLC interface does not permit the SNALink to issue an Open request.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The SNALink Interface
The SNALink interface specifies how an IHV link DLL fits into the SNA link service architecture provided by the Base/DMOD
interface. This section describes the SNALink interface, the entry points that an IHV link DLL can call, and those functions that a
link service must provide to the Base/DMOD interface. These entry points allow messages to be sent to and received from the
local 2.1 node.

This section contains:

Process Structure and Scheduling
SNALink Initialization
SNALink Termination
Sending Messages
The Dispatcher
Receiving Messages
The Work Manager
Base/DMOD and SNALink Entry Point Summary
Sample Code for SNALinkDispatchProc

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Process Structure and Scheduling
The primary thread of execution within a Microsoft® Host Integration Server 2000 SNALink is under the complete control of the
Base. The Base schedules the SNALink by calling predefined entry points, which the IHV link support code must provide.

The IHV link support code can spawn extra threads of execution. However, the Base is not reentrant. The IHV code must ensure
that only a single thread is executing within the Base at any moment in time.

The recommended SNALink structure uses the dispatcher to handle messages received from the local node and the work
manager to process data received from the link. These routines and the way in which they are scheduled are described in
The Dispatcher and The Work Manager respectively.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALink Initialization
When the SNALink is loaded into memory, the Base/DMOD performs all initialization required by the Microsoft® Host Integration
Server 2000 system, including announcing availability of the new SNALink to other Host Integration Server 2000 components.

When this has been completed, the Base/DMOD calls the SNALinkInitialize function, which must be provided by the IHV link
support code.

SNALinkInitialize is called with a parameter that is a handle to the global Base event. This handle should be saved by the
SNALink and used to signal the Base when an event occurs (for example, when data is received from the link).

The SNALinkInitialize function should also:

Read in the Host Integration Server 2000 configuration information for the SNALink (see
SNALink Configuration Information for details).
Set up any required data structures.
Register with the driver that provides the support for the hardware adapter, initializing this if necessary.

If initialization fails for any reason (for example, if an associated driver is not installed), the function should report the failure to
the administrator by calling SNAReportStatus.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALink Termination
When a critical error occurs, forcing abnormal termination of the SNALink, the IHV code must ensure that all active connections
are cleanly terminated, using whatever protocols are appropriate for the link type in use. (For example, an X.25 SNALink would
send a CLEAR packet on all active VCs and possibly take down level 2.)

This should be performed using the process detach facility of the DLLEntryPoint function.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sending Messages
The SNALink should build a message in a buffer and then call the Base to send it. The message contains source and destination
LPIs, which are set up when the connection is opened; see LPI Connections for more information.

The SNALink can either obtain a new buffer to contain the message to be sent (using SNAGetBuffer) or reuse one in which it has
previously received a message. The application is responsible for any buffer that it has obtained or in which it has received a
message; it must either use (or reuse) the buffer to send a message or release it (using SNAReleaseBuffer). If a buffer to be reused
does not contain the correct number of elements for the message to be sent, the application can obtain additional elements (using
SNAGetElement) or release existing ones (using SNAReleaseElement). It is the application’s responsibility to maintain the
numelts field in the message header.

The function used to send a message to the node is SNASendMessage.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Dispatcher
Whenever a Base event occurs, the Base calls the link support code dispatcher function SNALinkDispatchProc to handle the event.
The term Base event in this context means:

A message arriving from a local 2.1 node.
A Base timer tick occurring—this relatively slow event happens approximately every five seconds.
Losing contact with a local 2.1 node (for example, the machine being powered down).

The SNALinkDispatchProc function should examine parameters passed to it by the Base to determine why it has been called
(see Sample Code for SNALinkDispatchProc) and call an appropriate function to handle the event. When the event has been
processed, control returns to the Base scheduler.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Receiving Messages
The Base calls the SNALink dispatcher function SNALinkDispatchProc when a message is available for it.

Note that after the application receives a message it is responsible for the buffer in which the message was received; it must
either reuse the buffer to send a message (using SNASendMessage) or release it (using SNAReleaseBuffer). If the buffer to be
reused does not contain the correct number of elements for the message to be sent, the application can obtain additional
elements (using SNAGetElement) or release existing ones (using SNAReleaseElement).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Work Manager
When no work is currently outstanding, the Base thread of execution sleeps, waiting for an event or for a maximum period of five
seconds. SNALinks should signal the Base when an event occurs (such as data arriving on the link) by setting the Base global
event. A handle to this event is passed on the SNALinkInitialize call.

When the Base is rescheduled, it calls the SNALink work manager function SNALinkWorkProc. This function should handle any
link events that have occurred.

A common use of this function is in an SNALink where there is a single thread that handles the protocol of the link and also
multiple threads suspended on synchronous calls to a driver read function. When data is received from the link, it is placed on an
internal queue, and the driver sets the global Base event. This causes the Base to be scheduled, and SNALinkWorkProc is called.
SNALinkWorkProc then dequeues messages and passes them to the Base to be sent to the local node.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Base/DMOD and SNALink Entry Point Summary
The following table shows entry points divided into the categories SNALink, buffer management, and Base/DMOD, and listed in
alphabetic order within each category.

SNALink entry points
SNALinkDispatchProc Dispatcher.
SNALinkInitialize Initialize SNALink.
SNALinkTerminate Terminate SNALink.
SNALinkWorkProc Work manager.

Buffer management entry points
SNAGetBuffer Get buffer.
SNAGetElement Get buffer element.
SNAReleaseBuffer Release buffer.
SNAReleaseElement Release buffer element.

Base/DMOD entry points
SNAGetLinkName Get the name of the SNALink.
SNASendAlert Send a preformatted NMVT alert to NetView.
SNASendMessage Send a message to the node.

The following functions are defined in SNALink Configuration Information:

SNAGetConfigValue Get a named item of configuration information.
SNAGetSystemInfo Get Microsoft® Host Integration Server 2000 system information.

Note Standard calling conventions [WINAPI] are used for all entry points including those provided by the IHV SNALink.

The format of buffer headers and elements is described in Messages; the formats of individual messages contained in buffers are
defined in Message Formats.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Sample Code for SNALinkDispatchProc
This section contains outline source code for the link dispatcher function SNALinkDispatchProc.

/**/
/* Firstly, include the SNA Server header files */
/**/
#include <sna_dlc.h>
#include <sna_cnst.h>
#include <trace.h>

/**/
/* The link dispatcher routine - SNALinkDispatchProc */
/**/
VOID SNALinkDispatchProc (msgptr, function, locality)
PTRBFHDR msgptr;
INTEGER function;
INTEGER locality;
{
 INTEGER discard_buff;
 COM_ENTRY("Ldisp");
 if (msgptr != NULL)
 {
 TRACE4()"received message from local node"));
 discard_buff = FALSE;
 switch (msgptr->msgtype)
 {
 case OPENMSG:
 /* process the OPEN message */
 break;
 case CLOSEMSG:
 /* process the CLOSE message */
 break;
 case DLCDATA:
 /* Data to be sent on link */
 break;
 case DLCSTAT:
 /* Switch on the sub-type of the message */
 switch (msgptr->dshdr.dstype)
 {
 case STRESRCE :
 /* call flow control processor */
 break;
 case DLCSDXID:
 /* call XID processor */
 break;
 default:
 discard_buff = TRUE;
 break;
 }
 break;
 default:
 discard_buff = TRUE;
 break;
 }
 if (discard_buff)
 {
 /* message has not been processed by us, so simply discard */
 SNAReleaseBuffer(msgptr);
 msgptr = NULL;
 }
 }
 else if (function == SBLOST)
 {
 /* Lost contact with local node 'locality' */
 /* Terminate all connections on this node (matching destl-value) */

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

 }
 else if (function == SBTICK)
 {
 /* 5 second timer tick */
 }
 COM_EXIT;
}

Microsoft Host Integration Server 2000

SNALink Configuration Information
The configuration information for all SNALinks on a machine is stored hierarchically, referenced by the SNALink name, as shown
in the figure below.

The entry for each SNALink must include certain fields that are required by the Microsoft® Host Integration Server 2000 system.
These are:

Required Fie
lds

Description

TYPE The type of the SNALink. Acceptable values for TYPE are: SDLC, X25, TOKENRING, DFT, TCPIP, FRAMERELAY, CHAN
NEL, ISDN, ETHERNET.

LINKMODULE The name of the IHV DLL that provides the protocol code.

The remainder of the configuration information consists of entries of the form PARAMETER = VALUE. Parameters can be set to
either an integer or a string.

Examples of possible parameters that may be required by an SNALink are:

PortNumber = 3
LineType = SWITCHED
L3PacketSize = 128
T1Timeout = 30

Note that to support more than one port on a multiport adapter, you must define multiple SNALinks. It is not possible to
configure a single SNALink to support more than one physical link.

The following illustration shows a sample configuration for a machine with two SNALinks—SDLC1 and X25HOST.

The configuration information is accessed using Host Integration Server 2000-provided API calls.

The IHV Setup utility must write the configuration information for each SNALink supported. Refer to Setup Information for details
of how this should be performed.

This section contains:

Accessing Configuration Information

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Accessing Configuration Information
The SNALink uses the following calls to obtain its configuration information:

SNAGetConfigValue Returns the value of a named configuration parameter.
SNAGetSystemInfo Returns general information on the version of Microsoft SNA Server currently running, such as the release le

vel, and the network operating system.

If the return code from SNAGetConfigValue indicates that the specified configuration parameter is not available, or if the
information returned is invalid, it is the SNALink's responsibility to decide what action to take. If appropriate, an error message
could be logged; see Diagnostics for more information on error logging.

It is strongly recommended that the SNALink read all required configuration parameters at initialization time (when
SNALinkInitialize is called by the Base). This will safeguard against the configuration information changing while the link service is
running.

Note Standard calling conventions [WINAPI] are used for all entry points including those provided by the IHV
SNALink.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Data Link Control Interface
The data link control interface (DLC) defines the interface between the local 2.1 node and an SNALink. The DLC interface is defined
in terms of the messages that are sent across the interface. Note that this is logically distinct from the definition of the
Base/DMOD interface, which defines the API used to send messages between two components in Microsoft® Host Integration
Server 2000 (for example, between the local node and an SNALink).

DLC messages are exchanged between the local node and an SNALink across LPI connections (see
Structure of Host Integration Server and SNA Server Components).

The local node uses the DLC interface to:

Activate DLC connections.
Exchange format 0 or format 3 XIDs for station activation.
Exchange DLC information frames.
Handle DLC error notification.

This section contains:

Supported Configurations
Opening a Connection
DLC Information Transfer
Closing a Connection
Incoming Call Support
SDLC Multipoint Connections

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Supported Configurations
The 2.1 node supports the full range of station roles:

Primary DLC stations
Secondary DLC stations
DLC station role negotiation

For SDLC (synchronous data link control) connections, the node allows:

Leased lines configured as:
Secondary point-to-point.
Primary point-to-point or multipoint.
Negotiable point-to-point.

Switched lines (point-to-point only) with:
Remote PU identification through XID exchange.
Auto dial (with suitable hardware support).
Incoming call support.

For X.25 and 802.2, the node also supports:

Multiple connections over one physical link.
Incoming calls with validation of caller's address.

In addition, for X.25, the node supports permanent and switched virtual circuits (PVCs and SVCs).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Opening a Connection
The 2.1 node is capable of supporting multiple connections through one or more SNALinks. For each connection, the node opens
two LPI connections to the SNALink:

LINK LPI connection to handle activation and deactivation of the connection.
STATION LPI connection to transfer data to and from the remote station.

The one exception to this rule is the case of primary multipoint connections where there is a single LINK LPI connection and
multiple STATION LPI connections. This special case is described in SDLC Multipoint Connections.

The following messages flow over the DLC interface and are used to activate a connection to a remote station.

Open(LINK) Request Flows from node to DLC over LINK connection.

Opens the LINK LPI connection between the node and the SNALink.
Provides configuration data for the SNALink.
Provides link connection data such as token-ring address for the remote station.

Open(LINK) Response Flows from DLC to node over LINK connection.

Reports whether the SNALink has accepted the Open(LINK) Request.
Returns certain link-specific configuration parameters to the local node.
Can be an OK Response or an Error Response.

Request-Open-Station Flows from DLC to node over LINK connection.

Passes an XID received from the SNALink up to the node.
Indicates that the SNALink has received a mode setting command, such as SNRM over SDLC, or SABME over 802.2.

Send-XID Flows from node to DLC over LINK connection.

Passes an XID from the node to the SNALink to be sent out over the link to the remote station.

Open(STATION) Request Flows from node to DLC over STATION connection.

Opens the STATION LPI connection between the node and the SNALink.
Specifies certain station-specific configuration information.

Open(STATION) OK Response

–or–

Open(STATION) Error Response

Flows from DLC to node over STATION connection.

Acknowledges Open(STATION) Request.

Station-Contacted Flows from DLC to node over STATION connection.

Informs the local node that the link is now ready for data transfer.

The use of these messages in activating various types of connections is described throughout the rest of this section. The format
of the messages is given in Message Formats.

The name of the Request-Open-Station message is historical. In earlier versions of the DLC interface, the higher-level software
(such as the local node) always sent an Open(STATION) Request in response to this message—hence the name Request-Open-
Station. However, now that multiple XIDs can be exchanged before the link is activated, the Open(STATION) Request is only sent
at the end of the XID exchange.

The Request-Open-Station message now has two distinct semantic meanings:

A Receive-XID
A Receive-Set-Mode

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This section contains:

Opening the LINK LPI Connection
Activating a Host Connection
Activating a Peer Connection
Opening the STATION LPI Connection
Node Identification and Signaling Information
XID Retries
Multiple Connections

Microsoft Host Integration Server 2000

Opening the LINK LPI Connection
The local node attempts to activate a connection:

During system initialization if the connection is configured as initially active.
If the system administrator manually activates the connection.
If a 3270 or LU 6.2 session is requested when there is no active connection to support the LU, and the connection is
configured to be activated on demand.

For each connection to be activated, the local node opens a LINK LPI connection by sending an Open(LINK) Request to the
SNALink. This message contains configuration data such as:

SDLC line type: leased, switched.
Operational role: primary, secondary, or negotiable.
Time-out values.
Retry limit values.
Line speed.
Half-duplex/full-duplex.
802.2 remote service access point (SAP) address.
X.25 facility data.

For incoming calls, the local node primes the SNALink by opening the LINK LPI connection, but does not perform an activation
sequence at this stage (see Incoming Call Support).

The local node also inserts the first XID frame to be used (where applicable) and link connection data to be used on a switched
link. The link connection data can be:

A telephone number for a manual or auto-dial modem (in this case, the SNALink software could dial the required number
or send a message to the operator specifying the number to be dialed).
The media access control (MAC) address of the remote station.
The X.25 remote data terminal equipment (DTE) address.

Finally, the Open(LINK) contains various time-out values that should be used by the SNALink when setting up protocol timers.
See Open(LINK) Request and Open(LINK) Response.

The SNALink should return an Open(LINK) OK Response if:

Its internal control blocks are successfully initialized.
Its device driver has installed correctly.
Its link hardware is successfully initialized.

The SNALink should not wait for an end-to-end connection before giving an Open(LINK) Response.

If the SNALink has successfully initialized, it should return an Open(LINK) OK Response immediately, supplying the required link-
specific configuration information to the node (such as the maximum BTU size it can support). The local node will use this
information during XID negotiation with the remote station.

If the SNALink cannot initialize successfully, it responds with an Open(LINK) Error Response containing an error code. The error is
logged and the local node notifies the system operator before retrying the link activation.

If an XID is supplied on the Open(LINK) Request, this should be sent when the end-to-end connection is established for a primary
or negotiable link. Note that the supplied XID can be a NULL XID, which has a zero length. Hence, it is important that the OPINIXID
field is examined rather than checking for a zero XID length. An XID will be supplied for all connections except primary leased
connections (which could be multipoint).

When an SNALink receives an XID frame from the remote station, it is passed to the local node in a Request-Open-Station
message on the LINK LPI connection.

If the SNALink fails to receive any frames from the remote station, it generates an Outage message as described in
Closing a Connection.

The following figure shows the Open(LINK) Request and Open(LINK) Response, followed by an exchange of XIDs.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Activating a Host Connection
A host connection can be activated over a leased SDLC line, X.25, 802.2, or a switched SDLC line. This section describes the
activation procedures for each type of connection.

This section contains:

Leased SDLC Line (No XIDs Exchanged), Channel Adapter
X.25, 802.2, or Switched SDLC Line (XIDs Exchanged)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Leased SDLC Line (No XIDs Exchanged), Channel Adapter
For a connection to a host computer using a leased SDLC line, the SNALink receives an SNRM when the end-to-end connection is
established. The SNALink responds with a UA and informs the local node that the connection is ready for data transfer. This is
done with the Request-Open-Station message with the Rcv-Set-Mode flag set.

The node then opens the STATION LPI connection with the Open(STATION) message. If the SNALink has an available control
block, it responds with an Open(STATION) OK Response. This is followed by a Station-Contacted message.

A channel connection is treated the same way as a leased secondary SDLC connection. Each channel connection is associated with
a channel subaddress in the range 0x00 to 0xFF. The SNA Service node will send the channel link service an Open(LINK) Request
for each configured channel connection when the connection is activated. The link service should expect to receive multiple
Open(LINK) Requests, one for each supported subchannel address.

Note that the Request-Open-Station message flows on the LINK LPI connection, whereas the Station-Contacted message flows on
the STATION LPI connection.

The message flow for a leased line is shown in the following figure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

X.25, 802.2, or Switched SDLC Line (XIDs Exchanged)
The initial sequence for a host connection over X.25, 802.2, or a switched SDLC line is similar to the sequence over a leased line.
The only difference is that XIDs are exchanged before the host (or front end processor) sends a mode-setting command such as
QSM on an X.25 QLLC link.

When the SNALink receives an XID, it is passed to the local node on a Request-Open-Station message (on the LINK LPI
connection). The local node then passes DLC a Send-XID message (also on the LINK LPI connection) containing the XID to be sent
to the host. The host typically checks the node identifier in this XID and, if it is valid, sends the mode-setting command.

The sequence is shown in the following figure.

At the link level, a mode-setting command is required to enter the information transfer state. For an SDLC link, this is an SNRM
(set normal response mode); for an X.25 QLLC link, this is a QSM; for a 802.2 link, it is an SABME. If the SNALink acknowledges
the command (with a UA/QUA) immediately, it needs to buffer up any data that arrives on the link in the short window before the
Open(STATION) Request arrives from the local node. The alternative is to wait for the Open(STATION) Request before sending the
UA/QUA response.

For switched connections using SDLC modems, the Open(LINK) Request contains dial digits for manual or auto-dial modems. It is
the responsibility of the SNALink to handle the management of these devices. For X.25 and 802.2 connections, the Open(LINK)
Request contains the address of the remote station.

The SNALink should initiate the dialing procedure when it receives the Open(LINK) Request.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Activating a Peer Connection
For a peer connection, there is an activation sequence that involves the two stations exchanging format 3 XID frames. As part of
this sequence, the two stations agree on their link roles. They also exchange information relating to the link level connection, such
as the maximum frame size supported.

The node passes XIDs to the SNALink over the LINK LPI connection using the Send-XID message. The SNALink returns received
XIDs to the local node over the LINK LPI connection using the Request-Open-Station message.

Fixed Link Roles and Negotiable Link Roles show examples of XID exchange for the two cases:

The link roles are explicitly configured for the two stations.
The link roles of both stations are negotiable.

Points to note are:

The Open(LINK) Request is supplied with a NULL XID that is sent when the end-to-end connection is established.
After the first NULL XID, all XIDs are format 3.
If both stations are set up to be negotiable, the station with the higher node identifier becomes the primary.
If both stations are negotiable and have the same node identifier, both stations produce randomized node identifiers that
are compared as before.

This section contains:

Fixed Link Roles
Negotiable Link Roles

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Fixed Link Roles
The following figure shows the sequence of messages for a peer connection where the local end is configured as the primary
station and the remote end is configured as the secondary.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Negotiable Link Roles
The following figure shows the sequence of messages for a peer connection where both the local and remote ends are configured
as negotiable. Since the remote node identifier is larger (numerically) than the local node identifier, the remote station will
become primary.

local node identifier = 0x05D11111
remote node identifier = 0x05D22222

In summary, here are the rules that the SNALink must follow when supporting XID exchange, and in particular XID role
negotiation:

If an XID is supplied in the Open(LINK) Request, it must be transmitted as soon as the end-to-end connection is established
for primary or negotiable links.
All XIDs received from the remote station must be passed to the local node in a Request-Open-Station message.
An XID received from the local node in a Send-XID message must be transmitted immediately.
XID transmissions must be retried until an XID is received from the remote station. For half-duplex links, the retry time-out
should be randomized to prevent repeated XID clashes.
When a mode-setting command (SNRM, QSM, SABME) is received before the station has been opened, a Request-Open-
Station must be sent to the local node with the Rcv-Set-Mode flag on.
When the local node sends an Open(STATION) message, the link should examine it to determine its link role (that is,
primary or secondary).
A secondary station should send a Station-Contacted message after receiving and responding to the Open(STATION)
message.
For a primary station, the mode-setting command should be sent when the Open(STATION) message is received. The
Station-Contacted message should be sent to the local node when this command has been acknowledged by the secondary
station (for instance, a UA received on an SDLC link).

If the local node detects an error during role negotiation, such as both PUs configured as primary, it sends out an XID containing
an error vector. The vector is appended to the end of the normal XID data. The vector number specified is 0x22, and the vector

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

data specifies that the DLC role field is in error. Refer to the SNA Formats Help file for details of the XID formats and error vectors.

After sending the error XID, the local node sends a Close(LINK) message to terminate the connection (see Closing a Connection).

The following figure is a matrix of the possible combinations of station link roles and shows the eventual role of the local station.

 Local Station
 Primary Secondary Negotiable
Remote Primary Fail Secondary Secondary
Station Secondary Primary Fail Primary
 Negotiable Primary Secondary Either*

*The station with the higher node identifier becomes the primary.

Microsoft Host Integration Server 2000

Opening the STATION LPI Connection
After receiving a Request-Open-Station (RQOS) message, the local node sends an Open(STATION) message to the SNALink when:

The station is configured as secondary (or has negotiated to secondary), and the RQOS message has the Rcv-Set-Mode flag
on, indicating that the SNALink has received a mode-setting command such as SNRM.
The station is configured as primary (or has negotiated to primary), the RQOS message contains a secondary XID, and the
local station has sent at least one negotiation-proceeding XID.

The Open(STATION) Request contains the link index that was on the Open(LINK) Request. This field is used to correlate the LINK
and STATION LPI connections for SNALinks that support multiple connections, such as X.25, 802.2, and channel.

This Open(STATION) Request contains configuration data for the link station, such as the SDLC address of the adjacent link station
(0x00 for secondary stations, 0x01 to 0xFE for primary stations).

The SNALink should use this address field for determining the local station's role. If it is set to 0x00, the local station is a
secondary. Otherwise, the local station is primary. This field has this meaning even when the address is not used because of the
link type (such as 802.2).

See Open(STATION) Request for the format of this message.

If the station cannot be initialized (perhaps due to a lack of resources), the SNALink responds with an
Open(STATION) Error Response containing the appropriate error code.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Node Identification and Signaling Information
Refer to Incoming Call Support for details of the role an SNALink plays in node identification.

When XIDs are exchanged, there are two mechanisms for identifying the remote station:

The node identifier on received XIDs.
The DLC defined address (for example, the MAC address). This is known as signaling information.

The presence of signaling information depends on the type of the SNALink. For instance, there is no signaling information over an
SDLC link, but there is signaling information over X.25 and 802.2. The SNALink passes signaling information to the local node on
the Request-Open-Station message by appending it after the XID.

If signaling information is present, the local node checks it against the configured value in the Dial-Digits record of the Host
Integration Server 2000 configuration file. For incoming call support, this allows the local node to determine the connection that
is to be activated. See Incoming Call Support for a fuller description of incoming calls.

If there is no signaling information, the local node compares the control point name on the received XID with the remote CP name
in the configuration.

If the remote station is identified correctly, XID exchange proceeds as detailed in Activating a Peer Connection. However, if there is
a mismatch, the local node sends an XID (in the Send-XID message) containing an error vector followed by a Close(LINK) Request,
as shown in the following figure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

XID Retries
When the local node specifies that the SNALink is to send an XID, either by supplying it on the Open(LINK) Request or by sending
it on a Send-XID message, it is the responsibility of the SNALink to perform any retries.

XIDs need to be retried because:

The remote station has not been started yet.
Frames may be lost on the line due to noise.

SDLC SNALinks should implement a contact time-out and a retry limit—values for these are provided on the Open(LINK)
message. The time-out specifies how often the XID should be retried, and the retry limit specifies how many XIDs should be sent
before abandoning the connection activation and sending an Outage message to the local node. The SNALink should stop
retrying the XID when one of the following occurs:

It receives an XID from the remote station.
An Open(STATION) message is received from the node.
A mode-setting command is received on the link.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Multiple Connections
For 802.2 and X.25 links, multiple connections can use the same physical link supported by a single instance of the SNALink
software.

For each connection to a remote station, there is a LINK LPI connection and a STATION LPI connection (this is different from SDLC
multipoint as described in SDLC Multipoint Connections). Hence, there can be multiple pairs of LPI connections between a local
node and an SNALink. For each connection, the local node issues an Open(LINK) Request and, after XID exchange, an
Open(STATION) Request.

The local node is configured with a maximum number of connections that can be active at any one time. In addition, each
potential connection is configured with the address of the remote station. This information is required when activating a
connection, and is included in the Open(LINK) Request for an outgoing connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DLC Information Transfer
When the local node has opened the LINK and STATION LPI connections and received a Station-Contacted message from the
SNALink for a remote station, it can exchange data (using the DLC interface) with the PU and associated LUs at the remote station.

Data messages are contained within buffers. The transmission header (TH) of the SNA path information unit is contained within
the buffer header. The request/response header (RH), if present, and request/response unit (RU) are contained within one or more
buffer elements. The TH is contained in the buffer header for historical reasons. Typically this will be copied by the SNALink into
the element before startd, to keep the entire frame in contiguous memory locations. See DLC-Data for a description of the DLC-
Data message format.

Note that all data messages to a specified remote station flow on the associated DLC STATION LPI connection, and not on the
controlling DLC LINK LPI connection.

This section contains:

DLC Flow Control

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DLC Flow Control
The flow of data messages at the DLC interface for each link station is flow controlled. For each direction of flow there is an initial
credit of messages that can be transmitted.

Flow control is maintained by initial specification on the Open(STATION) Request and Open(STATION) OK Response messages,
and by the sending of DLC Status-Resource messages to give more credit from time to time.

The sender maintains a count of credit, starting at the initial value set on the Open(STATION), which is decremented for each
DLC-Data message sent. When the credit count reaches zero, no more DLC-Data messages can be sent until more credit is
received.

For flow in a given direction, the amount of credit is specified by the recipient of the data, since the recipient has to do any
queueing. The initial credit values are passed on the Open(STATION) message (on the request for flow from the SNALink to the
local node and on the response for flow from the local node to the SNALink).

The initial credit for the flow from the SNALink to the local node is determined by the node. The initial credit for the flow from the
local node to the SNALink is set by the SNALink software—a suggested value is 16.

If the SNALink runs out of credit to send to the local node, it should either queue the data or discard it and send no
acknowledgment. It should also start sending RNR (receive not ready), for example, when polled by a primary station. An example
message flow with an SDLC SNALink is shown in the following figure with an initial credit of 3. When the SNALink runs out of
credit, it does not acknowledge any further frames and starts sending RNR.

For flow control from the local node to the SNALink, when the node runs out of credit it queues the data and applies back
pressure on sessions using that station. There is thus end-to-end flow control in this direction, independent of any SNA pacing
that may be in force.

The SNALink gives credit to the local node for the messages that have been transmitted, not for the messages for which
acknowledgments have been sent. The amount of data queueing in the SNALink is kept down most of the time since frames will
usually be acknowledged.

Flow control for the flow of data from the local node to the SNALink is shown in the following figure, where the initial credit is
assumed to be 2.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Closing a Connection
The local node closes a connection to a remote station:

If the system administrator manually deactivates the connection.
If the connection is configured as on-demand and no 3270 or LU6.2 sessions are active.
If an outage has been reported by the SNALink.

The local node closes a connection by sending a Close(LINK) message. The SNALink then takes some action, such as lowering DTR
(data terminal ready) on an SDLC link or issuing a DLC_CLOSE_STATION on a 802.2 connection. It then replies with a
Close(LINK) OK Response as shown in the following figure.

The case of multipoint connections is slightly different and is considered in SDLC Multipoint Connections. The rest of this section
is concerned with point-to-point connections.

This section contains:

Outages
Connection Retries

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Outages
If the SNALink detects a link or station failure, it reports the failure by sending an Outage message to the node on either the LINK
or STATION LPI connection depending on whether it is a link or station outage. Generally, a station outage indicates a problem at
the remote station, and a link outage indicates a local or line problem.

When the local node receives an Outage message, it:

Logs an error containing the outage code.
Tidies up each session using the connection and informs applications of the failure (for instance, with a Comm Check code
on a 3270 emulator).
Sends a Close(LINK) Request to the SNALink.

On receipt of the Close(LINK) Request, the SNALink should clear up its internal resources for the connection and send back a
Close(LINK) Response.

There is a special case when the node loses contact with the SNALink software. In this case the node is notified of this event (a lost
locality) and performs outage processing apart from sending messages to the SNALink.

The outage codes are not distinguished by the node, but they are logged. For the sake of consistency across SNALink
implementations, the values listed below should be used.

This section contains:

SDLC Outage Codes
802.2 Outage Codes
X.25 Outage Codes
DFT Outage Codes

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SDLC Outage Codes
The following table describes SDLC outage codes.

0x0D Internally generated for SNALink lost locality.
0x11 DSR failure.
0x12 CTS failure.
0x14 DCD failure.
0x24 Nonproductive receive retry limit exceeded.
0x25 Idle time-out retry limit exceeded.
0x29 Connection problem.

subqual = 0x00I-frame retransmission
subqual nonzeroXID retransmission

0x2D Abnormal modem response.
0x2E Write time-out retry exceeded.
0xA0 XID exchange failed on multidrop line.

subqual is address of secondary station.
0x15 DISC received.
0x23 Receive buffer overrun.
0x2C Invalid command received.

subqual = 0x03invalid N(R)
subqual = 0x04invalid or unsupported
command/response
subqual = 0x05excess I-field

0x80 DM received in information transfer state.
0x81 Discontact retry limit exceeded.
0x82 Contact retry limit exceeded.
0x83 Poll retry limit exceeded.
0x84 No Response retry limit exceeded.
0x85 Remote busy retry limit exceeded.
0x86 FRMR received.

subqual = 0x00no reason given
subqual = 0x03invalid N(R)
subqual = 0x04invalid or unsupported
command/response
subqual = 0x05excess I-field

0x87 Invalid frame received.
subqual = 0x03invalid N(R)
invalid or unsupported
command/response
subqual = 0x05excess I-field

0x88 RIM received.
0x89 RD received.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

802.2 Outage Codes
The following table describes 802.2 outage codes.

0x29 Remote node not active.
0xAB SABME received while connection active.
0xAC FRMR sent.
0xAD FRMR received.
0xAE DISC/DM received.
0xAF Link lost.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

X.25 Outage Codes
The following table describes X.25 outage codes.

0x37 Loss of a virtual circuit.
0x60 SVC cleared down by remote station or network.
0x61 PVC has been reset by remote station or network.
0x62 Attempt to connect to remote station through SVC failed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DFT Outage Codes
The following table describes DFT outage codes.

0x11 DSR failure.
0x14 DCD failure.
0x15 Connection terminated by host.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Connection Retries
If an initially active or operator-started connection is closed because of an outage, the node periodically tries to reopen the
connection. This can be stopped by manually deactivating the connection. This retry mechanism is also used when the node
attempts to open a connection but the SNALink software has not yet been started. On-demand connections are not retried
automatically by the node, but will be retried if the user attempts to reactivate a session using the connection.

Note that this connection retry timer is totally separate from the timers specified on the Open(LINK) Request.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Incoming Call Support
The local node allows an SNALink to be set up to support incoming calls. In this mode of operation, the node primes the SNALink
by sending an Open(LINK) Request, but the SNALink does not attempt to activate the link until it receives an XID from a remote
station.

The SNALink recognizes an Open(LINK) Request for an incoming call by the absence of a connection name in the destination
name field (this field is filled with ASCII blanks).

For incoming calls, Open(LINK) Request requires an immediate response from the SNALink, just as in the case of an Open(LINK)
Request for an outgoing call.

For an SDLC SNALink there can be only one Open(LINK) outstanding. However, 802.2 and X.25 allow the possibility of multiple
connections being handled through a single SNALink. In these cases, for each configured connection that is primed to await
incoming calls, the local node will send an Open(LINK) with a blank connection name to the SNALink.

When an incoming call is received by the SNALink, the received XID should be passed to the local node on any LPI connection that
is primed for incoming calls. The LPI connection selected must then be used for all future messages relating to that incoming call.

It is not necessary for the SNALink to perform validation of incoming calls—this will be performed by the local node. However, if
required, the SNALink can choose to validate calls before passing them to the node. A common example of this is to ensure that
only X.25 calls with a specific local address are passed through to the local node.

The following illustration shows incoming call support with an SNALink that supports two connections. A remote station calls in
and uses connection A. The node sets up connection B for incoming calls but then needs to open connection C. Since the SNALink
only supports two connections, connection B is closed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SDLC Multipoint Connections
The node can support primary multipoint (also known as multidropped) links, at both the primary and secondary end. Multipoint
is a special configuration for an SDLC leased link where a single SDLC line at the primary station can be used to communicate
with up to 16 secondary stations. Special hardware is required to fan out the primary line so that there is a physical connection to
each secondary station. The following figure shows an example with three secondary stations.

The SDLC address of the secondary station is used to route frames to and from the individual secondary stations. Hence, the
SNALink at the secondary station needs to check the SDLC address as the primary sends all frames to all secondary stations. The
SNALink at the secondary station should only accept frames with its SDLC address—the other frames should be ignored.

From the viewpoint of the node at a secondary station, the message flow at the DLC interface is as for a point-to-point connection
(described in Opening a Connection). Indeed, the node need have no knowledge that this is a multipoint connection.

The primary end has to handle the special processing required for multipoint connections. The remainder of this section
concentrates on the primary station.

At the primary end, there are the following LPI connections:

One LINK LPI connection.
A STATION LPI connection for each active secondary station.

Since the XID exchange is carried out using the single LINK LPI connection, the Request-Open-Station and Send-XID messages
always specify the station address of the secondary station that the XID has arrived from or is going to. Note that no XID is
supplied on the Open(LINK) Request.

Each STATION LPI connection has different values of I, the index. After the station has been activated, data messages flow on the
STATION LPI connection rather than the LINK LPI connection.

The first figure below shows the activation of two stations on a multipoint link, from the viewpoint of the primary end. The full
exchange of format 3 XIDs for each station is not shown but is the same as in Opening a Connection. In addition, the figure shows
the stations being activated one after the other. In fact, the stations can be activated simultaneously.

If the XID exchange fails because the secondary is failing to reply to the XID, the SNALink generates a special variant of link
Outage message. Ideally, the SNALink would give a station Outage message, but this is not possible because the STATION LPI
connection is not yet open. Instead, the SNALink generates a link Outage message with code 0xA0 and a subqualifier that is the
SDLC address of the station.

When the stations are activated on a multipoint link, the majority of messages flow across the STATION LPI connections. If a
connection to a particular secondary station is to be closed (because the operator deactivates it, for instance), the node issues a
Close(STATION) Request. The SNALink replies with a Close(STATION) Response to the node and sends a DISC frame to the
secondary station.

The SNALink can generate both station and link Outage messages. If the problem only affects a particular station, such as not
responding to polls, the link generates a station Outage message and the node closes the station with a Close(STATION) Request.
The SNALink responds with a Close(STATION) Response.

If the problem affects the link as a whole, such as the line being disconnected from the primary SDLC adapter, the SNALink
generates a link Outage message and the node sends a Close(LINK) Request. The SNALink responds with a Close(LINK) Response.

Whenever the node receives a Close(STATION) Response, it checks to see if any stations are still active on the multipoint link. If
not, a Close(LINK) Request is sent. The SNALink responds with a Close(LINK) Response. The following figure shows the message
flows for outage processing. It shows a multipoint connection with two secondary stations (the full XID exchange is not shown).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

The following illustration shows close processing for a multipoint configuration with two secondary stations. Outage conditions
are detected on both stations.

Note that the station messages are labeled in the figure with station addresses. In fact, the node and SNALink use the LPI
addresses to identify the two stations.

Microsoft Host Integration Server 2000

Setup Information
This section describes the integrated link service installation provided with Microsoft® Host Integration Server 2000 and the
earlier procedures used with Microsoft® SNA Server 3.0 and Microsoft® SNA Server 4.0. This section also describes the older
Microsoft® Windows NT® INF-based link service installation procedures used in SNA Server 2.x.

In Host Integration Server 2000, SNA Manager is used to install and configure link services. Host Integration Server 2000 uses the
Microsoft System Installer (MSI) and MSI packages for the installation of the Host Integration Server software. Link services from
Independent Hardware Vendors (IHVs) are not included in the main Host Integration Server MSI packages. IHV link services are
installed using a separate IHV-provided MSI package. A sample IHV link service using the Generic SDLC link service that illustrates
IHV link service installation is included in the Host Integration Server Software Development Kit (SDK). The SDK samples are
installed on your computer when the SDK option is selected during installation of Host Integration Server software. These sample
files are also located on the Host Integration Server 2000 CD-ROM under the SDK\Samples\IHVLInks subdirectory. Host
Integration Server 2000 does not support the earlier INF-based link service setup procedure.

In SNA Server 3.0 and SNA Server 4.0, SNA Explorer is used to install and configure link services. SNA Server 3.0 and SNA Server
4.0 support the INF-based link service setup procedure, but there are clear benefits in updating your link service to the integrated
link service installation procedure introduced in SNA Server 3.0.

This section contains:

Setup Registry Architecture
Integrated Link Service Setup on Host Integration Server
Integrated Link Service Setup on SNA Server
Windows INF-Based Setup

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Setup Registry Architecture
There are two main subtrees in the Microsoft® Windows® 2000 and Microsoft® Windows NT® registry where information is
kept relevant to Microsoft® Host Integration Server 2000 and Microsoft® SNA Server: the SOFTWARE tree and the SYSTEM
tree. Both of these are subtrees of HKEY_LOCAL_MACHINE. The SOFTWARE tree contains generic information about IHV link
services, and the SYSTEM tree contains information about the individual components of those services. While reading the
following topics, it may be helpful to view examples of what is being discussed by inspecting the registry of an existing system
with several of the built-in link services installed.

This section contains:

Product Entries
Service Entries

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Product Entries
All of the information relevant to the product as a whole resides in the registry under the key SOFTWARE\Microsoft. Each
product or link support has an entry whose name consists of the product name and version separated by an underscore. This key
contains most of the information about the product, such as the script name and option name that control it and the service name
for that particular instance.

Each instance key must also have a NetRules key. This key contains all of the information for the Network Control Panel Applet
bindings.

The Host Integration Server and SNA Server setup writes the path of the root directory of the machine’s Host Integration Server
or SNA Server tree into the key:

SOFTWARE\Microsoft\SNA Server\CurrentVersion\Setup\RootDir.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Service Entries
Each instance of a component appears to the system as a unique service. These services must be created using the Service Control
Manager (SCM). The SCM creates a registry entry for each service under SYSTEM\CurrentControlSet\Services. This key
contains all of the service-specific information.

The top-level service key contains information that the SCM uses to control the service. This includes the type of service this key
represents, how it should be started, what sort of error handling should be used, the path to the executable image, and so on. All
information in this key should be handled by the SCM. Each service key also contains two subkeys: the Linkage key and the
Parameters key.

The Linkage key is used by the Network Control Panel Applet to store binding information. The Parameters key contains
information that is relevant to SNA Server Setup, such as the name of the DLL responsible for handling a link service. All
information in this key should be handled by SNA Server Setup. The Parameters key contains another key, ExtraParameters, which
is used for any IHV-specific information, including component-specific parameters and other information not required by the
main SNA Server setup program.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Integrated Link Service Setup on Host Integration Server
In Microsoft® Host Integration Server 2000, the SNA Manager supports installation and configuration of link services. Host
Integration Server 2000 uses the Microsoft System Installer (MSI) and MSI packages for the installation of the Host Integration
Server software. Link services from Independent Hardware Vendors (IHVs) are not included in the main Host Integration Server
MSI packages. IHV link services are installed using a separate IHV-provided MSI package. For an example of this process, install
the DLC/802.2 or IBM SDLC link service in Host Integration Server.

IHV MSI Packages contain two types of features:

Features that can be installed and used independently of Microsoft Host Integration Server 2000
Features that require Microsoft Host Integration Server 2000 to function.

Features that can be installed and used independently of Microsoft Host Integration Server 2000 include drivers, utilities and
applications that can run without Host Integration Server support. These features should be represented in the package as one or
more features in the MSI Select Features dialog. (refer to Generic Link Service sample feature “Generic Link Service” from the
Generic.msi Feature table)

Features that require Microsoft Host Integration Server 2000 include drivers, utilities and applications that require Host
Integration Server to function. These features should be represented in the package as one or more features in the MSI Select
Features dialog. These features should be hidden if Host Integration Server is not installed on the computer. (refer to Generic Link
Service sample feature “Host Integration Server Support” from the Generic.msi feature table)

Properties can be equated to a variable (either global or local) in a high level programming language such as C or C++. Properties
can be used as a placeholder for informational text, or as values used during an installation. (refer to property
SERVER_INSTALLED in the custom action source code GenSet.cpp, and the Condition table entry in the Generic.msi package).

Custom Actions provide a method of extending the capabilities of MSI. Functions not supported in MSI, can be custom written,
and invoked from within a sequence table or directly from a dialog control event. (refer to Custom Actions SetHISPath and
GetHISData in the GenSet.cpp source file)

Launch Conditions provide a method of preventing an install from launching. The sample MSI package included with the Host
Integration Server SDK doesn’t use a launch condition, however if your package requires Host Integration Server to be installed
for your features to function, you should include a launch condition that fails the installation if Host Integration Server is not
detected)

The Condition table provides a method of controlling the layout of the features listed in the select feature dialog. The sample MSI
package uses the Condition table to hide the “Host Integration Server Support” if Host Integration Server is not detected in the
installation..

In order for Host Integration Server to control the installed state of IHV features that require Host Integration Server to be
installed, the following registry keys must be included in the package for each separate feature which requires Host Integration
Server to be installed.

where:

<feature table entry x> - specifies an entry in the feature table (not title)

<product code x> - specifies the package product code

Note that feature table entries must be unique. Product codes may or may not be unique depending on the number of packages
provided by an IHV. One package may have several Host Integration Server dependent features and therefore should list each
feature separately.

These registry keys should be installed by the feature rather than globally by the package.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\IHVSupport\<ihv key>
<feature table entry 1> : REG_SZ : <product code 1>
<feature table entry 2> : REG_SZ : <product code 2>
.
.
.
<feature table entry n> : REG_SZ : <product code n>

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\LinkServicesInstalled
<Link Service Name> : REG_SZ : <Link Service Configuration Dll name>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Target Paths specify a directory where files will be installed. An MSI package will contain one or more Target Paths.

The sample package contains two features:

Generic Link Service
Host Integration Server Support

The Generic Link Service is not dependent on Host Integration Server. This feature installs the following:

gencfg.exe into the <Generic Link Service> directory.
generic.sys driver into the %windir%\system32\drivers directory.
generic.inf into the %windir%\inf directory

Host Integration Server Support is dependent on Host Integration Server. This feature installs the following:

gendtct.dll into the HIS\system directory.
generic.dll into the HIS\system\hwsetup\i386 directory.

This feature contains the following entry in the condition table to hide the feature if Host Integration Server is not detected

See dialog snapshots below for layout of features with/without HIS installed:

Adds:

The sample package uses one custom action dll with two entry points:

The SetHISPath entry sets the target path to the Host Integration Server 2000 install directory.

The GetHISData entry sets the MSI Property SERVER_INSTALLED to “YES” if Host Integration Server is installed and sets the MSI
Property SERVER_INSTALLED to “NO” if Host Integration Server is not installed.

The sample contains two Target Paths:

The INSTALLDIR target path specifies the installation directory for the non Host Integration Server dependent features. It can be
set using the “browse” button in the “Select Features” dialog when the “Generic Link Service” feature is currently selected.

The INSTALLDIR1 target path specifies the directory where Host Integration Server is installed. This Target Path is set by the
custom action “SetHISPath”.

The IHVUtil.exe tool can be used to verify the Host Integration Server dependent interfaces. If the tool is launched after the IHV
package is installed, all Host Integration Server dependent features should show up in the dialog. Executing “Remove” from the
dialog should remove the Host Integration Server dependent feature as well as remove it from the dialog.

Note that the sample provided can also be tested using the SNA Manager. While the sample does not actually function, it will
appear as an installed link service.

This section contains:

Integrated Link Service Configuration and Reconfiguration on Host Integration Server

HIS_RELATED_FEATURE 0 SERVER_INSTALLED=”NO”

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\LinkServicesInstalled
Generic Link Service : REG_SZ : GENERIC.DLL

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\IHVSupport\GenericLinkService
HIS_RELATED_FEATURE : REG_SZ : {FDF11E0E-3BFF-4B0F-89BD-E4E1FB979E4D}

SetHISPath
GetHISData

INSTALLDIR
INSTALLDIR1

Constructing an Integrated Link Service DLL on Host Integration Server

Microsoft Host Integration Server 2000

Integrated Link Service Configuration and Reconfiguration on
Host Integration Server
In Microsoft® Host Integration Server 2000, the initial configuration functions are performed by your configuration DLL running
in the context of SNA Manager.

After your link service has been created, SNA Manager must be able to locate its configuration DLL when the operator wishes to
reconfigure the link service. To support this feature, when your configuration DLL initially creates the link service, it must put a
new value in the registry of the target server as follows:

SYSTEM\CurrentControlSet\Services\<yourLinkService>\Parameters

DLLName: REG_SZ: <configDllName>

where:

<configDllName> is the file name and extension of the configuration DLL, for example, IBMSDCFG.DLL. No path is specified in the
value.

This value replaces InfName, which was used in SNA Server 2.x to name the path to the .INF file.

Since SNA Manager can be running on a management workstation remote from the target server, the configuration DLL must be
able to create configuration information on the target server. The sample configuration DLL included with the earlier SNA Server
SDK sample files illustrates the utility functions available to perform these functions across a network connection on the target
server. Host Integration Server loads the appropriate configuration DLL over the network from \<snaRoot>\SYSTEM\HWSETUP\
<cpu> on the target server as needed.

Note There is an alternate way of locating the Link Service Configuration DLL if the link services from the vendor
were not included with the released Host Integration Server CD-ROM. Depending on the setup tool used by the
vendor, the vendor's setup software may not be able to read the registry and locate the directory where link services
should be installed. To resolve this problem, the SNA Manager scans the LinkServicesInstalled key prior to making
the call to the Link Service Configuration DLL. The SNA Manager checks for a % character in the configDllName and if
it exists configDllName will be interpreted differently than just the name of the configuration DLL. The following
example illustrates this case:

Under the SYSTEM\CurrentControlSet\Services\<yourLinkService>\Parameters key

DLLName: REG_SZ: "share\%s\<relative path and DLL Name>

If a %s string is found, then \\ServerName will be prepended and the CPU architecture string (i386 or Alpha) will be
substituted for %s.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Constructing an Integrated Link Service DLL on Host
Integration Server
Microsoft® Host Integration Server 2000 provides an enhanced method for installing integrated link services that allows for
remote setup and administration of new link services, as well as support for setup and configuration using a command-line tool.
This feature is based on the link service provider supplying a setup, and configuration DLL exporting a specific list of functions. A
developer must follow certain standards for using this SNA link service configuration DLL and set various keys and values as
registry settings to be used by Host Integration Server for link service configuration.

In order to support vendors using these setup and configuration features, Host Integration Server includes the source code for a
sample generic SDLC link service configuration DLL (linkcfg). Also included for use by developers is the source code to a library of
utility functions (lnktools) that are commonly useful when implementing the linkcfg DLL. This sample code and the
documentation that follows can be used as a guideline for vendors developing similar link service configuration DLLs for their
hardware. This sample source code is located on the Host Integration Server CD-ROM in the \SDK\SAMPLES\IHVLinks
subdirectory. Sample include files, C++ files, resource files, makefiles, and project files are included for use with Microsoft®
Visual C++® version 6.0 and later.

This section contains:

Components of an Integrated Link Service Configuration DLL on Host Integration Server
Contents of IHVLinks Sample Kit on Host Integration Server

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Components of an Integrated Link Service Configuration DLL
on Host Integration Server
The link service configuration DLL must export the following functions:

Exported function Purpose
CommandLineAdd Called from LinkCfg to parse command-line input.
ConfigureLinkService Called from SNA Manager to add or modify a link service.
ConfigureLinkServiceEx Called from SNA Manager to add or modify a link service, returning a configuration buffer to be added to

the configuration file.
DisplayHelpInfo Return a buffer containing command-line syntax for this type of link service.
RemoveLinkService Called from SNA Manager to remove a link service.
RemoveAllLinkServices Called from Setup to remove all instances of this link service.

The sample linkcfg.cpp DLL is written in C++ using the Microsoft Foundation Classes (MFC) and uses a single property sheet with
two property pages as follows:

The card configuraton property page implementation is in the cardcfg.cpp and cardcfg.h files. This property page is
concerned with configuring various hardware properties (interrupt, DMA channel, and I/O address, for example) of the link
service hardware.
The connection mode property sheet implementation is in the mode.cpp and mode.h files. This property page is concerned
with configuring mode information (link service name, link service title, SDLC line type, for example) for the link service.

The two property pages are linked to the link service property sheet in linkcfg.cpp within the ConfigureLS routine. This function is
called by the exported ConfigureLinkService and ConfigureLinkServiceEx routines in linkcfg.cpp. An actual link service
configuration DLL developed from these sources may require more property pages depending on the information needed to
configure the actual link service DLL.

The registry.h include file used by linkcfg.cpp contains a global definition of the registry entries required for the sample generic
SDLC link service. The values in this structure will be modified to contain the actual information specified by the user. This
structure is added to the registry when a new link service is configured, and this structure is removed when a link service is
deleted. The registry values that a developer must modify include the Link Registry Base entry (LINKSERVICE is used in the sample
include file), the name of the device driver root (GenSdlc is used in the sample include file and source code), and various software
and service registry settings appropriate for the target link service.

Several of the exported link service DLL functions use a configuration buffer, the CONFIG_BUFFER structure defined in linkcfg.h.
The format of any CONFIG_BUFFER used by developers must match the structure format of this sample file for the first three
parameters. Other parameters may differ for a developer's version of the CONFIG_BUFFER structure based on the target link
service.

The sample link service configuration DLL calls a set of general utility functions that are not specific to any target link service.
These utility functions are included in a lnktools library (lnktool.cpp) that is linked in as an OBJ file. This lnktools library includes
the following utility functions that are useful in developing link service configuration DLLs:

Utility function Purpose
AddPerfmonCounters Add perfmon counters for this link service.
bCreateService Create a service on a computer.
bDeleteService Delete a service on a computer.
bStopService Stop a service running on a computer.
CheckForExistingLinkService Check to see if a link service of this type exists with this title.
ConvertHexStringToDWORD Convert a hexadecimal string to a DWORD value.
ExtractNextParameter Get the next parameter from a buffer.
fAddRegistryEntry Add a new registry value to the registry.
fCanWeAdministerRemoteBox Determine if the user has administrative privileges on the remote computer.
fConnectRegistry Connect to a remote computer's registry and return a handle to the remote registry.
fDisconnectRegistry Disconnect from a remote computer's registry.
fFindAndReplaceString Find and replace a substring within a string.
fFindString Determine if a string exists within a string buffer.
fFindStringInMultiSZ Find a string in a REG_MULTI_SZ string list and return entire string.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

fQueryRegistryValue Query a value from the registry.
fRegistryKeyExists Test whether a registry key exists.
fRemoveRegistryEntry Remove a registry key.
fRemoveRegistryValue Remove a registry value.
fStringCompare Determine if two strings compare.
LoadStringResource Load a string from the string resource.
ParseNextField Return the next field from a string.
RemovePerfmonCounters Remove perfmon counters for this link service.
ReturnString Return a pointer to a string resource string.

The sample source code for a generic SDLC link service configuration DLL (linkcfg) includes several functions that may be useful
as sample code when developing link service configuration DLLs for other hardware. The following functions are included in the
linkcfg.cpp source code that may be of use as examples:

Utility function Purpose
bDetectNetworkCa
rd

Detect the remote network card and return the card settings buffer for the sample generic SDLC link servic
e.

bLastGenericDFTLi
nkService

Check for the last generic SDLC link service for the sample generic SDLC link service. This routine is used to
determine if the GENSDLC Device Driver (if one existed) can be removed.

ConfigureLS The common link service configuration function used by the sample generic SDLC link service.
fAddAllRegistryVal
ues

Add all registry values for the sample generic SDLC link service.

fAddClassAndBindf
ormRegistries

Add the "class" and "bindform" registry entries for the sample generic SDLC link service. The bindform and
class registry entries can only exist for the first link service of this type.

fEnumerateEventL
ogSources

Enumerate the Event Log sources registry value for the sample generic SDLC link service.

fRemoveAllRegistr
yValues

Remove all registry values for the sample generic SDLC link service.

fReplaceAllRegistr
yValues

Replace all user-provided information in the registry data for the sample generic SDLC link service.

fReplaceRegistryD
ata

Replace global registry data for the sample generic SDLC link service.

fReplaceRegistryKe
yName

Replace global registry structure strings for the registry key name for the sample generic SDLC link service.

fSetupGlobalValue
s

Create or update all user-provided information in the registry data structure for the sample generic SDLC li
nk service.

InitializeGlobalStru
cture

Initialize link service data contained in the global data structure for the sample generic SDLC link service.

Microsoft Host Integration Server 2000

Contents of IHVLinks Sample Kit on Host Integration Server
The sample source code for a generic SDLC integrated link configuration MSI package that illustrates an integrated IHV link
service installation are included on the Microsoft® Host Integration Server 2000 CD-ROM and as part of the Microsoft Developer
Network (MSDN) Platform SDK. These sample programs are located in the \SDK\Samples\IHVLinks subdirectory on the Host
Integration Server 2000 CD-ROM. These files are copied to your hard drive during Host Integration Server software or Host
Integration Client software installation when the Host Integration Server Software Development Kit option is selected. These
samples are installed in the SDK\Samples\IHVLinks subdirectory below where the Host Integration Server SDK software is
installed (C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\IHVLinks
subdirectory below where the MSDN Platform SDK has been installed.

These sample files include the following directories:

Directo
ry

Description

LinkSer
v

Directories used in creating the IHVLinks sample generic SDLC link service configuration and detection DLLs.

LinkSer
v\Build

A file containing teh normal COFF base address for a link service configuration DLL.

LinkSer
v\Dete
ct

The source code to the sample generic SDLC link service detection DLL.

LinkSer
v\Linkc
fg

The source code to the sample generic SDLC link service configuration DLL. The link service configuration DLL must exp
ort specific functions. A DEF file must be used so that exported function names are not decorated by the compiler and lin
ker.

LinkSer
v\LnkT
ools

The source code to a collection of library routines used by the generic SDLC link service configuration DLL.

LinkSer
v\NT5I
NF

An INF file that can be used with the generic SDLC link service.

Setup Directories used in creating the IHVLinks sample generic SDLC link service setup and setup test tools.
Setup\
Bins

The compiled generic MSI package containing the generic SDLC link service driver, configuration and detection DLLs, an
d configuration tool.

Setup\
CASour
ce

This directory contains the source code used for the custom actions in setup.
The GetHISData custom action sets the MSI property SERVER_INSTALLED to "YES" if HIS2000 is installed, otherwise the
property is set to "NO". This custom action is used to disable Host Integration Server 2000 dependent features from the
installation directory if not installed.

The SetHISPath custom action sets the target directory INSTALLDIR1 to the installation directory where Host Integration
Server 2000 was installed. This custom action is used to set the destination directory for the link service configuration D
LLs.

Setup\
Packag
e

The sample GENERIC.MSI SDLC link service package ready for installation and testing.

Setup\
Tools

The source code for various utility functions and tools that can be used to test your integrated link service MSI package.

This sample source code is included for your reference. The communication between workstation management station and Host
Integration Server is performed by RPCSVC.EXE, the SNA RPC service.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Integrated Link Service Setup on SNA Server
In Microsoft® SNA Server 3.0 and Microsoft® SNA Server 4.0, SNA Explorer supports installation and configuration of link
services. For an example of this process, install the DLC/802.2 or IBM SDLC link service. On SNA Server 3.0 and SNA Server 4.0,
the benefits of updating your link service to use the integrated link service installation procedure are:

Setup using the integrated link service provides full support for remote installation or reconfiguration of the link service.

The link service retains access to physical hardware through an optional link service-provided helper DLL running on the
target server, to support application-specific adapter detection or diagnostic functions.

It is integrated with the look and feel of Host Integration Server Manager or SNA Explorer, for greater ease of use.
It eliminates the older Microsoft® Windows NT® Setup Engine and .INF files.

This section updates the setup information for integrated link services, providing the information you need to develop an
integrated link service installation and configuration procedure.

This section contains:

Changes from INF-Based Setup
Integrated Link Service Setup Procedure on SNA Server
Integrated Link Service Configuration and Reconfiguration on SNA Server
Constructing an Integrated Link Service DLL on SNA Server

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Changes from INF-Based Setup
In Microsoft® SNA Server 2.x, the INF-based link service setup performed both the initial setup and the reconfiguration process
for the link service. In SNA Server 3.0 and later, these functions have been split apart. The product setup routine is responsible
only for providing files for the link service and creating one registry entry. The remainder of the link service installation and
configuration is performed in SNA Explorer.

An integrated link service must provide the following components:

1. Link service DLL, optional device driver file(s) that run on the target server. These components are essentially unchanged
from SNA Server 2.x.

2. Detection DLL that also runs on the target server and performs application-specific tasks in conjunction with the
configuration DLL. This detection DLL can perform any adapter maintenance function, not just hardware detection.

3. Configuration DLL (with any associated help files) that runs on the management workstation in the context of SNA Explorer.
The configuration DLL exposes the configuration interface for the link service and drives functions in the detection DLL. SNA
Explorer loads this DLL across the network from the target server as needed. This DLL runs on the management machine
under SNA Explorer and is responsible for the configuration dialog box and property sheets for your driver and link service.

The integrated link service configuration procedure does not require changes to your link service process or device driver. The
structure of registry entries used by your link service and driver needs to change in the areas noted in the following two topics.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Integrated Link Service Setup Procedure on SNA Server
For each link service selected by the operator, SNA Server setup performs these operations. If you provide a custom IHV link
service setup, it must do likewise.

1. Copy the link service, device driver, and any detection DLL to the target server's \<snaRoot>\SYSTEM directory. These files
do not need to be copied to \<snaRoot>\SYSTEM\HWSETUP, as was done in SNA Server 2.x.

2. Copy the Host Integration Server Manager configuration DLL (if any) or the SNA Explorer configuration DLL (if any) to \
<snaRoot>\SYSTEM\HWSETUP\<cpu>. Since the configuration DLL may be run from a management workstation of any
CPU type, you should provide multiple flavors of the configuration DLL, even if your link service itself only supports a single
CPU type.

3. Add a registry entry to register your link service so that SNA Explorer can list your link service in the Insert New Link
Service dialog box. This registry entry should be added to the following subkey:

SYSTEM\CurrentControlSet\Services\SnaBase\LinkServicesInstalled

This is a new subkey for SNA Server 3.0 and SNA Server 4.0 that contains one value for each link service chosen to be
copied to the target server's hard disk during SNA setup. The value name and value data are as follows:

<value>: REG_SZ: <configDllName>

where:

<value> is the friendly name of your link service, for example, "IBM SDLC Link Service".

<configDllName> is the file name and extension of the configuration DLL, for example, IBMSDCFG.DLL.

Note This registry entry is defined in the registry on the target server, not on the management workstation
on which Host Integration Server Manager or SNA Explorer happens to be invoked.

Setup for SNA Server 3.0 and SNA Server 4.0 asks for a list of link services to install, and copies only those link
services to the target server. This speeds up setup and reduces the disk space required for Host Integration Server.
Setup does not define a Windows NT service or other registry entries as was done in SNA Server 2.x; it merely copies
files.

There is an alternate way of calling the Link Service Configuration DLL if the link services from the vendor were not
included with the released SNA Server CD-ROM. Depending on the setup tool used by the vendor, the vendor's setup
software may not be able to read the registry and locate the directory where link services are installed. To resolve this
problem, the SNA Manager scans the LinkServicesInstalled key prior to making the call to the Link Service
Configuration DLL. The SNA Manager checks for a % character in the configDllName and if it exists \\ServerName will
be prepended and the %s will contain the processor architecture (i386 or Alpha). The following example illustrates
this:

Under the SYSTEM\CurrentControlSet\Services\SnaBase\LinkServicesInstalled key,

"Our Link Service Friendly Name" with a REG_SZ for the configDllName as follows:

"share\%s\<RelativePath and DLL Name>"

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Integrated Link Service Configuration and Reconfiguration on
SNA Server
In Microsoft® SNA Server 2.x, the .INF script created a Windows NT service to run your link service DLL, installed the device
driver, and prompted the user for initial configuration information, in addition to supporting subsequent reconfiguration. In SNA
Server 3.0 and later, the initial configuration functions are performed by your configuration DLL running in the context of SNA
Explorer.

After your link service has been created, SNA Explorer must be able to locate its configuration DLL when the operator wishes to
reconfigure the link service. To support this feature, when your configuration DLL initially creates the link service, it must put a
new value in the registry of the target server as follows:

SYSTEM\CurrentControlSet\Services\<yourLinkService>\Parameters

DLLName: REG_SZ: <configDllName>

where:

<configDllName> is the file name and extension of the configuration DLL, for example, IBMSDCFG.DLL. No path is specified in the
value.

This value replaces InfName, which was used in SNA Server 2.x to name the path to the .INF file.

Since SNA Explorer can be running on a management workstation remote from the target server, the configuration DLL must be
able to create configuration information on the target server. The sample configuration DLL included with the SNA SDK sample
files illustrates the utility functions available to perform these functions across a network connection on the target server. Also,
since the management workstation may be of any CPU type supported by Windows NT, you must provide versions of the
configuration DLL for each CPU type. SNA Explorer loads the appropriate CPU-type version of the configuration DLL over the
network from \<snaRoot>\SYSTEM\HWSETUP\<cpu> on the target server as needed.

Note There is an alternate way of locating the Link Service Configuration DLL if the link services from the vendor
were not included with the released SNA Server CD-ROM. Depending on the setup tool used by the vendor, the
vendor's setup software may not be able to read the registry and locate the directory where link services should be
installed. To resolve this problem, the SNA Manager scans the LinkServicesInstalled key prior to making the call to
the Link Service Configuration DLL. The SNA Manager checks for a % character in the configDllName and if it exists
configDllName will be interpreted differently than just the name of the configuration DLL. The following example
illustrates this case:

Under the SYSTEM\CurrentControlSet\Services\<yourLinkService>\Parameters key

DLLName: REG_SZ: "share\%s\<relative path and DLL Name>

If a %s string is found, then \\ServerName will be prepended and the CPU architecture string (i386 or Alpha) will be
substituted for %s.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Constructing an Integrated Link Service DLL on SNA Server
Microsoft® SNA Server version 4.0 provides an enhanced method for installing integrated link services that allows for remote
setup and administration of new link services, as well as support for setup and configuration using a command-line tool. This
feature is based on the link service provider supplying a setup, and configuration DLL exporting a specific list of functions. A
developer must follow certain standards for using this SNA link service configuration DLL and set various keys and values as
registry settings to be used by SNA Server for link service configuration.

In order to support vendors using the new setup and configuration features, SNA Server 4.0 includes the source code for a
sample generic SDLC link service configuration DLL (linkcfg). Also included for use by developers is the source code to a library of
utility functions (lnktools) that are commonly useful when implementing the linkcfg DLL. This sample code and the
documentation that follows can be used as a guideline for vendors developing similar link service configuration DLLs for their
hardware. This sample source code is located on the SNA Server CD-ROM in the \SDK\SAMPLES\LINKSERV\GENERIC
subdirectory. Sample include files, C++ files, resource files, makefiles, and project files are included for use with Microsoft®
Visual C++® version 4.2 and later.

This section contains:

Components of an Integrated Link Service Configuration DLL on SNA Server
Contents of Integrated Link Service Sample Kit on SNA Server

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Components of an Integrated Link Service Configuration DLL
on SNA Server
The link service configuration DLL must export the following functions:

Exported function Purpose
CommandLineAdd Called from LinkCfg to parse command-line input.
ConfigureLinkService Called from SNA Manager to add or modify a link service.
ConfigureLinkServiceEx Called from SNA Manager to add or modify a link service, returning a configuration buffer to be added to

the configuration file.
DisplayHelpInfo Return a buffer containing command-line syntax for this type of link service.
RemoveLinkService Called from SNA Manager to remove a link service.
RemoveAllLinkServices Called from Setup to remove all instances of this link service.

The sample linkcfg.cpp DLL is written in C++ using the Microsoft Foundation Classes (MFC) and uses a single property sheet with
two property pages as follows:

The card configuraton property page implementation is in the cardcfg.cpp and cardcfg.h files. This property page is
concerned with configuring various hardware properties (interrupt, DMA channel, and I/O address, for example) of the link
service hardware.
The connection mode property sheet implementation is in the mode.cpp and mode.h files. This property page is concerned
with configuring mode information (link service name, link service title, SDLC line type, for example) for the link service.

The two property pages are linked to the link service property sheet in linkcfg.cpp within the ConfigureLS routine. This function is
called by the exported ConfigureLinkService and ConfigureLinkServiceEx routines in linkcfg.cpp. An actual link service
configuration DLL developed from these sources may require more property pages depending on the information needed to
configure the actual link service DLL.

The registry.h include file used by linkcfg.cpp contains a global definition of the registry entries required for the sample generic
SDLC link service. The values in this structure will be modified to contain the actual information specified by the user. This
structure is added to the registry when a new link service is configured, and this structure is removed when a link service is
deleted. The registry values that a developer must modify include the Link Registry Base entry (LINKSERVICE is used in the sample
include file), the name of the device driver root (GenSdlc is used in the sample include file and source code), and various software
and service registry settings appropriate for the target link service.

Several of the exported link service DLL functions use a configuration buffer, the CONFIG_BUFFER structure defined in linkcfg.h.
The format of any CONFIG_BUFFER used by developers must match the structure format of this sample file for the first three
parameters. Other parameters may differ for a developer's version of the CONFIG_BUFFER structure based on the target link
service.

The sample link service configuration DLL calls a set of general utility functions that are not specific to any target link service.
These utility functions are included in a lnktools library (lnktool.cpp) that is linked in as an OBJ file. This lnktools library includes
the following utility functions that are useful in developing link service configuration DLLs:

Utility function Purpose
AddPerfmonCounters Add perfmon counters for this link service.
bCreateService Create a service on a computer.
bDeleteService Delete a service on a computer.
bStopService Stop a service running on a computer.
CheckForExistingLinkService Check to see if a link service of this type exists with this title.
ConvertHexStringToDWORD Convert a hexadecimal string to a DWORD value.
ExtractNextParameter Get the next parameter from a buffer.
fAddRegistryEntry Add a new registry value to the registry.
fCanWeAdministerRemoteBox Determine if the user has administrative privileges on the remote computer.
fConnectRegistry Connect to a remote computer's registry and return a handle to the remote registry.
fDisconnectRegistry Disconnect from a remote computer's registry.
fFindAndReplaceString Find and replace a substring within a string.
fFindString Determine if a string exists within a string buffer.
fFindStringInMultiSZ Find a string in a REG_MULTI_SZ string list and return entire string.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

fQueryRegistryValue Query a value from the registry.
fRegistryKeyExists Test whether a registry key exists.
fRemoveRegistryEntry Remove a registry key.
fRemoveRegistryValue Remove a registry value.
fStringCompare Determine if two strings compare.
LoadStringResource Load a string from the string resource.
ParseNextField Return the next field from a string.
RemovePerfmonCounters Remove perfmon counters for this link service.
ReturnString Return a pointer to a string resource string.

The sample source code for a generic SDLC link service configuration DLL (linkcfg) includes several functions that may be useful
as sample code when developing link service configuration DLLs for other hardware. The following functions are included in the
linkcfg.cpp source code that may be of use as examples:

Utility function Purpose
bDetectNetworkCa
rd

Detect the remote network card and return the card settings buffer for the sample generic SDLC link servic
e.

bLastGenericDFTLi
nkService

Check for the last generic SDLC link service for the sample generic SDLC link service. This routine is used to
determine if the GENSDLC Device Driver (if one existed) can be removed.

ConfigureLS The common link service configuration function used by the sample generic SDLC link service.
fAddAllRegistryVal
ues

Add all registry values for the sample generic SDLC link service.

fAddClassAndBindf
ormRegistries

Add the "class" and "bindform" registry entries for the sample generic SDLC link service. The bindform and
class registry entries can only exist for the first link service of this type.

fEnumerateEventL
ogSources

Enumerate the Event Log sources registry value for the sample generic SDLC link service.

fRemoveAllRegistr
yValues

Remove all registry values for the sample generic SDLC link service.

fReplaceAllRegistr
yValues

Replace all user-provided information in the registry data for the sample generic SDLC link service.

fReplaceRegistryD
ata

Replace global registry data for the sample generic SDLC link service.

fReplaceRegistryKe
yName

Replace global registry structure strings for the registry key name for the sample generic SDLC link service.

fSetupGlobalValue
s

Create or update all user-provided information in the registry data structure for the sample generic SDLC li
nk service.

InitializeGlobalStru
cture

Initialize link service data contained in the global data structure for the sample generic SDLC link service.

Microsoft Host Integration Server 2000

Contents of Integrated Link Service Sample Kit on SNA Server
The \SDK\SAMPLES\LINKSERV\GENERIC directory on the Microsoft® SNA Server CD-ROM contains sample source files for a
generic SDLC integrated link configuration DLL. These sample files include the following:

LINKCFG, the source code in C++ using MFC for a configuration property sheet for the sample generic SDLC. This link
service configuration DLL must export specific functions.
LNKTOOLS, the source code for various utility functions commonly used by an integrated link service DLL.
DETECT, the source code for detection code for a sample generic SDLC link service.

This sample source code is included for your reference. The communication between workstation management station and SNA
Server is performed by RPCSVC.EXE, the SNA RPC service.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Windows INF-Based Setup
This section describes link service setup using the older Microsoft® Windows NT® Setup Engine, which was designed to
maximize versatility and minimize the work required to produce robust, full-featured setup programs. The engine contains most
of the functions that a setup program might need and provides a scripting language similar to Basic in which entire setup
programs can be written. For more information about this language, see the reference manual Microsoft Windows 3.1 GUI Setup
Toolkit, Chapter 3, “The .INF File.”

The Microsoft® SNA Server version 2.11 main setup program used such a script (as did the setup program for older versions of
Microsoft® Windows NT®). As part of setting up SNA Server 2.11, the user chooses and installs support for various kinds of link
services. Each type of link service comes with its own script, which is called from the main SNA Server setup program as a
subroutine to perform all the tasks required for setting up that particular link.

Installing any link service requires that some common steps be performed; beyond these, the installation process can vary widely
among different link types. For example, while the IBM DFT link service setup script needs to install a device driver for the DFT
card, the 802.2 link service relies on the existing Token Ring or Ethernet adapter and does not need to install a device driver—but
the 802.2 link service setup script does have to install the DLC transport if it is not already installed. Having some degree of
commonality allows all link service setup scripts to share the same basic format and keeps the interface to the main SNA Server
setup script relatively simple.

Since each SNA link service is actually part of the machine’s “network ensemble,” the SNA Server setup script and the link service
setup scripts are designed to work with the Windows NT Network Control Panel Applet (NCPA). Adapter cards, device drivers, and
link services for SNA communications that have been installed and configured by the SNA Server setup program can be
configured from the NCPA as well.

You are not required to write your entire link service setup program as an .INF script. The actual script might merely launch a
custom executable program to perform the installation; in this case the script provides the interface to the main SNA Server setup
script. In addition, you can create custom DLLs that contain code and resources for doing certain setup jobs. The Windows NT
Setup Engine already has such a DLL (SETUPDLL.DLL in the SYSTEM32 subdirectory of the root directory for Windows NT), which
contains many useful setup functions.

The available documentation for the Setup Engine, the scripting language, and the support DLL is sparse at best. However, much
can be learned by examining the existing .INF files both for SNA Server Setup (in the \SYSTEM\HWSETUP and root directories of
your SNA Server tree) and for Windows NT itself (in the SYSTEM32 subdirectory of the root directory for Windows NT). Note that
the main entry point for an .INF script is the [Shell Commands] section. You can list the contents of the support DLL with the
command:

LINK32 -DUMP -EXPORTS SETUPDLL.DLL

and search the scripts for calls to LoadLibrary and LibraryProcedure.

This section contains:

Setup File Structure
Creating an INF-Based Setup Script
INF-Based Setup Template Description

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Setup File Structure
This section discusses the link service setup script and the structure and contents of the files it uses.

This section contains:

Link Service Setup Interface
Disk Layout
The Setup Resource Library
Replaceable Text in Setup Resource Libraries
The Online Help File

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Link Service Setup Interface
Inside the link service setup scripts, the components that need to be installed are listed as options. Two types of options used are
main options and additional options. The main option usually represents the link service itself, and the additional options
represent the subcomponents that are needed (such as device drivers or other system services). For example, in the IBM DFT
install script, the main option is IBMDFTLS (IBM DFT link service) and the only additional option is IBMDFTDD (IBM DFT device
driver). These names are arbitrary, but should be chosen to reflect what is being installed. Each option has a number of other
attributes, such as a title (in the example, IBM DFT Link Service Support), and a version, (for example, 2.3).

At link service install time, main SNA Server Setup enumerates all the .INF files (link service setup scripts) in a certain directory
and calls each one in turn. Each script provides its main options and attributes. The titles from each main option are presented to
the user in a list box. When the user selects a title, main Setup calls that setup script to install its main and additional options.

Each component can be configured to permit installation of one or many instances of itself, depending on the needs of the link
service. This allows a device driver to be installed once and have only one link service running on it, as is the case for IBM DFT
support, or to have several instances of a link service on one device driver, as is done for IBM SDLC support. You can also have
one link service using several device drivers.

An SNA Server link service setup script usually requires three files to work properly: the script itself (.INF), the Setup Resource
Library (.SRL), and the online Help (.HLP). The Setup Resource Library is a special DLL that contains the dialog boxes, icons, and
other resources needed by a particular script. The online Help file is a standard Windows Help file, meant to be used with the
Windows Help Engine. References to these files can be removed from the scripts if they are not needed; however, it is
recommended that you place stubs for these files rather than removing the references.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Disk Layout
The link service installation system was written with the assumption that IHV link services would be installed from a disk during
or after the initial SNA Server setup process. For each link service on a particular disk, main Setup looks in the root directory for
its .INF, .SRL, and .HLP files, and expects to find a subdirectory of the same name as the .INF file (without the .INF extension) where
all other files for that link service are kept. For example, a disk containing the link services FastLink and SlowLink would have in its
root directory two .INF files (FASTLINK.INF and SLOWLINK.INF), two .SRL files (FASTDLG.SRL and SLOWDLG.SRL), two .HLP files
(FASTLINK.HLP and SLOWLINK.HLP), and the directories FASTLINK and SLOWLINK. Other files for these link services (device
driver binaries, libraries, configuration files, and so on) reside in their respective directories.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Setup Resource Library
The Setup Resource Library (SRL) file has the .SRL extension and contains resources for the dialog box templates that Setup will
use. This file is built in the same manner as a DLL but is renamed to minimize confusion. Setup loads the .SRL file once and keeps
a handle to it; then when it needs to display a dialog box, Setup uses the stored handle and the dialog box template name to fetch
the dialog box from the library.

The SRL can be built by using the template and makefile found in the \SETUP\DLGDLL directory on the Microsoft® SNA Server
SDK CD-ROM. Following is a list and brief description of the files in this directory:

File n
ame

Description

DLLINI
T.C

Contains startup and initialization code for the SRL to be used by Setup as a resource. This file is common to every SRL an
d should not be changed.

MAKE
FILE

This file should be used with NMAKE to build the SRL. It should be edited to ensure that the path and file names are correc
tly assigned.

TEMPL
ATE.DL
G

Contains the actual definitions of what the dialog boxes look like, their size and position, their replaceable text, their butto
ns and other controls, where their icons and/or bitmaps are located, and so on.

TEMPL
ATE.H

Contains many of the constant declarations that Setup uses to recognize controls such as option buttons and check boxes.
These constants can be added to but should not be modified.

TEMPL
ATE.R
C

Lists all the resources to be compiled into the library—dialog boxes, icons, bitmaps, strings, and so on. It is the input file fo
r the Resource Compiler (RC.EXE) and includes TEMPLATE.DLG.

TEMPL
ATE.RE
S

This is the binary output of the Resource Compiler and is converted to an object file (.OBJ) and linked with DLLINIT.OBJ to
produce the SRL. This file is also the input for the Dialog Editor, which writes out new .RES, .DLG, and .H files if you change
a dialog box.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Replaceable Text in Setup Resource Libraries
In the dialog box definition file (.DLG), most of the text strings in the dialog box start with an at sign (@). This is the mechanism by
which a single dialog box can be used for multiple purposes inside a setup script. If the text is @Text1, for example, the script can
set a symbol called Text1 to some arbitrary text before displaying the dialog box, and when the dialog box appears, the new text
will occupy the position where @Text1 appears in the dialog box definition. This also applies to list box titles, button labels, and so
on.

One good use for this feature is error handling — a single dialog box with caption @ErrorString, text @ErrorDesc, and buttons
@Button1 and @Button2 could be used to display information about many different errors. For example, set ErrorString=Fatal
Setup Error and ErrorDesc=Some Important File Is Corrupted. The buttons at the bottom of the dialog box could be changed by
setting Button1=Ignore Error and Button2=Try Again. See the existing .INF scripts for examples.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Online Help File
The context-sensitive online Help (.HLP) file must be a standard Windows Help file. It is written in Rich Text Format and compiled
into WINHELP format. The first page in this file should be a contents page, and it should contain a page for each context-sensitive
Help message required. When the user presses the Help button in a dialog box, the Setup Engine calls WINHELP with the script’s
Help file and the HelpContext identifier. See the existing .INF scripts for examples.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Creating an INF-Based Setup Script
This topic describes the recommended sequence of steps to follow when creating a setup script for an IHV link service. It will be
helpful to refer to existing .INF files while reading this discussion.

Create the Initialization Section
The first section in the setup script is the initialization section. It contains most of the constant text strings and other values that
describe the link service and its components. It is important that a clear layout of the SNA options and their additional
components is created in this section.

Define the Parameters
Define the parameters for each component and how they fit into the registry. It is generally a good idea to name the variables for
these parameters after their names in the registry, as this simplifies the code and greatly improves its readability.

Complete the Basic Code
Fill in the code sections in the main body of the setup script. Write only the code to initialize the components and write their
parameters to the registry. Since modification of variables involves reading their values from the registry, it can be ignored until
this step is complete and the information in the registry is correct.

Design Dialog Boxes
Copy the Setup Resource Library template files into another directory, then change the file names from TEMPLATE.* to
WHATEVER.* (use whatever name you want). Using the Dialog Editor, add your own dialog boxes that will be used to modify the
parameters. Make sure the dialog box layouts are clear and intuitive. Consider which dialog boxes will require online Help. Also,
remember that controls should be accessible by tabbing.

When your dialog boxes are complete, edit the makefile and .RC file to make sure all paths and file names are correct. Type
NMAKE to build the new SRL.

Fill in the Code
Fill in the code sections to modify the variables. This includes writing the dialog box-handling code as subroutines in the script
and writing the sections that call those subroutines from the main body of the script. This step is probably the most complex. The
existing link service setup scripts provide examples.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

INF-Based Setup Template Description
This section describes options, variables, and entry points used in the setup scripts using INF files.

This section contains:

Initialization Section
Dialog Box Constants
File Constants
SNAServiceType Values
General Constants
Language-Dependent Dialog Box Constants
Language-Dependent File Constants
Date Section
Input Dialog Box Information
Input Dialog Box Scripts
Identification Functions
SNA Invocation Section
NCPA Invocation Section
Common Code Section
Installation Control Section
Global Variables
Utility Function Overview

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Initialization Section
This section describes the options that control the general behavior of the script.

Source Media Descriptions
The Source Media Descriptions section contains the labels for the disks (media) used by the setup script for its installations. For
more details on this section, you can consult the chapter on .INF files in the Microsoft Windows 3.1 GUI Setup Toolkit reference
guide. Note that additional parameters on the description lines (for example, TAGFILE) must be in uppercase, and the spacing
must be exactly as used in the existing .INF files.

Option Type
The option type is used by the Network Control Panel Applet (NCPA) to determine what kind of option this setup script can install.
The NCPA expects each script to support only one type of option. The setup scripts described here use the Network Service
component type (abbreviated NetService) because they need to install multiple component types and NetService is the most
general type.

Languages Supported
This section should contain a list of human languages supported by the setup script. Each language is represented by a three
letter abbreviation, the most common of which is ENG for the English language. Throughout the setup script, each section that has
a language dependency should be rewritten once for each language. Examples of this usage abound in the existing .INF files.

Note The SNA Server setup scripts currently support only the English language. While it is possible for an IHV
script to support its own set of languages, before calling any of the utility functions you must set the language
specifier to English.

Option List
The option list is the most important subsection of the initialization section. It lists all of the options that a particular setup script
can handle. When the NCPA queries this script, it expects to be able to install each of these options.

Note Although the SNA Server setup scripts allow link services to be inspected and configured using the NCPA,
they do not support installation by the NCPA at this time.

Options Text List
This is a list of names or titles for each of the options specified in the option list. When the NCPA or SNA Server Setup calls this
script, these are the names that are presented to the user. Since names are language-dependent, there should be a list of names
for each language supported.

SNA Option List
The SNA option list is a subset of the option list. It lists all the options that SNA Server Setup will offer the user.

SNA Additional Options
When SNA Server Setup needs to install one of the options available to the user, it first tries to install these options. SNA Server
Setup reads this list of additional components and installs each of them in order before it installs the main component. When SNA
Server is removed, this list of components is used in the removal of a particular support system. The SNA Server Setup loops
through its list of installed options, calls this script for the list of additional components, and attempts to remove each of these
components as well as the main option.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Installation Steps
Two steps are involved in copying files during the installation of a component:

1. The script adds files to a list of files to be copied.
2. The script calls a function to copy the files in the list.

These options specify which of the two steps will be executed for each component’s installation. These options apply only to
installation by the SNA Server Setup. The NCPA always executes both steps of the file copying.

These options allow you to perform all of the file copying for all the components at the end of the installation. This can be
accomplished by making the main component the only component that actually copies the files in the list. All other components
add their files to the copy list until the main component copies all of the files at once.

Microsoft Host Integration Server 2000

Dialog Box Constants
This section defines many of the major dialog box constants. It contains the variables used for displaying the file copy progress
gauge, as well as those for displaying the context-sensitive Help. This section also defines variables to represent option buttons,
check boxes, and dialog box entities.

Progress Copy Variables
These variables define the look and behavior of the progress gauge displayed during file copies.

Variable name Description
ProCancel The text displayed in the Cancel button of the gauge window.
ProCancelCap The caption of the cancellation dialog box.
ProCancelMsg The message that appears in the cancellation window that appears when the user presses the Cancel button.
ProCaption The caption of the gauge window.
ProText1 The label that precedes the source file name.
ProText2 The label that precedes the destination file name.

Help Context Identifiers
The HelpContext identifiers are used to identify which dialog box has had its Help button pressed. When the user presses the
Help button, Setup calls WINHELP with the identifier assigned to the dialog box being displayed. These variables can be modified
by individual IHV setup scripts.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

File Constants
This section describes variables that provide file names, constants, and product information

File Names and Initialization Constants
These variables define file names and other constants.

Variable
name

Description

HlpMax This number should be set to one more than the maximum value of the context-sensitive Help identifiers.
HlpMin This number should be set to one less than the minimum value of the context-sensitive Help identifiers.
ShellCode This variable holds the error return code from all shell executions and is set by the Setup Engine itself. A value of zero

represents success; all other values represent errors.
Subroutine
Inf

This .INF file contains some of the utility functions used by both SNA Server Setup and Windows NT Setup.

ThisFile This variable should hold the name of this .INF file without the extension. Defining it here is the only way to access thi
s information in the setup script.

ThisHlp The full name of the WINHELP file for this setup script.
ThisInf The full name of the setup script.
ThisSrl The full name of the Setup Resource Library for this script.
UtilityInf This .INF file contains all of the SNA Server Setup utility functions.

Product Information
This section contains all the information about a single component. There should be a section of this form for each of the options
supported by this script.

Variabl
e nam
e

Description

FullInfN
ame

The full path to this setup script (.INF file) after installation.

NetRule
sClass

The class to which this product belongs for bindings determination by the NCPA.

Product
Depend
s

This variable holds the dependencies of this product. This value is only used in the creation of the product service key.

Product
Dll

The dynamic-link library that should be linked to by the control APIs for this component. This variable is only necessary f
or link services and should be given a null value for all other cases.

Product
Exclusiv
e

This variable dictates the behavior of multiple attempts at installing this component. It can hold one of three values:

FALSE: This product is not exclusive and can be installed as many times as the user chooses.
TRUE: This product is exclusive and can only be installed once.
NOTIFY: This product is exclusive, and the user should be informed of this fact. SNA Server Setup displays a messa
ge to inform the user.

Product
ExtraPa
rams

This variable holds the entries for the ExtraParameters subkey of the product service key. It is recommended that any m
odifications to the value of this parameter be done in the body of the setup script with the rest of the assignments. This li
ne serves as the initialization for this variable.

Product
FullNa
me

The actual value used to represent this product in the registry. It is a combination of the product name and version, separ
ated by an underscore.

Product
ImageP
ath

The file name of the executable image for this product. This can be an executable file or a system file. For a link service, th
is variable must always contain the value SNALINK.EXE.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Product
Name

The name of this product. This name is used in conjunction with the version to provide the full name of the registry entry
for this product.

Product
Params

This variable holds the entries for the Parameters subkey of the product service key. It is recommended that any modific
ations to the value of this parameter be done in the body of the setup script with the rest of the assignments. This line sh
ould not be deleted since it serves to initialize this variable.

Product
RegBas
e

The specific location for this product’s registry entry under the SOFTWARE registry key. This variable should not be chan
ged since all the SNA Server components should reside under SOFTWARE\Microsoft in the registry.

Product
Service
Prefix

A prefix that is used to algorithmically decide the service name for this component. Service names for SNA Server are lim
ited to no more than eight characters. Since SNA Server Setup attaches a single-character suffix based on the index, this
prefix should be no longer than seven characters.

Product
Type

An internal representation of the type of component this option belongs to. Currently, this variable can take on the value
s of Link and Driver.

Note This value is currently unused in the SNA Server scripts; however, it should still be set since its usage will be imp
lemented in the future.

Product
Version

The version of this product (component). This number is used in creating the registry key for this product under the SOF
TWARE key of the registry.

Service
Type

This variable is used to declare the type of this component for usage with the NCPA bindings.

SNASer
viceTyp
e

A more specific description of the type of component this option represents. It should be set to one of the values specifie
d in the SNAServiceTypes section of the UtiltyInf file.

Microsoft Host Integration Server 2000

SNAServiceType Values
The decimal value for the SNAServiceType registry entry for each of the link service types is as follows:

Link service type SNAServiceType value
802.2 11
Channel 32
DFT 10
SDLC 3
Twinax 31
X.25 4

A link service for Twinax works like a link service for DFT, and therefore does not contain any link-specific data.

The 802.2 link service can be for either Ethernet or Token Ring.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

General Constants
This section defines some general constants that are used in the setup scripts. You can add variables to this section, but you
cannot modify or delete any of the existing ones.

Flow control variables Description
from The label that the setup script last passed.
to The label that the setup script is headed for.
State variables Description
TRUE Boolean true.
FALSE Boolean false.
NOTIFY Used in the ProductExclusive variable defined in File Constants.
Registry i
nitializati
on

Description

NoTitle Used in the creation of registry keys. This variable specifies that the key to be created should not be assigned a title. N
one of the keys created by SNA Server setup scripts require a title. For more information, see documentation on the W
indows NT registry.

KeyNull The null key handle. It is most often used for comparisons and initializations of other handles.
KeyProdu
ct

Handle to the product key in the SOFTWARE registry tree. It is assigned here for initialization purposes.

KeyParam
eters

Handle to the Parameters subkey of the product service key. It is assigned here for initialization purposes.

Additional initialization parameters
Description

ExitState This variable holds the state of the script after it exits.
 Note This feature is currently unused.

OldVersionExisted A Boolean value that describes whether a previous version of this product exists.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Language-Dependent Dialog Box Constants
This section contains dialog box variables and constants that are language-dependent. Any dialog box information that is
language-dependent should be placed here. This section contains a list of the English texts for the basic dialog box buttons. This
list should not be modified, as consistency should be preserved across SNA Server setup scripts.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Language-Dependent File Constants
This section contains language-dependent variables and constants that relate to file information. The SetupTitle variable should be
defined because it is used in some captions. Also, this section should include a subsection for each option and each language
containing two variables each: ProductTitle and ProductDesc. These variables contain the default values for the title and
description of this product. The user can modify the title of the product, but not the description. The three variables mentioned
here can be modified by individual IHV setup scripts.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Date Section
This section is used to determine the date of installation. This information is currently unused by SNA Server Setup but can be
useful for some purposes.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Input Dialog Box Information
This section should contain all information about the input dialog boxes. Each dialog box to be displayed should have a subsection
that contains its variables. There should be a subsection of this kind for each language supported, since dialog box text is
generally language-dependent. For examples, refer to any of the existing setup scripts.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Input Dialog Box Scripts
This section should contain all the code for handling the input dialog boxes. Each script can return as many parameters as needed,
as long as the first parameter is the overall status and is one of the standard status return values.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Identification Functions
The functions in this section are used by SNA Server Setup and by the NCPA to gather information about this script and the
options it manages.

Identify
This function is called only by the NCPA and returns the most basic information about this script. It tells the NCPA what type of
option this script installs as well as the media it requires. The NCPA expects the option type returned by this function to represent
all of the options in this script. The setup scripts here will use the most generic type, NetService.

Return Options
This function returns a list of the options supported by this script and their appropriate text strings. The text is assumed to be
language-dependent and will be drawn from one of the OptionsText sections.

Return SNA Options
This is SNA Server Setup’s parallel function to the Return Options function. It returns only those options that SNA Server should
display to the user. These are specified in the initialization section.

Return SNA Additionals
This function takes as a parameter the option it should query and returns the list of additional components for that option. It also
returns a list of the text strings for those additional components.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Invocation Section
When SNA Server Setup needs to call this script, it does so through this entry point. By setting the variables NTN_InstallMode and
NTN_InfOption, SNA Server Setup can control the behavior of this script. This entry point also expects the STF_LANGUAGE
variable to be set to a language the script can support.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

NCPA Invocation Section
When the NCPA needs to call this script, it uses this entry point to do so. As with the entry point in the preceding topic, the NCPA
sets the appropriate variables before calling this entry point. This entry point also sets up some other variables that the SNA
Server Setup would normally create. Among these variables are SNARootDir and SNAVersion.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Common Code Section
This section contains most of the actual code that the script runs. It expects to receive the name of an option and an index as
parameters. It also checks to see that the language specified in STF_LANGUAGE is supported. It then checks the NTN_InstallMode
variable to determine what it should do. Before proceeding to the section of code that will complete the required task, the script
sets up default values for all the variables of the particular option being installed.

Main Entry Section
This section checks the value of the NTN_InstallMode variable and determines the label of the code that will complete that
operation. It also assigns defaults values for the variables.

Set Defaults (set_defaults)
This section sets the default values for the options; among them are the service name, title, and description. These three must be
set in this section; however, more variables can be added as needed.

Install Component (install_component)
This section checks to see if there are any instances of this component already installed. If there are none, it sets the install index
to one and continues. Otherwise, if one instance exists, it checks for the value of the ProductExclusive variable to determine what it
should do. If it needs to install another instance of the component, it executes the utility file and finds the next available index to
use.

When it is ready, the script determines the service name for this component using an algorithmic definition (install_nextstep). If
the ProductServiceQuery variable is set to TRUE, the user is presented with this value and is allowed to change it. When all the
variables are ready, it proceeds to the parameter modification section.

Configure Component (config_component)
This section determines whether or not the component in question is installed. If the component is not installed or if the index is
invalid, it fails with an error. Otherwise, it reads the parameters for this component from the registry (read_params). This code
reads the parameters from the Parameters and ExtraParameters keys in the registry and creates a list of their values. It then
loops through the list and assigns the values to the variables using a switch/case construct (assign_value_option). When that is
done, there is an extra section (assign_extra_option) where other parameters that do not reside in the standard location can be
read or any other code that assigns values to variables can be placed. When the variables are all assigned, the code proceeds to
the parameter modification section.

Modify Parameters (modify_params)
This section contains the code that modifies the variables or calls out other code that modifies them. As soon as this section is
entered, control is routed to subsections, one for each option (modify_params_option). These subsections should contain all of
the actual modification code. When this section is done, the variables are ready to write to the registry and the code proceeds to
the adjustment section.

Adjust Parameters (adjust_params)
This section takes control from the parameter modification section. If the script is supposed to configure an existing component,
the control is routed directly to the code that writes the parameters to the registry. Otherwise, control falls to code that creates the
appropriate service entries in the registry before it writes out the variables.

Create Registry Entries (create_regvals)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This section creates the service and registry entries for this component. It also writes out some of the values that the product entry
under the SOFTWARE\Microsoft key needs to contain. This section is also currently in charge of the NCPA bindings information.
If the product files have not been copied, this code shells out to the installation section that handles file copying (InstallRemove).
When all the keys are created, control falls to the section that writes out the variable values to the registry.

Write Out Variables (write_params)
This section first ensures that the appropriate handles are open and then routes control to a subsection that prepares the
appropriate variables for registry output (write_params_option). Each of these sections must prepare the ProductParams and
ProductExtraParams variables to be written to the registry. Each of these parameters is a list of registry creation lists. Each registry
creation list must contain the name of the entry to be created, the NoTitle variable, the type of entry to create, and the value of the
entry. See the existing link service .INF scripts.

The ProductParams variable must contain the name and option entries. Both variables can contain any additional entries that are
needed. Also, any other parameter-writing code should be written in these sections. For an example, see the setup script for the
NDIS 802.2 link support (SNADLC.INF).

After the subsections are finished, control is passed to the code that actually adds the list of entries to the registry. It also prepares
the data return structure and finishes by using the successful escape hatch.

Get Bindings From Component (getbind_component)
This section is responsible for communicating the option bindings back to SNA Server Setup. It queries the NCPA bindings, sets
the information in the data return structure, and returns it to SNA Server Setup. SNA Server Setup then uses this information to
determine whether this particular instance can be removed or not. An instance can be removed if it is not needed (bound to) by
any other component.

Remove Component (remove_component)
This code is in charge of removing one or all of the instances for a particular product. In the case of a complete removal, it also
removes the files and software entries for this product. In the case of a single instance removal, the code passes control to the
remove_one_piece subsection, which handles a single removal. Otherwise, code control goes to the remove_all_pieces
subsection.

For a full removal, the setup script loops through all of the instances and calls the remove_one_piece subsection for each of those
instances. When the loop is complete, the code control is passed to a common point for both removal types (remove_product).
The subsection remove_one_piece removes the software entry for the instance and deletes the service from the Service Control
Architecture. If it is dealing with a complete removal, it returns control to the loop, otherwise, it falls to the remove_product
subsection. This subsection determines whether files should be removed (full removal) and calls the appropriate installation
section (InstallRemove). After all is done, it uses the successful escape hatch to return control to SNA Server Setup.

Escape Hatches
These are all the available hatches that can be used throughout the setup script.

Successful (successful)
Sets the status to STATUS_SUCCESSFUL and exits through end.

Warning Message (warning_msg)
This hatch displays a warning dialog box with the error message stored in the variable Error. This variable should be defined
before calling this escape hatch. This warning dialog box has two dialog buttons: OK and Cancel. If the user chooses to
continue, control is passed to the to label, otherwise, control is returned to the from label. If the warning box fails, the script exits
through end.

Nonfatal Message (nonfatal_msg)
This hatch displays a nonfatal warning dialog box with the error message stored in the variable Error. This variable should be
defined before calling this escape hatch. This dialog box has only one button, OK. After the user presses this button, control is
returned to the from label. If the nonfatal warning dialog box fails, the script exits through end.

Fatal Registry Message (fatal_registry)
This is probably the most-used escape hatch, next to the successful hatch. It sets up the Error variable with a template that
includes three other variables: ErrMesg, ErrProc, and ErrFunc. The first should be a short message describing the error. The

second should be the section or subsection that called the registry function. The third should be the name of the registry
function that was called. All three variables should be set before calling this escape hatch. After the error message is prepared,
the fatal_msg escape hatch gets control.

Fatal Message (fatal_msg)
This hatch displays a dialog box with the fatal error message. When the user clicks the button, this hatch exits through the
set_status_failed escape hatch.

Shell Code Error (ShellCodeError)
This hatch is only used when a shell execution fails. If the script receives a ShellCode that is not zero, it calls this hatch. This hatch
displays an error message and exits through the set_status_failed hatch.

Failed Exit (set_status_failed)
This hatch sets the status to STATUS_FAILED and exits through end.

End
This hatch ensures that the handle to the SRL for this file is closed and exits this script. It should not be called directly without
ensuring that the Status variable contains the correct return value for the operation.

Microsoft Host Integration Server 2000

Installation Control Section
This section contains the code that copies and removes files for the scripts.

Install Section
In the case of an installation, this section reads in the file list to be copied and copies it, depending on the values of the
appropriate variables (see the initialization section.) The script copies files into the SYSTEM and SYSTEM\HWSETUP subdirectories.
You can add files to the file list by calling the same function that the script calls.

In the case of a removal, the script reads in the same list of files that it used for the copy and creates a list of file names in the
global variable _FileRemoveList. Each of the file names in this list is specified by its full path. SNA Server Setup then tries to
remove all the files on this list. This layer of abstraction is necessary because the SRL file cannot be deleted while a handle to it
remains open.

File List Section
This section specifies the file list for each of the options supported by this setup script. Options may or may not have a section for
files to be copied into the SYSTEM and SYSTEM\HWSETUP subdirectories. If a section listing files exists, those files will be added
to the copy list as needed. The three main files for each script (.INF, .SRL, and .HLP) should be placed under the SYSTEM\HWSETUP
subdirectory and invoked by all the SNA options in this script.

In the case where more than one SNA option exists, the script uses version numbers to determine whether or not the files should
be recopied. If the version numbers are the same, the files are not recopied.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Global Variables
The following table describes global variables for the setup scripts using INF files.

Variable name Description
AddCopy Boolean indicating whether files should be added to the copy list.
DoCopy Boolean indicating whether files should be copied at all.
DriverDir Path wherse link service .INF files are found.
IHVDLGHANDLE Handle to SRL containing dialog boxes.
LF Constant for printing newlines in dialog box text.
LIBHANDLE Handle to the Setup Support Library, SETUPDLL.DLL.
NTN_InfOption Which option is currently being installed/removed.
NTN_InstallMode Controls installation/configuration/removal behavior.
NTN_SoftwareBase Handle to SOFTWARE\Microsoft registry tree.
REG_H_LOCAL Handle to top of HKEY_LOCAL_MACHINE registry tree.
REG_KEY_READ Constant for read-only registry access.
REG_KEY_READWRITE Constant for read/write registry access.
REG_VT_SZ, etc. Constants representing data types for registry entries.
SNARootDir The root directory of the machine’s SNA Server tree.
SNAVersion Current version of the SNA Server.
STF_LANGUAGE Which human language is currently in use.
STF_WINDOWSSYSPATH Path to Windows NT system subdirectory.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Utility Function Overview
The following table summarizes some of the useful entry points in the .INF file that contains utility functions. The file name is in
the variable UtilityInf; usually set to SNAUTILS.INF.

Function name Description
CreateSNARegEntry Creates the necessary entries for an instance in the SOFTWARE\Microsoft registry tree.
CreateSNAService Creates the necessary entries for an instance in the Services registry tree.
DeleteSNAService Deletes a particular service using the Service Control Manager.
EnterServiceName Presents the user with an algorithmically determined service name for a component and allows the user

to change it before returning the final value.
FindNextAvailableIndex Determines the index a new instance should receive.
FindSNAProductServices Enumerates all instances of a product.
FindSNARegEntry Attempts to open all of the necessary registry keys and return open handles to them.
FindSNAService Provides an easy way to access the keys for a particular service.
GrepUniqueServiceInfo Determines the information about a particular instance when only one of the four elements is available.
SetupMessage Displays a dialog box with user-defined text plus OK and Cancel buttons.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Diagnostics
This section describes the following diagnostics mechanisms available to Microsoft® Host Integration Server 2000 and SNA
Server applications.

This section contains:

Error and Audit Log Messages
Internal Tracing
DLC Tracing
ConnectionTracing

In addition, there is a section describing how the IHV can provide a link level tracing facility similar to the standard Host
Integration Server 2000 or SNA Server SNALinks.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Error and Audit Log Messages
This section discusses ways that an application can write to the Microsoft® Windows 2000 or Windows NT® Application event
log, and describes macros for logging and tracing information.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Options for Logging
The Microsoft® Host Integration Server 2000 and SNA Server header file TRACE.H provides macros that can be used to write to
the Windows 2000 or Windows NT Application event log files.

On Host Integration Server 2000 and SNA Server 4.0, these macros use the message file that is linked into SNAEVENT.DLL, the
central logging DLL that contains every log message in the Host Integration Server 2000 or SNA Server system. The IHV has two
options when logging an error message:

If the standard Host Integration Server 2000 or SNA Server product contains a log message that describes the error
condition, this can be used by the IHV.
If extra messages are required, the generic log messages COM0393 and COM0394 can be used. Each takes two parameters,
both of which are text strings: the first is an identifier for the SNALink that logged the message, and the second can contain
any data or parameters to be logged. The difference between these messages is the level at which they are logged;
COM0393 is a level 10 information message, while COM0394 is a warning message that should be used to report error
conditions. See Host Integration Server and SNA Server DMOD Logging Macros for more information on message severity
levels.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Integration Server and SNA Server DMOD Logging
Macros
The logging macros provided with Host Integration Server 2000 and SNA Server are relatively easy to use because each log call is
a single line of code. In the simplest case, only a message number is required; the text of the logged message is taken from the
message file. Parameters can also be supplied as required.

For the text and meaning of each of the log messages included in the Host Integration Server 2000 message file, see the
Administrator's Reference. Examples of messages logged by the 802.2 DLC SNALink supplied with Host Integration Server 2000
and SNA Server are shown in Examples.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Message Severities
The following severities are used in Host Integration Server 2000 and SNA Server:

Severity Description
6 Detailed problem analysis data
8 General information messages
10 Significant system events
12 Warnings/recoverable errors
16 Fatal errors

All logs are placed in the Windows 2000 or Windows NT Application event log. The default level of audit logs can be specified
when configuring Host Integration Server 2000 or SNA Server, so that all or some of the audit logs can be suppressed and lower-
level messages can be filtered out when viewing log files using the Windows 2000 or Windows NT Event Viewer program.

Note that level 16 errors are always taken to be fatal errors; an application that logs a level 16 error will be terminated
automatically. In particular, the call to the logging routine will not return; the application should perform all required cleanup
processing, including any lower-level logs, before logging the fatal error.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Logging Macros
The following macros can be used to log messages at levels 6, 8, 10, 12, and 16:

COM_LOG6
COM_LOG8
COM_LOG10
COM_LOG12
COM_LOG16

Syntax

COM_LOGa (b) ""))
for a message with no parameters.
COM_LOGa (b) " %c " , e))
for a message with one parameter.
COM_LOGa (b) " %c | %d | . . ." , e , f , . . .))
for a message with more than one parameter.

Parameters

a
Severity: 6, 8, 10, 12, or 16.

b
Message number.

c, d, . . .
Format of the first, second, and so on up to nine variable parameters.

e, f, . . .
First, second, and so on up to nine variable parameters.

Remarks

Up to nine parameters can be supplied, according to the number of “%n” placeholders in the text of the message being logged.
The first parameter replaces %1, the second replaces %2, and so on.

The formats c and d must be valid formats for the C function sprintf, because the logging macro uses this function to generate
the complete text string to be logged.

Note that the unmatched parentheses on the macro call are deliberate; the expansion of the macro supplies the remaining
parentheses so that the resulting code is correct.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Examples
This syntax of the logging macros is illustrated in the following examples. The two messages below are taken from the Host
Integration Server 2000 and SNA Server message file; the first is a warning message with no parameters, and the second is a level
16 error message that includes one parameter.

The following call:

gives the following message in the error log:

The following call:

where adptr = 17, gives the following message in the error log:

The complete message log entry contains the following information about the error or event and the service that logged it:

Date/time
User name
Computer name
Message number (event 10)
Source
Type (severity)
Message with optional parameters

The source is the name of the link service that generated the event log; for example, SNA SDLC link service.

COM0236W: DM or DISC received
COM0242E: Invalid adapter (%1) configured.

COM_LOG12(236)""));

DM or DISC received

COM_LOG16(242)"%d", adptr));

Invalid adapter (17) configured.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Internal Tracing
Microsoft® Host Integration Server 2000 and SNA Server provide internal tracing macros that can be built into an application.
These can be used to check the operation of the application during development. Compile-time options determine whether or not
this tracing is included in object code; it should be compiled out when producing end-user products. Internal Tracing Macros and
Controlling Internal Tracing describe the use of the tracing macros within application source code and the methods of controlling
trace output using compile-time and run-time options.

 Note Tracing must be initialized by the IHV DLL before any TRACEnn macros are used. The TRACE.H header file is
included with the Host Integration Server 2000 and SNA Server SDK. Use the INITIALIZE_TRACING macro, listed in
the TRACE.H header file, to initialize tracing. The best place to issue the INITIALIZE_TRACING call is at the start of the
SNALinkInitialize routine.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Internal Tracing Macros
The following topics describe macros that are used for internal tracing:

COM_ENTRY
TRACEn

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

COM_ENTRY
The COM_ENTRY macro is used at the start of any procedure in which internal tracing is required. It provides an identifier that is
used in the trace file to identify all trace calls made from this procedure.

The format of the COM_ENTRY call is as follows:

COM_ENTRY("str");

where str is a string of up to five characters that uniquely identifies this procedure.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

TRACEn
The TRACEn macro is used to specify data to be traced; this data can include variable parameters. The format of the TRACEn call
is one of the following, depending on whether parameters are included:

TRACEn()"string in sprintf format"))
TRACEn()"string in sprintf format containing parameters," parameters));

Note that the unmatched parentheses are deliberate; they are resolved by the expansion of the macro.

The value n identifies the severity level of the trace. It can take the values 2, 4, 6, 8, 10, 12, or 16, where levels 6 to 16 correspond
to the audit and error log levels (see Error and Audit Log Messages), and 2 and 4 are used for very low-level detail tracing. This
allows run-time filtering of trace information so that only information above a specified level is logged; see the following section
for more information.

The following examples illustrate the use of the tracing macros:

COM_ENTRY("proc1");
TRACE4()"Start of error-handling routine"));
TRACE8()"Supplied parameters are %s, %d", parm1, parm2));

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Controlling Internal Tracing
The compiler option NOTRC defines whether internal tracing is included in object code. Compiling with /DNOTRC does not
include internal tracing (the TRACEn macros expand to a no-op); compiling without /DNOTRC includes internal tracing.

 Note The registry entries used to control tracing are inserted by the Setup program. The SNATRACE.EXE program
can be used to enable or disable internal tracing dynamically at run time (assuming binaries have been compiled with
internal tracing enabled).

When running an executable program that was compiled with internal tracing, tracing is enabled by generating the following
entries in the Microsoft® Windows 2000 or Windows NT® registry:

InternalTraceLevel=n
InternalTraceFile1=file1
InternalTraceFile2=file2

FlipLength=Length_in_Bytes

The entries should be stored under:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
\<SNALink name>\Parameters

The value n is the severity level of the tracing required. All trace calls at this level or higher are included in the trace output; trace
calls at lower levels are ignored. For example, setting level 10 includes all trace calls at levels 10, 12, and 16, but excludes tracing
at levels 2, 4, 6, and 8. Use 0 to include all tracing at whatever level, or 20 to disable tracing entirely.

The parameters file1 and file2 are the names of files to which trace output is written. If two file names are specified, trace output is
sent to the first file until it reaches FlipLength bytes and then is sent to the second file; when the second file also reaches
FlipLength bytes, the first file is cleared and tracing continues to the first file. This process continues, changing to the other file
every time the current file reaches FlipLength bytes, so that only the most recent FlipLength bytes of trace information is
retained. If only one file name is specified, FlipLength is disregarded and tracing continues to this file regardless of file size.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DLC Tracing
Microsoft® Host Integration Server 2000 and SNA Server provide the facility for tracing message flows at the Data Link Control
(DLC), both at the local node and at the application’s Base. This allows you to track the messages being sent and received by the
local node and the SNALink.

 Note The registry entries used to control tracing are inserted by the Setup program. The SNATRACE.EXE program
can be used to enable or disable internal tracing dynamically at run time (assuming binaries have been compiled with
internal tracing enabled).

Message tracing at the SNALink is controlled by entries in the Microsoft® Windows 2000 and Windows NT® registry under:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\...\
<SNALink name>\Parameters

Message tracing at the local node is controlled by placing similar entries under:

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Services\SNAServr\Parameters

The entries required in both cases are as follows:

MessageTraceFile1=file1
MessageTraceFile2=file2
DLCTraceState=on (or off)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Connection Tracing
All SNALinks supplied with Microsoft® Host Integration Server 2000 and SNA Server provide connection tracing at their lowest
level. Examples of this information are:

Parameter blocks passed to/received from the CCB2 interface by the 802.2 DLC SNALink.
Frames sent/received on the line by the X.25 and SDLC SNALinks.
Command frames sent to/received from the controller by the DFT SNALink.

It is recommended that IHVs also provide this type of tracing to aid troubleshooting when the SNALink is in operation at remote
customer sites.

Because the lowest level of the SNALink can vary greatly, according to both the type of the link being serviced and the features
provided by driver software being used, it is not feasible for Host Integration Server 2000 or SNA Server to provide a tracing
interface that will format raw data passed to or from the adapter.

The Connection Tracing interface provided for IHV use requires the SNALink to provide a preformatted buffer of ASCII text that
will be written to a trace file maintained by Host Integration Server 2000 or SNA Server. This allows the IHV SNALink to trace to
the same trace file as other SNALinks but leaves Host Integration Server 2000 or SNA Server in control of access to the file.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

COM_TRC_IHV
The COM_TRC_IHV macro specifies the buffer to be output to the trace file. It is invoked using

COM_TRC_IHV(&Buffer);

The buffer must be formatted as multiple lines of ASCII text (a maximum of 18 lines), each exactly 60 characters in length.
Carriage returns and line feeds should not be used. The end of the buffer should be signaled by an ASCII NULL in the data. The
buffer will be output to the file in the standard Host Integration Server 2000 format, as shown in the following figure.

Format of connection tracing. PP is the process identifier and TT is the thread identifier.

 Note The registry entries used to control tracing are inserted by the Setup program. The SNATRACE.EXE program
can be used to enable or disable internal tracing dynamically at run time (assuming binaries have been compiled with
internal tracing enabled).

IHV connection tracing is enabled by including the following entries in the Microsoft® Windows 2000 or Windows NT® registry:

ConnectionTraceState=on (or off)
ConnectionTraceFile1=file1
ConnectionTraceFile2=file2

These entries should be stored under:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\...\
Services\<SNALink_Name>\Parameters

For further details of connection tracing, refer to the Host Integration Server 2000 or SNA Server documentation.

| PP.TT IHV -- Time
| PP.TT IHV Buffer [0..59]
| PP.TT IHV Buffer [60.119]
| PP.TT IHV .
| PP.TT IHV .
| PP.TT IHV -- Time
| PP.TT IHV Buffer [0..59]
| PP.TT IHV Buffer [60.119]
| PP.TT IHV .
| PP.TT IHV .
| PP.TT IHV -- Time
| PP.TT IHV Buffer [0..59]
| PP.TT IHV Buffer [60.119]

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Compiling and Linking a SNALink
This section also provides information on compiling and linking a SNALink for use with the Microsoft® Host Integration
Server 2000 and SNA Server. This section also lists and explains the header files and libraries need to build a SNALink.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Host Integration Server and SNA Server DLC Header Files
The following files are required to build a Microsoft® Host Integration Server 2000 or SNA Server SNALink:

SNA_DLC.H Main header file containing the definitions of buffer and message formats.
SNA_CNST.H Function prototypes for the Base/DMOD interface calls and constant definitions.
TRACE.H Definitions of the logging and tracing macros (see Diagnostics for more information).
IHVLINK.LIB Main library for the SNADIS interface.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Included Files
To compile a SNALink, the header files SNA_DLC.H, SNA_CNST.H and TRACE.H are required. In addition, one of the standard
operating system header files may be required. To include the required files, the following lines should be used in your
application:

Note that the TRACE.H include file is required to enable SNA tracing and use of the Host Integration Server 2000 or SNA Server
Trace viewer utility.

#include <sna_dlc.h>
#include <sna_cnst.h>
#include <trace.h>

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Required Exports
The IHV link support DLL must export the following entry points:

SNALinkInitialize
SNALinkWorkProc
SNALinkDispatchProc

These are called by the Base scheduler when the SNALink is invoked.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Compiler Options
When compiling the SNALink DLL, the following compiler options are required:

Option Explanation
/c Compile only, without linking. Linking is done as a separate phase to include the required Microsoft® Host Integration

Server 2000 libraries.
/D NOT
RC

The NOTRC macro specifies that internal tracing should not be compiled into the application. See Diagnostics for more
information on the use of internal tracing.

The /D NOTRC option should be used for building a final system (internal tracing should not be included because it wil
l degrade performance and occupancy). For a development system, you may want to compile with internal tracing; if so
, remove the /D NOTRC option.

/D WIN3
2_SUPP
ORT

The macro WIN32_SUPPORT is used in the header files SNA_DLC.H, SNA_CNST.H, and TRACE.H to support variants of
the DLC interface for Microsoft® Windows 2000/NT/95/98.®

/Gzs z: Use stdcall conventions (only on i386/i486 processors, not MIPS or Alpha).
s: Remove stack check calls.

The following compiler flags are required, but any of the valid options for each flag may be used, as appropriate to your
application:

/O Optimization
/W Warning level

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Linking
The IHVLINK.LIB library must be linked with the application. It contains the Base, DMOD imports, and diagnostics routines. The
DMOD and the Base are implemented as DLLs.

Note that the Microsoft® Host Integration Server 2000 or SNA Server library only contain the external references for the
corresponding DLLs, which are part of the main Host Integration Server 2000 or SNA Server product.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Synchronous Dumb Card Interface
This section describes the interface to the synchronous dumb card device driver used by the Microsoft® Host Integration
Server 2000-supplied SDLC and X.25 SNALinks. The interface provides a simple but flexible mechanism for tranferring frames of
data through a dumb synchronous communications card (such as the IBM MPCA card).

This interface is intended primarily for IHVs who wish to provide drivers for their own dumb cards that will be directly compatible
with the Host Integration Server 2000-provided SDLC and X.25 SNALinks. It can also be used by IHVs who intend to write their
own SNALinks and wish to ensure that their drivers conform to the standard Host Integration Server 2000 model.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Driver Interface
Application software running on Microsoft® Windows 2000 or Windows NT® normally does not interact directly with device
drivers. Usually, the operating system itself controls the interface to underlying device drivers on behalf of the application. For
example, Disk I/O consists of sequences of driver requests generated by a file system, as a result of an application making file
system requests.

By contrast, in the Microsoft® Host Integration Server 2000 device driver model, synchronous dumb cards are controlled directly
by the SNALink using input and output control (IOCTL) commands. This mechanism allows the SNALink to pass raw control
packets to the driver without any intervention from the operating system.

This is achieved by issuing an Open request with a file name that identifies the device driver. The operating system detects the fact
that this file is in fact a driver and passes an OPEN I/O request packet to the driver. The user application is returned a handle that
can be used to reference the driver.

The IBMSYNC driver creates various device names. During setup, the configuration for adapters in the computer is saved in the
registry; when the driver starts up, it reads this data and creates the device names for all the adapters that are found.

The following table lists the device names that the IBMSYNC driver can create.

Device n
ame

Description

\Device\I
BMSDLC

Standard IBM SDLC adapter.

\Device\
MPCA_1

IBM MPCA 1 adapter. This adapter has a switch set on it to enforce MPCA 1 operation. This adapter is the primary MPC
A adapter in the computer and supports DMA interrupt mode.

\Device\
MPCA_2

IBM MPCA 2 adapter. This adapter has a switch set on it to enforce MPCA 2 operation. This adapter is the secondary M
PCA adapter in the computer and supports only interrupt mode.

\Device\S
YNC_x

Generic adapter (for example, Microgate). The letter x is 1 (for the primary adapter) or 2 (for the secondary adapter).

\Device\
MPAA_Sx

IBM MPAA adapter, where x represents the number of the MCA slot where the adapter is installed in the computer. Thi
s number is a value from 1 through 8.

\Device\S
YNC_Sx

Generic MPAA adapter (for example, the Microgate MPAA adapter). The letter x represents the number of the MCA slot
where the adapter is installed in the computer. This number is a value from 1 through 8.

Subsequent IOCTL calls (using DeviceIOControl under Windows NT) made by the SNALink using the driver handle cause the
operating system to pass an IOCTL I/O request packet to the driver. The driver therefore sees IOCTL requests from the SNALink as
a series of I/O request packets passed to it by the operating system.

The Host Integration Server 2000 dumb card interface uses the following operating system calls:

OpenFile

DeviceIOControl

CloseFile

DeviceIOControl allows free-format information to be passed to the driver. The dumb card interface uses its own format of
information to pass all requests to the driver (with the exception of Open and Close requests, which are handled differently by the
operating system).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Architecture Overview
This section describes how information is transferred between the driver and the SNALink.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

The Interface Record
Status information is transferred between the driver and the SNALink using a buffer known as the interface record.

The driver allocates this buffer when it starts and maintains the information in it while it is running. The contents of this buffer are
copied to an SNALink buffer by using an IOCTL call of type READ_INTERFACE_RECORD.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Event Signaling
The device driver notifies the SNALink whenever an event occurs (such as a frame being received from the line) by setting an
event.

The SNALink provides the driver with a handle to this event (or semaphore) at start of day by issuing an IOCTL call of type
SET_EVENT_HANDLE.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Link Characteristics
Before the driver can transfer any data, it needs information about the link. This includes:

The frame size.
The station address to listen on (if required).
Details of hardware selectable options, such as SDLC/HDLC, Internal/External clocking, and so on.

For more details of these options, refer to the description of the SET_LINK_CHARACTERISTICS IOCTL call.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

I/O Request Packets
All I/O requests are passed to the driver by Microsoft® Windows 2000/Windows NT® using the standard IRP structure. For more
details of this, refer to the Windows 2000 or Windows NT Device Driver Kit.

I/O request packets are defined in terms of C structures. The relevant fields are accessed as follows:

IRP.CurrentStackLocation -> MajorFunction Defines the IRP as an IOCTL.
IRP.IoStatus Status codes upon completion of request.
IRP.CurrentStackLocation -> IoControlCode The IOCTL function code.

IoControlCode identifies the function to be performed and IoStatus is the mechanism for returning result codes to the SNALink.
The structure IOStatus is defined as follows:

IoStatus.Status
A standard Windows 2000/NT result code (for example, STATUS_INVALID_PARAMETER) as defined in the Windows 2000/NT
header file NTSTATUS.H.

IoStatus.Information
For successful read-frame IOCTLs, the length of the received buffer (can be zero if no data available). Additional error
information, as defined in the header file SECLINK.H.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Initialization
Device drivers under Windows 2000 or Windows NT should perform all initialization required at start of day when they are
loaded by Windows 2000/NT. Configuration information for device drivers is stored in the Configuration Registry under
Windows 2000/NT. For more details, refer to the documentation supplied with the Windows 2000 or Windows NT Device Driver
Kit.

The SNALinks for dumb cards are implemented by the following files:

SDLC SNALink
SNAroot\SYSTEM\IBMSDLC.DLL

X.25 SNALink
SNAroot\SYSTEM\IBMX25.DLL

To bind to one of these, an installation script should mention the appropriate DLL in the IHVDLL registry entry that the script
creates for the link service.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

OPEN Call
The OPEN call has no parameters. It grants access to the driver from a particular process. The driver ensures that only one OPEN
is accepted by the link at any one time. When OPEN is processed, the driver attempts to reserve access to hardware resources
such as interrupt vectors; the OPEN is rejected if this fails.

After a successful OPEN request, the driver expects to receive the following IOCTL commands:

SET_EVENT_HANDLE

SET_INTERFACE_RECORD

SET_LINK_CHARACTERISTICS

Of these, the first two can be performed in any order, but both should be issued before calling SET_LINK_CHARACTERISTICS.

When these three calls have been successfully performed by the SNALink, the driver is ready for information transfer.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CLOSE Call
The CLOSE call has no parameters. It performs the logical converse of OPEN. Resources are released back to the operating
system when a CLOSE is performed.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IOCTL Command Summary
The parameters to the IOCTL request packet are stored in the following fields in the associated I/O request packet (IRP).

IRP.CurrentStackLocation -> IOControlCode Function code
IRP.SystemBuffer Address of parameter buffer (if used)
IRP.CurrentStackLocation -> InputBufferLength Length of parameter buffer
IRP.UserBuffer Address of data buffer
IRP.CurrentStackLocation -> OutputBufferLength Length of data buffer

Note that under Windows 2000 or Windows NT, the operating system reserves the low nibble of IOCTL function codes to
determine the method used to map the various buffers passed on the DeviceIoControl function call into the driver address
space. The various options available to device driver writers are:

Low nibble IOCTL definition
0 METHOD_BUFFERED
1 METHOD_IN_DIRECT
2 METHOD_OUT_DIRECT
3 METHOD_NEITHER

For further details of the memory mapping performed by these various options, refer to the Windows 2000 or Windows NT DDK
documentation.

For a driver function code of ZZ, using memory mapping code M, the IOCTL code passed on the DeviceIoControl function call is
0xZZM.

The function codes are set out as shown below. Note that all other function codes will be returned with the error
ERROR_INVALID_DEVICE_REQUEST in the field IoStatus.Status. The Windows 2000/NT I/O System validates the address and
length of the areas passed as parameter and data packets. If the address validation fails, an exception will be raised.

All requests must return immediately. In general, they are simple, immediate operations, but in the case of Transmit Frame and
Receive Frame, the driver must not suspend the calling SNALink thread while waiting for I/O to complete — a relevant return
code should be sent instead, allowing the SNALink to retry.

The complete list of functions is as follows:

Function Function code Windows 2000/NT IOCTL code
Set Event/Semaphore Handle 0x41 0x410
Set Link Characteristics 0x42 0x420
Set V24 Output Status 0x43 0x430
Transmit Frame 0x44 0x441
Abort Transmitter 0x45 0x450
Abort Receiver 0x46 0x460
Off-Board Load 0x47 0x470
Get/Set Interface Record 0x61 0x613
Get V24 Status 0x62 0x622
Receive Frame 0x63 0x632
Read Interface Record 0x64 0x642

In the function descriptions in the following topics, the bit-numbering convention is: The bits in a byte are numbered 0 through 7,
where bit 0 is the least significant and bit 7 is the most significant.

There is no function for the controlling autodialer across the synchronous dumb card interface. This autodial feature is
implemented in the link service itself. The Microsoft link services that support the synchronous dumb card interface
first perform the dial operation by sending the dial string containing the server-stored number to a COM port rather
than the SDLC chip, and then sending a command to the device driver to raise DTR via an Set V24 Output Status
IOCTL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Equates and Structure Layouts
Many standard operating system device driver error codes are used (for example, “invalid function”), together with a new set of
device driver-specific errors. Return codes below 0x80 reflect serious failures.

/* Copyright Data Connection Ltd. 1989 */_
/***/
/* Link Device Driver interface constants and structures. */
/***/
/***/
/* WIN32 16/04/92 SW Added more helpful names from WIN32 hdr file */
/* IHV 03/06/92 MF2 Add semfisui.h */
/***/

/***/
/* This include file is used in 5 subsystems */
/* */
/* - the NT driver LINK_NTDRIVER */
/* - the X25 link service for NT LINK_NTX25 */
/* - the SDLC link service for NT LINK_NTSDLC */
/* - the X25 link service for OS/2 LINK_OS2X25 */
/* - the SDLC link service for OS/2 LINK_OS2SDLC */
/* */
/* (The OS/2 driver doesn't count because it is in assembler). */
/* */
/* These are distinguished by #defines as set in the following */
/* */
/***/

#ifdef IMADRIVER
 #define LINK_NTDRIVER
#else
 #ifdef SDLC
 #ifdef WIN32
 #define LINK_NTSDLC
 #else
 #define LINK_OS2SDLC
 #endif
 #else
 #ifdef WIN32
 #define LINK_NTX25
 #else
 #define LINK_OS2X25
 #endif
 #endif
#endif
/***/
/* Device function codes for DosDevIOCtl to link device driver */
/***/
#ifdef WIN32 /* WIN32 constants defined in semfisui.h */
#define IoctlCodeSetEvent 0x410
#define IoctlCodeSetLinkChar 0x420
#define IoctlCodeSetV24 0x430
#define IoctlCodeTxFrame 0x440
#define IoctlCodeAbortTransmit 0x450
#define IoctlCodeAbortReceiver 0x460
#define IoctlCodeSetInterfaceRecord 0x610 /*IRMdl?*/
#define IoctlCodeGetV24 0x623
#define IoctlCodeRxFrame 0x633
#define IoctlCodeReadInterfaceRecord 0x643 /*IRMdl?*/
#else
//obsolete names from previous version
//#define CELDDSSH 0x41 /* Set Semaphore Handle */
//#define CELDDSLC 0x42 /* Set Link Characteristics */
//#define CELDDSVS 0x43 /* Set V24 Output status */
//#define CELDDTXF 0x44 /* Transmit a frame of data */

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

//#define CELDDATX 0x45 /* Abort Transmitter */
//#define CELDDARX 0x46 /* Abort Receiver */
//#define CELDDGIR 0x61 /* Get Interface Record Address */
//#define CELDDGVS 0x62 /* Get V24 Input Status */
//#define CELDDRXF 0x63 /* Receive a frame of data */
//#define CELDDCAT 0x82 /* Device function category code */
//
// new names

#define IoctlCodeSetEvent 0x41
#define IoctlCodeSetLinkChar 0x42
#define IoctlCodeSetV24 0x43
#define IoctlCodeTxFrame 0x44
#define IoctlCodeAbortTransmit 0x45
#define IoctlCodeAbortReceiver 0x46
#define IoctlCodeSetInterfaceRecord 0x61
#define IoctlCodeGetV24 0x62
#define IoctlCodeRxFrame 0x63

#endif

/***/
/* Constants for the driver-specific IOCtl return codes. */
/***/
#define CEDNODMA 0xff80 /* Warning (NO DMA!) from set link chrctrstcs */
/***/
/* Equates for the link options byte 1. */
/***/
#define CEL4WIRE 0x80
#define CELNRZI 0x40
#define CELPDPLX 0x20
#define CELSDPLX 0x10
#define CELCLOCK 0x08
#define CELDSRS 0x04
#define CELSTNBY 0x02
#define CELDMA 0x01

/***/
/* Equates for the driver set link characteristics byte 1. */
/***/
#define CED4WIRE 0x80
#define CEDNRZI 0x40
#define CEDHDLC 0x20
#define CEDFDPLX 0x10
#define CEDCLOCK 0x08
#define CEDDMA 0x04
#define CEDRSTAT 0x02
#define CEDCSTAT 0x01

/* Nicer names for NT-style code */

#define LinkOption_4Wire CED4WIRE
#define LinkOption_NRZI CEDNRZI
#define LinkOption_HDLC CEDHDLC
#define LinkOption_FullDuplex CEDFDPLX
#define LinkOption_InternalClock CEDCLOCK
#define LinkOption_DMA CEDDMA
#define LinkOption_ResetStatistics CEDRSTAT

/***/
/* Equates for the output V24 interface flags. */
/***/
#define CED24RTS 0x01
#define CED24DTR 0x02
#define CED24DRS 0x04
#define CED24SLS 0x08
#define CED24TST 0x10

/* Nicer names for NT-style code */

#define IR_OV24RTS CED24RTS
#define IR_OV24DTR CED24DTR
#define IR_OV24DSRS CED24DRS
#define IR_OV24SlSt CED24SLS
#define IR_OV24Test CED24TST

/***/
/* Equates for the input V24 interface flags. */
/***/
#define CED24CTS 0x01
#define CED24DSR 0x02
#define CED24DCD 0x04
#define CED24RI 0x08

/* Nicer names for NT-style code */

#define IR_IV24CTS CED24CTS
#define IR_IV24DSR CED24DSR
#define IR_IV24DCD CED24DCD
#define IR_IV24RI CED24RI
#define IR_IV24Test 0x10

/***/
/* Structure for the device driver interface record. */
/***/

#define CEDSTCRC 0 /* Frames received with incorrect CRC */
#define CEDSTOFL 1 /* Frames received longer than the maximum */
#define CEDSTUFL 2 /* Frames received less than 4 octets long */
#define CEDSTSPR 3 /* Frames received ending on a non-octet bndry */
#define CEDSTABT 4 /* Aborted frames received */
#define CEDSTTXU 5 /* Transmitter interrupt underruns */
#define CEDSTRXO 6 /* Receiver interrupt overruns */
#define CEDSTDCD 7 /* DCD (RLSD) lost during frame reception */
#define CEDSTCTS 8 /* CTS lost while transmitting */
#define CEDSTDSR 9 /* DSR drops */
#define CEDSTHDW 10 /* Hardware failures - adapter errors */

#define CEDSTMAX 11

#define SA_CRC_Error CEDSTCRC
#define SA_RxFrameTooBig CEDSTOFL
#define SA_RxFrameTooShort CEDSTUFL
#define SA_Spare CEDSTSPR
#define SA_RxAbort CEDSTABT
#define SA_TxUnderrun CEDSTTXU
#define SA_RxOverrun CEDSTRXO
#define SA_DCDDrop CEDSTDCD
#define SA_CTSDrop CEDSTCTS
#define SA_DSRDrop CEDSTDSR
#define SA_HardwareError CEDSTHDW /* e.g. CmdBufferFull not set */

#define SA_Max_Stat CEDSTMAX

#ifdef WIN32

typedef struct _INTERFACE_RECORD
{
 int RxFrameCount; /* incremented after each frame rx'd */
 int TxMaxFrSizeNow; /* max available frame size av. now */
 /* (changes after each Tx DevIoctl */
 /* to DD or after Tx completed) */
 int StatusCount; /* How many status events have been */
 /* triggered. */

 UCHAR V24In; /* Last 'getv24i/f' value got */
 UCHAR V24Out; /* Last 'setv24 outputs' value set */

/* The values for the indexes into the link statistics array of the */
/* various types of statistic. */

 int StatusArray[SA_Max_Stat];

} IR,
 * PIR;

#else
typedef struct teifrec {

 USHORT RxFrameCount;
 USHORT TxMaxFrSizeNow;
 USHORT StatusCount;
 UCHAR V24In;
 UCHAR V24Out;
 USHORT StatusArray[CEDSTMAX];

 }TEIFREC;

typedef TEIFREC far * TEIFRPTR;
#endif

/***/
/* Structure for the set link characteristics parameter block. */
/***/

#ifdef WIN32
typedef struct _SLPARMS
{
 int SLFrameSize; /* max frame size on link - must be */
 /* in range 270 to ?2K-ish */
 LONG SLDataRate; /* not used by us - external clocks */
 UCHAR SLOurAddress1; /*) e.g C1/FF or 00/00 or 01/03 */
 UCHAR SLOurAddress2; /*) */
 UCHAR SLLinkOptionsByte; /* see documentation & LinkOption_* */
 UCHAR SLSpare1;
}
 SLPARMS;
#else

typedef struct teslcrec {

 USHORT SLFrameSize;
 ULONG SLDataRate;
 UCHAR SLOurAddress1;
 UCHAR SLOurAddress2;
 UCHAR SLLinkOptionsByte;
 UCHAR SLSpare1;

 }TESLCREC;

#endif

/***/
/* DEVICEIOCTL macros */
/***/
#ifdef WIN32
/* NT_SUCCESS ripped of from DDK's ntdef.h, which we do not want to include */
/* for now temporarily (12/5/92) */
#define NT_SUCCESS(Status) ((NTSTATUS)(Status) >= 0)

#define SETEVENTHANDLE(H) NtDeviceIoControlFile(\
 seldrvrh, \

 H, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetEvent, \
 (PVOID) NULL, \
 0L, \
 (PVOID) NULL, \
 0L \
)

#define SETINTERFACERECORD(R) NtDeviceIoControlFile(\
 seldrvrh, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetInterfaceRecord, \
 \
 &R, \
 sizeof(R), \
 (PVOID) NULL, \
 0L \
)

#define SETV24STATUS NtDeviceIoControlFile(\
 seldrvrh, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetV24, \
 NULL, \
 0L, \
 &pInterfaceRecord->V24Out, \
 1L \
)

/***/
/* The above change is temporary!!!*/
/***/

#define GETV24STATUS NtDeviceIoControlFile(\
 seldrvrh, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeGetV24, \
 (PVOID) NULL, \
 0L, \
 (PVOID) NULL, \
 0L \
)

#define SETLINKCHARACTERISTICS(A) NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetLinkChar, \
 &A, \
 sizeof(A), \
 (PVOID) NULL, \
 0L \
)

#define TRANSMITFRAME(A,B) NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeTxFrame, \
 (PVOID) NULL, \
 0L, \
 A, \
 B \
)

#define RECEIVEFRAME(A,B) NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeRxFrame, \
 (PVOID) NULL, \
 0L, \
 A, \
 B \
)

#define READINTERFACERECORD NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeReadInterfaceRecord, \
 (PVOID) NULL, \
 0L, \
 &InterfaceRecord, \
 sizeof(InterfaceRecord) \
)

#else
#define NT_SUCCESS(R) ((R) == 0)

#define SETEVENTHANDLE(H) DosDevIOCtl(NULL, \
 &H, \
 IoctlCodeSetEvent, \
 CELDDCAT, \
 seldrvrh)

#define GETINTERFACERECORD(P) DosDevIOCtl(NULL, \
 &P, \
 IoctlCodeGetInterfaceRecord, \
 CELDDCAT, \
 seldrvrh)

#define SETV24STATUS DosDevIOCtl(NULL, \
 NULL, \
 IoctlCodeSetV24, \
 CELDDCAT, \
 seldrvrh)

#define GETV24STATUS DosDevIOCtl(NULL, \
 NULL, \
 IoctlCodeGetV24, \
 CELDDCAT, \
 seldrvrh)

#define SETLINKCHARACTERISTICS(A) DosDevIOCtl((long) NULL, \

 (char far *) &A, \
 IoctlCodeSetLinkChar, \
 CELDDCAT, \
 seldrvrh)

#define TRANSMITFRAME(F,L) DosDevIOCtl(F, \
 &L, \
 IoctlCodeTxFrame, \
 CELDDCAT, \
 seldrvrh)

#define RECEIVEFRAME(F,L) DosDevIOCtl(F, \
 &L, \
 IoctlCodeRxFrame, \
 CELDDCAT, \
 seldrvrh)
#endif

//##

/***/
/* INFO_ : additional information error codes put in IoStatus.Information */
/***/

#define INFO_CANT_ALLOCATE_SPINLOCK 1
#define INFO_CANT_CONNECT_INTERRUPT 2
#define INFO_HARDWARE_INIT_FAILURE 3
#define INFO_SET_EVENT_NO_EVENT 4
#define INFO_HARDWARE_CMD_TIMEOUT 5
#define INFO_LINKCHAR_BUF_WRONG_SIZE 6
#define INFO_FRAME_BUF_TOO_BIG 7
#define INFO_FRAME_BUF_TOO_SMALL 8
#define INFO_NO_CLOCKS 9
#define INFO_NO_DMA_FDX 10
#define INFO_CANT_ALLOCATE_MDL 11
#define INFO_CANT_ALLOCATE_MEMORY 12
#define INFO_DMA_BUFFER_UNUSABLE 14
#define INFO_TX_BUFFER_FULL 15
#define INFO_TX_FRAME_TOO_BIG 16
#define INFO_TX_FRAME_TOO_SMALL 17
#define INFO_READ_IR_BUFFER_WRONG_SIZE 18
#define INFO_NEEDS_MCA_BUS 19
#define INFO_NEEDS_ISA_BUS 20

Microsoft Host Integration Server 2000

SNA Modem Status Interface
This section describes the interface to the modem status used by the Microsoft® Host Integration Server 2000-supplied SDLC
and X.25 SNALinks. This interface provides a set of RASmon-like modem lights. The modem status interface is intended primarily
for the Microgate cards with internal modems, but can be used with any SDLC/X.25 link service to show the modem status.

This interface is intended primarily for IHVs who wish to provide drivers for their own dumb cards that will be directly compatible
with the Host Integration Server 2000-provided SDLC and X.25 SNALinks. It can also be used by IHVs who intend to write their
own SNALinks but who wish to ensure that their drivers conform to the standard Host Integration Server 2000 model.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Device Driver Interface to Modem Status
There are three interfaces from which modem status can be gathered:

The SNADIS Dumb Card Interface GetV24Status IOCTL call that reports the status of the Ring Indicator (DRI), Carrier Detect
(DCD), Clear To Send (CTS), and Data Set Ready (DSR) signal lines.
The SNADIS Dumb Card Interface SetV24Status IOCTL call that sets the status of the Data Terminal Ready (DTR) and
Request To Send (RTS) signal lines.
The SNADIS Dumb Card Interface receive and transmit IOCTL calls, used to set the operating mode of the device driver.

Whenever one of the first two interfaces indicates a modem line is high, the corresponding light in the display is lit. However, the
transmit and receive IOCTL calls cannot provide a definitive statement as to whether the card is receiving data, only that it is ready
to receive data. To work around this limitation and to have the modem lights give a reasonable semblance of ordinary data
throughput, the following mechanism is recommended.

The receive and transmit lights are simulated by counters. Each link service tracks the number of frames received and transmitted.
The display application interpolates the flashing of the receive and transmit lights from these counters.

The remainder of this section describes the changes that must be made to the link service for supporting the modem status
interface and the interface provided to the display application. Microsoft® Host Integration Server 2000 comes with an
application that displays the modem status.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Supporting Modem Status in an SNA Link Service
The implementation of a link service that supports the modem status requires the following:

A call to the SNA Modem interface to initialize the SNA Modem data structures.
Modification of the SNA Modem structures as the status changes, as reported by the DevIoctl calls.

IHVs who use the Microsoft® Host Integration Server 2000 SDLC link service and who fully implement the SNADIS interface will
have no changes to make to use the modem status feature. However, IHVs should check that the status returned by DevIoctl calls
from their device driver conforms to the requirements described below.

IHVs who provide both the device driver and link service need to implement the code in their link service that initializes the SNA
Modem API and updates the modem status information.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Modem API Summary
To simplify the task for IHVs who want to use this feature, four new entry points have been added to SNALINK.DLL. An IHV who
uses these must be linking with IHVLINK.LIB, a stub library that contains the exports library for SNALINK.DLL. This API allows the
IHV to simply maintain the contents of a MODEM_STATUS structure. The underlying SNALINK library code handles the
communication of this information to the modem lights application.

The modem status functions are as follows:

Function Description
SNAModemInitialize Initializes the communication path to the SNA Modem application.
SNAModemAddLink Adds an SNA link.
SNAModemDeleteLink Deletes the resources associated with a link.
SNAModemTerminate Terminates an SNA link.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DevIoctl Definitions to Support SNA Modem Status
The SNA DevIoctl interface is modified to update the MODEM_STATUS structure for a link each time a modem status change is
detected or caused by a GetV24 or SetV24 IOCTL call. Code is manually added to the link service to track the number of frames
received and transmitted.

The DevIoctl changes are highlighted below:

pSharedMem is a pointer to the MODEM_STATUS structure for this link service.

SavedV24In and SavedV24Out are characters used to only notify the display application when status changes, not each time it is
read or set.

#define SETV24STATUS \
 NtDeviceIoControlFile(seldrvrh,NULL,NULL,NULL,&IoStatus, \
 IoctlCodeSetV24,NULL,0L, \
 &pInterfaceRecord->V24Out,1L); \
 if (SavedIROut != (InterfaceRecord.V24Out & \
 (MASK_DTR | MASK_RTS))) \
 { \
 SavedIROut = (pInterfaceRecord->V24Out & \
 (MASK_DTR | MASK_RTS)); \
 pSharedMem->V24Out = pInterfaceRecord->V24Out; \
 }

#define GETV24STATUS(rc) \
 rc |= NtDeviceIoControlFile(seldrvrh,NULL,NULL,NULL, \
 &IoStatus,IoctlCodeGetV24,NULL,0L,NULL,0L); \
 rc |= READINTERFACERECORD; \
 if (SavedIRIn != (InterfaceRecord.V24In & \
 (MASK_CTS | MASK_DSR | MASK_DCD| MASK_DRI))) \
 { \
 SavedIRIn = (InterfaceRecord.V24In & \
 (MASK_CTS | MASK_DSR | MASK_DCD| MASK_DRI)); \
 pSharedMem->V24In = InterfaceRecord.V24In; \
 }

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Performance Monitor Interface
This section describes the interface for performance monitoring (Perfmon) used by the Microsoft® Host Integration Server 2000-
supplied SNADIS links. This interface is provided to simplify the integration of SNADIS-compliant link services with the
Microsoft® Windows 2000 System Monitor and Windows NT® Performance Monitor applications. It provides a common look
and feel to all link service performance counters exported by SNADIS links, independent of the vendor and link transport (channel,
twinax, SDLC, X.25, TR, E/Net, and so on).

The performance monitoring statistics maintained for an SNA link service are stored in a series of ADAPTERCOUNTER structures
that are members of an ADAPTERPERFDATA structure. These structures are defined in the SEMFPERF.H header file.

Three API entry points are exported from IHVLINK.DLL (and the IHVLINK.LIB import library) that are used by the Perfmon API.
These functions should be called in the order noted below at link service initialization time.

To support perfomance monitoring, an SNA Link driver first calls SNAInitLinkPerfMon to initialize data structures used by the
Perfmon application. This call should be followed with a call to function SNAGetLinkPerfArea, which returns a shared mutex
handle and a pointer to the shared data area for the ADAPTERPERFDATA structure used by the Perfmon application to store the
link statistics. This handle and shared memory data area parameter are the returned values from SNAInitLinkPerfmon. Finally,
the SNAGetPerfValues function is called to fill in the ServiceNameIndex and FirstCounterIndex fields so that the Perfmon
application knows where to get the descriptions of the performance counters from the registry.

After these three calls have been made, the SNA link driver simply maintains the count members in the ADAPTERCOUNTER
structures that make up the ADAPTERPERFDATA structure, incrementing the count member whenever data is received,
connections fail, and other events occur. The Perfmon application accesses these counters to display Microsoft® Host Integration
Server 2000 performance monitoring data statistics.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNADIS Reference
This section provides reference material for developers writing their own SNALink software.

This section contains:

Base/DMOD and SNALink Entry Points
Message Formats
Configuraiton Entry Points
Setup Functions
IOCTL Commands
SNA Modems API
SNA Perfmon API

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Base/DMOD and SNALink Entry Points
This section gives definitions for Base/DMOD and SNALink entry points that must be supplied in an SNALink.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetBuffer
The SNAGetBuffer function is called by an application to get a buffer with a requested number of elements.

Parameters

numelts
Number of elements required.

Return Values

A pointer to the buffer obtained; NULL if a buffer could not be obtained.

Remarks

Each element has a size of 268, the constant SNANBEDA in the header file SNA_DLC.H.

The returned buffer consists of a header and the required number of elements. The header points to the first element, which
points to the next element and so on to make an element chain.

It is possible to add an element to an existing buffer by calling SNAGetElement to get the extra element. The new element should
be added to the element chain of the buffer, and the number of elements count should be updated.

The application must release any buffers that are not transmitted.

PTRBFHDR SNAGetBuffer(
INTEGER numelts
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetElement
The SNAGetElement function is called by an application to get a buffer element to append to an existing buffer.

Parameters

eltptr
Pointer to a pointer to an element. On return this points to a pointer to the element obtained, or to NULL if an element was not
obtained (an internal error).

Remarks

This function should only be used to get extra elements for an existing buffer. SNAGetBuffer should be used to get a new buffer.

The new element should be added to the chain of elements from the existing buffer header and the count of the number of
elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is longer than the incoming
message.

VOID SNAGetElement(
PTRBFELT *eltptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetLinkName
The SNALink can call the SNAGetLinkName function to obtain its configured SNALink name.

Parameters

linkname
A pointer to a buffer where the NULL-terminated SNALink name is stored.

Remarks

The buffer should be at least nine bytes in length.

VOID SNAGetLinkName(
UCHAR *linkname
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALinkDispatchProc
The SNALinkDispatchProc function is the link dispatcher function. The Base calls this function whenever one of the following
events occurs:

A message arrives for the link.
The Base timer expires.
Contact is lost with the local node.

Parameters

msgptr
The message to be processed, or NULL if some other event is being notified.

function
The reason for SNALinkDispatchProc being called.

locality
L value (only valid for function SBLOST).

Remarks

The function parameter can have one of three values:

0—Message received.
SBLOST—Contact lost with local node; L-value of locality.
SBTICK—Base timer has expired; occurs every five seconds.

See Sample Code for SNALinkDispatchProc for suggested usage of this function.

VOID SNALinkDispatchProc(
PTRBFHDR msgptr,
INTEGER function,
INTEGER locality
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALinkInitialize
The SNALinkInitialize function initializes the SNALink. The Base calls this function when the SNALink is loaded into memory.

Parameters

event
A handle to the global Base event.

Remarks

This function should:

Read in required configuration information.
Perform any required initialization of the hardware or device driver.
Set up control blocks and data structures required internally by the SNALink.

VOID SNALinkInitialize(
HANDLE event
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALinkTerminate
The SNALinkTerminate function terminates the SNALink.The Base calls this function, when present, during service shutdown.
This allows the DLL to free memory, release system resources (such as events), and close drivers.

Remarks

This function must not send messages to other SNA components.

VOID SNALinkTerminate(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNALinkWorkProc
The SNALinkWorkProc function is the work manager function. The Base calls this function whenever the global Base event is
triggered by the SNALink, or at least once every five seconds.

Remarks

This function can be used to perform any general processing required by the SNALink, in particular to process messages received
from the link.

VOID SNALinkWorkProc(void);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAReleaseBuffer
The SNAReleaseBuffer function is called by an application to release a buffer.

Parameters

msgptr
Pointer to the buffer to be released.

Remarks

It is important that buffers are released after use. This is done automatically when a message is transmitted. For messages
received, it is the responsibility of the application either to release or to reuse the buffer.

This function releases both the buffer header and any associated buffer elements. It is possible to release single elements from a
buffer by using the function SNAReleaseElement.

VOID SNAReleaseBuffer(
PTRBFHDR msgptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAReleaseElement
The SNAReleaseElement function is called by an application to release a buffer element from an existing buffer.

Parameters

eltptr
Pointer to a pointer to the element to be released.

Remarks

This function should only be used to release surplus elements from a buffer. SNAReleaseBuffer should be called to release the
entire buffer.

The released element should first be removed from the element chain and the count of the number of elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is shorter than the incoming
message.

VOID SNAReleaseElement(
PTRBFELT *eltptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNASendAlert
The SNALink calls the SNASendAlert function to send a complete preformatted Network Management Vector Transport (NMVT)
alert to NetView.

Parameters

msgptr
Pointer to the NMVT alert to be sent.

severity
The severity of the problem that caused the alert (ranges from 0 to 16).

Remarks

The complete NMVT to be sent must be generated by the SNALink and inserted into a buffer. Only the elements are used—the
buffer header need not be set up before sending. The fields startd and endd should be set to reflect the location of the NMVT
within the element. Multiple elements can be used to store the NMVT, up to a maximum length of 512 bytes. The buffer will be
freed by the Base after the NMVT has been sent.

Any NMVT sent refers to a particular Host Integration Server 2000 connection. It is recommended that the NMVT include at least
a hierarchy resource list, giving the name of the remote PU the connection is associated with. This name is supplied to the
SNALink on the Open(STATION) message.

For complete details of the format of an NMVT, see the IBM manual SNA Formats (GA27-3136).

VOID SNASendAlert(
PTRBFHDR msgptr,
INTEGER severity
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNASendMessage
The SNASendMessage function is called by an application to send messages to other localities (in the case of an SNALink, the
local 2.1 node).

Parameters

msgptr
Pointer to message to be sent.

Remarks

The LPI values on the message should be set up to reference the correct connection for the data to be passed.

VOID SNASendMessage(
PTRBFHDR *msgptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Message Formats
This section describes the SNA Device Interface Specification interface in terms of message formats. These are presented in a
language-independent notation that is described below.

The messages used between the node and the SNALinks are shown in the following table.

Message type Direction LPI connection
Open(LINK)Request NODE ------> DLC LINK
Close(LINK)Request NODE ------> DLC LINK
Send-XID NODE ------> DLC LINK
Open(STATION) Request NODE ------> DLC STATION
Close(STATION) Request NODE ------> DLC STATION
Open(LINK) Response NODE <------ DLC LINK
Close(LINK) Response NODE <------ DLC LINK
Request-Open-Station NODE <------ DLC LINK
Open(STATION) Response NODE <------ DLC STATION
Close(STATION) Response NODE <------ DLC STATION
Station-Contacted NODE <------ DLC STATION
Outage NODE <------ DLC LINK/STATION
DLC-Data NODE <-----> DLC STATION
Status-Resource NODE <-----> DLC STATION

Details of the message format notation and key assumptions about the contents of the message formats are as follows:

"Reserved" indicates that the field must be set to zero (for a numeric field) or all nulls (for names) by the sender of the
message.
"Undefined" indicates that the value of the field is indeterminate. The field is not set by the sender and should not be
examined by the receiver of the message.
Fields that occupy two bytes—the srci field in all messages, and fields such as opresid in Open(LINK) Request —are
represented with the arithmetically most significant byte in the lowest byte address, irrespective of the normal byte order
used by the processor on which the software executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest byte
address. The exception to this is the startd and endd fields in all elements, which are always stored in the processor's
normal byte order.
Messages are composed of buffers, consisting of a buffer header and zero or more buffer elements; see Messages for more
information on buffer formats.
The startd field in each element gives the offset of the first byte of data in the element after the trpad field. Its value will
either be 1 (data starts in the byte after the trpad field), 10 (nine bytes of padding are included between the trpad field and
the start of the data), or 13 (12 bytes of padding are included between the trpad field and the start of the data). Any extra
bytes are used by the local node for additional header information. This avoids having to copy data into a new buffer when
adding this information.
Because startd indicates the index into dataru starting from 1, not 0, the first byte of valid data will always be at
dataru[startd–1].
All fields within dataru are of type unsigned character (UCHAR), except where the notes indicate otherwise.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(LINK)
Open(LINK) is used by the node to open the LINK LPI connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(LINK) Request
Flow : NODE ------> DLC

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element
numelts CHAR Number of buffer elements: 1 (Number of elements can be 2 if the connection is for an X.25 SVC)
msgtype CHAR Message type: OPENMSG (0x01)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
ophdr.openqual CHAR Open qualifier: REQU (0x01)
ophdr.opentype CHAR Open type: LINK (0x10)
ophdr.opresid INTEGER Resource identifier

Element 1

Field Type Description
hdreptr–>elteptr PTRBFELT Pointer to optional second buffer element (NULL if only one element)
hdreptr–>startd INTEGER Index to start of data in this buffer element's data array
hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array
hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where

s = startd–1
dataru[s..s+9] Source name—name of local node
dataru[s+10..s+19] Destination name—name of remote PU (blank for incoming calls)
dataru[s+20..s+21] Link index

Link Data (depends on DLC type)

Unless otherwise stated, these fields are valid for outgoing calls only.

SDLC link data field Description
dataru[s+22] XID supplied

0x00 Do not send initial XID
0x01 Send initial XID from this message (may be a NULL XID)

dataru[s+23] Link operational role
0x00 Primary
0x01 Secondary
0x02 Negotiable

dataru[s+24] Use Reject_Command indicator
0x00 Do use it
0x01 Do not use it

dataru[s+25] Address match byte
0x00 Primary/Negotiable SDLC
0x01 to 0xFE Secondary SDLC

dataru[s+26] Second SDLC address match byte
0x00 Primary SDLC
0xFF Secondary/Negotiable SDLC

dataru[s+27] Reserved
Channel adapter link data Description
dataru[s+22] XID supplied

0x00 Do not send initial XID
0x01 Send initial XID from this message (may be a NULL XID)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

dataru[s+23] PU emulation type
0x00 Unknown
0x20 PU 2.0 (format 0 XID)
0x21 PU 2.1 (format 3 XID)

dataru[s+24] Control Unit Image number (0 to 15) on the Channel address configured in SNA Manager
dataru[s+25] Channel subaddress
dataru[s+26..s+67] Reserved (may not be zero)
Station timers Description
dataru[s+28..s+29] Contact time-out
dataru[s+30..s+31] Contact retry limit
dataru[s+32..s+33] Discontact time-out
dataru[s+34..s+35] Discontact retry limit
dataru[s+36..s+37] Negative poll time-out
dataru[s+38..s+39] Negative poll retry limit
dataru[s+40..s+41] T1 (no acknowledgment) time-out
dataru[s+42..s+43] T2 (acknowledgment) time-out
dataru[s+44..s+45] Remote station busy time-out
dataru[s+46..s+47] Remote station busy retry limit
Link timers Description
dataru[s+48..s+49] Idle time-out
dataru[s+50..s+51] Idle retry limit
dataru[s+52..s+53] Nonproductive receive time-out
dataru[s+54..s+55] Nonproductive receive retry limit
dataru[s+56..s+57] Write time-out
dataru[s+58..s+59] Write retry limit
dataru[s+60..s+61] Link connection time-out
dataru[s+62..s+63] Link connection retry limit

0xFFFF for infinite retry
dataru[s+64..s+65] Reserved
dataru[s+66] Configuration options:

Bit 0 : 1 = Constant carrier selected
Bit 1 : 1 = NRZI
0 = NRZ
Bit 2 : = Reserved
Bit 3 : 1 = Full-duplex
0 = Half-duplex
Bit 4 : 0 = External clocking
Bit 5 : 1 = Data signal rate select high
0 = Data signal rate select low
Bit 6 : 1 = Select standby on
0 = Select standby off
Bit 7 : = Reserved

dataru[s+67] Configuration options: line type
0x00 leased
0x01 switched manual dial
0x02 switched auto-dial

Note that for configuration options, bit 0 is the most significant option and bit 7 is the least significant. Reserved bits are not
always zero, so always use a bitwise AND operation when testing these bits.

The PU emulation type is returned as 0x00 (unknown) for versions of SNACFG.DLL supplied with versions of Microsoft® SNA
Server earlier than 3.0.

The configuration options byte is also valid for incoming calls.

Microsoft Host Integration Server 2000

Expanded Information About Message Formats for Open(LINK)
Request with SDLC
The following list supplements the information found in the table in Open(LINK) Request. The timers described in the lists are
used by an SDLC link service to determine when to retry communication and when to generate outages. Generally, after the time
interval specified by the time-out (usually 1000 milliseconds), the communication is retried. The cycle of time-out and retry is
repeated until the retry limit is reached. Then an Outage message is sent by the SDLC link service.

With some timers, there are no communication retries. Such timers simply cycle through the time-out as many times as allowed
in the retry limit (without actually retrying), then generate an Outage message.

Each description indicates whether you can configure the field through an Host Integration Server 2000 interface (such as the
SNA Manager program). If the field is not configurable, the built-in setting for the field is shown.

For information about configuring with SNA Manager, see the Host Integration Server 2000 documentation or the SNA Manager
Help.

SDLC Link Data

dataru[s+22] XID supplied
This field controls whether an initial XID is sent on this connection. The value used is determined by the leased/switched setting
for the line:

Leased line: 0x00 Do not send an initial XID
Switched line: 0x01 Send an initial XID (may be a NULL XID)

A line is configured as leased or switched in Host Integration Server 2000 Setup.

dataru[s+24] Use Reject_Command indicator
This field determines that the link service will not send a Reject command (an SDLC command, not often used, value 0x19) if a
frame is received with an invalid NS (next-to-send) value. Instead, the link service waits until the next poll before requesting
retransmission of the frame.

This field is not configurable and must remain at the setting of "Do not use."

Station Timers (described for SDLC only)

dataru[s+28..s+29] Contact time-out
dataru[s+30..s+31] Contact retry limit

This timer is started when an XID or set normal response mode (SNRM) is transmitted. If the time-out expires without
acknowledgment, the frame is retransmitted. When the number of retransmitted frames reaches the retry limit, an outage is
generated. Note that for XIDs, the time-out value is randomized to prevent possible clashes between two servers sending XIDs
simultaneously.

This timer is configurable in SNA Manager, in the advanced settings for an SDLC connection.

dataru[s+32..s+33] Discontact time-out
dataru[s+34..s+35] Discontact retry limit

This timer is started when a discontact (DISC) is sent. It is stopped when an unnumbered acknowledgment (UA) or disconnect
mode (DM) is received. If the number of sent DISCs reaches the retry limit, an outage is generated.

This timer is not configurable. The discontact time-out is 1000 milliseconds; the discontact retry limit is 3.

dataru[s+36..s+37] Negative poll time-out
dataru[s+38..s+39] Negative poll retry limit

This timer is used for primary SDLC only. At intervals specified by the negative poll time-out, a receive ready (RR) is transmitted.
The negative poll retry limit is set at no limit; therefore, no outage is generated, no matter how many RRs are transmitted
without acknowledgment being received.

The negative poll time-out is configurable in SNA Manager, in the advanced settings for an SDLC connection, where the time-
out is called poll rate. Poll rate is set in polls per second (and translated internally into the negative poll time-out, timed in
milliseconds).

The negative poll retry limit is not configurable. It is set at –1, meaning no limit.

dataru[s+40..s+41] T1 (no acknowledgment) time-out
dataru[s+42..s+43] N2 (no acknowledgment) retry limit

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

This timer is used for primary SDLC and is started when a poll/final bit is expected. If the time-out expires before a frame
containing a poll/final bit is received, an RR is sent. When the number of sent RRs reaches the retry limit, an outage is
generated.

This timer is configurable in SNA Manager, in the advanced settings for an SDLC connection, where it is called the poll time-out
and poll retry limit.

dataru[s+44..s+45] Remote station busy time-out
dataru[s+46..s+47] Remote station busy retry limit

This timer is used for primary SDLC and is started when a receive not ready (RNR) is received. It is stopped when an RR is
received. If the time-out expires the number of times specified by the retry limit, an outage is generated.

This timer is not configurable. The remote station busy time-out is 1000 milliseconds; the remote station busy retry limit is 30.
Therefore, the time allowed before an outage is 30 seconds.

Link Timers (described for SDLC only)

dataru[s+48..s+49] Idle time-out
dataru[s+50..s+51] Idle retry limit

This timer is configurable in SNA Manager, in the advanced settings for an SDLC connection.
dataru[s+52..s+53] Nonproductive receive time-out
dataru[s+54..s+55] Nonproductive receive retry limit

This timer is used for secondary SDLC only and is started when any frame is received for this station. It is stopped when
additional frames are received for this station. If the time-out expires the number of times specified by the retry limit, the link
service causes a pop-up message, but does not generate an outage (because multidrop lines can be very slow).

This timer is not configurable. The nonproductive receive time-out is 1000 milliseconds (1 second); the nonproductive receive
retry limit is 60. Therefore, the time allowed before a pop-up message is 60 seconds.

dataru[s+56..s+57] Write time-out
dataru[s+58..s+59] Write retry limit

This timer is started after an information frame has been transmitted to the hardware and stopped when the hardware
acknowledges the frame. If the time-out expires the number of times specified by the retry limit, an outage is generated.

This timer is not configurable. The write time-out is 1000 milliseconds (one second); the write retry limit is 15. Therefore, the
time allowed before an outage is 15 seconds.

dataru[s+60..s+61] Link connection time-out
dataru[s+62..s+63] Link connection retry limit

This timer is started when an open link for a leased line is received, and stopped when data set ready (DSR) is raised. If the time-
out expires the number of times specified by the retry limit, an outage is generated.

This timer is not configurable. The link connection time-out is 1000 milliseconds (one second); the link connection retry limit is
300. Therefore, the time allowed before an outage is 300 seconds.

X.25 link data Description
dataru[s+22] Circuit type

0x00 PVC
0x01 SVC

dataru[s+23] PVC alias, starting at 1 for lowest PVC channel number (reserved for SVC)
dataru[s+24..s+25] PVC packet size (reserved for SVC)
dataru[s+26] Default level 3 window size for PVC (reserved for SVC)
dataru[s+27] Link role

0x00 Primary
0x01 Secondary
0x02 Negotiable

802.2 link dat
a

Description

dataru[s+22] Maximum receives without a transmit acknowledgment
dataru[s+23] Maximum transmits without a receive acknowledgment
dataru[s+24] Dynamic window increment value
dataru[s+25] Remote SAP address
dataru[s+26] Local SAP address (for incoming calls)
dataru[s+27] Value for t1 timer multiplier

dataru[s+31] Value for t2 timer multiplier
dataru[s+35] Value for t3 timer multiplier
dataru[s+42] Maximum retry count (N2 Value). Note that this 802.2 link data is required for the 802.2 command DLC.OPEN.S

TATION

Note that if the above fields for timer multipliers are set to zero, the SNALink should use appropriate defaults.

End of link data section Description
dataru[s+68..s+69] Length of link connection data (= a)

(0x0000) None present
dataru[s+70..s+70+a] Link connection data
dataru[s+70+b..s+71+b] Where b is maximum of a and 20.

Size of XID I-frame (= n)
(0x0000) NULL XID

dataru[s+72+b] XID

Note that if there are 20 or fewer bytes of link connection data, the XID length is at s+90 and the actual XID starts at s+92.

The link connection data can contain one of the following:

MAC address of remote station
X.25 address of remote station
Dial-digits for manual or auto-dial modems

Microsoft Host Integration Server 2000

Optional Second Element (Only Used by X.25 SVC)
Element 2

Field Type Description
hdreptr–>elteptr–>elteptr PTRBFELT Pointer to next buffer element: NULL
hdreptr–>elteptr–>startd INTEGER Index to start of data in this buffer element's data array: 1
hdreptr–>elteptr–>endd INTEGER Index to last byte of data in this buffer element's data array
hdreptr–>elteptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd–1
dataru[s] Length of facilities data field (= c) inclusive of this length byte

0x01 no facilities data
dataru[s+1..s+c–1] CHAR[c–1]Facilities data
dataru[s+c] CHARLength of user data field (= d) inclusive of this length byte

0x01 no user data
dataru[s+c+1..s+c+d] User data

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(LINK) Response
Flow : DLC ------> NODE

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element
numelts CHAR Number of buffer elements: 1
msgtype CHAR Message type: OPENMSG (0x01)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
ophdr.ope
nqual

CHAR Open qualifier
- RSPOK (0x02)
- RSPERR (0x03)

ophdr.ope
ntype

CHAR Open type
- LINK (0x10)

ophdr.opre
sid

INTEGER Resource identifier

ophdr.oper
r1

INTEGER Error code (see below)

ophdr.oper
r2

INTEGER Reserved

hdreptr–>e
lteptr

PTRBFELT Pointer to next buffer element: NULL

hdreptr–>s
tartd

INTEGER Index to start of data in this buffer element's data array: 1

hdreptr–>e
ndd

INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>d
ataru

CHAR[SNA
NBEDA]

Defined as follows, where s = startd–1

dataru[s..s
+9]

 Source name—same as destination name from Open(LINK) Request

dataru[s+1
0..s+19]

 Destination name—name of local node; same as source name from Open(LINK) Request

dataru[s+2
2..s+23]

 The maximum BTU size supported by SNALink, This size is 65,536 (largest number in an unsigned short)
for channel connections and 32,768 for non-channel connections.

Note that this limit does not guarantee that the SNA connection will actually use this value. The individu
al link service or the host can negotiate it downward.

The error codes (for an ERROR-RESPONSE) are defined as follows in SNA_CNST.H:

Symbolic constant Value Description
ERINIFAIL 0x01 Hardware initialization failed
ERINVXID 0x08 Invalid XID length
ERLINKOPN 0x09 Link already open
ERLLCERR 0x0A LCC error; fatal hardware failure
ERBADINDX 0x0B Invalid link index
ERBADOPN 0x0C Open(LINK) has insufficient data
ERCONNTO 0x0D Link connection time-out

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

ERNORES 0x0E Maximum connection count reached
–or–
No more internal control blocks

EROPNPND 0x11 Close(LINK) arrived while Open(LINK) pending
ERDUPREQ 0x12 Duplicate request

Microsoft Host Integration Server 2000

Close(LINK)
Close(LINK) is used by the node to close the LINK LPI connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(LINK) Request
Flow : NODE ------> DLC

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element: NULL
numelts CHAR Number of buffer elements: 0
msgtype CHAR Message type: CLOSEMSG (0x02)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
clhdr.closqual CHAR Close qualifier: REQU (0x01)
clhdr.clstype CHAR Close type: LINK (0x10)

Note that the message consists of a buffer header only.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(LINK) Response
Flow : DLC ------> NODE

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element: NULL
numelts CHAR Number of buffer elements: 0
msgtype CHAR Message type: CLOSEMSG (0x02)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
clhdr.closqual CHAR Close qualifier

- RSPOK (0x02)
- RSPERR (0x03)

clhdr.clstype CHAR Close type: LINK (0x10)
clhdr.clserr1 INTEGER Error code (see below)

The error codes (for an ERROR-RESPONSE) are defined as:

0x03—Link not open
0x04—Invalid link index

 Note The message consists of a buffer header only.

 Note The Close(LINK) message unconditionally shuts down the link.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(STATION)
Open(STATION) is used by the node to open the STATION LPI connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(STATION) Request
Flow : NODE ------> DLC

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element
numelts CHAR Number of buffer elements: 1
msgtype CHAR Message type: OPENMSG (0x01)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
ophdr.openqual CHAR Open qualifier: REQU (0x01)
ophdr.opentype CHAR Open type: STAT (0x11)
ophdr.opresid INTEGER Resource identifier
ophdr.icreditr INTEGER Initial credit for flow DLC –> NODE

Element

Field Type Description
hdreptr–
>elteptr

PTRBFEL
T

Pointer to optional second buffer element (NULL if only one element)

hdreptr–
>startd

INTEGE
R

Index to start of data in this buffer element's data array: 1

hdreptr–
>endd

INTEGE
R

Index to last byte of data in this buffer element's data array

hdreptr–
>dataru

CHAR[S
NANBE
DA]

Defined as follows, where s = startd–1

dataru[s..
s+9]

 Source name—name of local node

dataru[s+
10..s+19]

 Destination name

dataru[s+
20..s+21]

 Link index as specified in Open(LINK) Request

dataru[s+
22]

 If NODE is primary, address of secondary station to initiate contact procedure with.
0x00 if NODE is secondary

dataru[s+
23]

 FID2 indicator
0x00 FID2 used

dataru[s+
24]

 Station type
0x00 Subarea
0x01 Peer

dataru[s+
25..s+26]

 Length of network name from received XID
0000 = No name

dataru[s+
27..s+27+
n]

 Network name from received XID, in local character set, or if this is null, the name of the remote PU record in
the COM.CFG file.
This name can be fully qualified and has a maximum length of 17 characters.

dataru[s+
44..s+89]

 Link data—a copy of that supplied on the Open(LINK) Request

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

dataru[s+
90..s+91]

 The maximum BTU size to be used with this station. This size is 65,536 (largest number in an unsigned short)
for channel connections and 32,768 for non-channel connections.

Note that this limit does not guarantee that the SNA connection will actually use this value. The individual lin
k service or the host can negotiate it downward.

dataru[s+
m+1]

 SAP used by remote station. The remote SAP information is only allowed for 802.2 connections, and may onl
y be present if Signalling information is present It is used along with the Signalling Information to identify th
e remote station.

Microsoft Host Integration Server 2000

Open(STATION) OK Response
Flow : DLC ------> NODE

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element
numelts CHAR Number of buffer elements: 1
msgtype CHAR Message type: OPENMSG (0x01)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
ophdr.openqual CHAR Open qualifier: RSPOK (0x02)
ophdr.opentype CHAR Open type: STAT (0x11)
ophdr.opresid INTEGER Resource identifier
ophdr.icreditr INTEGER Initial Credit for flow DLC –> NODE
ophdr.icredits INTEGER Initial Credit for flow NODE –> DLC

Element

Field Type Description
hdreptr–>elteptr PTRBFELT Pointer to next buffer element

(NULL is only one element)
hdreptr–>startd INTEGER Index to start of data in this buffer element's data array: 1
hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array
hdreptr–>dataru CHAR[SNANBED

A]
Defined as follows, where s = startd–1

dataru[s..s+9] Source name—same as destination name from Open(STATION) Request
dataru[s+10..s+1
9]

 Destination name—name of local node; same as source name from Open(STATION) Req
uest

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Open(STATION) Error Response
Flow : DLC ------> NODE

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element
numelts CHAR Number of buffer elements: 1
msgtype CHAR Message type: OPENMSG (0x01)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
ophdr.openqual CHAR Open qualifier: RSPERR (0x03)
ophdr.opentype CHAR Open type: STAT (0x11)
ophdr.opresid INTEGER Resource identifier
ophdr.operr1 INTEGER Error code
ophdr.operr2 INTEGER Reserved

Element

Field Type Description
hdreptr–>elteptr PTRBFELT Pointer to next buffer element

(NULL is only one element)
hdreptr–>startd INTEGER Index to start of data in this buffer element's data array - 1
hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array
hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd - 1
dataru[s..s+9] Source name
dataru[s+10..s+19] Destination name

The error codes are defined as follows:

Symbolic constant Value Description
ERLKNOTOPEN 0x03 Link not open
ERSTATOPEN 0x05 Station already open
ERNOCB 0x06 Station control blocks depleted
ERINVINDX 0x07 Invalid link index
ERMAXSTAT 0x08 Limit for number of stations per link reached
ERDIFADDR 0x09 Address different from that on Request-Open-Station
ERBADADDR 0x0A Invalid DLC address

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(STATION)
Close(STATION) is used by the node to close the STATION LPI connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(STATION) Request
Flow : NODE ------> DLC

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element: NULL
numelts CHAR Number of buffer elements: 0
msgtype CHAR Message type: CLOSEMSG (0x02)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
clhdr.closqual CHAR Close qualifier: REQU (0x01)
clhdr.clstype CHAR Close type: STAT (0x11)

Note that the message consists of a buffer header only.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Close(STATION) Response
Flow : DLC ------> NODE

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element: NULL
numelts CHAR Number of buffer elements: 0
msgtype CHAR Message type: CLOSEMSG (0x02)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
clhdr.clsequal CHAR Close qualifier

- RSPOK (0x02)
- RSPERR (0x03)

clhdr.clstype CHAR Close type: STAT (0x11)
clhdr.clserr1 INTEGER Error code

The error codes (for an ERROR-RESPONSE) are defined as:

0x03—Station not open
0x04—Link not connected
0x05—Invalid station index
0x06—Duplicate request

 Note The message consists of a buffer header only.

 Note The Close(STATION) message unconditionally closes the station connection.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Request-Open-Station
Flow : DLC ------> NODE (link connection)

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element if present
numelts CHAR Number of buffer elements
msgtype CHAR Message type: DLCSTAT (0x11)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
dshdr.dstype CHAR Status type: QOPNSTN (0x16)
dshdr.dsqual CHAR Station address on XID or mode-set command.

Set to 0x01 for 802.2
dshdr.dsmdset CHAR Rcv-Set-Mode flag

0x00 XID received
0x01 Mode set command received for example,
SNRM for SDLC
SABME for 802.2
QSM for X.25

Element field Type Description
hdreptr–>elteptr PTRBFELT Pointer to next buffer element

(NULL is only one element)
hdreptr–>startd INTEGER Index to start of data in this buffer element's data array: 1
hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array
hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd–1
dataru[s..s+n–1] XID-starting at first byte of received XID information field.

0x00 NULL XID received (n = 1) and signaling information present.

Optional Signaling Information

Field Description
dataru[s+n] Length of data, including this bytes
dataru[s+n+1] Type of data (not used at present)
dataru[s+n+2..s+m] Address or other identifier data. For example,

MAC address of remote station
X.25 address of remote station

Note the following:

The signaling information is used by the node to identify the remote station on 802.2 and X.25 links.
If a NULL XID is received and no signaling information is required, the element can be omitted.
If a NULL XID is received and signaling information is required, an 0x00 byte should be put in the element followed by the
signaling information.
If the Rcv-Set-Mode flag is set to 0x01, the element can be omitted.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Station-Contacted
Flow : DLC ------> NODE (station connection)

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element: NULL
numelts CHAR Number of buffer elements: 0
msgtype CHAR Message type: DLCSTAT (0x11)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
dshdr.dstype CHAR Status type: STNCTCTD (0x17)

Note that this message contains a buffer header only.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Outage
Flow : DLC ------> NODE (link or station connection)

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element: NULL
numelts CHAR Number of buffer elements: 0
msgtype CHAR Message type: DLCSTAT (0x11)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
dshdr.dstype CHAR Status type: OUTAGE (0x18)
dshdr.dsqual CHAR Outage qualifier
dshdr.dsoutsq CHAR Outage subqualifier (optional)

Note the following:

This message contains a buffer header only.
Outage qualifier codes are given in Outages.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Status-Resource
Flow : DLC <------> NODE (station connection)

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element: NULL
numelts CHAR Number of buffer elements: 0
msgtype CHAR Message type: DLCSTAT (0x11)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
dshdr.dstype CHAR Status type: RESOURCE (0x04)
dshdr.dlccred INTEGER DLC credit

Note the following:

This message contains a buffer header only.
The dlccred field indicates that the message sender can receive a further dlccred DLC-Data messages.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Send-XID
Flow : NODE ------> DLC (link connection)

Header

Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue
hdreptr PTRBFELT Pointer to first buffer element
numelts CHAR Number of buffer elements
msgtype CHAR Message type: DLCSTAT (0x11)
srcl CHAR Source locality
srcp CHAR Source partner
srci INTEGER Source index
destl CHAR Destination locality
destp CHAR Destination partner
desti INTEGER Destination index
dshdr.dstype CHAR Status type: SENDXID (0x1A)
dshdr.dsqual CHAR Station address on XID

Element

Field Type Description
hdreptr–>elteptr PTRBFELT Pointer to next buffer element: (NULL is only one element)
hdreptr–>startd INTEGER Index to start of data in this buffer element's data array: 1
hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array
hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd–1
dataru[s..s+n–1] XID information frame.

Note that the dshdr.dsqual field is valid only for primary multipoint connections where station is specified on a multidrop line
that the XID should be sent to. In all other cases, it is set to 0xFF.

In situations where the link protocol requires the address field on the XID to be set to a value other than 0xFF (for example, to
specify that the XID is a response), it is the responsibility of the link service to set this byte appropriately.

The Send-XID message can contain zero elements (numelts = 0) or a single, empty element (hdreptr–>startd < hdreptr–
>endd). In these cases, the link service is expected to transmit a NULL XID.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DLC-Data
Flow : DLC <------> NODE

Header

Field Type Description
nxtqptr PPTRBFHDR Pointer to next buffer header in a queue
hdreptr PPTRBFELT Pointer to first buffer element
numelts CCHAR Number of buffer elements
msgtype CCHAR Message type: DLCDATA (0x10)
srcl CCHAR Source locality
srcp CCHAR Source partner
srci INTEGER Source index
destl CCHAR Destination locality
destp CCHAR Destination partner
desti INTEGER Destination index
ddhdr.ddth01 CCHAR[6] Transmission header

Element

Field Type Description
hdreptr–>elteptr PPTRBFELT Pointer to next buffer element: (NULL is only one element)
hdreptr–>startd INTEGER Index to start of data in this buffer element's data array: 1
hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array
hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd–1
dataru[s..s+n–1] SNA request header (RH) if present, and request unit (RU)

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Configuration Entry Points
The following topics describe the entry points used by the SNALink to obtain configuration information.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetConfigValue
The SNALink calls the SNAGetConfigValue function to obtain the value of a specific configuration parameter.

Parameters

entryName
The name of the configuration parameter required.

pBuffer
A pointer to a buffer (if parameter is a string), or a pointer to a LONGINT (if parameter is an integer).

bufferLen
The length of the buffer. Only required if the parameter is TYPESTRING.

parmType
TYPESTRING if parameter is a string.

TYPELONG if parameter is an integer.

pRetLength
Number of bytes returned if parameter is TYPESTRING, or number of bytes available if the buffer was too short.

Return Values

NO_ERROR
OK

ERBADCFG
Error reading configuration file.

ERNOTFND
Entry not found in configuration record.

ERTOOLONG
Data available exceeded the size of the buffer.

ERBADTYPE
A bad type was specified for the parmType parameter.

Remarks

It is strongly recommended that the SNALink read all required configuration parameters at initialization time (when
SNALinkInitialize is called by the Base).

USHORT SNAGetConfigValue(
UCHAR *entryName,
VOID *pBuffer,
ULONG bufferLen,
UCHAR parmType,
ULONG *pRetLength
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetSystemInfo
The SNALink calls the SNAGetSystemInfo function to obtain information about SNAServer and the network operating system.

Parameters

pCSInfo
Pointer to buffer supplied by application, containing a data structure in which system information is returned. The application
must set the length field in this data structure (see Remarks); the other fields should be set to nulls or blanks.

Members

length
Length of the data structure supplied by the application.

major_ver
Major version number:

1 for Comm Server 1.1

2 for SNA Server 2.0/2.1

3 for SNA Server 3.0

4 for SNA Server 4.0

minor_ver
Minor version number (decimal):

10 for Comm Server 1.1

00 for SNA Server 2.0

20 for SNA Server 2.1

00 for SNA Server 3.0

00 for SNA Server 4.0

config_share[80]
The name of the share point of the current configuration file (\\server\share\, for example). This path name must be a null-
terminated string.

nos
Transport protocol in use:

bit 0: LAN Manager/LAN Server (named pipes)

bit 1: NetWare (IPX/SPX)

bit 2: AppleTalk

bit 3: Banyan VINES (VINES IP)

bit 4: TCP/IP

Return Values

NO_ERROR

INTEGER SNAGetSystemInfo(
struct cs_info *pCSInfo
);

struct cs_info {
 unsigned short length;
 unsigned char major_ver;
 unsigned char minor_ver;
 unsigned char config_share[80];
 unsigned short nos;
};

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

OK
ERNOCFGSVR

No configuration file server available.
ERMOREDATA

Supplied buffer was too small.

Remarks

The application must set the length parameter to the length of the cs_info structure (86 bytes in the current version). Any other
value will be rejected. This parameter is used to ensure compatibility with future versions; an application supplying this length will
always obtain the information shown here, but in future versions it may be possible to specify larger values and obtain further
information.

On successful return, the cs_info data structure contains the version number of SNA Server (SNA Server 2.x, SNA Server 3.0, or
Comm Server 1.x, for older versions), the path to the current configuration file, and the network operating system over which SNA
Server is running.

If there is no configuration file server available, only the version number fields are valid; the other fields should not be checked.

Microsoft Host Integration Server 2000

Setup Functions
This section provides a reference for the functions used with the newer integrated link service DLL architecture or with the older
INF-based setup design.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Integrated Link Service Configuration Functions
This section provides a reference for exported DLL entry points and utility functions used when building an integrated link service
configuration DLL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Functions Exported from a Link Service Configuration DLL
This section provides a reference for functions that must be exported from an integrated link service configuration DLL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CommandLineAdd
The CommandLineAdd function is used to add a new link service using a command-line interface. This function must be
exported from a link service configuration DLL supplied with each link service.

Parameters

szCommandLine
This supplied parameter specifies the command line containing information on the computer and link service to be configured.

szConfigInfo
This supplied and returned parameter points to a configuration buffer that is used to configure the link service.

dConfigInfoSize
This supplied parameter specifies the size of the szConfigInfo configuration buffer .

Return Values

TRUE
The function executed successfully.

FALSE
One or more of the parameters passed to this function are invalid or the function failed.

__declspec(dllexport) BOOL WINAPI CommandLineAdd(
 LPSTR szCommandLine,
 LPSTR *szConfigInfo,
 LPDWORD dConfigInfoSize
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConfigureLinkService
The ConfigureLinkService function is used to add or modify a link service. This function must be exported from a link service
configuration DLL supplied with each link service.

Parameters

szComputerName
This supplied parameter specifies the name of the computer that is to be configured.

szLinkServiceTitle
This supplied parameter specifies the title of the link service that is to be configured.

Return Values

TRUE
The function executed successfully and network bindings need to be recalculated.

FALSE
One or more of the parameters passed to this function are invalid or network bindings do not need to be recalculated.

__declspec(dllexport) BOOL WINAPI ConfigureLinkService(
 LPSTR szComputerName,
 LPSTR szLinkServiceTitle
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConfigureLinkServiceEx
The ConfigureLinkServiceEx function is used to add or modify a link service. This function must be exported from a link service
configuration DLL supplied with each link service.

Parameters

szComputerName
This supplied parameter specifies the name of the computer that is to be configured.

szLinkServiceTitle
This supplied parameter specifies the title of the link service that is to be configured.

pvConfigInfo
This supplied and returned parameter points to a configuration buffer that is used to configure the link service.

dConfigInfoSize
This supplied parameter specifies the size of the pvConfigInfo configuration buffer.

Return Values

TRUE
The function executed successfully and network bindings need to be recalculated.

FALSE
One or more of the parameters passed to this function are invalid or network bindings do not need to be recalculated.

__declspec(dllexport) BOOL WINAPI ConfigureLinkServiceEx(
 LPSTR szComputerName,
 LPSTR szLinkServiceTitle,
 LPSTR* pvConfigInfo,
 LPDWORD dConfigInfoSize
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DisplayHelpInfo
The DisplayHelpInfo function is used to generate help information used by the command-line interface to a link service DLL.
This function must be exported from a link service configuration DLL supplied with each link service.

Parameters

szHelpInfoBuffer
This supplied and returned parameter points to a buffer that on successful return contains help information that can be used to
configure the link service.

Return Values

TRUE
The function executed successfully.

FALSE
The parameter passed to this function is invalid or the function failed.

__declspec(dllexport) BOOL WINAPI DisplayHelpInfo(
 LPSTR * szHelpInfoBuffer
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RemoveAllLinkServices
The RemoveAllLinkServices function is used to remove all link services from a machine. This function must be exported from a
link service configuration DLL supplied with each link service.

Parameters

szComputerName
This supplied parameter specifies the name of the computer that is to have all link services removed.

Return Values

TRUE
The function executed successfully and network bindings need to be recalculated.

FALSE
The parameter passed to this function is invalid or network bindings do not need to be recalculated.

__declspec(dllexport) BOOL WINAPI RemoveAllLinkServices(
 LPSTR szComputerName
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RemoveLinkService
The RemoveLinkService function is used to remove a link service. This function must be exported from a link service
configuration DLL supplied with each link service.

Parameters

szComputerName
This supplied parameter specifies the name of the computer that is to have the link service removed.

szLinkServiceTitle
This supplied parameter specifies the title of the link service that is to be removed.

Return Values

TRUE
The function executed successfully and network bindings need to be recalculated.

FALSE
One or more of the parameters passed to this function are invalid or network bindings do not need to be recalculated.

__declspec(dllexport) BOOL WINAPI RemoveLinkService(
 LPSTR szComputerName,
 LPSTR szLinkServiceTitle
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Utility Functions Used by a Link Service Configuration DLL
This section provides a reference for utility functions used by an integrated link service configuration DLL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

AddPerfmonCounters
The AddPerfmonCounters function is used to add perfmon counters to a link service. This utility function is used to construct an
integrated link service configuration DLL.

Parameters

pszComputerName
This supplied parameter specifies the name of the computer that is to have perfmon counters added.

pszService
This supplied parameter specifies the name of the link service that is to have perfmon counters added.

Return Values

None.

Remarks

SNA RPC Service must be running or an error MessageBox will indicate a failure.

void AddPerfmonCounters(
 LPSTR pszComputerName,
 LPSTR pszService
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

bCreateService
The bCreateService function is used to create a service on a computer for a link service. This utility function is used to construct
an integrated link service configuration DLL.

Parameters

szComputerName
This supplied parameter specifies the name of the computer to create the service on.

szServiceName
This supplied parameter specifies the name of the link service that is to be created. This parameter is passed unchanged to the
Windows 2000/NT CreateService function.

szServicePath
This supplied parameter specifies the binary path to the link service that is to be created. This parameter is passed unchanged to
the Windows 2000/NT CreateService function.

szServiceDependencies
This supplied parameter specifies the service dependencies of the link service that is to be created. This parameter is passed
unchanged to the Windows 2000/NT CreateService function.

dServiceType
This supplied parameter specifies the type of service that is to be created. This parameter is passed unchanged to the Windows
2000/NT CreateService function.

dServiceLoadType
This supplied parameter specifies the load type of service that is to be created. This parameter is passed unchanged to the
Windows 2000/NT CreateService function.

szDomainName
This supplied parameter specifies the domain name for the service to run in.

szUserid
This supplied parameter specifies the user identifier for the service to run in.

szPassword
This supplied parameter specifies the password for the domain account.

Return Values

TRUE
The function executed successfully and the service was created.

FALSE
One or more of the parameters passed to this function are invalid or the function failed.

Remarks

If the szUserid parameter is not supplied, then the szDomainName parameter is used to construct the Account parameter passed
to the Windows 2000/NT CreateService function.

BOOL bCreateService(
 LPSTR szComputerName,
 LPSTR szServiceName,
 LPSTR szServicePath,
 LPSTR szServiceDependencies,
 DWORD dServiceType,
 DWORD dServiceLoadType,
 LPSTR szDomainName,
 LPSTR szUserid,
 LPSTR szPassword
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

bDeleteService
The bDeleteService function is used to delete a service on a computer for a link service. This utility function is used to construct
an integrated link service configuration DLL.

Parameters

szComputerName
This supplied parameter specifies the name of the computer to delete the service on.

szServiceName
This supplied parameter specifies the name of the service that is to be deleted. This parameter is passed unchanged to the
Windows 2000/NT OpenService function.

Return Values

TRUE
The function executed successfully and the service was deleted.

FALSE
One or more of the parameters passed to this function are invalid or the function failed.

BOOL bDeleteService(
 LPSTR szComputerName,
 LPSTR szServiceName
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

bStopService
The bStopService function is used to stop a service running on a computer for a link service. This utility function is used to
construct an integrated link service configuration DLL.

Parameters

szServiceName
This supplied parameter specifies the name of the service that is to be stopped. This parameter is passed unchanged to the
Windows 2000/NT OpenService function.

szComputerName
This supplied parameter specifies the name of the computer to stop the service on.

Return Values

TRUE
The function executed successfully and the service was stopped.

FALSE
One or more of the parameters passed to this function are invalid or the function failed.

BOOL bStopService(
 LPSTR szServiceName,
 LPSTR szComputerName
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CheckForExistingLinkService
The CheckForExistingLinkService function is used to check to see if a link service of this type exists with this title. This utility
function is used to construct an integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry to search.

szLinkRegistryRoot
This supplied parameter specifies the registry root for this type of link service to search for.

szTitle
This supplied parameter specifies the title of the link service to search for.

Return Values

TRUE
The link service was located.

FALSE
One or more of the parameters passed to this function are invalid or the link service was not located.

BOOL bCreateService(
 HKEY *hGlobalKey,
 LPSTR szLinkRegistryRoot,
 LPSTR szTitle
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ConvertHexStringToDWORD
The ConvertHexStringToDWORD function is used to convert a hexadecimal string to a DWORD value. This utility function is
used to construct an integrated link service configuration DLL.

Parameters

szHexString
This supplied parameter specifies the hexadecimal string to be converted.

dHexValue
This supplied and returned parameter contains the DWORD value of the hexadecimal string if the function was successful.

Return Values

TRUE
The function executed successfully and the hexadecimal string was converted.

FALSE
One or more of the parameters passed to this function are invalid or the function failed.

Remarks

This function scans until a nonhexadecimal character is encountered. The hexadecimal formats recognized are xnnnn, 0xnnnn, or
nnnn.

BOOL ConvertHexStringToDWORD(
 LPSTR szHexString,
 LPDWORD dHexValue
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ExtractNextParameter
The ExtractNextParameter function is used to get the next parameter from a buffer. This utility function is used to construct an
integrated link service configuration DLL.

Parameters

szSourceBuffer
This supplied parameter specifies the source buffer.

szParameter
This supplied and returned parameter specifies the return buffer for parameters.

dStartIndex
This supplied parameter contains the DWORD index to begin parameter scan.

Return Values

TRUE
The function executed successfully and the next parameter was located and returned in the szParameter argument.

FALSE
The function failed.

Remarks

Parameters are delimited by a space character. Quotes can be used to include spaces in a parameter.

BOOL ExtractNextParameter(
 LPSTR szSourceBuffer,
 LPSTR szParameter,
 LPDWORD dStartIndex
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fAddRegistryEntry
The fAddRegistryEntry function is used to add a new registry value to the registry. This utility function is used to construct an
integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry to modify.

szRegistryValue
This supplied parameter specifies the registry value name to add.

szRegistryData
This supplied parameter specifies the registry value data to add.

dType
This supplied parameter specifies the registry value type. This parameter is supplied unchanged to the Win32®
RegSetValueEx function.

dSize
This supplied parameter specifies the size of the registry value data. This parameter is supplied unchanged to the Win32
RegSetValueEx function.

Return Values

TRUE
The function executed successfully and the registry entry was added.

FALSE
The function failed and the registry entyr was not added.

BOOL fAddRegistryEntry(
 HKEY *hGlobalKey,
 char *szRegistryValue,
 char *szRegistryData,
 DWORD dType,
 DWORD dSize
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fCanWeAdministerRemoteBox
The fCanWeAdministerRemoteBox function is used to determine if the caller has administrative privileges on the remote
computer. This utility function is used to construct an integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle to the remote computer's registry.

Return Values

TRUE
The caller has administrative privileges on the remote computer.

FALSE
The caller lacks administrative privileges.

BOOL fCanWeAdministerRemoteBox(
 HKEY *hGlobalKey
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fConnectRegistry
The fConnectRegistry function is used to connect to a remote computer's registry and return a handle to the remote registry.
This utility function is used to construct an integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry to connect to.

szComputerName
This supplied parameter specifies the computer name to connect to.

Return Values

TRUE
The function executed successfully and the function was able to connect to the registry.

FALSE
The function failed.

BOOL fConnectRegistry(
 HKEY *hGlobalKey,
 LPSTR *szComputerName
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fDisConnectRegistry
The fDisConnectRegistry function is used to disconnect from a remote computer's registry. This utility function is used to
construct an integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry to disconnect from.

Return Values

TRUE
The function executed successfully and the function was able to disconnect from the registry.

FALSE
The function failed.

BOOL fDisConnectRegistry(
 HKEY * hGlobalKey
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fFindAndReplaceString
The fFindAndReplaceString function is used to find and replace a substring within a string. This utility function is used to
construct an integrated link service configuration DLL.

Parameters

szStringBuffer
This supplied parameter specifies the string buffer to search.

szSearchString
This supplied parameter specifies the string to search for.

szReplaceString
This supplied parameter specifies the replacement string.

Return Values

TRUE
The string was found.

FALSE
The string was not found.

BOOL fFindAndReplaceString(
 LPSTR szStringBuffer,
 LPSTR szSearchString,
 LPSTR szReplaceString
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fFindString
The fFindString function is used to determine if a string exists within a string buffer. This utility function is used to construct an
integrated link service configuration DLL.

Parameters

szStringBuffer
This supplied parameter specifies the string buffer to search.

szSearchString
This supplied parameter specifies the string to search for.

Return Values

TRUE
The string was found.

FALSE
The string was not found.

BOOL fFindString(
 LPSTR szStringBuffer,
 LPSTR szSearchString
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fFindStringInMultiSZ
The fFindStringInMultiSZ function is used to determine if string exists in a REG_MULTI_SZ string list and return entire string.
This utility function is used to construct an integrated link service configuration DLL.

Parameters

szStringBuffer
This supplied parameter specifies the string buffer to search.

szSearchString
This supplied parameter specifies the string to search for.

szFoundString
This supplied and returned parameter specifies the full string containing string if successful.

Return Values

TRUE
The string was found and returned.

FALSE
The string was not found.

BOOL fFindString(
 LPSTR szStringBuffer,
 LPSTR szSearchString,
 LPSTR szFoundString
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fQueryRegistryValue
The fQueryRegistryValue function is used to query a value from the registry.This utility function is used to construct an
integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry.

szRegistryKey
This supplied parameter specifies the registry key.

szRegistryValue
This supplied parameter specifies the registry value name.

szRegistryData
This supplied parameter specifies the registry value data.

dSize
This supplied parameter specifies the size of the registry data.

Return Values

TRUE
The function executed successfully and the function was able to connect to the registry.

FALSE
The function failed.

BOOL fQueryRegistryValue(
 HKEY * hGlobalKey,
 LPSTR szRegistryKey,
 LPSTR szRegistryValue,
 LPSTR szRegistryData,
 LPDWORD dSize
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fRegistryKeyExists
The fRegistryKeyExists function is used to determine if a registry key already exists in the registry.This utility function is used to
construct an integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry.

szRegistryKey
This supplied parameter specifies the registry key.

Return Values

TRUE
The registry key exists.

FALSE
The function failed or the registry key doen’t exist.

BOOL fRegistryKeyExists (
 HKEY * hGlobalKey,
 LPSTR szRegistryKey
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fRemoveRegistryEntry
The fRemoveRegistryEntry function is used to remove a registry key from the registry.This utility function is used to construct
an integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry.

szRegistryKey
This supplied parameter specifies the registry key.

Return Values

TRUE
The function was successful and the registry key was removed.

FALSE
The function failed or the registry key could not be removed.

BOOL fRemoveRegistryEntry (
 HKEY * hGlobalKey,
 char * szRegistryKey
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fRemoveRegistryValue
The fRemoveRegistryValue function is used to remove a registry value from the registry.This utility function is used to construct
an integrated link service configuration DLL.

Parameters

hGlobalKey
This supplied parameter specifies the handle of the registry.

szRegistryKey
This supplied parameter specifies the registry key.

szRegistryValue
This supplied parameter specifies the registry value to remove.

Return Values

TRUE
The function was successful and the registry value was removed.

FALSE
The function failed or the registry value could not be removed.

BOOL fRemoveRegistryValue (
 HKEY * hGlobalKey,
 char * szRegistryKey,
 char * szRegistryValue
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

fStringCompare
The fStringCompare function is used to determine if string exists in another string. This utility function is used to construct an
integrated link service configuration DLL.

Parameters

lpszString1
This supplied parameter specifies the string to search for.

lpszString2
This supplied parameter specifies the string to compare.

Return Values

TRUE
The string was found.

FALSE
The string was not found.

BOOL fStringCompare (
 LPSTR lpszString1,
 LPSTR lpszString2
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

LoadStringResource
The LoadStringResource function is used to load a string from a string resource. This utility function is used to construct an
integrated link service configuration DLL.

Parameters

dStringResource
This supplied parameter specifies the resource ID of the string resource.

pszString
This supplied and returned parameter specifies the buffer to place the string in.

Return Values

None

void LoadStringResource (
 DWORD dStringResource,
 LPSTR pszString
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ParseNextField
The ParseNextField function is used to parse and return the next field from string. This utility function is used to construct an
integrated link service configuration DLL.

Parameters

szParseString
This supplied parameter specifies the string to parse.

szField
This supplied and returned specifies the return buffer for the next field.

cDelimiter
This supplied parameter specifies the delimiter character for the end of a field.

dStartIndex
This supplied parameter specifies a pointer to the index in bytes from beginning of the szParseString to start the search from.

Return Values

TRUE
The next field was found.

FALSE
The next field was not found.

 Note The '^' character can be used as an escape character to allow the delimiter to be used.

void ParseNextField(
 LPSTR szParseString,
 LPSTR szField,
 char scDelimiter,
 LPDWORD dStartIndex
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

RemovePerfmonCounters
The RemovePerfmonCounters function is used to remove counters from a link service. This utility function is used to construct
an integrated link service configuration DLL.

Parameters

pszComputerName
This supplied parameter specifies the name of the computer that is to have perfmon counters removed.

pszService
This supplied parameter specifies the name of the link service that is to have perfmon counters removed.

Return Values

None.

Remarks

SNA RPC Service must be running or an error MessageBox will indicate a failure.

void RemovePerfmonCounters(
 LPSTR pszComputerName,
 LPSTR pszService
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

INF-Based Setup Functions
This section provides a reference for some of the useful entry points in the .INF file that contains utility functions. The file name is
in the variable UtilityInf; usually set to SNAUTILS.INF.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CreateSNARegEntry
The CreateSNARegEntry function creates the necessary entries for an instance in the SOFTWARE\Microsoft registry tree. If the
product is not already in the registry, it creates an entry for the product. It then creates an entry for the particular instance of the
product and for the NetRules key under that entry. This function leaves open handles to all the important subkeys for further use.

Parameters

Argument 0
Name of the top-level registry node to use. This should be a full registry path. For most scenarios, this is the value held in the
ProductRegBase variable (SOFTWARE\Microsoft).

Argument 1
Name of the product. This is the name of the key that will be created for this product.

Argument 2
Instance index. This is the index of this particular instance of this product.

Return Values

Return 0
Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.
STATUS_FAILED: Operation failed.

Return 1
Handle to the top-level registry node.

Return 2
Handle to the product’s registry key under the top-level node.

Return 3
Handle to the instance entry under the product key.

Return 4
Handle to the NetRules entry under the instance key.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

CreateSNAService
The CreateSNAService function creates the necessary entries for an instance in the Services registry tree. This function adds
particular values that are necessary for the service as well as all the subkeys under the service key, including Parameters and
ExtraParameters.

Parameters

Argument 0
Name of the service to be created.

Argument 1
Type of SNA Service (SNAServiceType variable).

Argument 2
Image path of this component (ImagePath variable).

Argument 3
Dependency list (ProductDepends variable).

Argument 4
Parameter list (ProductParams variable).

Argument 5
Extra parameter list (ProductExtraParams variable).

Argument 6
Event Log message file.

Argument 7
Event types supported (usually 0x07).

Return Values

Return 0
Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.
STATUS_FAILED: Operation failed.

Return 1
Handle to the service key.

Return 2
Handle to the Parameters key under the service key.

Return 3
Handle to the ExtraParameters key under the Parameters key.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

DeleteSNAService
The DeleteSNAService function deletes a particular service using the Service Control Manager. All the keys for the service are
deleted as well.

Parameters

Argument 0
Name of the service to be deleted.

Return Values

Return 0
Status of the operation.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

EnterServiceName
The EnterServiceName function presents the user with an algorithmically determined service name for a component and allows
the user to change it before returning the final value. This function ensures that the new service name is unique in the Service
Control Architecture before accepting it.

Parameters

Argument 0
Title of the product the user should be queried about.

Argument 1
Default service name prefix.

Argument 2
Index for this instance of the product. The algorithm uses this index to determine the default name.

Return Values

Return 0
Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.
STATUS_NOSUCHLANGUAGE: The language specified is not supported.
STATUS_USERCANCEL: User pressed the Cancel button.

Return 1
Service name that the user entered.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FindNextAvailableIndex
The FindNextAvailableIndex function is used to determine the index a new instance should receive. For example, if the current
indexes in use are { 01, 02, 04 }, this function would return 03 as its return value.

Parameters

Argument 0
A list of the indexes currently in use. This list can be obtained by using the FindSNAProductServices function.

Return Values

Return 0
Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.
STATUS_FAILED: Operation failed.

Return 1
First available index for the list.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FindSNAProductServices
The FindSNAProductServices function enumerates all instances of a product. It returns lists of information for the instances that
can be used in the script. This function can also be used to determine whether or not a product exists in the registry by analyzing
the return status.

Parameters

Argument 0
Name of top-level registry node to use.

Argument 1
Name of the product.

Return Values

Return 0
Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.
STATUS_NOSUCHPRODUCT: The product does not exist in the registry.
STATUS_FAILED: Operation failed.

Return 1
List of indexes for the instances of this product.

Return 2
List of service names for the instances of this product.

Return 3
List of titles for the instances of this product.

Return 4
List of descriptions for the instances of this product.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FindSNARegEntry
The FindSNARegEntry function is written as a parallel to CreateSNARegEntry. When called, it attempts to open all of the
necessary registry keys and return open handles to them.

Parameters

Argument 0
Name of the top-level registry node to use.

Argument 1
Name of the product.

Argument 2
Instance index.

Return Values

Return 0
Status of the operation.

Return 1
Handle to the top-level registry node.

Return 2
Handle to the product’s registry key under the top-level node.

Return 3
Handle to the instance entry under the product key.

Return 4
Handle to the NetRules entry under the instance key.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

FindSNAService
The FindSNAService function is written as a parallel to CreateSNAService. It is written to provide an easy way to access the keys
for a particular service.

Parameters

Argument 0
Name of the service to look for.

Return Values

Return 0
Status of the operation.

Return 1
Handle to the service key.

Return 2
Handle to the Parameters key under the service key.

Return 3
Handle to the ExtraParameters key under the Parameters key.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

GrepUniqueServiceInfo
The GrepUniqueServiceInfo function is used to determine information about a particular instance when only one of the four
elements (index, name, title, or description) is available. Because there is no way to determine the position of an element in a list, it
is hard to figure out the respective name, title, or description of an instance given only the index. This function searches the list
and returns the rest of the information about the instance.

Parameters

Argument 0
Type of information to search:

INDEX: Search the list of indexes.
NAME: Search the list of service names.
TITLE: Search the list of titles.
DESC: Search the list of descriptions.

Argument 1
Keyword to search for in the list.

Argument 2
List of indexes for the instances of this product.

Argument 3
List of service names for the instances of this product.

Argument 4
List of titles for the instances of this product.

Argument 5
List of descriptions for the instances of this product.

Return Values

Return 0
Status of the operation.

Return 1
Index for this instance of the product.

Return 2
Service name for this instance of the product.

Return 3
Title for this instance of the product.

Return 4
Description for this instance of the product.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SetupMessage
The SetupMessage function displays a dialog box with user-defined text plus OK and Cancel buttons. It is useful for debugging.

Parameters

Argument 0
Language to use (STF_LANGUAGE).

Argument 1
Which icon to display in the dialog box: STATUS, WARNING, NONFATAL, and so on.

Argument 2
The text to be displayed. Can contain linefeeds using the LF symbol.

Return Values

Return 0
Status of the operation.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

IOCTL Commands
This section provides reference information about the IOCTL functions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x41: Set Event/Semaphore Handle
This function supplies the driver with the handle of an event that can be used for signaling the SNALink software.

Parameters

IRP.UserEvent
This parameter is taken from the IOCTL call, and is an event handle. The handle must refer to an Event/Semaphore owned by
the SNALink process. The driver sets the event to indicate the completion of a transmission or the availability of received data or
status. Although not required by the driver, the event passed here by the SNALink is normally the global Base event.

Return Values

If the supplied parameter is NULL, the function returns a status of STATUS_INVALID_PARAMETER, with additional information of
INFO_SET_EVENT_NO_EVENT. For any other illegal parameter, an exception is raised.

Remarks

This function should be called only once, immediately after the OPEN is issued. The event is set when:

lFrames are transmitted from the driver buffers.
lFrames are received into the driver buffers.
lStatus information is updated in the Interface Record (see function 0x64).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x42: Set Link Characteristics
This function sets the link protocol parameters required by the driver.

Parameters

Frame Size (packet format WORD)
Indicates to the driver the minimum amount of contiguous receiver buffering that must be available for any individual frame.

Data Rate (packet format DWORD)
Line speed in bits per second. If Link Options bit 3 is not set, this field is ignored.

Station Address 1 (packet format BYTE)
Station Address 2 (packet format BYTE)

Station addresses that the user wishes to receive on if selective reception is to be used (typically for multidropped secondaries).
Only frames of data beginning with either of these values will be passed to the user — others are ignored or discarded.

If the SNALink wishes to listen on only one station address, Station Address 2 should be set to zero.

A value of zero in both fields indicates that all error-free received frames are to be passed to the SNALink, regardless of the
contents of their first address byte.

Link Options (packet format BYTE)
Link Options is a bitmap. The default is all values set to zero. The bits are used as shown in the following table. Note that not all
of these options are supported by the standard Host Integration Server 2000 synchronous card drivers.
Bit 7 1 = Four wire (constant RTS/CTS).

0 = Two wire (switched RTS/CTS).
Bit 6 1 = NRZI encoding.

0 = NRZ encoding.
Bit 5 1 = HDLC level 1 conventions.

0 = SDLC level 1 conventions.
Bit 4 1 = Full-duplex (simultaneous 2-way) data.

0 = Half-duplex (alternating 1-way) data.
Bit 3 1 = Generate internal clocking.

0 = Take external clocking.
Bit 2 1 = Use DMA if available.

0 = Do not use DMA on this link.
Bit 1 1 = Reset all statistics to zero.

0 = Leave accumulated statistics as is.
Bit 0 Reserved.

Reserved (packet format BYTE).

Packet Formats

WORD Frame Size
DWORD Data rate
BYTE Station address 1
BYTE Station address 2
BYTE Link Options
BYTE Reserved

Frame Size indicates to the driver the minimum amount of contiguous receiver buffering that must be available for any individual
frame.

Data Rate is the line speed in bits per second. If Link Options bit 3 is not set, this field is ignored.

Station Address 1 and 2 are the station addresses that the user wishes to receive on if “selective” reception is to be used (typically
for multi-dropped secondaries). Only frames of data commencing with either of these values will be passed up to the user —
others are ignored or discarded.

If the SNALink wishes to listen on only one station address, station address 2 should be set to zero.

A value of zero in both fields indicates that all error-free received frames are to be passed to the SNALink, regardless of the
contents of their first address byte.

Link Options is a bitmap. The default is all values set to zero. The bits are used as follows:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Bit 7 set to 1 = Four Wire (constant RTS/CTS)
0 = Two Wire (switched RTS/CTS)

Bit 6 set to 1 = NRZI encoding
0 = NRZ encoding

Bit 5 set to 1 = HDLC level 1 conventions
0 = SDLC level 1 conventions

Bit 4 set to 1 = Full-duplex (simultaneous 2-way) data
0 = Half-duplex (alternating 1-way) data

Bit 3 set to 1 = Generate internal clocking
0 = Take external clocking

Bit 2 set to 1 = Use DMA if available
0 = Don’t use DMA on this link

Bit 1 set to 1 = Reset all statistics to zero
0 = Leave accumulated statistics as is

Bit 0 reserved.

 Note Not all of the above options are supported by the standard Host Integration Server 2000 synchronous card
drivers.›

Return Values

IoStatus.Status IoStatus.Information Description
STATUS_INVALID_PARAMETER IO_ERR_LINKCHARBUF_

WRONG_SIZE

STATUS_INVALID_PARAMETER IO_ERR_FRAME_BUF_
TOO_SMALL

Buffer must be at least 268 bytes.

STATUS_INVALID_PARAMETER IO_ERR_FRAME_BUF_
TOO_BIG

Buffer maximum size is 2048 bytes.

STATUS_INVALID_PARAMETER IO_ERR_NO_CLOCKS No internal clocking available
STATUS_DATA_ERROR IO_ERR_HARDWARE_

8273CMD_TIMEOUT

STATUS_SUCCESS IO_ERR_NO_DMA_FDX DMA requested, but can't be used

Remarks

The driver should always start the receiver after processing this request. If either the transmitter or receiver is active when this
request is issued, the driver stops the current frame before resetting the link characteristics, then restarts the previous operation.

Link Service DLLs that support the synchronous dumb card interface use the following registry entries to the control this feature.

SYSTEM\CurrentControlSet\Services\<linkService>\Parameters

where <linkService> is the name of the link service.

Under this node, the following entries and values must be entered or modified:

A node called ExtraParameters must be created or modified with the following registry entries and values:

InternalClock
The value of this entry should be defined and set to a REG_DWORD of any value to enable the internal clock.

InternalClockRate
The value of this entry should be set to a REG_DWORD equal to the number of bits per second.

Microsoft Host Integration Server 2000

Function 0x43: Set V24 Output Status
This function allows the SNALink software to alter the modem output status on the adapter V.24 interface. There is no parameter
or data packet on this request. The relevant V.24 settings are put into the driver interface record (see function 0x61) by the
SNALink prior to calling the driver.

Return Values

IoStatus.Status IoStatus.Information
STATUS_DATA_ERROR IO_ERR_HARDWARE_8273CMD_TIMEOUT

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x44: Transmit Frame
The SNALink calls this function to transfer a frame of data to the driver.

Parameters

IRP.CurrentStackLocation.OutputBufferLength
Frame length — the size of the frame pointed to by the data buffer pointer. The frame includes the control, address, and
information field (if present), but no allowance should be made for flags or CRC bytes.

IRP.UserBuffer
Frame data — the contents of the frame.

Return Values

IoStatus.Status IoStatus.Information
STATUS_BUFFER_TOO_SMALL IO_ERR_TX_BUFFER_FULL
STATUS_INVALID_PARAMETER IO_ERR_TX_FRAME_TOO_BIG

Refer also to the description of the interface record — the driver updates a field within the interface record reflecting the amount
of buffer space available.

Remarks

In two-wire configurations, the driver must raise RTS and wait for CTS from the modem before initiating a transmission. The
driver should then drop RTS when all frames have been transmitted. The driver assumes that the transmission is complete when
both of the following are true:

The transmit buffer becomes empty (if the link is configured as half-duplex).
The last frame transmitted had the Poll/Final bit set in the second byte.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x45: Abort Transmitter
The SNALink calls this function to clear down the driver’s transmitter.

Remarks

This request causes the driver to stop the current frame transmission and to flush its internal buffers of any further data pending
transmission. In two-wire configurations, the driver should also drop RTS.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x46: Abort Receiver
The SNALink calls this function to clear down the driver’s receiver.

Remarks

This request causes the driver to stop the receiver and to flush its internal buffers of any received data. It should be used to clear
down the receiver, for instance, before altering the link characteristics.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x47: Off-Board Load
This function is not supported.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x61: Get/Set Interface Record
This function has been superseded by Function 0x64: Read Interface Record.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x62: Get V24 Status
The SNALink calls this function to read the current state of the modem interface lines. No parameter or data packet is passed. This
request causes the driver to update the Input V.24 Status field in the driver interface record.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x63: Receive Frame
The SNALink calls this function to read a data frame from the driver’s buffers.

Parameters

IRP.CurrentStackLocation.OutputBufferLength
Frame length — the size of the frame transferred into the data buffer by the driver. The frame includes the control, address, and
information field (if present), but no flags or CRC bytes. When the request is issued, frame length is set to the maximum length
of the buffer addressed by the data packet pointer.

IRP.UserBuffer
Frame data — the contents of the frame that has been received.

Return Values

IoStatus.Status IoStatus.Information
STATUS_BUFFER_TOO_SMALL None

Remarks

The driver transfers the next available received frame to the supplied buffer. Note that if the buffer is not large enough, a buffer
overflow error is returned. This allows the application to decide if oversize frames are an error. If not, then a second attempt to
read should be made, using a buffer at least Frame Length bytes long. A length of zero is returned if there are no frames ready to
be received.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Function 0x64: Read Interface Record
This function reads the driver’s interface record and copies it into the buffer passed by the SNALink. The buffer must be allocated
by the SNALink prior to making this call.

Parameters

IRP.System.Buffer
Interface Record Address (IN) — a 32-bit pointer to the driver’s interface record area.

The interface record format is as follows:

Description Type
Received Frames int
Transmit Buffer Space int
Status Events int
Input V.24 Status UCHAR
Output V.24 Status UCHAR
Statistics Counters int[11]

Received Frames is the number of frames currently queued in the driver receive buffers.
Transmit Buffer Space is used to signal to the SNALink:

Whether more frames can be provided to the driver.

Whether the driver still has frames waiting to be sent.

The Transmit Buffer Space field indicates the maximum frame size that the driver can currently accept. This is updated
after each successful Transmit Frame IOCTL, and should be checked by the SNALink before sending further frames to the
driver.

Status Events is a count of the total number of increments made to the Statistics Counters.
Input V.24 Status is a bitmap of the current logical state of the input interface lines, a value of 1 meaning ON and a value
of 0 meaning OFF. The pins are mapped as follows:
Bit number V.24 circuit name Circuit number RS-232C pin
7 - 5 Reserved 142 25
4 Test Indicator 125 22
3 Calling Indicator 125 22
2 RLSD (commonly DCD) 109 8
1 Data Set Ready (DSR) 107 6
0 Ready For Sending (CTS) 106 5
Output V.24 Status is a bitmap of the current logical state of the output interface lines, a value of 1 meaning ON and a
value of 0 meaning OFF. The pins are mapped as follows:
Bit number V.24 circuit name Circuit number RS-232C pin
7 - 5 Reserved
4 Maintenance Test 140 18
3 Select Standby 116 11
2 Data Signal Rate Selector 111 23
1 Data Terminal Ready (DTR) 108/2 22
0 Request to Send (RTS) 105 4

Note that the driver will raise and lower RTS as necessary while transmitting, reflecting the state of RTS in the output V.24
status field. The application should not, therefore, try to manipulate RTS.

The Statistics Counters are running counts of various kinds of link status information.The events they relate to are:
Counter number Description
1 Frames received with incorrect CRC.
2 Frames larger than the maximum size received.
3 Frames smaller than 32 bits received.
4 Frames received that are not a multiple of 8 bits.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

5 Aborted frames received.
6 Transmitter underruns.
7 Receiver overruns.
8 RLSD drops in mid-reception.
9 CTS drops in mid-transmission.
10 DSR drops.
11 Hardware failures (adapter or modem).

Remarks

The interface record provides a fast mechanism to use to decide whether a frame can be transmitted, whether there are any
frames to be received, and so on. The driver maintains this information. Each time the SNALink requires this information, it calls
Read Interface Record to get a copy of the current interface record. After each call, the driver clears the statistics counters in its
own interface record. The V.24 status and transmit and receive data information are unchanged.

Microsoft Host Integration Server 2000

SNA Modem API
This section provides reference material for the SNA Modem API structure and functions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

MODEM_STATUS
A MODEM_STATUS structure for each SNA link contains status information used by the SNA Modem Status interface.

Members

LSName
A character array containing the link service name.

V24In
A set of bit fields representing the V.24 input flags that determine which signal lines to mask. These bit fields can be ORed
together to create a complete mask. The defined bit fields for V24In are as follows:

MASK_CTS Mask the clear to send line.

MASK_DSR Mask the data set ready line.

MASK_DCD Mask the data carrier detect line.

MASK_DRI Mask the data ring indicator line.

V24Out
A set of bit fields representing the V.24 output flags that determine which signal lines to mask. These bit fields can be ORed
together to create a complete mask. The defined bit fields for V24Out are as follows:

MASK_RTS Mask the request to send line.

MASK_DTR Mask the data terminal ready line.

RxFrameCount
A count of received frames.

TxFrameCount
A count of transmitted frames.

Reserved
Padding for future expansion.

struct _ModemStatus{
 char LSName[12];
 char V24In;
 char V24Out;
 unsigned short RxFrameCount;
 unsigned short TxFrameCount;
 char Reserved[6];
} MODEM_STATUS;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAModemInitialize
The SNAModemInitialize function should be called once per link service process at initialization. This function initializes the
communication path to the SNA Modem application. The ideal place to call this function is in the SNALinkInitialize function.

See Also

SNALinkInitialize

void SNAModemInitialize();

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAModemAddLink
The SNAModemAddLink function should be called once per link initialization. For link services that support more than a single
SNA link, this call can be made multiple times. For link services that support only a single link, this call can be made immediately
after SNAModemInitialize; otherwise it is preferable to call SNAModemAddLink as each port is initialized.

Parameters

ppModemStatus
The address of a pointer to a MODEM_STATUS structure that will be used for storing modem status information. The returned
MODEM_STATUS structure will contain a link service name.

Remarks

The IHV should declare a pointer to a MODEM_STATUS structure and pass its address to SNAModemAddLink.

The LSName is initially the name of the link service, but may need to be altered for multiport link services.The IHV can
replace the link service name returned in the MODEM_STATUS structure to differentiate between possible multiple
connections through a single link service.

The IHV should maintain the various input and output signal lines and the data flow frame counts in the returned
MODEM_STATUS structure. The Host Integration Server 2000 Modem Monitor application will periodically read and
display the data stored in this MODEM_STATUS structure.

Internally SNAModemAddLink increments the usage count of the shared memory, and signals the Host Integration
Server 2000 Modem Monitor application that a new link has been added.

See Also

MODEM_STATUS, SNAModemInitialize

void SNAModemAddLink(
MODEM_STATUS **ppModemStatus
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAModemDeleteLink
The SNAModemDeleteLink function should be called when a link is terminating to delete the resources associated with the link.
The parameters passed in must correspond to those returned by a call to SNAModemAddLink.

Parameters

pModemStatus
A pointer to a MODEM_STATUS structure that was passed to the SNAModemAddLink function used for storing modem
status interface.

Remarks

All resources in the link service associated with the modem status are deleted, and they must not be accessed by the IHV code
after calling this function.

See Also

MODEM_STATUS, SNAModemAddLink

void SNAModemDeleteLink(
MODEM_STATUS *pModemStatus
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAModemTerminate
The SNAModemTerminate function should be called once per link service process, at termination. The ideal place is
SNALinkTerminate. If the link service supports a single link, it is appropriate to call SNAModemDeleteLink immediately before
SNAModemTerminate. Otherwise it is better to call SNAModemDeleteLink as each link instance is terminated.

See Also

SNALinkTerminate, SNAModemDeleteLink

void SNAModemTerminate();

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Perfmon API
This section provides reference material for the SNA performance monitoring structures and functions.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADAPTERCOUNTER
The ADAPTERCOUNTER structure represents an individual SNA Perfmon event that can be monitored, such as the total bytes
transmitted. All of the data needed to display a single Perfmon event is stored in this structure.

Members

count
The count for a specific Perfmon event since startup of the link service. Each time a Perfmon event takes place, the count is
incremented accordingly, based on the type of event being counted. This count is maintained by the link service.

type
The event type that is being monitored with this ADAPTERCOUNTER. The type member instructs Perfmon whether the count
member represents a numeric counter such as number of connection failures, a rate such as throughput in bytes transferred
per second, or a percentage. For suitable values see Platform SDK documentation of PERF_COUNTER_* (for example,
PERF_COUNTER_COUNTER or PERF_COUNTER_RAWCOUNT).

scale
The default scale to be used by the Perfmon application when displaying this event. The count member is scaled by 10scale
such that a scale of -1 multiplies count by 0.1.

typedef struct adaptercounter
{
 ULONG count;
 ULONG type;
 LONG scale;
} ADAPTERCOUNTER;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

ADAPTERPERFDATA
The ADAPTERPERFDATA structure groups all of the ADAPTERCOUNTER structures for an SNA link service together into a single
block. It also has a few fields used internally by the SNA Perfmon code. The SNA link driver should not change the first three
members of this structure.

Members

inuse
A flag that indicates that the link service is using this section of shared memory.

ServiceNameIndex
An index into an array of strings describing events that can be monitored by the Perfmon functions. These strings are stored in
the registry under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib key.

FirstCounterIndex
An index into an array of events that can be monitored by the Perfmon functions.

TotalBytesReceived
The number of data bytes received per second.

TotalBytesTransmitted
The number of data bytes transmitted per second.

TotalFramesReceived
The number of data frames received per second. A frame is an information structure recognized by one of the various protocols
related to SNA. Frames contain multiple bytes of data.

TotalFramesTransmitted
The number of data frames transmitted per second.

SuccessfulConnects
The number of times since startup that a successful connection has been made.

ConnectionFailures
The number of times since startup that a connection has encountered an error condition.

TotalBytesThroughput
The total number of bytes flowing through the Host Integration Server 2000 per second. This includes both incoming and
outgoing bytes, and is a good indicator of how heavily your Host Integration Server 2000 is loaded.

TotalFramesThroughput
The total number of data frames flowing through the Host Integration Server 2000 per second. This includes both incoming and
outgoing frames, and is a good indicator of how heavily your Host Integration Server 2000 is loaded.

AdapterFailures
The number of times since startup that a network adapter has encountered an error condition.

reserved
An array of ADAPTERCOUNTER structures for future expansion.

pad
Padding.

typedef struct adapterperfdata
{
 ULONG inuse;
 ULONG ServiceNameIndex;
 ULONG FirstCounterIndex;
 ADAPTERCOUNTER TotalBytesReceived;
 ADAPTERCOUNTER TotalBytesTransmitted;
 ADAPTERCOUNTER TotalFramesReceived;
 ADAPTERCOUNTER TotalFramesTransmitted;
 ADAPTERCOUNTER SuccessfulConnects;
 ADAPTERCOUNTER ConnectionFailures;
 ADAPTERCOUNTER TotalBytesThroughput;
 ADAPTERCOUNTER TotalFramesThroughput;
 ADAPTERCOUNTER AdapterFailures;
 ADAPTERCOUNTER reserved[11];
 ULONG pad;
} ADAPTERPERFDATA;

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAInitLinkPerfmon
The SNAInitLinkPerfmon function initializes the Perfmon data structures and code for an SNA link. The user defines the address
of a handle and a void pointer that are passed in as parameters to this function. This function returns values in these parameters
that are then used by subsequent calls to the Perfmon code. The SNA link driver should not modify the parameters returned by
this function.

Parameters

shrlockmutx
An address of a handle of a mutex used to protect a block of shared memory. This handle address is used when calling other
Perfmon functions after initialization.

shrptr
The address of a pointer to a block of shared memory used by subsequent Perfmon functions.

void SNAInitLinkPerfmon(
 HANDLE *shrlockmutx,
 void **shrptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetLinkPerfArea
The SNAGetLinkPerfArea function returns a pointer to the shared data area used by the Perfmon application to store the link
statistics. The parameters are the returned values from SNAInitLinkPerfmon. The SNA link then maintains the
ADAPTERCOUNTER members of the returned ADAPTERPERFDATA structure.

Parameters

shrlockmutx
The handle of a mutex used to protect a block of shared memory that will contain the ADAPTERPERFDATA structure for this
SNA link. The address of this handle is returned by the SNAInitLinkPerfmon function.

shrptr
A pointer to a block of shared memory returned by SNAInitLinkPerfmon that will contain the ADAPTERPERFDATA structure
used by the Perfmon functions for this SNA link.

See Also

ADAPTERPERFDATA, SNAInitLinkPerfmon

ADAPTERPERFDATA * SNAGetLinkPerfArea(
HANDLE shrlockmutx,
ADAPTERPERFDATA *shrptr
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNAGetPerfValues
The SNAGetPerfValues function is used to provide pointers to the ServiceNameIndex and FirstCounterIndex variables so that the
Perfmon application knows where to get the descriptions of the performance counters from the registry. These variables are
returned as members in the ADAPTERPERFDATA structure returned by the SNAGetLinkPerfArea function.

Parameters

pServiceNameIndex
A pointer to the ServiceNameIndex member of the ADAPTERPERFDATA structure.

pFirstCounterIndex
A pointer to the FirstCounterIndex member of the ADAPTERPERFDATA structure.

See Also

ADAPTERPERFDATA, SNAGetLinkPerfArea

USHORT SNAGetPerfValues(
int *pServiceNameIndex,
int *pFirstCounterIndex
);

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Administration and Management Programming
This section of the Microsoft® Host Integration Server 2000 Developer's Guide describes how to use Windows® Management
Instrumentation (WMI) to administer, manage, monitor status, and collect performance information about Microsoft Host
Integration Server 2000.

This section contains:

Introduction to Host Integration Server with WMI
Administration Programmer's Guide
Administration Sample Applications

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Introduction to Host Integration Server Administration with
WMI
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information required to develop
applications using the Microsoft® Windows® Management Instrumentation (WMI) to configure, manage, monitor status, and
collect performance information about Microsoft Host Integration Server 2000.

The Windows Management Instrumentation (WMI) technology is an implementation of the Desktop Management Task Force's
(DMTF) Web-Based Enterprise Management (WBEM) initiative for Microsoft Windows platforms that extends the Common
Information Model (CIM) to represent management objects in Windows management environments. The Common Information
Model, also a DMTF standard, is an extensible data model for logically organizing management objects in a consistent, unified
manner in a managed environment.

Based on the Common Information Model, WBEM is a DMTF initiative and technology that provides a standardized way to access
management information in an enterprise environment. With WBEM, developers can create tools and technologies that reduce
the complexity and costs of enterprise management. By providing such standards, WBEM contributes to the industry-wide efforts
to lower Total Cost of Ownership (TCO). TCO refers to the administrative costs associated with computer hardware and software
purchases, deployment and configuration, hardware and software updates, training, maintenance, and technical support.

WBEM provides a point of integration through which data from management sources can be accessed, and it complements and
extends existing management protocols and instrumentation such as Simple Network Management Protocol (SNMP), Desktop
Management Interface (DMI), and Common Management Information Protocol (CMIP).

The WBEM initiative results from the cooperative efforts of BMC Software Inc., Cisco Systems Inc., Compaq Computer Corp., Intel
Corp. and Microsoft Corp., as well as many other companies active in the DMTF.

The Windows Management Instrumentation (WMI) technology, Microsoft's implementation of WBEM, is a management
infrastructure that supports the syntax of CIM, the Managed Object Format (MOF), and a common programming interface. The
Managed Object Format is used to define the structure and contents of the CIM schema in human and machine-readable form.
Windows Management Instrumentation offers a powerful set of services, including query-based information retrieval and event
notification. These services and the management data are accessed through a Component Object Model (COM) programming
interface. The WMI scripting interface also provides scripting support.

The WMI technology when used with Host Integration Server 2000 provides:

Access to monitor, command, and control Host Integration Server 2000 through a common, unifying set of interfaces,
regardless of the underlying instrumentation mechanism. WMI is an access mechanism.
A consistent model of Host Integration Server 2000 operation, configuration, and status.
A COM Application Programming Interface (API) that supplies a single point of access for all management information.
Interoperability with other Windows 2000 management services. This approach can simplify the process of creating
integrated, well-designed management solutions.
A flexible, extensible architecture. Developers can extend the information model to cover new devices and applications by
writing code modules called WMI providers.
Extensions to the Windows Driver Model (WDM) to capture instrumentation data and events from Host Integration
Server 2000 device drivers and kernel side components.
A powerful event architecture. This allows management information changes to be identified, aggregated, compared, and
associated with other management information. These changes can also be forwarded to local or remote management
applications.
A rich query language that enables detailed queries of the information model.
A scriptable API which developers can use to create management applications. The scripting API supports several languages,
including Microsoft® Visual Basic®; Visual Basic for Applications; Visual Basic, Scripting Edition (VBScript); Microsoft®
JScript® development software. Additionally, you can use the Windows Script Host or Microsoft Internet Explorer to write
scripts utilizing this interface. Windows Script Host, like Internet Explorer, serves as a controller engine of ActiveX Scripting
engines. Windows Script Host supports scripts written in VBScript, and JScript.

Windows Management Instrumentation (WMI) is the name given to Microsoft's implementation of WBEM. On Microsoft
Windows 2000, WMI is the standard way to expose management functions to application programmers.

Administration and management applications used in a Host Integration Server 2000 environment can be developed using
several different development tools and application programming interfaces including:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

C or C++ applications that use WMI COM APIs.
C or C++ applications that use ODBC to access WMI.
Microsoft Visual Basic® applications that use ActiveX® Data Objects (ADO) to access WMI.
Microsoft Visual Basic for Applications to access WMI.

In addition, administration and management applications can be developed using several different scripting tools and application
programming interfaces including:

Microsoft Visual Basic Scripting Edition (VBScript).
Microsoft JScript®.
VBScript or JScript written as Microsoft Active Server Pages (ASP) running in conjunction with Microsoft Internet
Information Server (IIS) and web-based clients.
WMI Query Language (WQL) applications.
Windows Host Script (WSH) scripts that access WMI.

Additionally, you can also use any scripting language implementation that supports Microsoft's ActiveScripting technologies with
this API such as a Perl scripting engine.

The WMI Query Language is a subset of standard SQL designed specifically to access management information using WMI.

To use this guide effectively, you should be familiar with:

Microsoft Host Integration Server 2000
SNA concepts
Microsoft Windows Management Instrumentation (WMI)
One of the following operating environments:

Microsoft Windows 2000
Microsoft Windows NT®
Microsoft Windows XP
Microsoft Windows Millennium Edition
Microsoft Windows 98
Microsoft Windows 98
Microsoft Windows 95

Depending on the application programming interface and development tools used, you should be familiar with:

WMI COM/DCOM APIs
WMI Query Language
WMI schema and MOF file syntax
Microsoft Windows Script Host
Microsoft Visual Basic
Microsoft Visual Basic for Applications
Microsoft Visual Basic Scripting Edition
Microsoft JScript
Microsoft ODBC
Microsoft ADO
Microsoft Active Server Pages

For more information about WMI, see Windows Management Instrumentation (WMI) in the Microsoft Developer Network
(MSDN®) Platform Software Development Kit.

Microsoft Host Integration Server 2000

Administration Programmer's Guide
This section of the Microsoft® Host Integration Server 2000 Developer's Guide describes the programmatic techniques and
procedures for using WMI in conjunction with Microsoft Host Integration Server 2000.

This section contains:

WMI and Host Integration Server Architecture
Platforms Supported by WMI and Host Integration Server
Programming Considerations Using WMI and Host Integration Server

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

WMI and Host Integration Server Architecture
The architecture of the Windows Management Instrumentation (WMI) technology consists of the following components:

Management applications
Managed objects
Providers
Management infrastructure, consisting of the WMI software (Winmgmt.exe) and the CIM repository

Management applications are Microsoft® Windows®-based applications or services on Microsoft Windows NT® or
Windows 2000 that process or display data from managed objects. A management application can perform a variety of tasks in a
Host Integration Server environment such as configuring HIS Servers, measuring performance, reporting outages, and correlating
data.

Managed objects represent logical or physical enterprise components. Managed objects are modeled using the CIM, and they are
accessed by management applications through WMI. A managed object in the Microsoft Host Integration Server 2000
environment can be any component of the system, from a link service device driver communicating with hardware to software
configuration information on users and connected Logical Units (LUs).

The WMI providers supplied with Host Integration Server 2000 use the WMI COM API to supply the WMI repository with data
from Host Integration Server managed objects, to handle requests on behalf of Host Integration Server management applications,
and to generate notifications of events. The WMI providers included with Host Integration Server 2000 include the following:

Host Integration Server configuration provider (wmiHIS)
Host Integration Server MSMQ-MQseries Bridge provider (wmiMQBridge)
Host Integration Server SNA configuration provider (wmisna)
Host Integration Server SNA status provider (wmisnastatus)
Host Integration Server SNA trace provider (wmisnatrace)

In addition, Windows 2000 includes several standard WMI providers, such as a registry provider, for accessing information from
the system registry. Windows 2000 also supplies a Windows 2000 Event Log Provider that allows applications to receive
notifications of Windows 2000 and Host Integration Server 2000 events and to access the information stored in the
Windows 2000 event log. The Win32® WMI providers are also available for use with Windows NT 4.0 (Service Pack 5 or later) as
part of the WMI Software Development Kit (SDK).Third-party vendors can create custom providers to interact with managed
objects specific to their environment.

The management infrastructure consists of WMI and the CIM repository. WMI enables users to handle communications between
management applications and providers. Users store their static data in the CIM repository. Applications and providers
communicate through WMI using a common programming interface (COM API). The COM API, which supplies event notification
and query processing services, is available in the C and C++ programming languages.

The CIM repository holds static management data. Static data is data that does not regularly change. WMI also supports dynamic
data, which is data that must be generated on demand because it is frequently changing. Data can be placed in the CIM repository
by WMI or network administrators. Information can be placed in the CIM repository using either the Managed Object Format
(MOF) language and the MOF Compiler or the WMI COM APIs. The WMI providers supplied with Host Integration Server 2000
use both mechanisms.

The following MOF files are supplied with Host Integration Server 2000 for use by management applications:

wmiHIS.mof
wmiMQbridge.mof
wmisna.mof
wmisnastatus.mof
wmisnatrace.mof

Management applications can access the COM API directly to interact with WMI and the CIM repository to make management
requests of Host Integration Server 2000. Applications can also use other access methods such as Open Database Connectivity
(ODBC) and the Hypertext Markup Language (HTML) to make these requests. An ODBC Driver for WMI is included with Windows
2000. The protocol used for communication between local and remote components is Distributed Component Object Model
(DCOM).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Platforms Supported by WMI and Host Integration Server
Windows Management Interface (WMI) is included as part of Microsoft® Windows® 2000, Windows XP, and
Windows Millennium Edition. On Microsoft Windows NT® 4.0, Windows 98, and Windows 95, WMI must be installed as part of
the WMI Software Developers Kit (SDK) which is available for download from the Microsoft Download Center:
http://go.microsoft.com/fwlink/?LinkId=12753.

This will bring up the Microsoft Downloads search page.

1. Select "Keyword Search" radio button.
2. Enter "WMI" into the "Keywords" edit box.
3. Select the desired target operating system.
4. Select the "All Downloads" in the "Show Results for" dropdown list
5. Click the "Find It" button.
6. Download the file by clicking on its link.
7. Install WMI by running wmisdk.EXE (double-click the file from your Windows Explorer). This will create directories for WMI

in the system folder.

The WMI SDK is also included as part of the Microsoft Developer Network (MSDN®) Platform SDK.

For use with Host Integration Server, the WMI SDK version 1.1 or later can be installed on one of the following operating systems:

Microsoft Windows 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional
Microsoft Windows NT Server 4.0 with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Enterprise Edition with Service Pack 6a or later
Microsoft Windows NT Server 4.0, Terminal Server Edition with Service Pack 6a or later
Microsoft Windows NT Workstation 4.0 with Service Pack 6a or later
Microsoft Windows 98, Second Edition

Host Integration Server 2000 with Service Pack 1 adds support for the following additional operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

Windows Script Host (WSH) is installed by default with Windows 2000. For use on Windows NT 4.0, Windows 98, and Windows
95, Windows Script can be downloaded from the following Web site:
http://go.microsoft.com/fwlink/?LinkId=13285.

The Windows Script download includes Microsoft Visual Basic® Scripting Edition (VBScript), Microsoft JScript®, Windows Script
Components, Windows Script Host, and Windows Script runtime. Please follow the download and setup instructions on this site
for Windows Script Host. Complete information about Windows Script Host is available as part of the Windows 2000 MSDN
Platform SDK.

http://go.microsoft.com/fwlink/?LinkId=12753
http://go.microsoft.com/fwlink/?LinkId=13285
https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Programming Considerations Using WMI and Host Integration
Server
Microsoft® Host Integration Server 2000 provides several WMI providers. The MOF files used by Host Integration Server are
installed in the System directory below where Host Integration Server is installed. The default location for these files would be in
the following subdirectory:

To use or view these MOF files on other computers (a computer with the Administration client or End-user Client, for example) to
develop applications, these MOF files must be copied from the Host Integration Server computer. These MOF files document the
WMI providers supplied with Host Integration Server and the CLSIDs, classes, properties, and methods supported by these
providers .

Security using Active Server Pages (ASP) is handled differently on Microsoft Windows NT® 4.0 and Microsoft Windows® 2000
platforms. This affects WMI Scripting permissions for ASP scripts run on Internet Information Server. These permissions will affect
the operation of the WMI ASP samples included with the Host Integration Server SDK as well as any other applications developed
using WMI and ASP.

On Windows NT 4.0, the following registry entry under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft enables or disables
running ASP scripting with WMI:

WBEM\ScriptingKey=Enable for ASP

This entry is a REG_DWORD where the value 0x0 turns this option off (disables) and the value of 0x1 turns this option on
(enables). This registry key only applies to Windows NT 4.0. WMI scripting using Active Server Pages is enabled automatically on
Windows 2000.

For the proper security setting for ASP on Windows 2000, it is recommended that you set Anonymous Authentication off and
enable Integrated Windows Authentication in the IIS Server configuration for directories with ASP files used with Host Integration
Server. In order to access Host Integration Server configuration and status information, an application or user must have the
appropriate administrative rights which are not available with anonymous authentication. The following procedure can be used
on Windows 2000 to properly configure security using Active Server Pages:

To configure security using Active Server Pages

1. Open the Internet Information Services (can be found under the Administrative tools under the Start Button or the Control
Panels).

2. Find the directory where the ASP files reside.
3. Right click the directory and select the Properties option.
4. When the next dialog appears, select the Directory Security Tab.
5. Click the Edit button in the Anonymous Authentication frame.
6. When the next dialog opens, uncheck the checkbox next to Anonymous Authentication.
7. Check the checkbox next to Integrated Windows Authentication.
8. Click the OK buttons to save these settings.

This will set that particular directory to use Integrated Windows Authentication as opposed to Anonymous Authentication without
affecting any of your other directories. If there are any other ASP files that require or allow Anonymous Authentication you might
want to make a new directory that you can turn off Anonymous Authentication and put you WMI ASPs there. Any script that calls
ExecMethod from a Active Server Page should be setup to use Integrated Windows Authentication to verify the user attempting to
run the script.

In addition, when using a "REFRESH" variable on a Web page and the page is being used to start and stop snaservices via ASP
scripting, the Web browser client (Internet Explorer, for example) should set the following option:

To use a Web browser client to start and stop snaservices via ASP scripting

1. In Internet Options, under the General Tab, select Settings.
2. Ensure that "Every visit to the page" is selected in the "Check for newer versions of Stored pages:" option.

If this change is not made on the Web browser client, some ASP scripts will not run properly due to Internet Explorer caching

C:\Program Files\Host Integration Server\System

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

older results.

There are some restrictions on using WMI and Host Integration Server 2000 regarding connections to backup servers. The
Snabase works to synchronize the information in the COM.CFG configuration file on the primary server across all backup servers.
Each backup server has a local copy of the COM.CFG file from this synchronization process. WMI has a limitation that it will not
attempt to read the local backup server's copy of COM.CFG if the primary server is alive. This request will always be forwarded to
the primary server. A client that connects to a WMI provider running on a backup server will not be able to either retrieve any
information or make configuration changes. This is a limitation of DCOM which does not permit impersonation outside the local
machine. When a client on one computer connects to a WMISNA provider on another computer that is a backup server, the client
is using DCOM to connect to the backup Host Integration Server computer. When the WMI provider on the backup server tries to
access the COM.CFG file from the primary server, this is not allowed by DCOM because the application is trying to impersonate
the user across the machine boundary. It might be possible to work around this limitation on Windows 2000 using delegation,
but it is not possible on Windows NT 4.0 where delegation is not supported. Consequently, these replicated copies are used if and
only if the primary server is down, in which case it'll fail-over to a backup and this limitation will not apply.

An ImportExport sample program written in Microsoft Visual Basic® Scripting Edition (VBScript) is provided as part of the Host
Integration Server SDK. This tool allows configuration information from Host Integration Server to be exported and saved to a text
file using WMI in MOF format. This text file can also be changed and imported using this sample program to change configuration
information.

A potential problem using WMI can occur with duplicate LU pools that can be illustrated using this sample program. Normally,
exporting and re-importing the MOF file would not create duplicates. However, the Host Integration Server WMI provider allows
pool to workstation association instances to be duplicated because, by design, duplicates of this type of object are allowed. It is
possible to associate the same pool to the same workstation or user multiple times. This is used by emulators to create more
sessions for clients. Therefore, it is not possible to identify one such association from another. The WMISNA Provider,
WMISNA.DLL, will always create new associations of these types, even if an association with the same pair (Pool, Wks) already
exists. This object type is allowed only in this specific case. However, this can create a problem for applications developed using
WMI (the Import/Export sample, for example) if the application doesn't know not to create the duplicates.

The follow sequence illustrates this issue using the ImportExport sample:

1. Using SNA Manager to create a pool workstation association.
2. Export the SNA configuration to a MOF file using the ImportExport utility.
3. Import that same MOF file again using the ImportExport utility.
4. Duplicate pool-workstation associations will be created.

The result is that if a client uses the import/export sample or a similar application developed using WMI on a Host Integration
Server configuration that has Pool to Workstation associations, then the number of associations will effectively double after
running the sample. The workaround using the ImportExport sample would be as follows:

1. Export the configuration to a MOF file.
2. Remove the pool to workstation associations from the MOF file just created.
3. Import the MOF file back.

When importing the configuration from one domain to another using the ImportExport sample or a similar application developed
using WMI, then step 2 should be ignored. Normally, WMI applications should copy an existing configuration to a blank
configuration file so this condition does not arise.

Microsoft Host Integration Server 2000

Administration Sample Applications
The source code for several sample programs that illustrate using Windows® Management Instrumentation (WMI) for
administration and management of Host Integration Server are included on the Microsoft® Host Integration Server 2000 CD-
ROM and as part of the Microsoft Developer Network (MSDN) Platform SDK. These sample programs are located in the
\SDK\Samples\Admin subdirectory on the Host Integration Server 2000 CD-ROM. These files are copied to your hard drive
during Host Integration Server software or Host Integration Client software installation when the Host Integration Server
Software Development Kit option is selected. These samples are installed in the Samples\Admin subdirectory below where the
Host Integration Server SDK is installed (C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\Admin subdirectory
below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files in the following subdirectories:

File or
Subdir
ectory

Description

Import
Export
\

A WMI sample script written in Microsoft® VBScript that illustrates how to import and export configuration information f
rom Host Integration Server.

SNAW
MI.AS
P

The main page of a WMI sample script written in Microsoft® Active Server Pages (ASP) for retrieving configuration infor
mation from Host Integration Server using WMI.

SnaWe
bAdmi
n\

Subsidiary pages of WMI sample scripts written in Microsoft® Active Server Pages (ASP) for retrieving configuration info
rmation from Host Integration Server using WMI. Each one of these subdirectories contains ASP sample scripts that illust
rate how to retrieve information from Host Integration Server on a specific feature.

Several sample programs with source code are provided with Host Integration Server 2000 that illustrate administration and
management.

This section contains:

Active Server Pages SNAWebAdmin sample programs
VBScript ImportExport sample program

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Active Server Pages SNAWebAdmin Sample
The Admin\SnaWebAdmin folder contains a collection of Active Server Pages (ASP) for use with a Web server application
designed to access configuration, management, and status information from the SNA server component of Microsoft® Host
Integration Server. These sample applications require Microsoft Internet Information Server version 3.0 or higher with Active
Server Pages be installed. Host Integration Server 2000 and Internet Information Server must be installed and running on the
same machine.

The WMI ASP samples must be installed into the Web server's public directories below WWWRoot. Copy the contents of the
entire Admin directory from the SDK\Samples\Admin subdirectory including SNAWebAdmin subdirectory to your WWWROOT
directory on the Web server. After these files have been copied you should have a copy of the SNAWMI.ASP, fphover.class, and
fphoverx,class files in WWWROOT and a WWWROOT\SNAWebAdmin folder with a series of subdirectories containing a number
of ASP and GIF files.

The samples may then be run by opening Internet Explorer or some other Web browser on the same machine or a different
machine and entering the following URL in the address line:

Substitute the network name of the machine hosting the Web server and Host Integration server for the machine name in angle
brackets in the URL above. This will open the main page of the SNAWebAdmin ASP application and allow you to select any of the
other sample ASP pages. Information about each sample is provided on this web page. Additional information is available on the
following URL:

These ASP pages illustrate using WMI to retrieve SNA management and configuration from Host Integration Server.

The two Java class files, fphover.class and fphoverx.class, are redistributable files that ship with Microsoft FrontPage®. These Java
class files are used in some of the WMI sample scripts instead of a submit button to stop and start services.

Several subdirectories below SNAWebAdmin need to have IIS security enabled (no anonymous access). Otherwise the scripts in
these subdirectories will fail since the anonymous user account by default does not have access rights that would allow it to start
or stop services on Microsoft Windows NT® or Windows® 2000 or make changes to the Host Integration Server system. The
subdirectories that need IIS security enabled are the following:

It is possible to host these ASP pages on a machine running the Web server that is different from the machine running Host
Integration Server. However, this requires some changes to the ASP pages to handle connections to a different machine, security,
and authentication issues.

http://<machine name>/SNAWMI.asp

http://<machine name>/admin/headers/welcome.htm

SNASebAdmin\Change
SNASebAdmin\Connections
SNASebAdmin\Services
SNASebAdmin\Status

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

VBScript ImportExport Sample
The Admin\ImportExport folder contains a sample written in Microsoft® Visual Basic® Scripting Edition (VBScript) that illustrates
how to import and export SNA configuration information from Host Integration Server in MOF format using WMI. This sample
relies on the MOFCOMP.exe application supplied with Microsoft Windows® 2000 or installed as part of WMI 1.1 on Microsoft
Windows NT® 4.0 for importing.

In the examples below, ImportExport.VBS has been renamed to HISCFG.vbs.

The usage for this command-line tool for exporting configuration information is as follows:

The various command-line switches are explained in the table below. Note that case is ignored for command line options except
for help and either the '/' or '-' character is interpreted as the leading character for an option. The table below uses the '/'
character for illustration.

Command-Lin
e Switch

Comments

/? This flag shows the usage for this command and exits.
/C The name of the WMI parent class to be queried. This should be set to one of the WMI classes defined in the MO

F files supplied with Host Integration Server.

This parameter defaults to MsSna_Config and exports all of the classes SNA classes and their associations.

/h This flag shows the usage for this command and exits.
/N The WMI namespace to be queried. This parameter defaults to "root\MicrosoftHIS" for Host Integration Server.
/O The name of the file used for output. This parameter has no default value.
/Q This Boolean flag indicates whether this is query should be completed quietly without displaying any status or er

ror messages. This parameter defaults to verbose option.
/S The name of the machine running Host Integration Server. This parameter has no default value.
/U The user name of a user on the domain or active directory where Host Integration Server is running with admini

strative rights. This parameter has no default value.
/W The password of a user on the domain or active directory where Host Integration Server is running with adminis

trative rights. This parameter has no default value.

The usage for this command-line tool for importing SNA configuration information is as follows:

A potential problem using WMI can occur with duplicate LU pools that can be illustrated using this sample program. Normally,
exporting and re-importing the MOF file would not create duplicates. However, the Host Integration Server WMI provider allows
pool to workstation association instances to be duplicated because, by design, duplicates of this type of object are allowed. It is
possible to associate the same pool to the same workstation or user multiple times. This is used by emulators to create more
sessions for clients. Therefore, it is not possible to identify one such association from another. The WMISNA Provider,
WMISNA.DLL, will always create new associations of these types, even if an association with the same pair (Pool, Wks) already
exists. Only in the case of this object type is this allowed. However, this can create a problem for applications developed using
WMI (the Import/Export sample, for example) if the application doesn't know to not create the duplicates.

The follow sequence illustrates this issue using the ImportExport sample:

1. Using Host Integration Server Manager or the Administration Manager client create a Pool-Workstation association.
2. Export the SNA configuration to a MOF file using the ImportExport utility.
3. Import that same MOF file again using the ImportExport utility.
4. Duplicate Pool-Workstation associations will be created.

The result is that if a client uses the import/export sample or a similar application developed using WMI on a Host
Integration Server configuration that has Pool to Workstation associations, then the number of associations will effectively

HISCFG [/S:server] [/N:namespace] [/C:class] [/O:outfile]
 [/U:username] [/W:password] [/Q]

HISCFG [/I:inputfilename]

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

double after running the sample. The workaround using the ImportExport sample would be as follows:

5. Export the configuration to a MOF file.
6. Remove the pool to workstation associations from the MOF file just created.
7. Import the MOF file back.

When importing the configuration from one domain to another using the ImportExport sample or a similar application developed
using WMI, then step 2 should be ignored. Normally, WMI applications should copy an existing configuration to a blank
configuration file so this condition does not arise.

Microsoft Host Integration Server 2000

Client Binary Setup
This section provides information regarding the installation of the Microsoft® Host Integration Server 2000 and Microsoft SNA
Server 4.0 client binaries. This information will enable you to consolidate Host Integration Server or SNA Server client binaries
into your product's own setup, simplifying operation for the end user.

The Host Integration Server 2000 client binaries are installed by using the Microsoft System Installer (MSI) and MSI package files.
A Microsoft Windows® installer package (.msi) file is a storage file containing the instructions and data required to install an
application. The MSI packages included with Host Integration Server 2000 can be used as part of the installation procedure for
your products. Windows 2000 includes the MSI runtime required to install the MSI packages supplied with Host Integration
Server 2000. On Microsoft Windows NT® 4.0, Windows 98, and Windows 95, the MSI runtime must be installed prior to using
the Host Integration Server 2000 MSI packages.

Host Integration Server 2000 with Service Pack 1 adds support for the following additional operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

Windows XP includes the MSI runtime required to install the MSI packages with Host Integration Server 2000.

If you wish to modify or create a custom MSI package integrating your product and the Host Integration Server client binaries,
then you will need to create new MSI packages. The MSI packages supplied with Host Integration Server 2000 were constructed
using the WISE system installer and can only be modified by using this product. Because of differences in tools, it is not possible
to easily modify an MSI package created using the WISE system installer using other products such as InstallShield 2000.

Documentation on creating an MSI package or using Microsoft System Installer tools is not provided with Host Integration
Server 2000. The Microsoft System Installer is documented as part of the Microsoft Software Development Network (MSDN®)
Platform Software Development Kit (SDK).

The earlier SNA Server 4.0 and SNA Server 3.0 client binaries were installed using the Microsoft Setup Toolkit (ACME Setup
Toolkit). The ACME Setup Toolkit is completely different from setup procedures using the Microsoft System Installer and
documentation on its use is not provided with Host Integration Server 2000 and SNA Server. Note that in releases of SNA Server
earlier than version 3.0, the client binaries were installed on Microsoft Windows NT and Microsoft Windows 95 using the
Windows NT Setup engine and on Windows 3.x using the Windows setup tools.

This document assumes that your own product will be installed using a third-party installation tool, although it is also possible to
use the Microsoft System Installer tools, the Windows NT Setup engine, or the Windows 3.x setup tools. Installation information is
provided for the following environments:

Windows XP, Windows 2000, Windows NT, Windows Millennium Edition, Windows 98, and Windows 95 (Win32®)
Windows 3.x (16-bit Windows)

This information should allow you to integrate the installation of the Host Integration Server 2000 or SNA Server client binaries
with your own product.

This section contains:

Client Setup for Windows 2000, Windows NT, Windows 98, and Windows 95
Client Setup for 16-bit Windows Environments

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Client Setup for Windows 2000, Windows NT, Windows 98, and
Windows 95
When installing Microsoft® Host Integration Server 2000 client binaries in the Win32® environments of Microsoft
Windows® XP, Windows 2000, Windows NT®, Windows Millennium Edition, Windows 98, or Windows 95, the Microsoft System
Installer (MSI) packages supplied with Host Integration Server 2000 should be used. These supplied MSI packages can be invoked
as part of your custom installation procedure to install client binaries.

The MSI Client packages are located on the Host Integration Server 2000 CD-ROM in separate subdirectories under the
Setup\Clients folder. The client MSI packages supplied with Host Integration Server 2000 are as follows:

MSI Package File Description
Administrator\HIAdm
in.msi

Administrator client for use on Windows XP Professional, Windows 2000, and Windows NT

EndUser\HIClient.msi End-user client for use on Windows XP (Professional or Home Edition),Windows 2000, Windows NT, Wind
ows 98, and Windows 95.

A template INF file is supplied with each of these MSI packages that lists all possible client binary setup options available in each
package and the default option that will be selected by default. The Host Integration Server 2000 MSI packages and the
MSIEXEC.exe tool supplied as part of the Microsoft System Installer support a batch mode setup option that can be used with a
modified version of these INF files configured with your preferred setup options.

The Host Integration Server 2000 CD-ROM also contains a Setup\Clients\Web folder containing the files needed for a Web-based
installation of the SNA 3270 and 5250 clients to a client computer using a Web browser across a corporate intranet. No end-user
configuration is required. Users click a hyperlink and connect to their host application through Host Integration Server 2000. The
Host Integration Server 2000 web clients are compatible with Microsoft Internet Explorer version 3.02 or higher and can be used
on the Microsoft Windows XP, Windows 2000, Windows NT version 4.0, Windows 98, and Windows 95 operating systems.

The following sections provides information regarding installation of the Microsoft SNA Server 4.0 and 3.0 Client binaries in the
Win32 environments of Microsoft Windows NT and Windows 95. This information will enable you to consolidate SNA Server into
your product's own setup, simplifying operation for the end user. SNA Server versions 3.0 and later support SNA Server versions
2.0 and 2.1 Client binaries for Win32 environments, although it is recommended that you release updated binaries with each
normal product release.

This section describes the use of SNA Server versions 3.0 and later binaries, which are recommended for all new applications.

This section contains:

SNA Server Client Binary Files for Win32 Environments
The Installation Process in 32-bit Windows Environments
Typical SNA Server Client Parameters in the Win32 Environment
Registry Entries for Host Integration Server Administrator Client
Registry Entries for Host Integration Server End-User Client

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Server Client Binary Files for Win32 Environments
The binary files on the SNA Server 4.0 and 3.0 distribution CD-ROM for use on Windows 2000 and Windows NT are found in the
\CLIENTS\WINNT and \CLIENTS\WINNT\SYSTEM directories, and the binary files for use on Windows 98 and Windows 95 are
found in the \CLIENTS\WIN95 and \CLIENTS\WIN95\SYSTEM directories. You will need at a minimum to distribute the following
files:

File n
ame

Purpose

ADLO
C.DLL

Locates SNA Servers.

APPC
ST32.
DLL

Translates APPC return codes into text strings.

ASYN
CTRC.
DLL

Asynchronous trace DLL (Windows 95 and Windows 98 only).

COMT
BLG.D
AT

Table for type G character set conversion (ASCII <–>EBCDIC).

CSVST
R32.D
LL

Translates Common Service Verb (CSV) return codes into text strings.

DBGT
RACE.
DLL

Trace DLL (asynchronous).

DMO
DAPP
C.DLL

A support DLL used by SNAKRNL.DLL to provide a network protocol-independent transport interface for SNA Server Clien
t applications (used only on Windows 95 and Windows 98).

FMIST
R32.D
LL

Translates EIS/LUA error codes into text strings.

MFC4
0.DLL

MFC run-time support.

MFC4
0U.DL
L

MFC run-time support.

MSVC
IRT.DL
L

Visual C/C++ run-time support.

MSVC
RT.DL
L

Visual C/C++ run-time support.

MSVC
RT40.
DLL

Visual C/C++ run-time support.

OLEP
RO32,
DLL

OLE run-time support.

SNAB
ASE.E
XE

SNA Base.

SNAD
MOD.
DLL

Provides a network protocol-independent transport interface for SNA Server Client applications.

On Windows 95 and Windows 98, this DLL allows applications written for the SNA Server Windows NT Client to run unm
odified with the SNA Server Windows 95 Client. The SNADMOD.DLL functionality is provided by new DLLs on Windows 9
5 and Windows 98 (for example, SNAKRNL.DLL).

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

SNAD
UMP.
DLL

SNA debug helper DLL.

SNAE
VENT.
DLL

SNA Server event log message file (used only on Windows NT).

SNAK
RNL.D
LL

Provides a network protocol-independent transport interface for SNA Server Client applications (used only on Windows 9
5 and Windows 98).

SNAP
ERF.D
LL

Used for supporting performance monitoring (used only on Windows NT).

SNAP
OPUP.
EXE

Used for displaying SNA message pop-up dialog boxes (used only on Windows NT).

SNAR
EG.DL
L

API support for accessing the registry.

SNAS
VC.DL
L

Used for supporting services (used only on Windows NT).

SNAT
RACE.
CPL

Control panel applet for dynamically enabling and disabling API (APPC, CPI-C, and LUA) tracing and event logging.

SNAT
RACE.
HLP

Help file used for API (APPC, CPI-C, and LUA) tracing and event logging.

SNAT
RC.DL
L

Used for SNA Server message tracing.

SNAT
RCCN.
DLL

Used for SNA Server message tracing (used only on Windows NT).

SNAT
RCSN.
DLL

Used for SNA Server message tracing.

WAPP
C32.D
LL

Used by 5250 emulators and other APPC applications.

WINA
PPC.D
LL

Stub APPC DLL used by 5250 emulators and other APPC applications.

WINC
SV.DL
L

Stub DLL used by emulators that need Common Service Verbs (CSV).

WINC
SV32.
DLL

Used by emulators that need CSV.

WINM
GT32.
DLL

Used by 5250 emulators and for supporting APPC management verbs.

SNA Server supports a number of different transport protocols. Depending on the transport protocol or protocols used by your
customer, you will need to distribute some or all of the following files:

BVNSTT.DLL Used to locate SNA Servers over Banyan VINES transport.
IBPCAST.DLL Used to locate SNA Servers over TCP transport.
LMBCAST.DLL Used to locate SNA Servers over Named Pipes transport.
NWSAP.DLL Used to locate SNA Servers over NetWare transport.

SNABV.DLL Banyan VINES transport for Windows NT.
SNACBV.DLL Banyan VINES transport for Windows 95 and Windows 98.
SNACIP.DLL Native TCP transport for Windows 95 and Windows 98.
SNACLM.DLL Named Pipes transport for Windows 95 and Windows 98.
SNACNW.DLL NetWare transport for Windows 95 and Windows 98.
SNAIP.DLL Native TCP transport for Windows NT.
SNALM.DLL Named Pipes transport for Windows NT.
SNANB.DLL NetBIOS transport (used only on Windows NT).
SNANCP.DLL Helper DLL for NetWare transport (required by SNACNW.DLL and SNANW.DLL).
SNANW.DLL NetWare transport for Windows NT.
VSTAPI.DLL Helper DLL for Banyan VINES transport (required by SNABV.DLL and SNACBV.DLL).

The following files are optional and are only necessary if your application uses these additional features supported by SNA Server:

AFTPAPI.DLL Used for AFTP API support.
AFTPEVT.DLL Used for AFTP API support.
AFTPMSG.DLL Used for AFTP API support.
CHECKSUM.EXE File checksum utility.
DLSSTAT.EXE Distributed Link Service status utility for Windows NT.
LUASTR32.DLL Translates LUA return codes into text strings.
SNANLS.DLL Used for National Language Support (Windows 95 and Windows 98 only)
SNASHMEM.EXE Tool to look at shared memory.
SNAVER.EXE Tool to display version numbers.
TPSTART.EXE Used for loading transaction programs (used on Windows NT only).
WCPIC32.DLL Used for CPI-C API support.
WINCPIC.DLL Used for CPI-C API support.
WINRUI.DLL Stub DLL used for LUA API support.
WINRUI32.DLL Used for LUA API support.
WINSLI.DLL Stub DLL used for LUA API support.
WINSLI32.DLL Used for LUA API support.

For SNA National Language Support using SNANLS, the appropriate NLS files will also need to be installed.

Debug files for the Windows NT DLLs are provided in the \CLIENTS\WINNT\SYSTEM\SYMBOLS\DLL directory, and debug files for
the Windows 95 and Windows 98 DLLs are provided in the \CLIENTS\WIN95\SYSTEM\SYMBOLS\DLL directory.

The following files are necessary if your application needs to support Asian languages using the TrnsDT API or the SNANLS API:

TRNSDT.DLL Used for Asian language support.
TRNSDTJ.DLL Used for Asian language support.
TRNSDTK.DLL Used for Asian language support.
TRNSDTS.DLL Used for Asian language support.
TRNSDTT.DLL Used for Asian language support.
SNADBC.TBL Used for Asian language support.
SNADBCK.TBL Used for Asian language support.
SNADBCS.TBL Used for Asian language support.
SNADBCT.TBL Used for Asian language support.
SNASBC.TBL Used for Asian language support.
SNASBCK.TBL Used for Asian language support.
SNASBCS.TBL Used for Asian language support.
SNASBCT.TBL Used for Asian language support.

The details of the installation process are described in the following topic.

Microsoft Host Integration Server 2000

The Installation Process in 32-bit Windows Environments
The ACME Setup tools used for installing SNA Server 4.0 and SNA Server 3.0 Client binaries are table-driven using a setup table
file (STF), a text file containing installation information, and an SNAFILE.INF file. You may be using a different installation tool for
your application.

Along with an installation and setup procedure, you should also supply an uninstall option to remove the SNA Server Client
binaries and restore Windows 2000, Windows NT, Windows 98, or Windows 95 registry entries back to their original condition.

The general installation process for the Host Integration Server and SNA Server Client binaries is outlined below.

To install the Host Integration Server or SNA Server client binaries in 32-bit Windows environments

1. Verify that this system supports Host Integration Server or SNA Server. The installation tool should check for supported
versions of the operating system and network operating system, adequate disk space, and any other requirements.

2. Copy files to target directories on the user's system. All of the Host Integration Server client binaries are normally installed
in Host Integration Server\System directory on Windows 2000, Windows NT, Windows 98, and Windows 95 (typically
C:\Program Files\Host Integration Server\System).
For SNA Server 4.0, all of the SNA Server client binaries are normally installed in the SNA system directory. On
Windows 2000 and Windows NT, the default locations is C:\SNA\SYSTEM. On Windows 98, and Windows 95, the default
location is C:\SNA95\SYSTEM. Note that the SNA Server Client DLLs should be installed in the system directory of
Windows 98 and Windows 95 (typically C:\WINDOWS\SYSTEM) on the user's system, not in the directory where the user
has selected to install the SNA Server Client. The MFC, MSVC, and OLE run-time DLLs should be copied to an MFC40
subdirectory below this directory. This MFC40 subdirectory should be created if it does not exist. Copying all the DLLs to the
Windows system directory on Windows 98 and Windows 95 and the SNA system directory on Windows 2000 and
Windows NT makes it easy to ensure that there is only a single copy of a given DLL on the user's system.

3. The installation procedure must also check version resources for executable files and DLLs to avoid overwriting a newer
copy already in the target directory with an older version from the distribution medium. All the Host Integration Server or
SNA Server Client EXE files must be copied into the system directory to facilitate version checking when the user upgrades
these files. The local binaries needed for your product would normally be copied to the subdirectory selected by the user
during the installation process.

4. Define file locations and other parameters necessary to modify Windows 2000, Windows NT, Windows 98, or Windows 95,
the network transport protocol, and other configuration files and registry entries. Based on these parameters, modify and
update the registry and other required configuration files, saving copies of the original files.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Typical SNA Server Client Parameters in the Win32
Environment
The following table describes some typical SNA server client parameters for a Win32 environment.

Parameter Common default
Root directory to which client files will be copied. C:\SNA\SYSTEM on Windows NT and C:\SNA95\SYSTEM o

n Windows 95 and Windows 98
The path from which the SNA Server Client files are being installed. CD-ROM drive
Extension to use when backing up machine's system files.
Name of primary remote SNA Server.
Name of backup remote SNA Server.
The network transport protocol installed and used by the SNA Server
Client on this machine.

The version number of this machine's network operating system.
For use with Novell NetWare, the user's choice of network subdomai
ns for use with the SNA Server Client.

For use with Banyan VINES, the user's choice of StreetTalk Group for
use with the SNA Server Client.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Entries for Host Integration Server Administrator
Client
This section describes the Microsoft Windows XP, Windows 2000, and Windows NT registry nodes and entries that need to be
created or modified to support Host Integration Server 2000 Administrator Client binaries. Note that the Administrator Client
runs only on Windows 2000 Professional or Windows NT 4.0 Workstation and will not run on Windows Millennium Edition,
Windows 98, or Windows 95. Host Integration Server 2000 with Service Pack 1 add supports for running the Administrator client
on Windows XP Professional.

If the Administrator Client is being used on Windows XP Professional, Windows 2000 Professional, or Windows NT Workstation,
then the client configuration allows the SnaBase to run as an Application or a Service. If SnaBase is run as an Application (the
default), then the registry settings match those documented for Clients Running the Host Integration Server 2000 End-User Client.
If SnaBase is configured to run as a Service, then the registry settings that match those documented in this section on the
Administrator Client apply.

This section contains:

Registry Settings for Administrator Client: SnaBase
Registry Settings for Administrator Client: SnaBase Parameters
Registry Settings for Administrator Client: SnaBase SnaTcp Parameters
Registry Settings for Administrator Client: SNA Server

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for Administrator Client: SnaBase
The SnaBase registry node needs to be created if it does not already exist. It will contain configuration information used by the
SNA Server Client binaries on Windows 2000 or Windows NT:

SYSTEM\CurrentControlSet\Services\SnaBase

Under this node, the following entries and values must be entered or modified:

DisplayName
The value of this entry should be set to an ASCIIZ string that will be displayed for the SNA Base. The value for this string should
be set to SNABASE.

ImagePath
The value of this entry should be set to an ASCIIZ string that points to the SNABASE.EXE executable file. The typical value for this
string is C:\SNA\SYSTEM\SNABASE.EXE.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for Administrator Client: SnaBase Parameters
The Parameters node needs to be created under the SnaBase node if it does not already exist. It will contain other parameters
used by SNA Server Clients:

SYSTEM\CurrentControlSet\Services\SnaBase\Parameters

Under this node, the following entries and values must be entered or modified:

BufferAuditInterval
The value of this entry should be set to a DWORD that indicates the interval in seconds for buffer auditing. This registry entry is
only applicable to Windows XP, Windows 2000, or Windows NT. A value of –1 indicates no buffer auditing. The value for this
DWORD should be set to –1.

MaxRecordLength
The value of this entry should be set to a DWORD that indicates the maximum record length supported. The value for this
DWORD should be set to 65535.

SNAServiceType
The value of this entry should be set to a DWORD that indicates the SNA Service type. The value for this DWORD should be set
to 28 for SnaBase.

Transports
The value of this entry should be set to an REG_MULTI_SZ string that indicates the transport or transports that should be used
for the SNA Server Client binaries. Possible values are:

SNABV.DLL (Banyan VINES)

SNAIP.DLL (TCP/IP)

SNALM.DLL (Microsoft Networking or Named Pipes)

SNANW.DLL (IPX/SPX)

The value for this string should be set based on the transport or transports to be used by the SNA Server Client.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for Administrator Client: SnaBase SnaTcp
Parameters
The SnaTcp key and all parameters under it are optional.

If the TCP/IP transport is to be used, the SnaTcp node is created under the SnaBase\Parameters node if it does not already exist.
This will contain other parameters used by SNA Server Clients:

SYSTEM\CurrentControlSet\Services\SnaBase\Parameters\SnaTcp

Under this node, the following entry and value are entered or modified:

NoDelay
The value of this entry should be set to an ASCIIZ string that indicates whether the TCP/IP transport should use the no delay
option. Possible values are the "YES" or "NO" string. The value for this string should be set to the "YES" string.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for Administrator Client: SNA Server
The SNA Server registry node needs to be created if it does not already exist. It will contain configuration information used by the
SNA Server Client binaries on Windows 2000 or Windows NT:

SOFTWARE\Microsoft\SNA Server

The CurrentVersion node needs to be created under the SNA Server node if it does not already exist. It will contain information
used by SNA Server Client binaries on Windows NT:

SOFTWARE\Microsoft\SNA Server\CurrentVersion

The AdminAddons node needs to be created under the CurrentVersion node if it does not already exist. It will contain information
used by SNA Server Client binaries on Windows NT:

SOFTWARE\Microsoft\SNA Server\CurrentVersion\AdminAddons

Under this node, the following entry and value must be entered or modified for supporting the SNA trace control panel applet:

snatrace
The value of this entry should be set to an ASCIIZ string that is the file name containing the SNA trace control panel applet. The
value for this string should be set to SNATRACE.CPL.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Entries for Host Integration Server End-User Client
This section describes the Win32 registry nodes and entries that need to be created or modified to support the Host Integration
Server 2000 End-User Client binaries. Note that the End-User Client runs on Windows 2000 Professional, Windows NT 4.0
Workstation, Windows 98, and Windows 95. Host Integration Server 2000 with Service Pack 1 adds support for the following
additional operating systems:

Microsoft Windows XP Professional
Microsoft Windows XP Home Edition
Microsoft Windows Millennium Edition

The Host Integration Server Administrator Client will run only on Windows XP Professional, Windows 2000 Professional, or
Windows NT 4.0 Workstation and cannot be run on Windows XP Home Edition, Windows Millennium Edition, Windows 98, or
Windows 95. If the Administrator Client is being used on Windows XP Professional, Windows 2000 Professional, or Windows NT
Workstation, then the client configuration allows the SnaBase to run as an Application or a Service. If SnaBase is run as an
Application (the default), then the registry settings match those documented in the section on Clients Running Host Integration
Server End-User Client. If SnaBase is configured to run as a Service, then the registry settings matching those documented in the
section on the Administrator Client apply.

This section contains:

Registry Settings for End-User Client: SnaBase
Registry Settings for End-User Client: SnaBase Parameters
Registry Settings for End-User Client: SnaBase Client Parameters
Registry Settings for End-User Client: SnaBase SnaTcp Parameters
Registry Settings for End-User Client: SNA Server
Registry Settings for End-User Client: Windows Help

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for End-User Client: SnaBase
The following registry node needs to be created if it does not already exist. It will contain configuration information used by the
SNA Server Client binaries on Windows 98 and Windows 95:

SOFTWARE\Microsoft\SnaBase

Under this node, the following entries and values must be entered or modified:

DisplayName
The value of this entry should be set to an ASCIIZ string that will be displayed for the SNA Base. The value for this string should
be set to SNABASE.

ImagePath
The value of this entry should be set to an ASCIIZ string that points to the SNABASE.EXE executable file. The typical value for this
string is C:\SNA\SYSTEM\SNABASE.EXE.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for End-User Client: SnaBase Parameters
The Parameters node needs to be created under the SnaBase node if it does not already exist. It will contain other parameters
used by SNA Server Clients:

SOFTWARE\Microsoft\SnaBase\Parameters

Under this node, the following entries and values must be entered or modified:

AutoTerminate
The value of this entry should be set to an ASCIIZ string that indicates whether autoterminate is enabled or disabled. This
registry entry is only applicable to Windows 98 and Windows 95. Possible values are the "on" or "off" string. The value for this
string should be set to the "off" string.

MaxRecordLength
The value of this entry should be set to a DWORD that indicates the maximum record length supported. The value for this
DWORD should be set to 65535.

SNAServiceType
The value of this entry should be set to a DWORD that indicates the SNA Service type. The value for this DWORD should be set
to 28 for SnaBase.

Transports
The value of this entry should be set to an ASCIIZ string that indicates the transport that should be used for the SNA Server
Client binaries. Possible values are:

SNACBV.DLL (Banyan VINES)

SNACIP.DLL (TCP/IP)

SNACLM.DLL (Microsoft Networking or Named Pipes)

SNACNW.DLL (IPX/SPX)

The value for this string should be set based on the single transport to be used by the SNA Server Client.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for End-User Client: SnaBase Client
Parameters
The Client node should be created under the SnaBase\Parameters node if it does not already exist. It will contain other
parameters used by SNA Server Clients:

SOFTWARE\Microsoft\SnaBase\Parameters\Client

Under this node, the following entries and values must be entered or modified:

MaxRecordLength
The value of this entry should be set to a DWORD that indicates the maximum record length supported. The value for this
DWORD should be set to 65535.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for End-User Client: SnaBase SnaTcp
Parameters
The SnaTcp key and all parameters under it are optional.

If the TCP/IP transport is to be used, the SnaTcp node is created under the SnaBase\Parameters node if it does not already exist.
This will contain other parameters used by SNA Server Clients:

SOFTWARE\Microsoft\SnaBase\Parameters\SnaTcp

Under this node, the following entry and value are entered or modified:

NoDelay
The value of this entry should be set to an ASCIIZ string that indicates whether the TCP/IP transport should use the no delay
option. Possible values are the "YES" or "NO" string. The value for this string should be set to the "YES" string.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for End-User Client: SNA Server
The SNA Server registry node needs to be created if it does not already exist. It will contain configuration information used by the
SNA Server Client binaries on Windows 98 and Windows 95:

SOFTWARE\Microsoft\SNA Server

The CurrentVersion node needs to be created under the SNA Server node if it does not already exist. It will contain information
used by SNA Server Client binaries on Windows 98 and Windows 95:

SOFTWARE\Microsoft\SNA Server\CurrentVersion

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Registry Settings for End-User Client: Windows Help
The following registry node needs to be created if it does not already exist. It will contain the names of the help files used by the
SNA Server Client binaries on Windows 98 and Windows 95:

SOFTWARE\Microsoft\Windows\Help

Under this node, the following entries and values must be entered or modified for supporting the SNA Server Client help:

SnaBase.hlp
The value of this entry should be set to an ASCIIZ string that points to the directory where the SNABASE.HLP file is located. The
typical value for this string is C:\SNA95\SYSTEM.

SnaTrace.hlp
The value of this entry should be set to an ASCIIZ string that points to the directory where the SNATRACE.HLP file is located. The
typical value for this string is C:\SNA95\SYSTEM.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Client Setup for 16-bit Windows Environments
This section provides information regarding installation of the Microsoft® Host Integration Server and SNA Server Client binaries
in the 16-bit Microsoft Windows® environment. This information will enable you to consolidate Host Integration Server and SNA
Server into your product's own setup, simplifying operation for the end user.

SNA Server versions 3.0 and later support SNA Server versions 2.0 and 2.1 Client binaries for the 16-bit Windows environment,
although it is recommended that you release updated binaries with each normal product release. This section describes the use of
SNA Server versions 3.0 and later binaries, which are recommended for all new applications.

SNA Server Client Binary Files for 16-bit Windows Environments
The Installation Process in 16-bit Windows Environments
Typical SNA Server Client Parameters in 16-bit Windows Environments
Modifications to WIN.INI for SNA Server Clients
Modifications to SYSTEM.INI for SNA Server Clients

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

SNA Server Client Binary Files for 16-bit Windows
Environments
Microsoft Host Integration Server 2000 client binary files for 16-bit Windows are located on the Host Integration Server CD-ROM
in separate subdirectories under the Setup\Clients folder. The binary client files supplied with Host Integration Server for 16-bit
Windows environments are as follows:

Subdirectory Description
Win3x Client binary files for use on Windows 3.x.
MS-DOS Client binary files for use on MS-DOS.

The SNA Server client binary files for the 16-bit Windows environment are located in the \CLIENTS\WIN3x\SYSTEM directory on
the SNA Server distribution CD-ROM. Additional copies are maintained on Library 2 on forum MSSNA on CompuServe. You will
need at a minimum to distribute the following files:

File name Purpose
APPCSTR.DLL Translates APPC return codes into text strings.
CSVSTR.DLL Translates Common Service Verb (CSV) return codes into text strings.
CTL3D.DLL 3-D controls (also distributed with other Windows applications).
FMISTR.DLL Translates EIS/LUA errors into a text string.
SECURITY.DLL Handles encryption and security
TOOLHELP.DLL Toolhelp for debugging (also distributed with other Windows applications).
VER.DLL Version numbers (also distributed with other Windows applications).
WDMOD.DLL Provides a network protocol-independent transport interface for SNA Server Client applications.
WINAPPC.DLL Used by 5250 emulators and other APPC applications.
WINCSV.DLL Used by emulators that need Common Service Verbs.
WINMGT.DLL Used by 5250 emulators.
WLOGTR.DLL Used for API (APPC, CPI-C, and LUA) tracing and event logging.
WNAP.EXE Keeps track of the names of SNA servers in the SNA Server (sub)domain.
WPOPUP.EXE Message pop-up dialog boxes.

SNA Server supports a number of different transport protocols. Depending on the transport protocol or protocols used by your
customer, you will need to distribute some or all of the following files:

BVCLI.DLL Banyan VINES transport
IPCLI.DLL Native TCP transport
LMCLI.DLL Named Pipes transport
NBCLI.DLL NetBIOS transport
NWCLI.DLL NetWare transport

SNA Server's use of IPX/SPX requires the Novell NetWare NWIPXSPX.DLL and NWNETAPI.DLL files, which are
included on the SNA Server distribution CD-ROM. You must provide these files to your users under your own license
agreement from Novell.

The following files are necessary if your application uses these additional features supported by SNA Server:

EHNAPPC.DLL Used for enhanced APPC API support.
EHNRTW.DLL Used for enhanced APPC API support.
LUASTR.DLL Translates LUA return codes into text strings.
WINCPIC.DLL Used for CPI-C API support.
WINRUI.DLL Used for LUA API support.
WINSLI.DLL Used for LUA API support.
WINTRC.DLL Used for SNA Server message tracing.
YMGR.DLL Used for DCA Comm Server 1.x support.

If you wish to support client tracing (which is a convenient troubleshooting tool), you will also need WINTRC.DLL and
replacements for some of the files named above that can be found in the subdirectory \CLIENTS\WIN3x\TRACE.

The following files are necessary if your application needs to support Asian languages using the TrnsDT API:

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

TRNSDT.DLL Used for Asian language support.
TRNSDTJ.DLL Used for Asian language support.
TRNSDTK.DLL Used for Asian language support.
TRNSDTS.DLL Used for Asian language support.
TRNSDTT.DLL Used for Asian language support.
SNADBC.TBL Used for Asian language support.
SNADBCK.TBL Used for Asian language support.
SNADBCS.TBL Used for Asian language support.
SNADBCT.TBL Used for Asian language support.
SNASBC.TBL Used for Asian language support.
SNASBCK.TBL Used for Asian language support.
SNASBCS.TBL Used for Asian language support.
SNASBCT.TBL Used for Asian language support.

The details of the installation process are described in the following topic.

Microsoft Host Integration Server 2000

The Installation Process in 16-bit Windows Environments
The ACME Setup tools used to install SNA Server 4.0 and 3.0 Client binaries are table-driven using an STF text file and an
SNAFILE.INF. You may be using a different installation tool for your application.

Along with an installation and setup procedure, you should also supply an uninstall option to remove the SNA Server Client
binaries and restore Microsoft MS-DOS® and Windows configuration files back to their original condition.

The general installation process for the SNA Server Client binaries is outlined below.

To install the SNA Server Client binaries in 16-bit Windows environments

1. Verify that this system supports SNA Server. The installation tool should check for supported versions of the operating
system and network operating system, adequate disk space, and any other requirements.

2. Copy files to target directories on the user's system. Note that all the SNA Server Client DLLs must be installed in the
Windows system directory on the user's system, not in the directory where the user has selected to install the SNA Server
Client. Copying all the DLLs to the Windows system directory makes it simple to ensure that there is only a single copy of a
given DLL on the user's system.
The installation procedure must also check version resources for executable files and DLLs to avoid overwriting a newer
copy already in the target directory with an older version from the distribution medium. All the EXE files must be copied into
a directory specified in the [Wnap] WBinPATH location, to facilitate version checking when the user upgrades these files.

3. Define file locations and other parameters necessary to modify MS-DOS, the network operating system, and other
configuration files. Based on these parameters, modify and update AUTOEXEC.BAT, LANMAN.INI, and other required
configuration files, saving copies of the original files.

4. Update the WIN.INI file, creating a [Wnap] section. Add the necessary entries within this section, saving a copy of the
original file.

5. If necessary, modify SYSTEM.INI and save a copy of the original file.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Typical SNA Server Client Parameters in 16-bit Windows
Environments
The following table describes some typical SNA Server client parameters in a 16-bit environment.

Parameter Common default
Root directory to which client files will be copied. C:\SNA.WIN
The path from which the SNA Server Client files are being installed. CD-ROM drive
Extension to use when backing up machine's system files.
Name of primary remote SNA Server.
Name of backup remote SNA Server.
The network operating system installed on this machine.
The version number of this machine's network operating system.
For use with Novell NetWare, the user's choice of network domains for use with the SNA Server Client.
For use with Banyan VINES, the user's choice of StreetTalk Group for use with the SNA Server Client.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Modifications to WIN.INI for SNA Server Clients
This section describes the [Wnap] section that must be created in the WIN.INI file for the SNA Server Client installation.

[Wnap]

NetSetup =

NosSetup =

NosType =

Remote =

SecureSponsor =

StGroupName =

WBinPath =

Entries

NetSetup
This flag indicates whether this was a network setup of SNA Server Client. Valid values are YES or NO.

NosSetup
This string specifies the network operating system for which the SNA Server Client was set up. The NosSetup entry is used only
by the setup program; the other SNA programs ignore it.

Valid values for NosSetup are:

LANMAN

NOVELL

TCPIP

VINES

NosType
This string specifies the transport DLL that the WNAP/WDMOD will use when communicating with the SNA server.

Valid values for NosType are:

LANMAN

NETBIOS

NOVELL

TCPIP

VINES

Remote
This is a required keyword in WIN.INI. This string specifies the location of the sponsoring SNA server. The SNA Server Client
uses Remote to find a sponsoring SNA server. After the client establishes a "sponsor" connection with one of these SNA
servers, it can discover all available SNA resources in the subdomain of which the sponsoring server is a member.

Valid values for Remote depend on the network operating system:

For BANYAN, Remote specifies a subdomain name. The client searches in the StreetTalk group specified in
STGroupName for a sponsoring SNA server configured to use the specified subdomain name.
For LANMAN and WFW, Remote specifies zero to two server names. If no servers are given, for example, by entering
"Remote=", the client looks for a sponsoring SNA server in its own domain. The server names must be of the form \\
<nodeName>, and if a backup is specified, it must be separated from the primary by a blank. The Remote entry can also
specify a subdomain name. If the value does not start with two backslashes, it is treated as a subdomain name.
For NETWARE, Remote specifies the subdomain name specified at the SNA server when it is configured to use IPX/SPX
transport.
For TCP, Remote specifies node names, which can be specified as \\<nodeName>, or in Domain Name System (DNS)
syntax (<node>.<net>.<org>), or by IP address (<ddd>.<ddd>.<ddd>.<ddd>). The Remote entry can also specify a

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

subdomain name. If the value does not start with two backslashes, it is treated as a subdomain name.

SecureSponsor
This string indicates whether the sponsor connection will be secured with data encryption. Valid values are YES or NO. The
default value for this parameter is NO.

StGroupName
This string specifies the StreetTalk group name if using VINES as the network operating system.

WBinPath
This string specifies the location where the client SNA files on the local machine were installed. The default value for this path is
C:\SNA.WIN.

Microsoft Host Integration Server 2000

Modifications to SYSTEM.INI for SNA Server Clients
This section describes the modifications that must be made to the SYSTEM.INI file for the SNA Server Client installation.

[386Enh]

NetHeapSize =

Entries

NetHeapSize
This number specifies the maximum buffer size (in kilobytes) that Windows enhanced mode allocates in conventional memory
for data transfers. The default value is 12, and all values are rounded up to the nearest 4K. For SNA Server Clients this value
must be set to 32 or greater. Some network operating systems may require an even larger value.

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Appendices and Glossary
This section contains appendices and a glossary for programmers developing applications by using Microsoft® Host Integration
Server 2000.

This section contains:

Common Abbreviations
Glossary

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Common Abbreviations
This section of the Microsoft Host Integration Server 2000 Developer's Guide provides information on the abbreviations used in
Microsoft® Host Integration Server 2000 SDK documentation.

Abbreviation Description
ACKRQD acknowledgment required
API application programming interface
APPC Advanced Program-to-Program Communications
ASCII American Standard Code for Information Interchange
BBI begin bracket indicator
BBIUI begin basic information unit indicator
BCI begin chain indicator
BETB between-brackets
BICB bind information control block
CCITT Comité Consultatif Internationale de Télégraphie et Téléphonie
CDI change direction indicator
CEI chain ending indicator
CICB connection information control block
CPI-C Common Programming Interface for Communications
CRC cyclical redundancy check
CSV common service verb
CTS clear to send
DAF destination address field
DFC data flow control
DFT distributed function terminal
DLC data link control
DLL dynamic-link library
DMA direct memory access
DMOD dynamic access module
DR1I definite response 1 indicator
DR2I definite response 2 indicator
DTE data terminal equipment
DTR data terminal ready
EBCDIC Extended Binary Coded Decimal Interchange Code
EBI end bracket indicator
EBIUI end basic information unit indicator
ECI end chain indicator
EDI enciphered data indicator
ERI exception response indicator
EXR exception request
FMD function management data
FMHI function management header indicator
FMI Function Management Interface
GDS general data stream
HDLC High-Level Data Link Control
IHV independent hardware vendor
INB in-brackets
IRP I/O request packet
K kilobyte
LAN local area network
LL record length
LPI locality, partner, index
LU logical unit

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

LUA conventional Logical Unit Application programming interface
MAC media access control
MB megabyte
MDI multiple document interface
NAP Network Access Program
NAU network addressable unit
NC network control
NCP Network Control Panel
NSPE network services procedure error
NMVT Network Management Vector Transport
OAF originating address field
OEM original equipment manufacturer
OS operating system
PC personal computer
PDI padded data indicator
PIP program initialization parameter
PLU primary logical unit
PU physical unit
PVC permanent virtual circuit
QLLC qualified logical link control
QRI queued response indicator
RH request/response header
RNR receive not ready
RTI response-type-indicator
RTM Response Time Monitor
RTS request to send
RU request/response unit
RUI Request Unit Interface
SAA Systems Application Architecture
SAP service access point
SC session control
SCM Service Control Manager
SDI sense-data-included indicator (in LUA)

system detected error indicator (in EIS)
SDLC Synchronous Data Link Control
SLI Session Level Interface
SNA Systems Network Architecture
SNADIS SNA Device Interface Specification
SNRM set normal response mode
SRL Setup Resource Library
SSCP system services control point
STSN set and test sequence number
SVC switched virtual circuit
TH transmission header
TP transaction program
TS transmission service
TSR terminate-and-stay-resident
UA unnumbered acknowledgement
VCB verb control block
VTAM Virtual Telecommunications Access Method
XID exchange identification

Microsoft Host Integration Server 2000

Glossary
This section contains the glossary for programmers developing applications using Microsoft Host Integration Server 2000.

This glossary includes terms and definitions from:

The American National Standard Dictionary for Information Systems:

ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions are identified by the
symbol (A) after the definition.
The ANSI/EIA Standard--440-A, Fiber Optic Terminology. Copies may be purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue, N.W., Washington, DC 20006. Definitions are identified by the symbol (E) after the
definition.
The Information Technology Vocabulary, developed by Subcommittee 1, Joint Technical Committee 1, of the International
Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions of
published parts of this vocabulary are identified by the symbol (I) after the definition; definitions taken from draft
international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the
symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National
Bodies of SC1.
The Network Working Group Request for Comments: 1208.
The IBM Dictionary of Computing, New York: McGraw-Hill, 1994.
The Object-Oriented Interface Design: IBM Common User Access Guidelines, Carmel, Indiana: Que, 1992.›

The following cross-references are used in this glossary:

Synonym for: Indicates that the term has the same meaning as a preferred term defined in the glossary.

Synonymous with: References all other terms that have the same meaning.

See also: Refers the reader to terms that have a related, but not synonymous, meaning.

This section contains:

Glossary

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Microsoft Host Integration Server 2000

Glossary
3270

The information display system for IBM hosts (mainframes). The system includes terminals, printers, and controllers that allow a
user to access host functions.

5250 emulator
Software that allows a PC to act as a 5250 terminal interacting with an AS/400 system.

A

A3270
The server transaction program for the APPC 3270 Terminal Emulator facility.

ACTLU
SNA command sent by the SSCP to an LU to activate a session and establish session parameters.

ACTPU
SNA command sent by the SSCP to activate a PU, so that any logical units controlled by this PU are available to the SNA
network.

Advanced Peer-To-Peer Networking (APPN)
An extension to SNA that features (a) greater distributed network control that avoids critical hierarchical dependencies, thereby
isolating the effects of single points of failure; (b) dynamic exchange of network topology information to foster ease of
connection, reconfiguration, and adaptive route selection; (c) dynamic definition of network resources; and (d) automated
resource registration and directory lookup. APPN extends the LU 6.2 peer orientation for end-user services to network control
and supports multiple LU types, including LU 2, LU 3, and LU 6.2.

Advanced Program-to-Program Communication (APPC)
(1) The general term that characterizes the LU 6.2 architecture and its various implementations in products. (2) Sometimes used
to refer to the LU 6.2 architecture and its product implementations as a whole, or to an LU 6.2 product feature in particular, such
as an APPC application programming interface. (3) A method for allowing programs to communicate directly with each other
across a network or within a single system. APPC uses a type of LU called LU 6.2, and allows TPs to engage in peer-to-peer
communications in an SNA environment.

AFTP
(1) APPC File Transfer Protocol. (2) The client transaction program for the APPC File Transfer Protocol facility. (3) An interactive
full-screen environment with a specific set of commands used to manage and transfer files between a client and server
computer. (4) An API that provides APPC file transfer capabilities.

AFTPD
The server transaction program for the APPC File Transfer Protocol facility.

alert
A message sent to indicate an abnormal event or a failure.

allocate
(1) The process an operating system uses to respond to a request from a program to reserve memory for use by the program.
(2) In APPC, a verb that assigns a session to a conversation. Contrast with deallocate.

APING
(1) The APPC Connectivity Tester facility. (2) The client transaction program for the APPC Connectivity Tester facility.

APINGD
The server transaction program for the APPC Connectivity Tester facility.

APPC verb
The mechanism by which a program accesses APPC. Each verb supplies parameters to APPC.

application programming interface (API)
The set of programming language constructs or statements that can be coded in an application program to invoke the specific
functions and services provided by an underlying operating system or service program.

application TP
An application program that uses APPC to accomplish tasks for users and exchange data with other TPs in an SNA environment.

ASCII
American Standard Code for Information Interchange. A coding scheme that assigns numeric values to letters, numbers,
punctuation marks, and certain other characters.

asynchronous verb completion
Processing of an SNA verb where the initial API call returns immediately, so that the normal operation of the program is not
blocked while processing completes. When the verb completes, the application is notified through a Windows message or
event. Contrast with synchronous verb completion.

B

https://msdn.microsoft.com/en-us/library/ee251755(v=bts.10).aspx

Base
A part of each Host Integration Server 2000 component that provides the operating environment for the core functions of that
component. The Base passes messages between components and provides functions common to all components, such as
diagnostic tracing.

basic conversation
In APPC, a conversation type generally used by programs that provide services to other local programs. Basic conversations
provide a greater degee of control over the transmission and handling of data than mapped conversations. See also mapped
conversation.

blocking
A method of operation in which a program that issues a call does not regain control until the call completes. See also
synchronous verb completion.

bracket
A chained set of RUs and their responses, which together make up a transaction between two LUs. One bracket must be
finished before another can be started.

C

characteristics
A set of internal values maintained by CPI-C for each conversation. They can affect the operation of the entire conversation or of
specific calls.

client
(1) A functional unit that receives shared services from a server. (2) A user.

code page
A table that associates specific ASCII or EBCDIC values with specific characters.

Common Programming Interface for Communications (CPI-C)
An evolving application programming interface (API), embracing functions to meet the growing demands from different
application environments and to achieve openness as an industry standard for communications programming. CPI-C provides
access to interprogram services such as (a) sending and receiving data, (b) synchronizing processing between programs, and (c)
notifying a partner of errors in the communication.

Common Service Verb (CSV)
An API that provides ways of translating characters, tracing, and sending network management information to a host.

configuration file
A file containing setup and configuration information for Host Integration Server 2000. It defines servers, connections, LUs,
users, and other items. The configuration file that is loaded when Host Integration Server 2000 Manager starts is called
COM.CFG.

connection object
In AFTP, a connection (not necessarily active) to a partner computer.

connectivity
(1) The capability of a system or device to be attached to other systems or devices without modification. (2) The capability to
attach a variety of functional units without modifying them.

conversation
(1) A logical connection between two transaction programs using an LU 6.2 session. Conversations are delimited by brackets to
gain exclusive use of a session. (2) The interaction between TPs carrying out a specific task. Each conversation requires an LU-LU
session. A TP can be involved in several conversations simultaneously. See also basic conversation, mapped conversation. (CPI-
C definition) The logical connection between two programs that allows the programs to communicate with each other.

CSV verb
The mechanism by which a program accesses CSV. Each verb supplies parameters to CSV. See also Common Service Verb.

current directory
The first directory in which the operating system looks for programs and data files and stores files for output.

D

database
(1) A collection of data with a given structure for accepting, storing, and providing on demand, data for multiple users. (2) A
collection of interrelated data organized according to a database schema to serve one or more applications. (3) A collection of
data fundamental to a system. (4) A collection of data fundamental to an enterprise.

data link control (DLC)
In SNA, the protocol stack layer that transmits messages across links and manages link-level flow and error recovery.

data set members
Members of partitioned data sets that are individually named elements of a larger file that can be retrieved by name.

deallocate
(1) The process an operating system uses to free memory previously allocated by a program. (2) In APPC, a verb that ends a

conversation. Contrast with allocate.
distributed function terminal (DFT)

A type of intelligent terminal supported by IBM 3270 control units, in which some of the terminal’s functions are controlled by
the terminal and others by the control unit. It allows multiple sessions and connects to host systems or to peer systems through
host systems. DFTs are often connected using coaxial cable.

directory
(1) A list of files that are stored on a disk or diskette. A directory also contains information about the files such as size and date
of last change. (2) A named grouping of files in a file system.

display verb
An APPC verb that returns configuration information and current operating values for a computer running Host Integration
Server 2000.

DL-BASE
The type of Base used by Host Integration Server 2000 3270 emulation programs. It supports a single Host Integration Server
2000 component or a single user application and has entry points for initialization, sending messages, receiving messages, and
termination. See also Base.

Dynamic Access Module (DMOD)
An SNA component that provides the communications facilities needed to pass messages between the Bases.

dynamic locality
A locality in a Host Integration Server 2000 system where the localities are not configured in advance. In this type of system the
relationships between localities are configured dynamically as localities enter and leave the system. See also locality.

E

EBCDIC
Extended Binary Coded Decimal Interchange Code. A coding scheme developed by IBM for use with its computers as a standard
method of assigning binary (numeric) values to alphabetic, numeric, punctuation, and transmission-control characters.

F

fill type
A value used in basic conversations that indicates whether programs receive data in the form of logical records or as a specified
length of data.

flow
A verb flows from one LU to another.

Format 0 XID
A type of XID that supplies minimal information about a node. These XIDs have a fixed length. They can be used for 3270 and
LUA communications, but not for APPC. See also Format 3 XID and XID.

Format 3 XID
A type of XID that supplies more detailed information about a node than a Format 0 XID. These XIDs have a variable length.
They can be used for APPC as well as for 3270 and LUA communication. See also Format 0 XID and XID.

full-duplex transmission
Two-way electronic communication that takes place in both directions simultaneously. Contrast with half-duplex transmission.

fully qualified LU name
The two-part network address (network.lu) that uniquely identifies a destination (typically a user) in the network.

Function Management Interface (FMI)
An interface that provides applications with direct access to SNA data flow and information about SNA control flows by means
of status messages. It is particularly suited to the requirements of 3270 emulation applications.

H

half-duplex transmission
Two-way electronic communication that takes place in only one direction at a time. Contrast with full-duplex transmission.

HLLAPI
High-Level Language Application Programming Interface. An API that allows you to develop and run programmer-operator
applications on IBM PCs (or compatibles) that communicate with IBM mainframes using 3270 emulation.

Host Integration Server
A Microsoft software program that allows a PC to communicate with remote computers such as IBM mainframes, AS/400s, or
other PCs on an SNA network.

hot backup
(1) The ability to take systems online and offline without disrupting service. (2) A configuration in which one resource (such as a
server running Host Integration Server 2000 software) can automatically handle sessions if another cannot. Such servers can
provide hot backup for 3270, LUA, or downstream sessions through pools containing LUs from multiple servers. Servers

running Host Integration Server 2000 software can provide hot backup for 5250 terminal emulation through the use of LU
names that are the same on multiple servers.

I

invokable
Capability of a program to be started by another program. For example, an invokable APPC TP can be started in response to a
request from another TP.

invokable TP
A TP that can be invoked by another TP.

invoked program
A program that has been activated by a call or verb. See also invoking program.

invoked TP
A TP started by another (invoking) TP. The invoked TP is started by an allocate verb sent to it by the invoking TP.

invoking program
A program that uses a call or verb to activate another program. See also invoked program.

invoking TP
A TP that initiates a conversation with another TP. The invoking TP starts the other TP by instructing the remote node to load the
invokable TP.

L

link service
The software component of Host Integration Server 2000 that communicates with the device driver for a particular
communication adapter (802.2, SDLC, X.25, DFT, Channel, or Twinax).

local LU
In an APPC or CPI-C conversation, the LU on the local end. Contrast with partner LU and remote LU.

local program
In CPI-C, the program on the local end of the conversation. Contrast with partner program.

local TP
In an APPC or CPI-C conversation, the TP on the local end. Contrast with partner TP and remote TP.

locality
A Base and the components within it; that is, a Host Integration Server 2000 executable program. See also dynamic locality.

logical unit (LU)
(1) A type of network-accessible unit that enables users to gain access to network resources and communicate with each other.
(2) A preset unit containing all the configuration information needed for a user, program, or downstream system to establish a
session with a host or peer computer. Host Integration Server 2000 offers four types of LUs: 3270 LUs are used for 3270
terminal emulation; LU type 6.2 LUs are used for APPC; LUA LUs are used with programs written for the LUA interface;
downstream LUs are used to allow downstream systems to connect to a host through a computer running Host Integration
Server 2000. On a computer running Host Integration Server 2000, LUs are assigned to connections, and the connections and
LUs work together to provide access to other systems on the SNA network.

Logical Unit Application (LUA)
A conventional LU application, or the interface that these applications use. LUA allows workstations to communicate with host
applications using LU 0, 1, 2, or 3 protocols.

LPI address
Used to identify each end of a connection between two partners. It can have three components: L identifies the locality, P
identifies the partner within the locality, and I identifies a logical entity within the partner. See also locality and partner.

LU 6.2
A protocol used by two TPs communicating as peers. LU 6.2 works in combination with node type 2.1 to provide APPC
communications using independent LUs. LU 6.2 also works with node type 2.0 to provide APPC communications with
dependent LUs.

LU alias
The string that identifies an LU to a TP. It can be up to eight characters long.

LU pool
A number of LUs, all of the same kind, that are made available as a group. A user, LUA application, or downstream system using
the pool can get LU access as long as one of the pooled LUs is available. This provides for better access for multiple users,
applications, or downstream systems in an SNA installation.

LU-LU session
The communication between two LUs over a specific connection for a specific amount of time. An LU-LU session is needed for
two TPs to interact. One session can be used serially by many TPs. See also multiple sessions and parallel sessions.

M

MAC address
A 12-byte hexadecimal address used by the media access control layer of an 802.2 connection. It corresponds to the VTAM
MACADDR= parameter and to the remote network access parameter for an 802.2 connection with Host Integration Server
2000.

mapped conversation
A conversation type generally used by programs that accomplish tasks for users. In a mapped conversation, the sending
program sends one record at a time, and the receiving program receives one record at a time. The characters MC_ at the
beginning of a verb stand for mapped conversation. See also basic conversation.

mode name
The name used by the initiator of a session to designate the characteristics desired for the session, such as traffic pacing values,
message-length limits, Sync Point and cryptography options, and the class of service within the transport network.

multiple sessions
In CPI-C, two or more concurrent sessions with different partner LUs. See LU-LU session.

MVS
Multiple Virtual Storage. Implies MVS/370, the MVS/XA product, and the MVS/ESA product.

N

node
A server, controller, workstation, printer, or other processor that implements SNA functions.

SNA defines three kinds of nodes: the host subarea node that controls and manages a network; the communication controller
subarea node that routes and controls data flow through the network; and peripheral nodes that include printers, workstations,
cluster controllers, and distributed processors.

node type 2.1
An SNA component, such as an intelligent terminal or a PC, that works together with LU type 6.2 to support peer-to-peer
communications, allowing the LUs to function independently from the host. This is referred to as a 2.1 node.

NT operating system
Microsoft Windows NT Server operating system.

P

packet
In data communication, a sequence of binary digits, including data and control signals, that is transmitted and switched as a
composite whole. The data, control signals, and, possibly, error control information are arranged in a specific format.

parallel sessions
In CPI-C, two or more concurrent sessions with the same partner LU. See LU-LU session.

partitioned data set (PDS)
A data set in direct access storage that is divided into partitions, called members, each of which can contain a program, part of a
program, or data.

partner
An addressable component of a locality; that is, code to which messages can be sent. See also locality.

partner LU
In an APPC or CPI-C conversation, the LU on the far end. The partner LU serves the partner TP. Contrast with local LU. See also
partner TP and remote LU.

partner program
For CPI-C, the program receiving the CPI-C call.

partner TP
In an APPC or CPI-C conversation, the TP on the far end. Contrast with local TP. See also partner LU and remote TP.

password
A string of characters that a user, a program, or a computer operator must specify to meet security requirements before gaining
access to a system and to the information stored within it.

path
A path exists between two localities when the DMODs in the localities can successfully pass messages between them. A path
must exist between two localities before a connection can exist between partners in these localities. See also DMOD and locality.

pattern-matching character
A special character such as an asterisk (*) or a question mark (?) that can be used to represent one or more characters. Any
character or set of characters can replace a pattern-matching character. Synonymous with wildcard character.

peer-to-peer
A type of communication in which two systems communicate as equal partners sharing the processing and control of the
exchange, as opposed to host-terminal communication in which the host does most of the processing and controls the
exchange.

physical unit (PU)
A network-addressable unit that provides the services needed to use and manage a particular device, such as a communications
link device. A PU is implemented with a combination of hardware, software, and microcode.

pipe
A portion of memory that can be used by one process to pass information along to another.

protocol
(1) A set of semantic and syntactic rules that determine the behavior of functional units in achieving communication. (2) In
Open Systems Interconnection architecture, a set of semantic and syntactic rules that determine the behavior of entities in the
same layer in performing communication functions. (3) In SNA, the meanings of, and the sequencing rules for, requests and
responses used for managing the network, transferring data, and synchronizing the states of network components.

PU 2.0
In an SNA network, the component that defines controller and terminal-type resources similar to an IBM 3274 Control Unit.

PU 2.1
In an SNA network, a component such as an intelligent terminal or a PC that works together with LU type 6.2 to support peer-
to-peer communications, allowing LUs to function independently from the host.

Q

QLLC
Qualified logical link control. The protocol that permits SNA sessions to occur over X.25 networks.

queued TP
An invokable TP that can be started by only one incoming allocate command at a time. Incoming allocate commands that arrive
while the queued TP is running do not start the program again, but are queued until the program issues another
RECEIVE_ALLOCATE or until it finishes execution.

R

race condition
A condition in which a feedback circuit interacts with the internal circuit processes in a way that produces chaotic output
behavior.

remote LU
In an APPC or CPI-C conversation, the LU on the remote end. Contrast with local LU. See also remote TP.

remote TP
In an APPC or CPI-C conversation, the TP on the remote end. Contrast with local TP. See also remote LU.

Request Unit Interface (RUI)
A basic interface that allows programs to acquire and release control of conventional LUs. The RUI also reads and writes
request/response headers (RHs), transmission headers (THs), and request unit (RU) data. Contrast with Session Level Interface.

root
The topmost node in a directory structure.

root directory
The first directory on a drive in which all other files and subdirectories exist.

S

semaphore
A flag variable that is used to govern access to shared system resources.

server
(1) A functional unit that provides shared services to workstations over a network; for example, a file server, a print server, a
mail server. (2) In a network, a data station that provides facilities to other stations; for example, a file server, a print server, a
mail server.

service TP
A TP that uses basic conversation verbs to provide services to other TPs.

session
(1) In network architecture, for the purpose of data communication between functional units, all the activities that take place
during the establishment, maintenance, and release of the connection. (2) A logical connection between two network-accessible
units (NAUs) that can be activated, tailored to provide various protocols, and deactivated, as requested. Each session is uniquely
identified in a transmission header (TH) accompanying any transmissions exchanged during the session.

Session Level Interface (SLI)
A higher-level interface that facilitates the opening and closing of SNA sessions with host LU 0, LU 1, LU 2, and LU 3 application
programs. The SLI permits application programs to control the data traffic at a logical message level. Contrast with Request Unit
Interface.

side information table

In CPI-C, a table that stores the initialization information required for two programs to communicate The table resides in the
operating system’s memory and the system administrator maintains it by accessing a symbolic destination name. The table is
derived from the configuration file for Host Integration Server 2000.

SnaBase
The SNA Workstation Process. It is present at all times on PCs that wish to participate in the SNA network and on PCs where
dynamic loading is to be performed.

SNALink
Link support software that integrates hardware components into a Host Integration Server 2000 system. An SNALink is defined
when a Host Integration Server 2000 system is installed. An SNALink can support only one physical connection from the server.

Host Integration Server 2000
A Microsoft software program that allows a PC to communicate with remote computers such as IBM mainframes, AS/400s, or
other PCs on an SNA network.

subdirectory
A directory contained within another directory in a file system hierarchy.

switched virtual circuit (SVC)
A type of circuit used by an X.25 connection, where the circuit is not constantly active, but is called and cleared dynamically., The
destination address is supplied when the circuit is called.

synchronous data link control (SDLC)
A type of link service used for managing synchronous data transfer over standard telephone lines (switched lines) or leased
lines.

synchronous verb completion
Processing of an SNA verb where the operation of the program is blocked until processing completes. Contrast with
asynchronous verb completion.

system services control point (SSCP)
(1) A host-system network component that provides network services for dependent nodes. (2) An SNA network component
that helps control and maintain communication flow between PUs and LUs on the network. Multiple SSCPs can work together
to coordinate communications.

Systems Network Architecture (SNA)
The description of the logical structure, formats, protocols, and operational sequences for transmitting information units
through, and controlling the configuration and operation of, networks. The layered structure of SNA allows the ultimate origins
and destinations of information, that is, the end users, to be independent of and unaffected by the specific SNA network services
and facilities used for information exchange.

A collection of rules that brings uniformity to communications systems and the ways they interact. These rules define various
functions that allow information to be transferred from one computer to another in a form that is usable by the receiving
computer.

T

transaction
A processing task accomplished by programs using APPC or CPI-C.

transaction program (TP)
(1) An application program that uses APPC or CPI-C to exchange data with another TP on a peer-to-peer basis. (2) A program
that processes transactions in an SNA network. There are two kinds of transaction programs: application transaction programs
and service transaction programs. See also conversation.

U

user identifier
A string of characters that uniquely identifies a user to a system.

V

verb
Command from one LU to another to exchange data and perform tasks. See also APPC verb.

verb control block (VCB)
A structure made up of variables, which identifies the verb to be executed, supplies information to be used by the verb, and
contains information returned by the verb when execution is complete.

VM
Virtual machine.

W

wildcard character
Synonym for pattern-matching character.

X

X.25
The CCITT standard used for communication over a packet-switching network. X.25 uses the QLLC (qualified logical link control)
protocol.

XID
Exchange Identification. An identifier that is exchanged between nodes on an SNA network, and that allows the nodes to
recognize each other and to establish link and node characteristics for communicating. With Host Integration Server 2000, two
kinds of XIDs can be exchanged: Format 0 XIDs (containing only basic information) and Format 3 XIDs (containing more detailed
information). See also Format 0 XID and Format 3 XID.

Microsoft Host Integration Server 2000

Accessing Host Transactions in .NET-based Applications Using
COMTI

Microsoft Corporation

July 2003

Applies to:
 Microsoft® Host Integration Server 2000

Summary: Microsoft Host Integration Server 2000 includes a sample application called CedarBank. The CedarBank sample is a
simple banking application made up of a collection of COMTI (COM Transaction Integrator) type libraries, COBOL samples, and
client applications. It was created to demonstrate the various ways of using COMTI to access CICS (Customer Information Control
System) or IMS (Information Management System) transactions running on an IBM host.

Since many customers are using Microsoft Visual Studio® .NET and the .NET Framework for new development work and need
the ability to use COMTI in their projects, this document describes some .NET-based versions of the existing CedarBank samples
provided with Host Integration Server 2000, and points out the key concepts to keep in mind when using COMTI with the .NET
Framework.

Download the COMTI technical article and its accompanying sample.

http://go.microsoft.com/fwlink/?linkid=18092

Microsoft Host Integration Server 2000

Administration and Management of Data Access Using the OLE
DB Provider for DB2

Host Integration Server 2000
Microsoft Corporation

October 2001

Summary: Microsoft Host Integration Server 2000 (HIS) includes a number of components that enable integration with host data
sources. This article describes features and tools for administering and managing data access to IBM DB2 relational database
systems using the OLE DB Provider for DB2 supplied with Microsoft Host Integration Server 2000. (33 printed pages)

Contents

Introduction
Configuring and Managing Data Sources
 Configuring Data Sources for the OLE DB Provider for DB2
 Creating New Data Links for the OLE DB Provider for DB2
 Browsing Data Sources for the OLE DB Provider for DB2
 Configuring Data Links for the OLE DB Provider for DB2
Creating Packages for Use With DB2
Host Security Integration
Troubleshooting Data Access

Introduction
Microsoft® Host Integration Server 2000 includes a rich set of Data Integration components, which provide desktop or server-
based applications with direct access to host data. These Data Integration components provide a comprehensive set of data
access services, which includes direct data access to relational and non-relational mainframe and AS/400 data through open
database connectivity (ODBC), object linking and embedding database (OLE DB), and COM automation controls.

The Data Integration components included in Host Integration Server 2000 provide access to both structured and non-structured
data stored on IBM mainframe or AS/400 computers. This data can be stored in a database or file system. In addition to data
access, the Data Integration components also provide data transfer services between Microsoft® Windows® 2000 computers
and host systems.

The Data Integration components can be organized into the following categories:

Relational database access
Record file access
File transfer
AS/400 data queue access

All of these services make use of IBM host-based products that implement the IBM Distributed Data Management Architecture
(DDM). DDM is a framework or methodology for sharing and accessing data between systems. DDM defines the "how to
communicate" and leaves it up to individual platform vendors to implement the DDM architecture. IBM currently supports DDM
for most IBM platforms, including: OS/390 (MVS), AS/400, RS/6000 (AIX), and AS/36.

Much of the operational data stored on OS/390, AS/400, and RS/6000 computers is accessed via a relational database
management system. The most popular database on these host systems is IBM DB2. Host Integration Server 2000 offers
relational database access by using the Distributed Relational Data Architecture (DRDA) subset of DDM.

DRDA offers both Remote Unit of Work (RUW) and Distributed Unit of Work (DUW) access to host data. RUW is used for read-
only and simple updating of database tables using SQL statements and stored procedures. DUW is used when updates span
multiple DB2 instances or computer systems and supports the two-phase commit (2PC) protocol. The 2PC protocol ensures that
changes to multiple databases will either succeed or fail in their entirety.

Host Integration Server 2000 implements access to DB2 via two features:

Microsoft OLE DB Provider for DB2
Microsoft ODBC Driver for DB2

The Microsoft OLE DB Provider for DB2 relies on an underlying DRDA application requester (AR) developed by Microsoft. The
DRDA AR connects the OLE DB Provider for DB2 to DB2 on popular platforms, including OS/390, OS/400, RS/6000-AIX,
Microsoft® Windows NT®, and Windows 2000.

The OLE DB Provider for DB2 supports a number of data access features including static and dynamic SQL, execution of DB2
stored procedures, transactions using two phase commit, and network connectivity using SNA LU 6.2 or TCP/IP. Developers can
use Visual C or Microsoft Visual C++® to integrate DB2 data with Web-based and Windows-based applications. Microsoft Visual
Basic® and Web developers (using scripting languages such VBScript) can use the higher-level Microsoft ActiveX® Data Objects
(ADO) to develop e-commerce solutions. Additionally, DB2 is directly accessible from productivity applications, such as Microsoft
Office 2000 using Visual Basic for Applications (VBA) and ADO from within Microsoft Excel.

This article describes features and tools for administering and managing data access to IBM DB2 relational database systems
using the OLE DB Provider for DB2. Companion articles will discuss administration and management of other data integration
components provided in Host Integration Server 2000.

Configuring and Managing Data Sources
Microsoft® Data Access Components 2.0 and later includes Data Links, a generic method for managing and loading connections
to OLE DB data sources. Microsoft Data Links, a core element of the Microsoft Data Access Components (MDAC), provide a
uniform method of creating persistent OLE DB data source object definitions stored in the form of universal data link (UDL) files.
The OLE DB Provider for DB2 normally uses Data Links and UDL files for loading and configuring data sources.

Applications, such as the RowsetViewer sample from the Microsoft Data Access SDK, can open created UDL files and pass the
stored initialization string to the OLE DB Provider for DB2 at run time. Data Links provide a flexible method for finding and saving
connection information to OLE DB data sources.

In order to use Microsoft OLE DB Provider for DB2 with an OLE DB consumer application, the user must either (1) create a
Microsoft data link (UDL) file and call this from the application, or (2) call the OLE DB provider from within the application using a
connection string that includes the provider name and any other needed parameters.

Configuring Data Sources for the OLE DB Provider for DB2

Data source information must be configured for each DB2 system data source object that is to be accessed using the OLE DB
Provider for DB2. The default parameters for the OLE DB Provider for DB2 are used as the default values for data sources and
when these parameters are not configured for each data source.

Microsoft Data Links provides a uniform method for creating file-persistent OLE DB data source object definitions in the form of
Universal Data Link (UDL) files. Applications, such as the RowsetViewer sample included in Microsoft Data Access and the
Platform SDK, can open created UDL files and pass the stored initialization string to the OLE DB Provider for DB2 at run time.

Creating New Data Links for the OLE DB Provider for DB2

UDL files are normally stored in a special folder located at:

C:\Programs Files\Common Files\System\Ole DB\data links

Microsoft Data Access Components 2.5 introduced a set of new OLE DB interfaces and functions to enumerate, create, and modify
data link UDL files for configuring data sources. The NewSnaDS.exe utility provided as part of the OLE DB Provider for DB2 enables
users to create and modify data links. This tool makes calls to the OLE DB Service Component Manager that provides these
functions.

To create a new UDL file, run the NewSnaDS tool. This tool is installed in the System folder below the subdirectory where Microsoft
Host Integration Server 2000 is installed. The default location where this tool is installed is the following:

C:\Program Files\Host Integration Server\System\NewSnaDS.exe

A shortcut for this tool is added to the Programs menu under the Host Integration Server\Data Integration folder with a name of
OLE DB Data Sources. This shortcut is created when Microsoft Host Integration Server 2000 software for the server or client
(End-User Client or Administrator Client) is first installed and support for data access is selected.

A shortcut entitled the OLE DB Data Sources Browser is also added to the Programs menu in the
Host Integration Server\Data Integration folder. This shortcut opens Windows Explorer to the default directory where UDL files
are stored:

C:\Programs Files\Common Files\System\Ole DB\data links

Using SNA Server 4.0 and older versions of the Microsoft Data Access Components (MDAC 2.1), it was possible to create a new

UDL file by navigating to this folder using Windows Explorer. In the right pane of Windows Explorer, right-click to open a shortcut
menu and create a New Microsoft Data Link.

In the past, a data link file could also be created using SNA Server 4.0 with a shortcut in the SNA Server 4.0 program folder. Also,
the properties of a data link file could be edited by opening the file from Windows Explorer. The procedures used with SNA Server
4.0 to create a new UDL file have been deprecated and will not work with Microsoft Host Integration Server 2000, Windows 2000,
and MDAC 2.5 or later.

Once a UDL file has been created using the NewSnaDS tool, the file can be changed to a more appropriate name and copied to
other client computers for use with the OLE DB Provider for DB2.

A new data link file can be created with the NewSnaDS utility using the following procedure:

1. Click the Start button, point to Programs, and then point to Host Integration Server.
2. Point to Data Integration, and then click OLE DB Data Sources to run the NewSnaDS tool.

A UDL file is created, and the Data Link Properties dialog box is displayed.
3. Select Microsoft OLE DB Provider for DB2 from the list of providers, and then configure the data source information as

needed.
4. Click OK to save the data link.

By default, data links are created in the following folder:

C:\Program Files\Common Files\System\Ole DB\data links

However, a data link can be created in this location and moved to other client computers or folders, as needed.

Browsing Data Sources for the OLE DB Provider for DB2

By default, data links are created in the following folder:

C:\Program Files\Common Files\System\Ole DB\data links

A shortcut is provided in the Host Integration Server program group to this folder.

1. Click the Start button, point to Programs, and then point to Host Integration Server.
2. Point to Data Integration, and then click OLE DB Data Source Browser.

Windows Explorer opens in the default location where UDL files are stored. The list of data links saved in the default location
appears.

Configuring Data Links for the OLE DB Provider for DB2

To edit the properties of a Data Link file, right-click the file using Windows Explorer and click Properties. The Properties dialog
box appears with several property tabs:

General
Security
Summary
Provider
Connection
Advanced
All

The General, Security, and Summary tabs provide access to general file information for the UDL file that is available for other
files and is not related to the Data Link properties. This information includes file location, file type, file size, file dates, file security
permissions for access, and descriptive summary information (description and origin properties and values such title, subject,
author, and so forth) for the UDL file. The Provider, Connection, Advanced, and All tabs provide access to the Data Link
properties.

The NewSnaDS tool can also be used to open and modify an existing UDL file. The Data Link Properties dialog box appears with
several property tabs:

Provider
Connection
Advanced

All

Provider

The Provider tab enables you to select the OLE DB provider (the provider name string) to use in the UDL file from a list of
possible OLE DB providers. Select the Microsoft OLE DB Provider for DB2. The parameters and fields displayed in the
remaining tabs (Connection, Advanced, and All) are determined by the OLE DB Provider that is selected.

Figure 1. The Provider tab

Connection

The Connection tab enables you to configure the basic properties required to connect to a data source.

Figure 2. The Connection tab

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for Data Source and Network

connectivity values:

Property Description
Data source The data source is an optional parameter that can be used to describe the data source.

When the NewSnaDS configuration program is loaded from the Host Integration Server prog
ram folder, the Data source field is required. This field is used to name the UDL file, which is
stored in C:\Program Files\Common Files\System\Ole DB\data links.

Network This drop-down list allows you to select the type of network connection to be used. The allo
wable options are TCP/IP Connection or APPC Connection.

If TCP/IP Connection is selected, click the More Options … button to open a dialog box f
or configuring TCP/IP network settings. The parameters you can configure include the IP ad
dress of the DB2 host (or a hostname alias for this computer) and the Network port (TCP/IP
port) used for communication with the host. The default value for the Network port is 446.
The IP address of the host has no default value.

If APPC Connection is selected (using SNA LU 6.2), click the More Options … button to o
pen a dialog box for configuring APPC network settings. The parameters you can configure
include the APPC local LU alias, the APPC remote LU alias, and the APPC mode name used f
or communication with the host. The local and remote LU alias fields do not have default va
lues. The default value for the APPC mode name normally defaults to QPCSUPP. The APPC
mode can be selected from the drop-down list.

Figure 3. SNA Network Settings

Figure 4. TCP/IP Network Settings

The Data Source in OLE DB is similar to a Data Source Name (DSN) in ODBC. The data source information is stored in a
Microsoft Data Links file and contains the connection information required for the OLE DB Provider for DB2 to access IBM Data
Base 2.

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for authentication information:

Property Description
Single sign-on Click this checkbox to enable using the Host Integration Security features providing a single

sign-on to access this OLE DB data source. Note that single sign-on is only supported using
the APPC Connection option (SNA LU 6.2).

When this checkbox is selected, the User name and Password fields are grayed out and bec
ome inaccessible. The user name and password fields are set based on the Windows 2000 l
ogin.

When this checkbox is not selected, the User name and Password fields must normally cont
ain appropriate values in order to access data sources on hosts.

User name A valid user name and password are normally required to access data sources on a host. Th
ese values are case sensitive.
Users must not check the Single sign-on option button if a specific user name and passw
ord are to be entered.

Password A valid user name and password are normally required to access data sources on hosts. The
se values are case sensitive.

The Blank password checkbox is only applicable for a Test Connection. In order to enter a
password, the user will need to clear the Blank password check box if it is checked. If Blan
k password is checked, then a Test Connection with a blank password will not cause the OL
E DB Provider to prompt for a password.

Optionally, users can choose to save the password in the UDL file by clicking the Allow sav
ing password check box. Users and administrators should be warned that this option save
s the authentication information (password) in plain text within the UDL file.

The AS/400 requires that the User name and Password parameters be in uppercase. When connecting to DB2/400, these
parameters must be passed as uppercase strings. When connecting to DB2 on IBM mainframes, the User name and Password
parameters can be in mixed case.

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following database property values:

Property Description
Initial catalog This OLE DB property is used as the first part of a 3-part fully qualified table name.

In DB2 (MVS, OS/390), this property is referred to as LOCATION. The SYSIBM.LOCATIONS
table lists all the accessible locations. To find the location of the DB2 to which you need to c
onnect, ask the administrator to look in the TSO Clist DSNTINST under the DDF definitions.
These definitions are provided in the DSNTIPR panel in the DB2 installation manual.

In DB2/400, this property is referred to as RDBNAM. The RDBNAM value can be determine
d by invoking the WRKRDBDIRE command from the console to the OS/400 system. If ther
e is no RDBNAM value, then one can be created using the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

In SQL/DS (DB2/VM or DB2/VSE), this property is referred to as DBNAME.

If the provider supports changing the catalog for an initialized data source, the consumer ca
n specify a different catalog name through the DBPROP_CURRENTCATALOG property in t
he DBPROPSET_DATASOURCE property set after initialization.

This is a required property.

This property is equivalent to the DBPROP_INIT_CATALOG OLE DB property ID.

Package collection This is the name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB
Provider for DB2 should store and bind DB2 packages. This could be same as the Default Sc
hema.

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA Application
Requester, uses packages to issue dynamic and static SQL statements. Package names are n
ot restricted and can be uppercase, lowercase, or mixed case.

The OLE DB Provider will create packages dynamically in the location to which the user poi
nts using the Package Collection property. By default, the OLE DB Provider will automaticall
y create one package in the target collection, if one does not exist, at the time the user issue
s the first SQL statement. The package is created with GRANT EXECUTE authority to a single
<AUTH_ID> only, where AUTH_ID is based on the User ID value configured in the data sour
ce. The package is created for use by SQL statements issued under the same isolation level
specified when calling the OLE DB ITransactionLocal::StartTransaction or ITransactionJ
oin::JoinTransaction methods, as well as when setting the ADO IsolationLevel property
on the Connection object.

A problem can arise in multi-user environments. For example, if a user specifies a Package
Collection value that represents a DB2 collection used by multiple users, but this user does
not have authority to GRANT execute rights to the packages to other users (for example, PU
BLIC), then the package is created for use only by this user. This means that other users ma
y be unable to access the required package. The solution is for an administrative user with p
ackage administrative rights to create a set of packages for use by all users (see the later se
ction on Creating Packages for Use with DB2).

The OLE DB Provider for DB2 ships with a tool program for use by administrators to create
packages. The CrtPkg.exe tool is a Windows GUI application for use by the administrator to
create packages. This tool can be run using a privileged User ID to create packages in collect
ions accessed by multiple users. This tool will create a set of packages and grant EXECUTE p
rivilege to PUBLIC for all (see descriptions under the isoLevel parameter of the OLE DB ITra
nsactionLocal::StartTransaction or ITransactionJoin::JoinTransaction methods, as wel
l as the ADO IsolationLevel property in the Host Integration Server 2000 online Developer
's Guide). The packages created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400)
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package (MSCS001)
REPEATABLE READ package (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB
2 for OS/400 QSYS2.SYSPACKAGE, and the DB2 Universal Database (UDB) SYSIBM.SYSPAC
KAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be rec
reated using the Host Integration Server CrtPkg utility to make them compatible with Host I
ntegration Server 2000. The package names changed from SNA Server 4.0.

This property is equivalent to the DBPROP_DB2OLEDB_PACKAGECOL OLE DB property ID
.

Default schema The name of the Collection where the OLE DB Provider for DB2 looks for catalog informatio
n. The Default schema is the "SCHEMA" name for the target collection of tables and views. T
he OLE DB Provider uses Default Schema to restrict results sets for popular operations, suc
h as enumerating a list of tables in a target collection.

For DB2, the Default schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default schema, the OLE DB Provider uses the USER
_ID provided at login. For DB2/400, the driver will use QSYS2 if there is no collection found
matching the USER_ID value. Obviously, this default value is inappropriate in many cases. T
herefore it is essential that the Default schema value in the data source be defined.

This property is equivalent to the DBPROP_DB2OLEDB_CATALOGCOL OLE DB property ID
.

The Connection tab also includes a Test Connection button that can be used to test the connection parameters. The connection
can only be tested after all of the required parameters are entered. When this button is pressed, an APPC session or a TCP/IP
session will attempt to be established with the host using the OLE DB Provider for DB2.

Advanced

The Advanced tab allows users to select the character code set identifier used by the host, the PC code page used on the client,
and select some specific options when using the OLE DB Provider for DB2.

Figure 5. The Advanced tab

For the Microsoft OLE DB Provider for DB2, these properties include the following values:

Property Description

Host CCSID This is the character code set identifier (CCSID) matching the DB2 data as represented on th
e remote host computer. The CCSID property is required when processing binary data as c
haracter data. Unless the Process Binary as Character value is set to true, character data is c
onverted based on the DB2 column CCSID and default ANSI code page.

Note that Host CCSID 37 is not supported by the OLE DB Provider for DB2 when connectin
g to DB2 UDB for Windows NT or DB2 UDB for AIX.

This property defaults to U.S./Canada (37).

This property is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

PC code page The PC code page property indicates the code page to be used on the PC for character cod
e conversion. This property is required when processing binary data as character data. Unle
ss the Process binary as character checkbox is selected (value is set to true), character dat
a is converted based on the default ANSI code page configured in Windows.

This property defaults to Latin 1 (1252).

This property is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property I
D.

Read only When this option is checked, the OLE DB Provider for DB2 creates a read-only data source b
y setting the Mode property to Read (DB_MODE_READ). A user has read access to objects s
uch as tables, and cannot do update operations (INSERT, UPDATE, or DELETE, for example).

This property defaults to a Mode property of Read/Write (DB_MODE_READ/WRITE).

This property is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Process binary as character When this option is checked (value is set to true), the OLE DB Provider for DB2 treats binary
data type fields (with a CCSID of 65535) as character data type fields on a per-data source b
asis. The Host CCSID and PC code page values are required input and output parameters.

This property defaults to false.

This property is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

Distributed transactions When this option is checked, two-phase commit (distributed unit of work) is enabled. Distri
buted transactions are handled using Microsoft Transaction Server, Microsoft Distributed Tr
ansaction Coordinator, and the SNA LU 6.2 Resync Service. This option works only with DB
2 for OS/390 v5R1 or later. This option also requires that an APPC Connection (the SNA L
U 6.2 service) is selected as the Network transport in the Connection tab and Microsoft Tra
nsaction Server (MTS) is installed.

This property is equivalent to the DBPROP_DB2OLEDB_UNITSOFWORK OLE DB property
ID.

All

The All tab allows users to configure essentially all of the properties for the data source except for the OLE DB Provider. The
properties available in the All tab include properties that can be configured using the Connection and Advanced tabs as well as
optional detailed properties used to connect to a data source.

Figure 6. The All tab

The properties on the All tab may be edited by selecting a property from the list displayed and selecting Edit Value. This button
will invoke a dialog box for the specific property containing a Property Description describing the property and a Property
Value box for making changes.

Figure 7. Edit Property Value

For the Microsoft OLE DB Provider for DB2, these properties include the following values:

Property Description
Alternate TP Name This is the remote transaction program name when used with SQL/DS. This property is only

required when connecting to SQL/DS (DB2/VM or DB2/VSE).

This property is equivalent to the DBPROP_DB2OLEDB_TPNAME OLE DB property ID.

APPC Local LU Alias When an APPC Connection (SNA) using SNA LU 6.2 is selected for the Network Transport L
ibrary, this field is the name of the local LU alias configured in the SNA server.

This property is equivalent to the DBPROP_DB2OLEDB_LOCALLU OLE DB property ID.

APPC Mode Name When an APPC Connection (SNA) using SNA LU 6.2 is selected for the Network Transport L
ibrary, this field is the APPC mode and must be set to a value that matches the host configu
ration and SNA server configuration.

Legal values for the APPC mode name include QPCSUPP (common system default often us
ed by 5250), #INTER (interactive), #INTERSC (interactive with minimal routing security), #B
ATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRDB (DB2 remote dat
abase access), and custom modes. The following modes that support bi-directional LZ89 co
mpression are also legal: #INTERC (interactive with compression), INTERCS (interactive with
compression and minimal routing security), BATCHC (batch with compression), and BATCH
CS (batch with compression and minimal routing security).

This property normally defaults to QPCSUPP.

This property is equivalent to the DBPROP_DB2OLEDB_APPCMODE OLE DB property ID.
APPC Remote LU Alias When an APPC Connection (SNA) using SNA LU 6.2 is selected for the Network Transport L

ibrary, this field is the name of the remote LU alias configured in the SNA server.

This property is equivalent to the DBPROP_DB2OLEDB_REMOTELU OLE DB property ID.

Cache Authentication This property determines whether the OLE DB Provider caches authentication information.
This property defaults to false.

The value of this property (true or false) is selected from the drop-down list.

This property is equivalent to the DBPROP_CACHE_AUTHINFO OLE DB property ID.

Data Source The data source is an optional parameter that can be used to describe the data source.

This property does not have a default value.

Default Schema This is the name of the Collection where the OLE DB Provider for DB2 looks for catalog info
rmation. The Default Schema is the "SCHEMA" name for the target collection of tables and v
iews. The OLE DB Provider uses Default Schema to restrict results sets for popular operatio
ns, such as enumerating a list of tables in a target collection.

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, the OLE DB Provider uses the USER
_ID provided at login. For DB2/400, the driver will use QSYS2 if there is no collection found
matching the USER_ID value. Obviously, this default is inappropriate in many cases; therefo
re, it is essential that the Default Schema value in the data source be defined.

This property is equivalent to the DBPROP_DB2OLEDB_CATALOGCOL OLE DB property ID
.

Extended Properties This parameter is a string containing provider-specific, extended connection information. Th
e use of this property implies that the OLE DB consumer knows how this string will be inter
preted and used by the OLE DB provider. This property should be used only for provider-sp
ecific connection information that cannot be explicitly described through the other property
parameters.

This property is equivalent to the DBPROP_INIT_PROVIDERSTRING OLE DB property ID.

Host CCSID This is the character code set identifier (CCSID) matching the DB2 data as represented on th
e remote host computer. The CCSID property is required when processing binary data as ch
aracter data. Unless the Process Binary as Character value is set to true, character data is co
nverted based on the DB2 column CCSID and default ANSI code page.

Note that Host CCSID 37 is not supported by the OLE DB Provider for DB2 when connectin
g to DB2 UDB for Windows NT or DB2 UDB for AIX.

This property defaults to U.S./Canada (37).

This property is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

Initial Catalog This OLE DB property is used as the first part of a 3-part, fully qualified table name.

In DB2 (MVS, OS/390), this property is referred to as LOCATION. The SYSIBM.LOCATIONS
table lists all the accessible locations. To find the location of the DB2 to which you need to c
onnect, ask the administrator to look in the TSO Clist DSNTINST under the DDF definitions.
These definitions are provided in the DSNTIPR panel in the DB2 installation manual.

In DB2/400, this property is referred to as RDBNAM. The RDBNAM value can be determine
d by invoking the WRKRDBDIRE command from the console to the OS/400 system. If ther
e is no RDBNAM value, then one can be created using the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

In SQL/DS (DB2/VM or DB2/VSE), this property is referred to as DBNAME.

If the provider supports changing the catalog for an initialized data source, the consumer ca
n specify a different catalog name through the DBPROP_CURRENTCATALOG property in t
he DBPROPSET_DATASOURCE property set after initialization.

This is a required property.

This property is equivalent to the DBPROP_INIT_CATALOG OLE DB property ID.
Integrated Security This property determines whether the OLE DB Provider uses Host Security Integration (sing

le sign-on).

When this property is set to SSPI, single sign-on is enabled and separate user id and passw
ord parameters are not required. The user id and password parameters are set based on th
e Windows 2000 login.

When this property is null, this single sign-on feature is disabled.

This property defaults to null (host security integration is disabled) and a user id and passw
ord are required.

This property is equivalent to the DBPROP_AUTH_INTEGRATED OLE DB property ID.

Mode A Mode parameter is a bit mask specifying access permissions. This bit mask can be a com
bination of zero or more of the following:

DB_MODE_READ—Read-only.

DB_MODE_READWRITE—Read/write (DB_MODE_READ | DB_MODE_WRITE).

DB_MODE_SHARE_DENY_NONE—Neither read nor write access can be denied to others.

DB_MODE_SHARE_DENY_READ—Prevents others from opening in read mode.

DB_MODE_SHARE_DENY_WRITE—Prevents others from opening in write mode.

DB_MODE_SHARE_EXCLUSIVE—Prevents others from opening in read/write mode (DB_M
ODE_SHARE_DENY_READ | DB_MODE_SHARE_DENY_WRITE).

DB_MODE_WRITE—Write-only.

The following values for mode are supported by the OLE DB Provider for DB2: Read (DB_M
ODE_READ) and Read/Write (DB_MODE_READ/WRITE). This property defaults to Read/Wri
te.

When the Read Only parameter is checked in the Advanced tab, the OLE DB Provider for
DB2 creates a read-only data source by setting the Mode parameter to Read (DB_MODE_R
EAD). A user has read access to objects such as tables, and cannot do update operations (IN
SERT, UPDATE, or DELETE, for example).

This property is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Network Address When TCP/IP has been selected for the Network Transport Library, this property indicates t
he IP address of the DB2 host or a hostname alias for this computer.

This property is equivalent to the DBPROP_DB2OLEDB_NETADDRESS OLE DB property I
D.

Network Port When TCP/IP has been selected for the Network Transport Library, this property is the TCP/
IP port used for communication with the DB2 host. The default value is TCP/IP port 446.

This property is equivalent to the DBPROP_DB2OLEDB_NETPORT OLE DB property ID.

Network Transport Library The network transport dynamic link library property designates whether the OLE DB Provid
er for DB2 connects via an APPC Connection using SNA LU6.2 or TCP/IP Connection. The p
ossible values for this property are TCP/IP or SNA.

The default value for this property is SNA.

If the default SNA is selected, values for APPC Local LU Alias, APPC Mode Name, and APPC
Remote LU Alias are required.

If TCP/IP is selected, values for Network Address and Network Port are required.

This property is equivalent to the DBPROP_DB2OLEDB_NETTYPE OLE DB property ID.

Package Collection This is the name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB
Provider for DB2 should store and bind DB2 packages. This could be same as the Default Sc
hema.

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA Application
Requester, uses packages to issue dynamic and static SQL statements. Package names are n
ot restricted and can be uppercase, lowercase, or mixed case.

The OLE DB Provider will create packages dynamically in the location to which the user poi
nts using the Package Collection property. By default, the OLE DB Provider will automatic
ally create one package in the target collection, if one does not exist, at the time the user iss
ues the first SQL statement. The package is created with GRANT EXECUTE authority to a sin
gle <AUTH_ID> only, where AUTH_ID is based on the User ID value configured in the data s
ource. The package is created for use by SQL statements issued under the same isolation le
vel specified when calling the OLE DB ITransactionLocal::StartTransaction or ITransacti
onJoin::JoinTransaction methods, as well as when setting the ADO IsolationLevel prope
rty on the Connection object.

A problem can arise in multi-user environments. For example, if a user specifies a Package
Collection value that represents a DB2 collection used by multiple users, but this user does
not have authority to GRANT execute rights to the packages to other users (for example, PU
BLIC), then the package is created for use only by this user. This means that other users ma
y be unable to access the required package. The solution is for an administrative user with p
ackage administrative rights to create a set of packages for use by all users (see the later se
ction on Creating Packages for Use with DB2).

The OLE DB Provider for DB2 ships with a tool program for use by administrators to create
packages. The CrtPkg.exe tool is a Windows GUI application for use by the administrator to
create packages. This tool can be run using a privileged User ID to create packages in collect
ions accessed by multiple users. This tool will create a set of packages and grant EXECUTE p
rivilege to PUBLIC for all (see descriptions under the isoLevel parameter of the OLE DB ITra
nsactionLocal::StartTransaction or ITransactionJoin::JoinTransaction methods, as wel
l as the ADO IsolationLevel property in the Host Integration Server 2000 online Developer
's Guide). The packages created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400)
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package (MSCS001)
REPEATABLE READ package (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB
2 for OS/400 QSYS2.SYSPACKAGE, and the DB2 Universal Database (UDB) SYSIBM.SYSPAC
KAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be rec
reated using the Host Integration Server CrtPkg utility to make them compatible with Host I
ntegration Server 2000. The package names changed from SNA Server 4.0.

This property is equivalent to the DBPROP_DB2OLEDB_PACKAGECOL OLE DB property ID
.

Password A valid user name and password are normally required to access data sources on hosts. The
password is case sensitive and is displayed as asterisks in this dialog box for security purpo
ses.

This property is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

PC Code Page The PC Code Page property indicates the code page to be used on the PC for character cod
e conversion. This property is required when processing binary data as character data. Unle
ss the Process Binary as Character value is set to true, character data is converted based on
the default ANSI code page configured in Windows.

This property defaults to Latin 1 (1252).

This property is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property I
D.

Persist Security Info This parameter indicates whether the data source object is allowed to persist sensitive auth
entication information, such as a password along with other authentication information. Thi
s property defaults to false.

The value of this property (true or false) is selected from the drop-down list.

This property is equivalent to the DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO OLE
DB property ID.

Process Binary as Character When this property is set to true, the OLE DB Provider for DB2 treats binary data type fields
(with a CCSID of 65535) as character data type fields on a per-data source basis. The Host C
CSID and PC Code Page values are required input and output parameters.

This property defaults to false.

The value of this property (true or false) is selected from the drop-down list.

This property is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

Units of Work This property indicates whether two-phase commit (distributed unit of work) used for trans
actions is supported for this data source. Distributed transactions are handled using Micros
oft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2
Resync Service.

The following values for this property are supported by the OLE DB Provider for DB2:

RUW (remote unit of work)

DUW (distributed unit of work)

Distributed unit of work (two-phase commit) works only with DB2 for OS/390 v5R1 or later
. This option also requires that the SNA LU 6.2 service is selected as the network transport a
nd Microsoft Transaction Server (MTS) is installed.

This property defaults to RUW.

The value of this property (RUW or DUW) is selected from the drop-down list.

This property is equivalent to the DBPROP_DB2OLEDB_UNITSOFWORK OLE DB property
ID.

User ID A valid User name is normally required to access data sources on hosts. This value is case s
ensitive.

This property is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

Creating Packages for Use With DB2
The OLE DB Provider for DB2, which is implemented as an IBM Distributed Relational Database Architecture (DRDA) Application
Requester, uses packages to issue SQL statements and call DB2 stored procedures. There is a provider-specific property that the
OLE DB Provider for DB2 uses to identify a location in which to create and store DB2 packages. The OLE DB Provider for DB2 will
create packages dynamically in the location to which the user points using the Package Collection property corresponding to
the DBPROP_DB2OLEDB_PACKAGECOL property ID of OLE DB. This location may be configured using the Connection and All
tabs using Microsoft Data Links or can be passed as part of the connection string as an attribute keyword and argument. This
attribute keyword can be either pkgcol or the long form of this attribute, Package Collection.

There are two package creation options:

1. The OLE DB Provider for DB2 will auto-create one package for the currently-used isolation level at run time if no package

already exists. This auto-create process may fail if the user account does not have authority to create packages.
2. An administrator or user can manually creates all four packages (five packages on DB2/400) for use with all isolation levels

and for use by all users (PUBLIC). The OLE DB Provider for DB2 includes a utility program for use by users with appropriate
administrative privilege for this purpose.

However, some users may not have the security level when manually creating packages to GRANT authority to the packages to
other users (PUBLIC, for example). This can be a problem if two or more users with different user IDs try to access a single
collection of packages. The first user that created the packages will have access to the packages, but the second user likely will not.
The Host Integration Server 2000 CD-ROM includes a program for use by an administrator to create packages. This tool can be
run using a privileged User ID to create packages in collections accessed by multiple users. The Create Packages for DB2 utility,
CrtPkg.exe, is a GUI-based tool included with Host Integration Server 2000 for creating packages for use with DB2. This tool is
installed in the System folder below the subdirectory where the Microsoft Host Integration Server 2000 has been installed. The
default location where this tool is installed is the following:

C:\Program Files\Host Integration Server\system\CrtPkg.exe

A shortcut for this tool is added to the Programs menu off the Start button on the Windows Taskbar under the Host Integration
Server\Data Integration folder with a name of Packages for DB2. This shortcut is created when Microsoft Host Integration
Server 2000 software for the server or client (End-User Client or Administrator Client) is first installed and support for Data
Access is selected.

This tool will create a set of packages and grant EXECUTE privilege to PUBLIC for all:

AUTOCOMMITTED package (MSNC001) is only applicable on DB2/400
READ UNCOMMITTED package (MSUR001)
READ COMMITTED package (MSCS001)
REPEATABLE READ package (MSRS001)
SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNNC001) is only created on DB2 for OS/400.

The descriptive process name used by the CrtPkg utility of each package corresponds with the isolation levels defined in the ANSI
SQL standard. The table below indicates how these packages correspond with the terms used by IBM for isolation levels in DB2
documentation.

Package Description Package Name IBM Documentation
AUTOCOMMITTED (Note that this applies
only to DB2/400 and does not correspond
with an ANSI SQL isolation level.)

MSNC001 COMMIT(*NONE) (NC).

This isolation level is used in DB2/400 auto-commit mode only
and has no corresponding isolation level on other DB2 platform
s or in ANSI SQL.

READ UNCOMMITTED MSUR001 UNCOMMITTED READ (UR).

This isolation level corresponds with ANSI SQL READ UNCOMM
ITTED.

READ COMMITTED MSCS001 CURSOR STABILITY (CS).

This isolation level corresponds with ANSI SQL READ COMMITT
ED.

REPEATABLE READ MSRS001 READ STABILITY (RS).

This isolation level corresponds with ANSI SQL REPEATABLE RE
AD.

SERIALIZABLE MSRR001 REPEATABLE READ (RR).

This isolation level corresponds with ANSI SQL SERIALIZABLE.

These Isolation Levels are described in detail under "Support for Isolation Levels Using the OLE DB Provider for DB2" in the Host
Integration Server 2000 online Developer's Guide. These Isolation Levels are also described under the OLE DB isoLevel parameter
and ADO IsolationLevel property in the Host Integration Server 2000 online Developer's Guide. Note that the AUTOCOMMITTED
package (MSNC001) is only created on DB2 for OS/400.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integration
Server CrtPkg utility to make them compatible with Host Integration Server 2000. The package names used by the OLE DB Driver
for DB2 on SNA Server 4.0 are not compatible with the OLE DB Driver for DB2 included with Host Integration Server. On SNA
Server 4.0, these packages used different names as follows:

AUTOCOMMITTED package (SNANC001) only applicable on DB2/400
READ UNCOMMITTED package (SNACH001)
READ COMMITTED package (SNACS001)
REPEATABLE READ package (SNARR001)
SERIALIZABLE package (SNAAL001)

The CrtPkg utility will create all of these packages inside the Collection that is specified in the Package Collection property in the
data link file, or in the connection string. If the user does not have the appropriate authority to create packages in the specified
Collection, or if the specified Collection does not exist, the OLE DB Provider for DB2 will return an error.

In the case of DB2 on MVS or OS/390, the normal error text returned if the user does not have the appropriate authority would be
as follows:

In the case of DB2/400, the normal error text returned if the user does not have the appropriate authority would be as follows:

In the case of DB2/400, the normal error returned if the collection does not exist would be as follows:

There are two authorities required to execute the create package process on MVS using the CrtPkg utility:

The "authorization ID" is the user who needs the permission to create the packages. The "collection ID" is the name of the
Collection, which the user specifies in the data link file for the Package Collection property. This Collection should be a valid
Collection within the DB2.

If an administrator executes the above statements on behalf a non-privileged user, this non-privileged user can then run the
CrtPkg utility. Once run, the CrtPkg process will create four sets of packages (one for each of the four isolation levels supported
on DB2 for MVS or OS/390) for use by "all" (PUBLIC) users of the Microsoft data access features.

The example below illustrates this process on DB2 for MVS or DB2 for OS/390.

Grant rights to run the CrtPkg utility to authorization ID WNW999.

Run the CrtPkg utility using authorization ID WNW999 (see output from CrtPkg below).

A SQL error has occurred. Please consult the documentation for your
 specific DB2 version for a description of the associated Native
 Error and SQL State. SQLSTATE: 51002, SQLCODE: -567.

A SQL error has occurred. Please consult the documentation for your
 specific DB2 version for a description of the associated Native
 Error and SQL State. SQLSTATE: 51002, SQLCODE: -805.

Failed to create AUTOCOMMITTED (NC) package. RETCODE=-99.
SQL Error: Code=-204, State=42704, Error Text= A SQL error has occurred.
 Please consult the documentation for your specific DB2 version for a
 description of the associated Native Error and SQL State.
 SQLSTATE: 42704, SQLCODE: -204

GRANT BINDADD TO <authorization ID>
GRANT CREATE IN COLLECTION <collection ID> TO <authorization ID>

GRANT BINDADD TO WNW999
GRANT CREATE IN COLLECTION MSPKG TO WNW999

In order to execute the CrtPkg utility on DB2/400, a user ID must have one of the following authorities:

*CHANGE authority on the DB2 collection
*ALL authority on the DB2 collection

If the user merely has *USE authority or if the user has *EXCLUDE authority, the Create Package process will fail.

There are several steps required to change user authority on a DB2/400 collection (AS/400 library): From interactive SQL
(STRSQL command) while logged in as user with administrative privileges, create a new collection. This command can also be
issued using ADO, OLE DB, and ODBC. However, most administrators typically create collections from the AS/400 console since
the administrator must be logged in at the console to issue the Command Language (CL) command with which to change the
user authority on the collection.

From the AS/400 command console, issue the CL WRKOBJ command with the <collection ID> as a parameter.

The "collection ID" is the name of the Collection, which the user specifies in the data link file for the Package Collection property.
This Collection should be a valid Collection within DB2. The Work with objects screen appears. Place the cursor on the *PUBLIC
Object Authority line and change the authority from *USE to *ALL.

If an administrator executes the above statements on behalf a non-privileged user, this non-privileged user can then run the
CrtPkg utility. Once run, the CrtPkg process will create five sets of packages (one for each of the five isolation levels supported on
DB2/400) for use by "all" (PUBLIC) users of the Microsoft data access features. On DB2/400, five packages are created including
the AUTOCOMMITTED packages.

The example below illustrates this process on DB2/400.

Grant rights to run the CrtPkg utility to authorization ID WNW999.

Beginning creation process
Initializing environment...
Connecting to the host...
Connection established.
Start package creation process...
Creating READ UNCOMMITTED package...
READ UNCOMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSUR001 granted to PUBLIC
Creating READ COMMITTED package...
READ COMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSCS001 granted to PUBLIC
Creating REPEATABLE READ package...
REPEATABLE READ package created.
Package creation succeeded.
EXECUTE privilege on MSRS001 granted to PUBLIC
Creating SERIALIZABLE package...
SERIALIZABLE package created.
Package creation succeeded.
EXECUTE privilege on MSRR001 granted to PUBLIC
Free statement handles...
Disconnecting...
Disconnected
End of package creation.
Creation process has completed

CREATE COLLECTION <collection ID>

WRKOBJ <collection ID>

CREATE COLLECTION MSPKG
WRKOBJ MSPKG

Run the CrtPkg utility (see the output from CrtPkg for DB2/400 below).

CrtPkg allows a user to create a new UDL file or load a data source and modify an existing UDL file for connection configuration
information. The File menu of CrtPkg has a New option used for creating a new OLE DB UDL File and a Load Data Source
option to load an existing UDL file. The File menu Edit Data Source option allows a user to access and modify the properties for
a data source similar to using the NewSnaDS.exe tool. The Run menu option is used to create packages.

When using the create package tool, if the package collection specified does not exist, then DB2 returns SQLCODE -805.

When using auto-create packages, if a package collection is not specified or the package collection does not exist, the consumer
application will receive SQLSTATE HY000 and SQLCODE -385 during the "auto-create" package process. The SQLSTATE HY000 is
defined as a provider-specific error. The -385 Error Return Code is not a SQLCODE but rather a DDM DRDA AR (DB2 client) return
code. This error code is defined as DDM_VALNSPRM with the following associated text string:

The OLE DB Provider for DB2 client error codes are defined in the db2oledb.h file located on the Host Integration Server 2000 CD-
ROM.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be recreated using the Host Integration
Server CrtPkg utility to make them compatible with Host Integration Server 2000.

SNA Server 4.0 with Service Pack 3 came with two similar utilities for creating packages: CRTPKG.EXE (a command-line tool) and
CRTPKGW.EXE (a GUI-based tool).

Host Security Integration
An Integrated Security (single sign-on) feature is supported by Host Integration Server 2000 to automate the overall logon
process. When configured for this feature, Host Integration Server 2000 automatically replaces special keywords in the data
stream with the actual host user name and password at appropriate points in the session. This feature must be enabled by the
administrator within a Host Integration Server 2000 subdomain and special strings must be entered for the user name
(MS$SAME) and password (MS$SAME) that will be replaced.

Beginning creation process
Initializing environment...
Connecting to the host...
Connection established.
Start package creation process...
Creating AUTOCOMMITTED (NC) package...
AUTOCOMMITTED (NC) package created.
Package creation succeeded.
EXECUTE privilege on MSNC001 granted to PUBLIC
Creating READ UNCOMMITTED package...
READ UNCOMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSUR001 granted to PUBLIC
Creating READ COMMITTED package...
READ COMMITTED package created.
Package creation succeeded.
EXECUTE privilege on MSCS001 granted to PUBLIC
Creating REPEATABLE READ package...
REPEATABLE READ package created.
Package creation succeeded.
EXECUTE privilege on MSRS001 granted to PUBLIC
Creating SERIALIZABLE package...
SERIALIZABLE package created.
Package creation succeeded.
EXECUTE privilege on MSRR001 granted to PUBLIC
Free statement handles...
Disconnecting...
Disconnected
End of package creation.
Creation process has completed

"The parameter value is not supported by the target system."

When using the OLE DB Provider for DB2, this single sign-on feature works only when an APPC Connection using SNA LU 6.2 is
used for the network transport. This feature is enabled under the Connection or All tabs when configuring a data source for use
with the OLE DB Provider for DB2.

Troubleshooting Data Access
The Windows 2000 and Windows NT Event Viewer can be a useful tool for troubleshooting data access in some cases. The OLE
DB Provider for DB2 does not issue events. However, when an APPC Connection using SNA LU 6.2 is used for the network
transport for the OLE DB Provider for DB2, the low-level SNA APPC transport issues events on the SNA connection.

The Microsoft® OLE DB Provider for DB2 supplied with Host Integration Server 2000 has the ability to trace DRDA data flows
when used over TCP/IP.

This DB2 tracing capability is accessible from the SNADB2 Service tracing inside the Trace utility. This facility will show the same
data as an APPC trace but without the control indicators (for example, What_Received). Socket errors are traced and the error
codes can be looked up in Winsock2.h supplied with the Platform SDK.

The OLE DB Provider for DB2 can return the following types of errors:

DB2 SQL errors from the remote database
Microsoft OLE DB Provider-specific errors
Errors from the underlying DRDA Application Requester network client

When the OLE DB Provider for DB2 passes an error code, the best source in which to look up the meaning of the return code is
often the SQL Reference or SQL Messages and Codes Reference for the target SQL database. In this case, the target database
would be one of the DB2 platforms supported by the Microsoft OLE DB Provider for DB2.

The OLE DB Provider for DB2 maintains an internal integer variable named SQLCODE and an internal 5-byte character string
variable named SQLSTATE used to check the execution of SQL statements on DB2. SQLCODE is set by DB2 after each SQL
statement is executed. DB2 returns the following values for SQLCODE:

If SQLCODE = 0, execution was successful.
If SQLCODE > 0, execution was successful with a warning.
If SQLCODE < 0, execution was not successful.
If SQLCODE = 100, "no data" was found. For example, a FETCH statement returned no data because the cursor was
positioned after the last row of the result table.

SQLSTATE is also set by DB2 after the execution of each SQL statement. Application programs can check the execution of SQL
statements by testing SQLSTATE instead of SQLCODE. SQLSTATE provides application programs with common codes for
common error conditions (the values of SQLSTATE are product-specific only if the error or warning is product-specific).
Furthermore, SQLSTATE is designed so that application programs can test for specific errors or classes of errors.

SQLSTATE values consist of a two-character class code value, followed by a three-character subclass code value. The first
character of an SQLSTATE value indicates whether the SQL statement was executed successfully or unsuccessfully (equal to or not
equal to zero, respectively). Class code values represent classes of successful and unsuccessful execution conditions. The following
SQLSTATE class codes are used by DB2:

Class Code Description of Error Class
00 Successful completion. Execution of the SQL statement was successful and did not result in any type of war

ning or exception condition.
01 Warning
02 No data
07 Dynamic SQL error
08 Connection exception
0A Feature not supported
0F Invalid token
21 Cardinality violation
22 Data exception
23 Constraint violation
24 Invalid cursor state
25 Invalid Transaction State
26 Invalid SQL statement identifier
2D Invalid transaction termination

34 Invalid cursor name
39 External function call exception
40 Transaction rollback
42 Syntax error or access rule violation
44 WITH CHECK OPTION violation
51 Invalid application state
53 Invalid operand or inconsistent specification
54 SQL or product limit exceeded
55 Object not in prerequisite state
56 Miscellaneous SQL or product error
57 Resource not available or operator intervention
58 System error

The SQLSTATE value of HY000 is defined as a provider-specific error. An SQLSTATE of 08S01 (connection exception with a
subclass code of S01) also indicates a provider-specific error. This means the SQLCODE should be looked up in the driver-specific
documentation included with the OLE DB Provider for DB2.

If the SQLSTATE does not indicate a driver-specific error when the OLE DB Provider for DB2 passes back an SQLSTATE of 08S01, it
indicates a network error. For example, an SQLCODE of -603 is a provider-specific error that is mapped to
DB2OLEDB_COMM_HOST_CONNECT_FAILED in the db2oledb.h include file supplied with the OLE DB Provider for DB2. Errors
with an SQLSTATE of 08S01 are documented in the db2oledb.h include file (the SQLCODE value) which is located on the Host
Integration Server 2000 CD-ROM in the SDK\Include subdirectory.

The following steps are useful in researching an error. Start by reading the provided error text returned by the OLE DB Provider
for DB2. In some cases, the error text provides very limited useful information. For example, error text from an SQLCODE of -603
states the following:

Test connection failed because of an error in initializing provider.
Could not connect to specified host.

The next step is to lookup the SQLSTATE to determine the source of the error. Is the error a DB2 error, a network client error, or an
OLE DB Provider error? An SQLSTATE of 08S01 is defined as follows:

Communication link failure.

This definition is intended to inform the user, administrator, or developer that the error is related to the OLE DB Provider's
underlying network client.

Unfortunately, many of the SQLSTATE codes returned by the OLE DB Provider for DB2 are DB2 errors and are not documented in
the OLE DB Provider for DB2 on-line help.

The SQLSTATE of HY000 is defined as a provider-specific error. An SQLSTATE of 08S01 also indicates a provider-specific error.
This means the SQLCODE should be looked up in the provider-specific documentation included with the OLE DB Provider for
DB2.

If the SQLSTATE does not indicate a driver-specific error, then the SQLCODE should be looked up in the appropriate DB2 manual
for the target platform. For example, an SQLCODE of -603 is documented in Appendix B, SQLCODEs and SQLSTATEs, in the
AS/400 Advanced Series DB2 for AS/400 SQL Programming, Version 4, Document Number SC41-5611-00 published by IBM. An
SQLCODE of -603 corresponds to SQLSTATE 23515 in the DB2 for OS/400 error code list. For example, the explanation for this
SQLCODE is as follows:

Unique index cannot be created because of duplicate keys.

When the SQLSTATE and the SQLCODE definitions documented in these appendices create a mismatch with the actual errors
returned, this usually indicates a provider-specific error condition.

A final step to understand an error is to check the db2oledb.h file. This file is not installed by the Host Integration Server or Host
Integration Client setup program, but can be found on the Host Integration Server 2000 product CD ROM in the SDK\Include
subdirectory. An SQLCODE (for example, -603) can be looked up by searching the right-most column of the db2oledb.h file for a
value near to 603. In this case, one will see a comment "/* -600 */" and can then count down three additional lines to line number
603. The internal error code -603 is defined as follows:

DB2OLEDB_COMM_HOST_CONNECT_FAILED

Unfortunately, this error text is not further defined anywhere in the software or documentation provided to the customer. This

particular error usually indicates a problem with the configuration parameters or the connection string passed.

Microsoft Host Integration Server 2000

Integrating RPG and CL Programs Using the Microsoft OLE DB
Provider for DB2

Microsoft Corporation

July 2003

Applies to:
 Host Integration Server 2000, Microsoft® OLE DB Provider for DB2

Summary: This document describes how to use DB2 stored procedures to call RPG and CL programs (running on an IBM iSeries
or AS/400 system) with the Microsoft OLE DB Provider for DB2. Samples of RPG and CL server programs are provided, as well as
sample Microsoft Visual Basic® 6, Microsoft Visual Basic .NET, and Microsoft Visual C#® .NET client-side code to connect to those
programs.

Download the article.

http://go.microsoft.com/fwlink/?linkid=18093

Microsoft Host Integration Server 2000

Microsoft Host Integration Server 2000 Product Overview

Microsoft Corporation

October 2001

Summary: This white paper offers an overview of the integration components provided by Microsoft Host Integration
Server 2000. These components enable data integration, application integration, and network integration of host-based systems
with Microsoft .NET platform-based applications. (31 printed pages)

Contents

Introduction
The Data Integration Layer
Application Integration Layer
Management Layer
Network Integration Layer
Summary

Introduction
An estimated 70 percent of all corporate data is stored on host systems, such as IBM mainframe and AS/400 computers. Yet,
increasingly, organizations rely on personal computers together with Web-based and Windows®-based applications for everyday
productivity and line-of-business solutions. Companies have discovered that Web and Windows solutions often are easier to
learn and quicker to implement than comparable host-based applications. To preserve their time and capital investments in host
technology, organizations must either migrate all of their host-based resources to the Windows platforms, which can be
expensive and time-consuming, or integrate their host-based resources with more efficient Windows-based and Web-based
solutions.

Integrating host-based data and applications with Web-based and Windows-based applications offers significant benefits,
including:

Preserves investment in currently deployed host and PC technology while taking advantage of new architectures and
products being offered for the PC platform.
Allows rapid deployment of custom, high-performance solutions, using a choice of Windows-based development tools and
leveraging a large pool of qualified developers who do not need to know or learn host programming.
Lowers administrative resources and reduces hardware expenses, thereby reducing the total cost of ownership (TCO).

Whether companies want to create data warehouses to improve decision-making, develop Web-based applications that perform
transactions using host-based data, or allow users to include archived data in reports, Microsoft Host Integration Server 2000
offers integration components that make it easy to achieve those goals.

To help its customers achieve these benefits, Microsoft has offered a host integration solution since 1990, when it introduced
Communication Server 1.0 in partnership with Digital Communications Associates. Microsoft SNA Server 2.0, which followed in
1992, allowed system administrators to send local area network (LAN) and SNA networking traffic across the same network
infrastructure.

Since then, Microsoft has continued to improve SNA Server based on customers' needs, developing it into a complex and feature-
rich product. Host Integration Server 2000 builds on the strengths of SNA Server 4.0 and offers a range of mature technologies
that help companies solve their host integration challenges.

Today's Web Solutions

Organizations frequently need to integrate their host systems with Web-based applications. This is why Microsoft offers products
and technologies today that developers can use to build and deploy applications for the business Internet, which includes high
traffic e-commerce Web sites, corporate intranets and enterprise supply chain integration. These products and key building
technologies include the following:

Internet Information Services 5.0 (IIS) in Windows 2000 with Active Server Pages (ASP), Microsoft Commerce Server 2000,
Microsoft BizTalk™ Server 2000, Microsoft Internet Security and Acceleration Server 2000, and Microsoft Application Center
2000, for deploying dynamic, scalable, and secure Web sites.
Microsoft Message Queuing (MSMQ) in Windows 2000 for reliable asynchronous transactions.

Microsoft SQL Server™ 2000 for developing high performance Web stores and data warehouses.
COM+ component and programming model for developing applications using popular development tools, such as the
Microsoft Visual Studio® development system.
Using Host Integration Server 2000 in combination with these products and technologies, companies can create highly
manageable, scalable and reliable distributed applications that use existing host-based resources. Host Integration
Server 2000 components and services all work together; they all share a common programming model, component model
and tools and are designed to work with each other. This allows developers to focus on business problems, not systems
integration. By tightly combining many of the common "plumbing" services into the Windows 2000 operating system and
providing access points for the Microsoft Visual Studio development system to those services, developers can spend more
time on building reusable business logic components and less on underlying maintenance code that is common to and
necessary for all applications.

Microsoft .NET

Microsoft recognizes that today's Web largely resembles mainframe systems, where vital data is locked up in centralized servers
designed to publish information in often-predetermined HTML pages. Decision makers and knowledge workers are granted
limited, often read-only, access to vital data, with little or no opportunity to interact with or edit this data using Web browsers.

Microsoft is creating an advanced new generation of software that melds computing and communications in a revolutionary new
way, offering developers the tools they need to transform the Web and every other aspect of the computing experience. Microsoft
.NET will allow the creation of distributed Web Services that integrate and collaborate with a range of complementary services to
make information available any time, any place and on any device.

The fundamental idea behind Microsoft .NET is that the focus is shifting from individual Web sites or devices connected to the
Internet, to constellations of computers, devices and services that work together to deliver broader, richer solutions. People will
have control over how, when and what information is delivered to them. Computers, devices and services will be able to
collaborate with each other to provide rich services, instead of being isolated islands where the user provides the only integration.
Businesses will be able to offer their products and services in a way that lets customers seamlessly embed them in their own
electronic fabric. It is a vision that extends the personal empowerment first offered by the PC in the 1980s.

Microsoft .NET will help drive a transformation in the Internet that will see HTML-based presentation augmented by
programmable XML-based information. XML is a widely supported industry standard defined by the World Wide Web
Consortium, the same organization that created the standards for the Web browser. It was developed with extensive input from
Microsoft Corp. but is not a proprietary Microsoft technology. XML provides a means of separating actual data from the
presentational view of that data. It is a key to the Next Generation Internet, offering a way to unlock information so that it can be
organized, programmed and edited; a way to distribute data in more useful ways to a variety of digital devices; and a way of
allowing Web sites to collaborate and provide a constellation of Web Services that will be able to interact with each another.

Microsoft .NET comprises the following:

Microsoft .NET platform
Includes .NET infrastructure and tools to build and operate a new generation of services; .NET User Experience to enable rich
clients; .NET building block services, a new generation of highly distributed mega services; and .NET device software to
enable a new breed of smart Internet devices.
Microsoft .NET products and services
Includes Windows Server 2003, with an integrated set of building block services; MSN .NET; personal subscription services;
Office .NET; and Visual Studio .NET.
Third-party .NET services
A vast range of industry partners and developers will have the opportunity to produce corporate and vertical services built
on the .NET platform.

Microsoft .NET will take computing and communications far beyond the one-way Web to a rich, collaborative, interactive
environment. Powered by advanced new software, yet built on today's .NET Enterprise Server products, Microsoft .NET will
harness a constellation of applications, services and devices to create a personalized digital experience—one that constantly and
automatically adapts itself to your needs and those of your family, home and business. It means a whole new generation of
software that will work as an integrated service to help you manage your life and work in the Internet Age.

For consumers, that means the simplicity of integrated services; unified browsing, editing and authoring; access to all your files,
work and media online and off; a holistic experience across devices; personalization everywhere; and zero management. It means,
for example, that any change to your information—whether input via your PC or handheld or smart credit card—will instantly and
automatically be available everywhere that information is needed.

For knowledge workers and businesses, it means unified browsing, editing and authoring; rich coordinated communication; a
seamless mobile experience; and powerful information-management and e-commerce tools that will transparently move between

internal and Internet-based services, and support a new era of dynamic trading relationships.

For independent software developers, it means the opportunity to create advanced new services for the Internet Age—services
that are able to automatically access information either locally or remotely, working with any device or language, without having
to rewrite code for each environment. Everything on the Internet becomes a potential building block for this new generation of
services, while every application can be exposed as a service on the Internet.

The Microsoft .NET vision means empowerment for consumers, businesses, software developers and the entire industry. It means
unleashing the full potential of the Internet. And, it means the Web the way you want it.

The foundation for the Microsoft .NET platform is based on the Microsoft .NET Enterprise Server products, including Windows
2000, Microsoft SQL Server 2000, and Host Integration Server 2000.

Host Integration Server 2000 Components

Integration projects are as varied as the companies that undertake them, and Host Integration Server 2000 includes a wide array
of integration components and tools to help create an effective integration solution.

Host Integration Server 2000 provides the following categories of components:

Data Integration components, which provide desktop or server-based applications with direct access to host data. Host
Integration Server 2000 provides a comprehensive set of data access services, which includes direct data access to relational
and non-relational mainframe and AS/400 data through open database connectivity (ODBC), object linking and embedding
database (OLE DB), and COM automation controls.
Application Integration components, which allow host-based and Web- or Windows-based applications to
communicate directly with one another. Host Integration Server 2000 delivers solutions for integrating both synchronous
and asynchronous transactions.
Host Integration Server 2000 Management components, which provide a wide assortment of tools to manage the
components of Host Integration Server 2000. This includes tools for performing both interactive and scripted local and
remote Web-based and traditional client/server management of Host Integration Server components.
SNA Network components, which connect SNA networks with PC-based LANs. Host Integration Server 2000 allows users
running Windows, Macintosh, UNIX, the MS-DOS® operating system, and IBM OS/2 to share resources on mainframes and
AS/400 systems without requiring system administrators to install resource-heavy SNA protocols on the PCs or install
costly software on the host.

Figure 1. Host Interoperability Layers. Host Integration Server 2000 offers a comprehensive set of components for the
Network, Data, and Application integration layers with which to integrate Windows and the .NET platform with host
systems.

Host Interoperability Layers

When thinking of the many services that Host Integration Server 2000 provides, it is useful to think of these services in groups or
"layers"—similar to the network protocol stack: Network Data, Application, and Management. In the following sections of this
paper, we will explore these layers in more detail, beginning with Data, then Applications, and finally Network (and Management).

The Data Integration Layer
The Data Integration layer of Host Integration Server 2000 provides access to both structured and non-structured data stored on
IBM mainframe or AS/400 computers. This data can be stored in a database or file system. In addition to data access, the Data
Integration layer is also responsible for providing data transfer services between Windows 2000 computers and host systems.
The Data Integration layer consists of components that make use of existing mainframe and AS/400 software.

The Data Integration layer can be broken down further into the following categories:

Relational database access
Record file access

File transfer
AS/400 data queue access

All these services make use of IBM host-based products that implement the IBM Distributed Data Management Architecture
(DDM). DDM is a framework or methodology for sharing and accessing data between systems. DDM defines the "how to
communicate" and leaves it up to individual platform vendors to implement the DDM architecture. IBM currently supports DDM
for most IBM platforms, including: OS/390 (MVS), AS/400, RS/6000 (AIX), and AS/36. By supporting DDM, application developers
are freed from having to write complex communications interfaces for each platform they need to support. Instead the application
and DDM handles this complexity on behalf of the application.

Figure 2. Distributed Data Management. Components of the Host Integration Server 2000 Data Integration layer
utilize popular DDM file models when integrating host data sources with Windows and .NET applications.

Host Integration Server 2000 offers relational database access by using the Distributed Relational Data Architecture (DRDA)
subset of DDM, non-relational access using the Record Level I/O (RLIO) implementation of DDM, while file transfer and AS/400
data queue access employ a subset of the RLIO protocol.

Relational Database Access

Much of the operational data stored on OS/390, AS/400, and RS/6000 computers is accessed via a relational database
management system. The most popular database on these host systems is IBM DB2. In the case of the AS/400, DB2 is integrated
with the operating system. For OS/390 and RS/6000 computers, it is common for organizations to deploy the IBM DB2 relational
database management system (RDBMS).

What all of these host systems have in common is that data stored in these databases are accessible as relational tables using
Structured Query Language (SQL). This allows for efficient and standardized access to the data on the local DB2 system. However,
for many years, there was no common means of accessing data across systems on remote DB2 computers. To resolve this
problem, IBM devised Distributed Relational Databases Architecture (DRDA) and has passed the architecture to The Open Group
for publication and future extension.

DRDA offers both Remote Unit of Work (RUW) and Distributed Unit of Work (DUW) access to host data. RUW is used for read-
only and simple updating of database tables using SQL statements and stored procedures. DUW is used when updates span
multiple DB2 instances or computer systems and supports the two-phase commit (2PC) protocol. The 2PC protocol ensures that
changes to multiple databases will either succeed or fail in their entirety. We will talk more about 2PC and transaction
management in the section on the Application Layer later in this white paper.

Through its Universal Data Access (UDA) architecture, Microsoft supports two popular methods of accessing remote relational
databases: the industry-standard Open Database Connectivity (ODBC); and the broader Object Linking and Embedding DB (OLE
DB). ODBC is designed specifically for interoperating with SQL-accessible RDBMSs. ODBC is implemented by independent
software vendors (ISVs) in the form of either a back-end data base driver, or as a front-end application (e.g., reporting or query
tool). Microsoft and other vendors offer ODBC drivers for most of the popular RDBMSs. Microsoft defined OLE DB as a multi-tier
distributed architecture for accessing both SQL RDBMSs and non-SQL data sources (e.g., mail folders, Internet server stores, flat
file systems). In the OLE DB architecture, ISVs develop software that participates in one of three roles: (1) OLE DB provider, or
back-end data source driver, (2) OLE DB service component (e.g., query processor, cursor engine), and (3) OLE DB consumer (e.g.,
Web service or application, GUI query or reporting tool). OLE DB is based on the Component Object Model (COM) and OLE DB
providers are designed to expose a well-known set of interfaces. When a provider cannot expose specific, useful or often-required
functionality, an OLE DB service component is employed to extend and standardize the abilities of the provider. In this way, OLE

DB consumers can be written to access multiple data sources without knowing any of the vagaries or limitations of a given back
end provider.

Host Integration Server 2000 implements access to DB2 via two features:

Microsoft ODBC Driver for DB2
Microsoft OLE DB Provider for DB2

The first of these methods is the ODBC Driver for DB2. It relies on an underlying DRDA application requester (AR) developed by
Microsoft. The DRDA AR connects the ODBC driver to DB2 on popular platforms, including OS/390, OS/400, RS/6000-AIX, and
Windows NT®, Windows 2000.

It provides a flexible way for developers using the ODBC API to create applications that can access DB2 records quickly and
efficiently. The driver supports the DRDA Level 3 standard and ODBC 3.x interfaces, and allows application programmers to write
C and C++ applications that issue dynamic SQL queries and call DB2 stored procedures.

The second method to access DB2 is through the OLE DB Provider for DB2. This component is also implemented to sit on top of
the DRDA AR, and therefore supports the same target DB2 systems and substantially the same DB2 access features (e.g., dynamic
SQL and stored procedures, 2PC, SNA LU6.2 and TCP/IP network connectivity). Developers can use C or C++ to integrate DB2
data with Web-based and Windows-based applications. Visual Basic® and Web developers (using scripting languages such
VBScript) can use the higher-level ActiveX® Data Objects (ADO) to develop e-commerce solutions. Additionally, DB2 is directly
accessible from productivity applications, such as Microsoft Office 2000 using Visual Basic for Applications (VBA) and ADO from
within Excel.

Many organizations want to improve corporate decision making by centralizing data that is stored in a variety of formats in a
number of different places. Database administrators can use Data Transformation Services (DTS), a feature of Microsoft SQL
Server 2000 and Microsoft SQL Server 7, to import and export data between multiple heterogeneous sources using the OLE DB
Provider for DB2. Using this tool, administrators can create a data warehouse using DB2 data, plus integrate most other data
sources accessible via an OLE DB provider.

The Distributed Query Processor (DQP), another feature of Microsoft SQL Server, allows users to access data that resides on
multiple, distributed databases across multiple servers. Using DQP, SQL Server administrators and developers can create linked
server queries that run against multiple back-end data sources with little or no modification. DQP enables application developers
to create heterogeneous queries that join tables in SQL Server with tables in DB2. Also, DQP can be used to create SQL Server
views over DB2 tables so that developers can write directly to SQL Server and integrate both Windows-based and host-based
data in their applications with ease.

Record File Access

Another rich source of legacy information is the large amount of data still stored in mainframe VSAM files, Partitioned Datasets,
and AS/400 files. Host Integration Server 2000 supports the following services for access to non-relational host data:

The OLE DB provider for AS/400
The OLE DB provider for VSAM

The OLE DB Provider for AS/400 supports record level access to keyed and non-keyed physical files with external record
descriptions, as well as logical files with external record descriptions. Also, the provider can use an optional Host Column
Description (HCD) file to describe the format of the target file, mapping the AS/400 data types to OLE DB data types, allowing the
developer to access AS/400 flat data files and source files.

The OLE DB Provider for VSAM, which relies on the HCD files to define the metadata of the target data set or member, provides
access to most types of mainframe based VSAM files.

Sequential Access Method (SAM) data sets

Basic Sequential Access Method (BSAM) data sets
Queued Sequential Access Method (QSAM) data sets

Virtual Storage Access Method (VSAM) data sets

Entry-Sequenced Data Sets (ESDSs)
Key-Sequenced Data Sets (KSDSs)
Fixed-length Relative Record Data Sets (RRDSs)
Variable-length Relative Record Data Sets (VRRDSs)
VSAM Alternate Indexes to ESDSs or KSDSs

Basic Partitioned Access Method data sets

Partitioned Data Set Extended (PDSE) members
Partitioned Data Set (PDS) members
Read-only support for PDSE directories
Read-only support for PDS directories

Using Visual Studio, developers can build dynamic Web applications that integrate host non-relational data sources with
Windows data, allowing knowledge workers to publish needed information for use by their organization's decision makers.

File Transfer

Most 3270 emulators support the ability to transfer files between a mainframe computer and a workstation using the IND$FILE
utility program. This program works in conjunction with a host operating system such as TSO or teleprocessing monitor software
such as CICS running on the mainframe. This process, is often manual and is somewhat inefficient due to the need to use 3270
terminal emulation on the client and to have the host operating system act as an intermediary in the data transfer process. Host
Integration Server 2000 provides several more efficient methods to perform file transfer. These methods are:

Host File Transfer
APPC File Transfer Protocol (AFTP)
AS/400 Shared Folders

The Host File Transfer utility lets developers move files between a host system and a local Windows computer. Host Integration
Server 2000 provides this service through a single ActiveX Control. This extends the ability of the client application to perform file
transfer operations from a large number of client development environments. Using HCD files, the Host File Transfer can access
the same mainframe data set types as the OLE DB Provider for VSAM, yet it is optimized to download or upload the entire
contents of the data set or member. Other supported environments include the AS/400 and AS/36.

The TCP/IP based File Transfer Protocol (FTP) is often used to move files between computer systems running under UNIX, VMS,
and other operating systems. This capability is typically provided as a utility program that implements a set of commands that can
be used to connect to a remote computer, log on, navigate to specific locations in the local and remote computer file systems, and
then transfer a file (or multiple files) to or from that computer. Unfortunately, to use this protocol to transfer files to a host
computer would require TCP/IP on the host. (Most data center managers are reluctant to support TCP/IP on a host computer due
to security and performance issues.) Because of the popularity of this protocol, however, IBM has implemented a similar SNA
function, the APPC File Transfer Protocol (AFTP). This allows files to be transferred between SNA systems using commands that
are so similar to FTP commands that anyone familiar with FTP can easily use AFTP to perform file transfer functions. Internally,
AFTP transfers files using the LU 6.2 program-to-program protocol, which is quite efficient for transferring files. AFTP software
can be installed either on the Host Integration Server 2000 server or client and used to transfer files to an SNA host.

The AS/400 Shared Folders feature of Host Integration Server 2000 allows a Windows NT or Windows 2000 administrator to re-
share a file on an AS/400 host as if it is a local file system directory. Because the AS/400 shared folders feature uses standard
operating system file sharing, it requires no software on the client. The client simply sees the folder as a standard Windows NT or
Windows 2000 shared directory. This feature is implemented in Host Integration Server 2000 using the same AS/400 PC Support
software that allows workstations to access AS/400 files in a pure SNA network configuration.

AS/400 Data Queue Access

AS/400 Data Queues are used on an AS/400 to send data records between separately executing programs. Multiple AS/400 client
programs can send data records to a single server program running on an AS/400. Alternatively, a single client program can send
records to an AS/400 Data Queue and multiple server programs can extract the records and process the data in parallel. This
feature proved so useful in developing AS/400 applications that IBM extended the use of AS/400 Data Queues to PC workstations.
Host Integration Server 2000 enables Windows 32-bit applications to access data queues via the AS/400 Data Queue COM
Automation Control. Host Integration Server 2000 lets developers access AS/400 data queues from a PC running Windows, so
they can move part or all of their AS/400 applications from an AS/400 computer to a PC platform and still use the PC-based
program to access a remote data queue on the AS/400.

Application Integration Layer
The Application layer provides the services that enable Windows and mainframe programs to work together. It defines how two
application programs can participate in cross platform transactions and messaging, including distributed database updates
involving the two-phase commit database protocol.

In Host Integration Server 2000, the Application layer is focused on distributed application programs where at least one of the
programs is running on a mainframe and AS/400.

Integrating existing host-based data and applications with Web-based solutions can benefit organizations in many ways. This
allows you to preserve your investments in existing technology while extending host-based resources to highly scalable,
distributed, component-based and Web-based applications. It helps you to reduce your development costs by allowing you to
draw on a large pool of qualified developers for Windows rather than a small group of host programmers with highly specialized
skills. It also supports cutting migration costs by keeping host-based resources on mainframe and AS/400 computers or
amortizing these costs by migrating slowly to the PC platform over time.

Transaction Processing

In mainframe applications, database management systems and transaction processing programs have always been tightly
integrated. In applications developed using IBM's CICS or IMS, a communications front-end program normally retrieves data from
and/or updates a back end database. Multiple interactions with the user are often necessary to complete a transaction and update
a database. In the case where multiple database updates are required, then CICS and IMS support the concept of a Transaction. In
the case of multiple updates to a database, the scope of a transaction ensures that all updates are successfully applied or that any
partially completed updates are reversed. A CICS or IMS program can also indicate the success or failure of a transaction by
issuing a command to indicate the end of a transaction or that a rollback of partially completed updates is required.

Mainframe transaction processing systems also support the definition of a transaction that can exist across multiple distributed
databases. This feature is based upon a well-known standard called Synchronization Level 2 (Sync Level 2) also known as the
Two-Phase Commit protocol.

CICS in particular can be used to write distributed applications where one CICS application program can link to another CICS
program whether that program is on the same computer or a different one. CICS uses a special CICS data area, called a
commarea, to pass data to the target program. It is the CICS commarea that plays the key part in passing data to and from the
linked-to program.

When developing transaction-aware applications for the Windows and Web platforms, developers often write COM components
that run under the Microsoft Transaction Server (MTS) in Windows NT or the equivalent COM+ feature in Windows 2000. MTS
combines the features of a COM object broker and a transaction manager. An application can be written with COM components
that run on different computers. The programmer can define how each component participates in transactions across these
distributed components. Each COM component can specify whether it can be part of a new transaction or an existing transaction.
The transaction management part of MTS is based on a component called the Distributed Transaction Coordinator (DTC). Once
the transaction state of a set of components is defined, then MTS can use the DTC to enforce the same transaction and database
update integrity over them that a CICS or IMS program can enforce over mainframe transactions. COM programs can indicate the
success or failure of a complete transaction just as a CICS or IMS program can do.

In order to allow applications for Windows NT and Windows 2000 to make use of these pre-existing mainframe CICS and IMS
programs, Host Integration Server 2000 offers COM Transaction Integrator (COMTI). COMTI enables mainframe CICS and IMS
programs to participate in COM transactions.

Figure 3. COM Transaction Integrator. COMTI allows developers to preserve existing CICS and IMS environments while
moving to a new Windows and .NET platform.

COMTI creates a COM+ or MTS "wrapper" (or proxy) component that makes a legacy CICS or IMS mainframe application
program look like a COM component at execution time. Windows 2000 applications make method calls and pass parameters to
what appears to be just another COM component. This call is translated under the covers to the appropriate CICS program call
and sent to the mainframe via Host Integration Server 2000 and LU 6.2. As part of this process, the COMTI component converts

parameters between mainframe and COM formats. COMTI transactions can also participate in cross platform transactions under
the control of the Distributed Transaction Coordinator.

Using COMTI is a three-step process:

1. Building the COMTI component
2. Adding the component to MTS
3. Running the application

First, the COBOL commarea description must be brought down to the developer's workstation from the mainframe using Host
File Transfer or a terminal emulator. Next, the COMTI graphical user interface is used to import the COBOL data description and
convert the COBOL parameter definitions into their COM equivalents. Next, COMTI will generate the COM component that will act
as a proxy for the mainframe application program. The commarea is converted into a COM recordset definition that can be used
to pass parameters into and out of the mainframe program. After the code is translated, the name of the program becomes the
callable method of the MTS transaction and the variables passed to the original COBOL program in the commarea are translated
into method parameters.

After the COMTI component is created, it can be packaged with other COM components to define the complete transaction. At
execution time, calls to legacy programs appear to be calls to the COMTI component. Parameters are transparently converted and
any required two-phase commit protocols are enforced across both systems.

Currently, COMTI uses the Distributed COM (DCOM) protocol to communicate between the COM components and Host
Integration Server 2000. (Host Integration Server 2000 takes care of the conversion to the appropriate SNA protocol.)

Inter-Platform Message Queuing

In the section on Transaction Processing, we also discussed how Host Integration Server 2000 supports keeping remote
databases in strict synchronization with each other using distributed transactions and COMTI. When synchronous transactions are
required, COM and COMTI provide an excellent real-time method of implementing a distributed application.

There is a third scenario in which programs need to pass data between them, but where there is no need for the sending program
to wait for the receiving program to process the data. In this case it is enough to know that the data will be delivered and
processed eventually. Message passing software to support this capability is called Message Oriented Middleware (MOM).
Microsoft's MOM product offering is the Microsoft Message Queuing System (MSMQ).

This system consists of agents running on the sending systems and message queues on the receiving system. A program that
wants to send a message to a receiving system simply uses an API to place the message in a local send queue. Eventually the
message is sent. Although the initiating program does not wait for the message to be successfully received by the recipient, it can
assume that the message will be delivered. This is because the MOM system uses transactional integrity between the local
sending agent and the receiving program.

Figure 4. MSMQ-to-MQSeries Bridge. The bridge provides asynchronous, messaging-based, communication
integration between heterogeneous applications.

Microsoft's MSMQ is the MOM product that supports messaging between Windows platforms. Mainframes and other platforms,
on the other hand, normally use a product developed by IBM called MQSeries. IBM has extended MQSeries to other IBM and non-
IBM platforms in addition to mainframes and AS/400. Although a version of MQSeries is available for Windows NT and Windows
2000, MSMQ is native to those platforms. In order to support cross platform messaging between Windows and mainframe
messaging systems, Host Integration Server 2000 includes the MSMQ-MQSeries Bridge. This bridge integrates the two
messaging platforms and enables messages to be transferred in either direction across platforms.

Management Layer
In the preceding sections of this paper we discussed how Host Integration Server 2000 client and server components work
together to provide access to mainframe and AS/400 resources. In this section we will cover the Management layer of Host
Integration Server 2000. This layer concerns itself with how Host Integration Server 2000 servers and clients are installed and
managed. It also discusses the integration of Host Integration Server 2000 with mainframe network management systems such

as IBM NetView.

Host Integration Server 2000 Server Installation

The Host Integration Server 2000 server installation allows the administrator to specify the components to be installed and the
various roles that a server will play such as primary or backup configuration server. Server installation can be performed via
several methods such as:

Local CD-ROM
Network share point
Unattended installation
Systems Management Server

The default method of installing Host Integration Server 2000 is from a local CD. This type of installation is run at the server, and
the installer must respond to all prompts.

Figure 5. Server Setup. Host Integration Server 2000 offers a Microsoft Software Installer setup program that allows
the administrator to choose the most appropriate features.

Alternatively, the installation files can be located on a network share point. The installer must still answer all the questions during
the installation process.

Host Integration Server 2000 also supports an unattended install process. This process uses answer files that remove the need for
the installer to be present during the complete installation. They still need to be there to start the process, however. This type of
install must be done from a network share point or diskettes since it requires that the installation files be customized. Once the
process is started the installer can leave.

With Systems Management Server an installer does not even have to go to the server to start installation of Host Integration
Server 2000. Systems Management Server can be used to push the server installation and configuration to a target server.

Host Integration Server 2000 Server Configuration

Once the server is installed it must be configured. The configuration process is used to define all the link services, connection
types, LUs and LU pools. It is also used to define users groups and client workstations and allocate resources to them. Resources
can be allocated globally to everyone or specifically down to a particular user, group or even a single workstation. Resource
access can also be granted at different levels of granularity such as to a subdomain, a specific server, LU pools, or even specific
LUs.

Host Integration Server 2000 Client Installation

The Host Integration Server 2000 CD also includes installable clients for Windows 98, Windows 3.x, Windows NT Workstation and
Windows 2000 Professional. It also includes installation instructions or the source of clients for several other platforms.

There are three parts to each Host Integration Server 2000 client—not all of which need to be installed. These parts are the Base
client, API support, and features such as the OLE DB providers, 3270 and 5250 clients. Most third party emulators only require
that you install the Base support.

When installing Host Integration Server 2000 client, the installer can specify the components to install, select the client/server
protocols that the client uses to communicate with the server, and define how the client will locate a server in the network. The
methods used to install a client are similar to the ones used to install a server with one important new addition, the Web based
install.

These methods are:

Local CD-ROM
Network share point
Unattended installation
Systems Management Server
Web based installation

The first three methods are essentially the same. Just as in the case of Host Integration Server 2000 servers, an answer file can be
used to simplify the installation process. In the case of the Systems Management Server installation there are also Systems
Management Server Installation Packages on the CD for Windows 3.1, Windows 98, Windows NT Workstation, and Windows
2000 Professional.

With Web based installation, a Host Integration Server 2000 client can be installed by simply displaying an intranet or Internet
Web page and clicking on a hypertext link. The Web-based installation provides three options. The installer can request the
download and installation of the 3270 Client plus the full Host Integration Server 2000 Client, the 5250 Client plus the full Client,
or just the Base Client. (The latter is useful in order to upgrade an older Base Client that came with a third party emulator.) This
process can also be customized to provide additional capabilities.

Host Integration Server 2000 Client Configuration

Once the client is installed it must be configured. This configuration is normally limited to specifying how the client will locate a
sponsor server when it connects. Options are to have the client broadcast a request for a sponsor to the entire subdomain, or to
direct its request to a specific server or list of servers.

Host Integration Server Network Resource Management

The predecessors of Host Integration Server 2000 have always been the industry leaders in Windows to host network integration
using standard networking protocols. Host Integration Server 2000 carries forward this tradition by enhancing support for a wide
variety of SNA links, connections and logical unit types. Host Integration Server 2000 includes tools to manage the setup and use
of these resources in a secure, loosely, or tightly controlled fashion. For instance, individual servers, Logical Units or Logical Unit
pools can be set up to grant access to any client that requests access, or they can be restricted to specific users and/or client
workstations.

The security mechanism for this access control is based on Windows NT and Windows 2000 security. User and Groups can be
defined and Access Control Lists created for Host Integration Server 2000 resources that will allow or deny these users, groups or
computer systems access.

Host Integration Server 2000 Management Tools

There are several administrative interfaces available to be used to manage Host Integration Server 2000 resources. These tools
include:

Microsoft Management Console
Scripting
Web Based Administration
SNA Remote Access Services
Mainframe tools

The Microsoft Management Console (MMC) is the standard Microsoft tool for assembling individual systems management
utilities into customized toolsets that can be used to delegate administrative tasks and responsibilities to individual
administrators. Host Integration Server 2000 installation provides snap-ins that can be added to any MMC console. Note that
multiple Host Integration Server 2000 snap-ins can be installed in a console in order to manage multiple subdomains or servers.

Figure 6. Server configuration (click to enlarge). Host Integration Server 2000 offers an MMC-based snap-in for
administering server configurations.

As an alternative to the GUI based MMC, Host Integration Server 2000 also comes with command line utilities that can be used to
manage any Host Integration Server 2000 resource. The Windows Script Host is a powerful scripting language that is available as
an add-on to Windows NT and comes standard with Windows 2000. The addition of this tool to the Host Integration Server 2000
command line utilities enables the administrator to create and modify any Host Integration Server 2000 resource from a batch
script. Using a combination of the Windows Script Host and the SNACFG command line utility, any Host Integration Server 2000
management task can be automated and performed without resorting to the GUI.

Host Integration Server 2000 also supports administration using Web-based tools using Microsoft's Windows Management
Instrumentation (WMI) technology. This is an implementation of the Desktop Management Task Force's (DMTF) Web-Based
Enterprise Management (WBEM) initiative for Microsoft Windows platforms.

Figure 7. Web-based Administration. Microsoft Host Integration Server 2000 provides enhanced management
capabilities for SNA administrators to view and control their SNA Server environment. Using WMI/COM,
administrators can build their own Web-based tools to monitor, configure, and administer all SNA objects.

Normally an administrator will be able to access a server or subdomain using the client/server protocols that we have been
discussing in this paper. In some cases, however, this may not be possible. SNA Remote Access Services (SNARAS) extends normal
Windows NT and Windows 2000 RAS to operate over SNA links. This allows an administrator to connect to a remote SNA server
over an SNA link.

In addition to integrating with Windows NT and Windows 2000 management tools, Host Integration Server 2000 also integrates
with popular mainframe-based network management tools such as IBM NetView. Windows NT and Windows 2000 Event Log
Alerts can be forwarded up to a mainframe NetView system using the NVAlert component. A NetView operator can also run Host
Integration Server 2000 commands using the NVRunCmd command provided by Host Integration Server 2000. In addition, the
NetView Response Time Monitor (RTM) can be used to capture information on client response time and forward the data back to
NetView.

Active Directory Integration

Host Integration Server 2000 also takes advantage of the Windows 2000 Active Directory™ service. A client needing to locate a
sponsor server when it connects to the network can use Active Directory. It can also use Active Directory to locate a server that
can provide a specific Host Integration Server 2000 resource such as an LU or LU pool.

Host Integration Server 2000 uses Active Directory by registering services and resources with the Active Directory schema. The
benefits of using Active Directory include:

Client configuration and resource location on the network is simplified.
A permanent LAN connection between Host Integration Server 2000 and Host Integration Server 2000 clients is not needed.

The limitation of 8,000 sponsor connections that existed in SNA Server 4.0 is eliminated.

Host Integration Server 2000 client computers must be configured to communicate to a Host Integration Server 2000 computer
using either sponsor connections or Active Directory. A client computer cannot be set up to use both at the same time. Host
Integration Server 2000 extends the Active Directory schema to include Host Integration Server resources.

Host Security Integration

One of the problems with mixing Windows NT and Windows 2000 with mainframe and AS/400 computers is that each type of
system has its own way of dealing with security. It is not uncommon to have one user account and password to access a local
Windows NT or Windows 2000 domain while also having another user account and password to access the mainframe or
AS/400. In addition, mainframe and/or AS/400 applications may also have their own user account and password. After a while,
users begin to forget theses multiple passwords and begin to write them down and keep them in an insecure place. This defeats
the purpose of having passwords in the first place.

To simplify the situation, Host Integration Server 2000 comes with a Host Security Integration feature, which consist of a set of
processes that run on network servers to provide the following services:

User account and password mapping and caching
Password Synchronization
Single Sign on to multiple domains and host security systems

The Host Account Cache is a database that maps Host and Windows NT/Windows 2000 users names and passwords. It supports
two options: Replicated and Mapped.

The Replicated option is used where the user's name and/or password are the same on both platforms. The Mapped option is
used where they are different. This information is used to translate between the local and remote user name and passwords.

The Host account synchronization service is used to intercept Windows NT and Windows 2000 password changes and send them
to a host security system.

Figure 8. Host Security Integration. Host Integration Server 2000 allows administrators to synchronize the account
information on the host with the Windows 2000 domain. Synchronized accounts allow for single sign-on, meaning
that users only have to maintain a single user account and password to log on to Windows and the host system.

In the case of AS/400, password synchronization works in both directions. In the case of mainframes, a third party tool is
necessary for complete bi-directional synchronization with mainframe security systems such as RACF, ACF/2 and Top Secret.

Network Integration Layer
Traditionally Windows NT and Windows 2000 networks used Microsoft Networking that was based on NetBIOS. Most recently,
TCP/IP has become the preferred network protocol used in Windows NT and Windows 2000 networks. In fact, with Windows
2000 the favored protocol is TCP/IP.

The most popular method of connecting networks with dissimilar protocols has always been to insert a gateway device between
them that can convert from one protocol to another. To bridge the gap between a Windows 2000 network and an SNA network
requires an SNA gateway. Host Integration Server 2000 is the most popular method of providing this function. Host Integration
Server 2000 incorporates the traditional SNA gateway function, however, it goes beyond simple protocol conversion by providing
a significant number of higher level application enabling services that work in conjunction with it's basic function.

The Network layer contains all the low level protocols used to transport data between the client and the Host Integration
Server 2000 and between the Host Integration Server 2000 and the host computers in the SNA network. It also includes support
for 3270 and 5250 terminal emulation as discussed below.

SNA-to-PC LAN connectivity sits at the heart of every integration project, and Microsoft is committed to providing companies
with efficient, flexible SNA gateway options. Host Integration Server 2000 builds on the industry leading network connectivity
features of SNA Server 4.0 to provide companies with the greatest number of options for connecting SNA systems and PC-based
networks.

Host Integration Server 2000 connects PC-based LANs to IBM System/390 mainframe and AS/400 midrange systems. With Host
Integration Server 2000, users with desktop operating systems such as Windows 2000 Professional, Windows NT Workstation,
Windows 9x, Macintosh, UNIX, MS-DOS and IBM OS/2 can share resources on mainframe computers and AS/400 systems.
Administrators can provide this connectivity in many cases without installing SNA protocols on the PC or deploying software on
the host system. The following diagram illustrates the network connectivity capabilities of Host Integration Server 2000.

Figure 9. Host Integration Server 2000 Network Support. Host Integration Server 2000 builds on Microsoft SNA
Server's strong platform of protocol and connectivity options. As an SNA gateway solution, Host Integration
Server 2000 runs on Windows NT Server and Windows 2000 Server to connect PC-based local area networks (LANs) to
IBM System/390 mainframe and AS/400 midrange systems.

Host Integration Server 2000 Software Architecture

Host Integration Server 2000 has been designed with a modular Client/Server architecture.

Server architecture

The Server component of Host Integration Server 2000 runs on Windows NT 4.0 or Windows 2000 Server and provides gateway
and protocol conversion services. It contains most of the SNA protocol stack and is also responsible for notifying the attached
clients of the configuration of the servers, available services, and network status. It consists of the following components:

SNASERVER
SNABASE
SNADMOD

SNASERVER runs as a Windows NT or Windows 2000 Service. It is the protocol conversion engine of Host Integration
Server 2000. SNASERVER provides PU 2 and 2.1 node emulation. It communicates status changes with other server, clients and
host computers. It also allows the SNA Manager to display the status of Links, Connections, and LUs in the network. It uses the
following components to communicate between clients and other servers.

SNABASE runs as a service on the server. It is responsible for building and maintaining a list of available servers, links, LUs and
invokable Telecommunication Programs (TPs). It also sends this list to other Host Integration Server 2000 servers and receives
updates from those servers. It maintains this information in a local configuration file (COM.CFG).

When a client first contacts the Host Integration Server 2000 server, SNABASE uses this information to determine the server
actually hosting the desired resources for which the client is looking. Then the server will send the client the list of available
servers holding the desired resource; this initial connection is called a Sponsor connection (see below).

After connection, SNABASE directs the client to the LU or LU pool that can provide the client with the desired resource.

SNADMOD is a common communications module used by the server to communicate with clients and other servers. It uses a
remote Procedure Call (RPC) protocol that is proprietary to Host Integration Server 2000.

Client architecture

The architecture of the Host Integration Server 2000 client includes:

APIs
SNABASE (or equivalent)
SNADMOD

The Host Integration Server 2000 client provides APIs needed by SNA applications such as 3270 emulators and APPC
applications.

The architecture of Host Integration Server 2000 clients differs depending on whether the Host Integration Server 2000 client is
for Windows NT, Windows 2000 or another operating system. The Windows NT and Windows 2000 clients also use SNABASE
below the API layer. Other clients use a callable DLL instead of a service to perform the same functions, but all the clients use
DMOD to implement common communications between clients and servers.

Initially Host Integration Server 2000 clients are configured to attempt to contact any server in the subdomain (see below), or a
list of specific Host Integration Server 2000 servers. If the configuration specifies a list of servers, then one will be chosen at
random each time a client attempts to connect. This design causes requests to be spread across multiple servers, in effect
implementing an efficient form of load balancing across the servers. This design also provides a degree of fault tolerance. If a
server or resource is unavailable, then the client can automatically choose a resource from another server. This load balancing and
fault tolerance is inherent in the design of Host Integration Server 2000 and does not have to be added using any external form of
Windows NT or Windows 2000 clustering or fault tolerance.

Host Integration Server 2000 servers are organized in logical groups called Subdomains (to distinguish them from Windows
NT/2000 Domains). There can be any number of Host Integration Server 2000 Subdomains. Each Subdomain can contain up to
15 Host Integration Server 2000 servers whose roles in a Host Integration Server 2000 network can be defined as Primary Host
Integration Server 2000 servers, Backup Host Integration Server 2000 servers or Member Host Integration Server 2000 servers.
These designations are somewhat analogous to the Primary, Backup and Member server designation of Windows NT and
Windows 2000 Servers. In this case, however, instead of ownership of the security accounts database, Host Integration
Server 2000 server roles define ownership of a configuration database that describes the state of all servers, their controlled
resources, and the status of connected clients.

All three types of servers can host resources for clients to use. A new client looking for resources can contact all three types of
servers. Primary servers can also update the configuration database. Backup servers, on the other hand, have only a read-only
copy of the database for local use. Member servers cannot provide a client with information on network resources since they do
not have a copy of the configuration database. They can, however, host specific resources, such as LUs, for clients to use.

Status information is replicated between Host Integration Server 2000 servers to allow all Host Integration Server 2000 servers to
maintain a configuration file that describes the complete status of all servers and other Host Integration Server 2000 managed
resources in the network.

When a client computer connects to the network, it contacts a server near it based on it's own configuration file. This connection is
called a Sponsor Connection. The sponsor server can provide the client with a list of resources in the network or refer it to another
server in the network. From this connection the client retrieves the status of existing servers and other network resources such as
individual Logical Units or Logical Unit pools that the client can request.

The Client component of Host Integration Server 2000 is a fairly slim software component since most of the protocol conversion
and enabling services take place on the server. A wide range of clients are supported, including Windows 2000, Windows NT,
Windows 98/95, Windows 3.X, MS-DOS, and OS/2. In addition, Host Integration Server 2000 client software is available for
Macintosh, UNIX and VMS clients via third parties.

Server Deployment Models

Another important aspect of the Host Integration Server 2000 network architecture is how Host Integration Server 2000 servers
and clients can be deployed in a network. Using Host Integration Server 2000, organizations can deploy SNA gateways in an
enterprise network in one of three deployment models:

Centralized Deployment model
Branch Deployment model
Distributed Deployment model

Centralized Deployment model

Figure 10. Centralized Deployment model. In a centralized deployment, Host Integration Server 2000 computers
support local and remote split-stack SNA clients, server-based applications, and TN3270 emulators.

The Centralized Deployment model locates the Host Integration Server 2000 servers at the data center near the host computer in
the network. In this model the SNA gateways are located at the data center and connect to the host using native SNA protocols,
such as a high-speed token-ring or channel attachment. In the centralized deployment model, Administrators can isolate the SNA
traffic to the data center to avoid supporting SNA traffic on the WAN. Centralized SNA gateways provide split-stack or TN3270
service for local and remote desktops that connect to the gateways using standard LAN protocols.

The major advantage of this model is that the Host Integration Server 2000 server has high-speed access to the host computer via
a common LAN and front-end processor, or even direct channel attachment. This location offers many advantages; because the
servers are located in a single location, clients can take advantage of the designed-in load balancing and hot backup capabilities
provided by multiple Host Integration Server 2000 servers. In addition, MIS personnel can service and administer the centralized
servers.

In the case of an organization with clients located at remote branch offices, several disadvantages that must be considered.
Because most of the protocol conversion is performed on the server, there will be quite a lot of low-level data traveling back and
forth between the clients and servers. One of the other two models may be more appropriate in these cases.

Figure 11. Branch-based Deployment model. Host Integration Server 2000 supports the traditional way to deploy SNA
gateways in branch offices, via SDLC leased lines and X.25 connections to the host.

Branch Deployment model

The Branch Deployment model places the SNA gateways close to the clients at branch offices. The advantage of this location is
that the heaviest data traffic will occur between the clients and the servers over the local LAN connection at the branch office.
Only highly compressed and relatively efficient SNA traffic will occur over the Wide Area Network between the branch office and
the central site.

Another advantage of this organization is that local branch personnel can administer the servers located at the branch. (This can
be viewed as an advantage or a disadvantage depending on whether you want the servers managed centrally or remotely.) One
of the enhancements of Host Integration Server 2000 over its predecessor, SNA Server 4.0, is that Host Integration Server 2000
servers can easily be administered remotely. This makes non-centralized Host Integration Server 2000 servers less of an issue
compared with SNA Server 4.0.

A disadvantage of this organization is that there is no high-speed connection between the server and the host. WAN connections
and routers in this type of organization will have to be sized to handle the traffic between the servers and the hosts. Because
servers are not centrally located, it is also not possible to take advantage of the load balancing and hot backup features of Host
Integration Server 2000.

Distributed Deployment model

The Distributed Deployment model combines the best aspects of the previous two deployment models at a slight increase in
setup and administration complexity. With this model Administrators can deploy Host Integration Server 2000 concurrently in the
branch and central sites. The branch-based Host Integration Server 2000 computers provide client-to-server support and connect
to the centralized computers running Host Integration Server 2000 using native TCP/IP, or IPX/SPX protocols. The centralized
servers provide server-to-host support and connect to the host with a high-speed token ring or direct channel attachment using
native SNA protocols.

Figure 12. Distributed Deployment model. Host Integration Server 2000 offers a distributed deployment model that
makes better use of available WAN bandwidth than centralized or branch-based configurations.

In this configuration the links between the central server (or server pool) and the host computer is a fast LAN to Front End
Processor or direct channel attachment. The links between the clients and their local server (or servers) can also be a fast local
LAN connection. Only relatively compact SNA traffic travels between the remote and central servers. This retains the advantage of
pooling Host Integration Server 2000 servers at the central site while giving remote clients a local sponsor connection and local
LU pools.

The only disadvantage of this approach is that there are more servers to deploy, administer and maintain. This is not a serious
drawback, however, because they can be administered from a central site if necessary using the Host Integration Server 2000
remote administration capability. This model is a little more expensive because more servers will have to be deployed. This is not
a serious impediment, however, because Host Integration Server 2000 servers run on modest hardware.

In general the Distributed Deployment model is more flexible and cost-effective than the Branch-based or Centralized models.
Compared to a Branch-based deployment, the Distributed approach eliminates the time-outs associated with bridging or
tunneling 802.2 using routers, improves host response times and simplifies network management. Compared to a Centralized
deployment, the Distributed approach decreases WAN usage and supports NetView management of the Branch-based servers.

Of course the preceding discussion of deployment models assumes that the host is a single mainframe or AS/400 computer
located at a central site. It is also possible that the network includes more than one host computer and/or that host computers and
clients are distributed at multiple sites. Here, too, the Distributed Deployment Model can be used to combine the best of the
Centralized and Branch organizations by placing some of the Host Integration Server 2000 servers near their hosts for high speed
access, and placing some of the servers near the clients that they service. For example, assume that two companies merge, and
that each company has a community of users and their own host computer. Eventually each company will require access to its
own host computer and that of its partner. In this case the Distributed Deployment Model can be used at both companies to give
symmetric access to both hosts from clients at both companies.

In addition to these deployment models, Host Integration Server 2000 can also act as a proxy for other network attached SNA
devices that need to access a host computer through Host Integration Server 2000. This is supported by Host Integration

Server 2000 Downstream Connection support and PU passthrough connections. These capabilities may be useful in some
specialized cases.

Network Protocols

Host integration Server 2000 supports a wide variety of protocols for communicating between clients, the server, and host
computers. This allows Host Integration Server to fit into whatever networking architecture you currently have in place.

Server to host protocols

Host Integration Server 2000 supports several protocols for communicating between the server and the host computer. Link
Services—provided by Microsoft, IBM, and other third parties and installed in the server—implement these Link Services.

For mainframe host access the most popular protocols include:

Channel attachment
LAN connection via the DLC 802.2 protocol
Synchronous Data Link Control (SDLC)
X.25

Direct channel attachment is used to connect centralized Host Integration Server 2000 servers to a host using Escon or Bus and
Tag channel connection methods. LAN Attachment via DLC 802.2 is used to connect servers to hosts over Ethernet, Token Ring, or
Fiber Distributed Data (FDDI) LANs. Synchronous Data Link Control (SDLC) is used to connect them over wide area dial-up or
leased line connections. X.25 is used to connect Host Integration Server 2000 server and mainframe over an X.25 network.

In some cases a company may already have coaxial cable installed to support 3270 terminals attached to existing cluster control
units such as the IBM 3741. In this case the DFT link protocol can be used to connect clients to Host Integration Server 2000 over
these cables. Now that most companies have converted from coaxial cables to LANs, however, this method of attachment is
becoming more rare.

For Server to AS/400 access, Host Integration Server 2000 supports the same protocols discussed above. Instead of DFT, however,
Host Integration Server 2000 supports the Twinax coaxial cable connection method that was originally used to connect IBM 5250
terminals directly to an AS/400.

Client to server protocols

In order to allow Host Integration Server 2000 clients to communicate with Host Integration Server 2000 Servers, Host
Integration Server 2000 supports the following protocols:

TCP/IP
IPX/SPX
Microsoft Networking (named pipes)
AppleTalk

We discussed TCP/IP and DLC 802.2 above. IPX/SPX is used primarily in a NetWare network, while AppleTalk is used to connect
Macintosh clients to Host Integration Server 2000.

Server-to-server protocols

In addition to the server-to-host and client-to-server communications discussed above, Host Integration Server 2000 servers also
need to communicate directly with each other. They need to do this in order to exchange information on network resource
changes as well as to support other inter-server features of Host Integration Server 2000 such as the Distributed Link Service,
Downstream connections support and PU passthrough. Host Integration Server 2000 supports a subset of the Host Integration
Server 2000 Client/Server protocols for this purpose. Normally Host Integration Server 2000 servers will use TCP/IP for this.
IPX/SPX is available for use in a NetWare based network for backward compatibility when Host Integration Server is running
under Windows NT.

Terminal Emulation Services

In addition to providing network protocols, the Network layer also includes terminal emulation services.

Starting in the early 1970s IBM produced the 3270 family of display stations, printers and terminal cluster control units. Terminal
devices such as displays and printers were normally connected to a cluster control unit via coaxial cables, which were then
connected directly to the mainframe of to a front-end processor. Support for these devices came via the LU type 2 support that

we discussed earlier in this paper. Somewhat later IBM also introduced the AS/400 mid-range computer system. These systems
supported the IBM 5250 family of terminals. The 5250 fulfilled the same role as the 3270 in mainframe applications. Instead of
using LU 2, however, it used LU 6.2 as a communications protocol.

Over time these relatively unintelligent terminals were replaced with personal computers. To continue to run the same
applications, special client-based software was developed to emulate the functions of the original 3270 and 5250 terminals. IBM
and other companies subsequently provided client-based terminal emulators such as Attachmate Extra! and Rumba. These client-
based terminal emulators run completely on the client computer performing all protocol conversion and display/printer services
locally.

Figure 13. 3270 Emulation Sessions. Host Integration Server 2000 offers a simple, multi-session, 3270 Client, while
supporting popular third-party 3270 client programs.

Other emulators however, make use of a gateway approach to put part of the protocol stack on the client and part on a server.
Host Integration Server 2000, and emulators that work with it use this approach. This splits the protocol stack and allows the
emulator to have a smaller footprint on the client. Host Integration Server 2000 comes with basic 3270 and 5250 emulators that
can be used to verify the correct installation and configuration of Host Integration Server 2000. These emulators are generally not
suitable for production use, so one of the third party products needs to be acquired for this purpose. The Host Integration
Server 2000 emulators also support file transfer and the operation of multiple terminal sessions on one desktop

The Host Integration Server 2000 emulators (and most third party emulators as well) also support the ability to automate
mainframe sign on using a scripting language. This allows the emulator to work with the Host Integration Server 2000 Mainframe
Security Integration features such as the Single Sign On feature discussed in the Management section of this paper.

To allow for even lighter weight clients, Host Integration Server 2000 also supports a version of 3270 and 5250 emulation that
operates directly over TCP/IP. Since TCP/IP is the only client-side requirement and it normally already exists on the client, there is
no need for any part of the SNA stack of Host Integration Server 2000 client to be located on the workstation. TN3270E and
TN5250 allow a user to access the host computer TCP/IP network using a variation of the TCP/IP Telnet protocol.

Most 3270 emulators also support the ability to transfer files between a host computer and a workstation using the IND$FILE
utility program. This program works in conjunction with a host operating system such as TSO or transaction processing monitor
software such as CICS running on the host. It allows the client to request a file transfer manually and monitor the results.

In addition, Host Integration Server 2000 networking provides support for most of the 3270 and 5250 printing protocols such as
those supported by LU types 1, 3 and 6.2 (APPC) devices.

Host Integration Server 2000 extends and enhances the already dominant support of network interconnections provided by prior
versions of SNA Server.

Conclusion
Host Integration Server 2000, represents the latest evolutionary step on the way to a complete mainframe and peer host
interoperability solution. Moving forward, Microsoft will focus on providing bi-directional interoperability with AS/400 and IBM
mainframes computers at key interoperability layers. Additionally, Microsoft will work with third parties to provide add-on
products to Host Integration Server 2000 that enhance cross-platform interoperability. As you can see, Host Integration
Server 2000 is a product with which you can build your Web solutions today, while using it as a solid platform to support
Microsoft .NET tomorrow.

Microsoft Host Integration Server 2000

Microsoft MSMQ-MQSeries Bridge Performance Results

Host Integration Server 2000
Microsoft Corporation

October 2001

Summary: Microsoft Host Integration Server 2000 (HIS) includes a number of components that enable integration with
applications on IBM mainframe and AS/400 minicomputers as well as on other platforms. The Microsoft MSMQ-MQSeries Bridge
included with Host Integration Server 2000 and SNA Server 4.0 provides a gateway between IBM MQSeries messaging
applications predominant on IBM host computers and Microsoft Message Queuing (MSMQ) used on Windows systems. This
article reports on performance results based on testing the MSMQ-MQSeries Bridge supplied with Host Integration Server 2000
and SNA Server 4.0. (13 printed pages)

Contents

Introduction
Test Methodology and Environment
 The Test Methodology
 Key Test Metrics
 The Test Environment
 Performance Settings
Test Results
 Test Results for Round-Trip 1-KB Messages
 Test Results for Round-Trip MSMQ 1-KB MQSeries 8-KB Messages
 Test Results for MQSeries to MSMQ One Way 1 KB Messages
 Test Results for MQSeries to MSMQ One Way 8 KB Messages
 Test Results for MSMQ to MQSeries One Way 1 KB Messages
Observations
Final Thoughts

Introduction
Microsoft® Host Integration Server 2000 includes a set of Application Integration components, which provide desktop or server-
based applications with access to host applications. The Application Integration components included in Host Integration
Server 2000 include the following:

Microsoft MSMQ-MQSeries Bridge
COM Transaction Integrator (COMTI) for CICS and IMS

The Microsoft MSMQ-MQSeries Bridge included with Host Integration Server 2000 and SNA Server 4.0 provides a gateway
between IBM MQSeries messaging applications predominant on IBM host computers and Microsoft Message Queuing (MSMQ)
used on Windows systems.

This article reports the results of performance testing using the Microsoft MSMQ-MQSeries Bridge provided with Host Integration
Server 2000 and SNA Server 4.0 with Service Pack 3.

Based on testing on a dual processor Pentium II 400 MHz computer, the MSMQ-MQSeries Bridge is capable of sustaining 450
transactions per second (TPS) for one kilobyte non-transactional round-trip messages. This represents a total sustained message
throughput of 900 messages per second.

Based on testing on a quad processor Pentium II Xeon 400 MHz computer, the MSMQ-MQSeries Bridge is capable of sustaining
900 transactions per second (TPS) for one kilobyte non-transactional round-trip messages. This represents a total sustained
message throughput of 1,500 messages per second.

The MSMQ-MQSeries Bridge is not CPU bound, which allows other more processor-intensive applications to run on the same
computer.

The following tables show a quick summary of the results based on performance testing the MSMQ-MQSeries Bridge with a
distributed version of the Component Object Model (DCOM) client load.

Table 1. Non-transactional messages throughput using MSMQ-MQSeries Bridge (messages/second)

MSMQ-MQSeries Bridge
Test Description

SNA Server 4.0
Service Pack 3

HIS 2000
1 MSMQ
Queue Manager

HIS 2000
3 MSMQ
Queue Managers

MSMQ to MQSeries
1 KB roundtrip messages
(1 KB send/1 KB receive)

740 740 1050 (Note 2)

MSMQ to MQSeries
1 KB one-way messages
(1 KB send to MQSeries queue)

425 450 975 (Notes 2)

MSMQ to MQSeries
(1 KB send/8 KB receive messages)

350 450 600

MQSeries to MSMQ
1 KB one-way messages
(1 KB send to MSMQ queue)

370 370 1010

MQSeries to MSMQ
8 KB one-way messages
(8 KB send to MSMQ queue)

250 345 495

Notes:

1. All messages contained character data only.
2. MSMQ was the factor limiting performance in this configuration.

Table 2. Transactional messages throughput using MSMQ-MQSeries Bridge (messages/second)

MSMQ-MQSeries Bridge
Test Description

SNA Server 4.0
Service Pack 3

HIS 2000
1 MSMQ
Queue Manager

MSMQ to MQSeries 1 KB one-way messages
(1 KB send only)

130 130

MSMQ to MQSeries 1 KB round-trip messages
(1 KB send/1 KB receive)

75 75

MQSeries to MSMQ 1 KB round-trip messages
(1 KB send/1 KB receive)

197 197

MQSeries to MSMQ 8 KB round-trip messages
(8 KB send/8 KB receive)

85 165

Notes:

1. All messages contained character data only.

Test Methodology and Environment
The goal of testing was to simulate a typical corporate messaging network and examine the behavior of the MSMQ-MQSeries
Bridge as it was subjected to an ever-increasing message load. Testing was done at the Microsoft Enterprise Interoperability
Group Performance Laboratory at corporate headquarters in Redmond, Washington during June 2000.

The Test Methodology

The test methodology for this comparison centered on a simulation of interactive transaction processing to deliver messages to
the Microsoft MSMQ and IBM MQ Series networks. Using the Microsoft MSMQ-MQSeries Bridge, MSMQ, and IBM MQSeries,
applications can send messages to each other through the message queuing systems. The MSMQ-MQSeries Bridge achieves this
by mapping the messages and data fields of the sending system and the values associated with those fields to the fields and
values of the receiving environment. After the mapping and conversion, the MSMQ-MQSeries Bridge completes the process by
routing the message across the combined MSMQ and MQSeries networks.

A Microsoft test tool was used to create simulated messages. The tool, designed to provide basic stress testing for the MSMQ-
MQSeries Bridge, works by sending or receiving messages from a predetermined queue. The tool is configurable to create any
number, size, and type of message that is required to test the MSMQ-MQSeries Bridge features. The test software was written in
Microsoft® Visual Basic® using Microsoft ActiveX® and DCOM. Separate control center software launched the MSMQ and
MQSeries clients on the client computers and controlled the type and number of messages sent by the client each second. By
gradually increasing the number of messages sent by the client computers, it was possible to determine the maximum values for
sustained throughput that could be maintained by the MSMQ-MQSeries Bridge.

Separate tests were conducted of the MSMQ-MQSeries Bridge included in Host Integration Server 2000 running on Microsoft®
Windows® 2000 Advanced Server and the MSMQ-MQSeries Bridge included with SNA Server 4.0 SP3 running on Microsoft
Windows NT® 4.0 Enterprise Server. In both series of tests, similar hardware was used by the computer running the MSMQ-
MQSeries Bridge software.

The MSMQ or MQSeries client workstations each went through cycles of sending/receiving a specified rate of messages per
second set by the control center application. This request frequency and the number of client workstations used generated the
resulting total messages per second load on the MSMQ or MQSeries servers and the MSMQ-MQSeries Bridge. The message and
transaction load was increased incrementally, and test data was collected after each increase in client load was added to the test
bed configuration. Client loads were increased until the messaging Connector Queue backed up and could not flush itself within a
reasonable amount of time.

Key Testing Metrics

The test methodology was based on using a number of key metrics for determining performance. In order to measure some of
these metrics, a separate computer running the Microsoft Network Monitor software (NetMon, a protocol analyzer) was placed on
each network segment. An analysis of the NetMon protocol analysis logs was used to determine the recorded data transaction
throughput and total LAN traffic loads.

The MQSeries libraries and messaging APIs do not have a way to check arrival time in the MQSeries queue. Since dequeueing
from an MQSeries queue is slower than enqueueing, there needs to be a way to see how quickly the queue is populated. A
separate MQSeries ActiveX DLL downloaded from the IBM Web site was used for this purpose. Performance counters on CPU
usage, disk writes, and other systems measures were retrieved via the Perfmon application.

The key testing metrics include the following:

Transactions per second (TPS)—the number of transactions the MSMQ-MQSeries Bridge was able to send and receive
each second. Each transaction consisted of one request message and one corresponding reply message. This test metric was
determined using NetMon.
Messages per second (msg/sec)—the number of messages the MSMQ-MQSeries Bridge was able to send and receive
each second. Each message could be a request message or a reply message. For bi-directional messages of the same size,
the value for transactions per second represented 50% of the value for messages per second. This test metric was
determined using NetMon.
CPU Load—the CPU utilization on the computer system running the MSMQ-MQSeries Bridge application. This test metric
was determined using performance counters gathered by Perfmon.

The Test Environment

The test environment consisted of two private network segments running fast Ethernet (100Base-T): one for MSMQ and one for
MQSeries. The computer running the MSMQ-MQSeries Bridge contained two fast Ethernet network interface cards and connected
these two segments. All testing was based on using TCP/IP as the network protocol for connecting to both the MSMQ and
MQSeries segments.

The MSMQ network segment included the following:

Multiple MSMQ client workstations to create the MSMQ message load.
A server computer functioning as a domain controller running MSMQ server software.
A test computer running NetMon.

When testing the MSMQ-MQSeries Bridge included with SNA Server 4.0 on Windows NT 4.0, the domain controller on the
MSMQ segment also functioned as the MSMQ Primary Enterprise Controller (PEC).

The MQSeries network segment included the following:

Multiple MQSeries client workstations to create the MQSeries message load.
Multiple server computers running MQSeries server software.
A test computer running NetMon.

When testing the MSMQ-MQSeries Bridge included with SNA Server 4.0 on Windows NT 4.0, multiple computers were
functioning as MQSeries servers. On Windows 2000, a later version of MQSeries software was used, and only a single computer
acted as the MQSeries server.

The following figure depicts the network topology used to test the MSMQ-MQSeries Bridge included in Host Integration
Server 2000. Note that the computer operating as the network monitor running NetMon is not shown in this figure.

Figure 1. Network topology for testing MSMQ-MQSeries Bridge on Host Integration Server 2000

Hardware platforms for Host Integration Server 2000 tests

The following hardware was used for testing the MSMQ-MQSeries Bridge included with Host Integration Server 2000.

MSMQ-MQSeries Bridge Machine: A dual processor Pentium II 400 MHz computer with 512 MB of RAM was configured to run
Microsoft Windows 2000 Advanced Server, IBM MQSeries Client v5.1, Microsoft MSMQ v2.0 with routing enabled, and the
Microsoft MSMQ-MQSeries Bridge included with Host Integration Server 2000.

MQSeries Client Machines: Pentium II 350 MHz computers with 128 MB of RAM were configured to run Microsoft
Windows 2000 Professional and MQSeries Client v5.1.

MQSeries Server Machine: An eight-processor Pentium III 550 MHz computer with 4 GB of RAM was configured to run
Microsoft Windows 2000 DataCenter and IBM MQSeries Server v5.1.

MSMQ DC Machine: A dual processor Pentium II 400 MHz computer with 512 MB of RAM was configured to run Microsoft
Windows 2000 Advanced Server as the domain controller and Microsoft MSMQ v2.0.

MSMQ Client Machines: Pentium II 350 MHz computers with 128 MB of RAM were configured to run Microsoft Windows 2000
Professional and MSMQ v2.0.

The following table describes in more detail the specific hardware used for testing the MSMQ-MQSeries Bridge included in Host
Integration Server 2000.

Table 3. Specific hardware included in Host Integration Server 2000

Function Vendor Operating System Processor RAM Network Adaptor
MSMQ Clients (4) Ciara Windows 2000 Professiona

l
PII 350 MHz 128 MB Intel Ether Express Pr

o
MQSeries Clients (4
)

Ciara Windows 2000 Professiona
l

PII 350 MHz 128 MB Intel Ether Express Pr
o

Bridge Ciara Windows 2000 Advanced S
erver

Dual PII 400 MHz 512 MB Intel Ether Express Pr
o

Domain Controller a
nd MSMQ Server

Ciara Windows 2000 Advanced S
erver

Dual PII 400 MHz 512 MB Intel Ether Express Pr
o

MQSeries Server Fujitsu Windows 2000 Datacenter Eight-processor PIII 5
50 MHz

4 GB Intel Pro /100+ Serve
r

The following figure depicts the network topology used to test the MSMQ-MQSeries Bridge included in SNA Server 4.0 Service
Pack 3. Note that the computer operating as the network monitor running NetMon is not shown in this figure.

Figure 2. Network topology for testing MSMQ-MQSeries Bridge on SNA Server 4.0 (click image to see larger picture)

Hardware platforms for SNA Server 4.0 tests

The following hardware was used for testing the MSMQ-MQSeries Bridge included with SNA Server 4.0 with Service Pack 3.

MSMQ-MQSeries Bridge Machine: A dual processor Pentium II 400 MHz computer with 512 MB of RAM was configured to run
Microsoft Windows NT 4.0 Enterprise Server with Service Pack 5, IBM MQSeries Client v5.0, Microsoft MSMQ v1.0 Routing
Server, and the Microsoft MSMQ-MQSeries Bridge included with SNA Server 4.0 SP3.

MQSeries Client Machines: Pentium II 350 MHz computers with 128 MB of RAM were configured to run Microsoft Windows NT
4.0 Workstation and MQSeries Client v5.0.

MQSeries Server Machines: Five dual processor Pentium II 400 MHz computers with 512 MB of RAM were configured to run
Microsoft Windows NT 4.0 Server with Service Pack 5 and IBM MQSeries Server v5.0. One additional quad processor Pentium Pro
200 MHz computer with 512 MB RAM was configured to run Microsoft Windows NT 4.0 Server with Service Pack 5 and IBM
MQSeries Server v5.0.

MSMQ DC Machine: A dual processor Pentium II 400 MHz computer with 512 MB of RAM was configured to run Microsoft
Windows NT 4.0 Server with Service Pack 5 as the domain controller, Microsoft® SQL Server™ 7.0, and Microsoft MSMQ v1.0 as
the MSMQ Primary Enterprise Controller (PEC).

MSMQ Client Machines: Pentium II 350 MHz computers with 128 MB of RAM were configured to run Windows NT 4.0
Workstation and MSMQ v1.0.

The following table describes in more detail the specific hardware used for testing the MSMQ-MQSeries Bridge included in SNA
Server 4.0 with Service Pack 3.

Table 4. Specific hardware included in SNA Server 4.0 with SP3

Function Vendor
Model

Operating System Processor RAM Network Adaptor

MSMQ Clients (2) Dell Optiplex G
X1

Windows NT Workstation
with SP5

PII 350 MHz 128 MB 3Com Fast Etherlink
XL

MSMQ Clients (4) Ciara Windows NT Workstation
with SP5

PII 350 MHz 128 MB Intel Ether Express Pr
o

MQSeries Clients (6
)

Ciara Windows NT Workstation
with SP5

PII 350 MHz 128 MB Intel Ether Express Pr
o

Bridge Dell Precision
610

Windows NT 4.0 Enterprise
Server with SP5

Dual PII 400 MHz 512 MB Intel Ether Express Pr
o

Domain Controller a
nd MSMQ Server

Ciara Windows NT 4.0 Enterprise
Server with SP5

Dual PII 400 MHz 512 MB Intel Ether Express Pr
o

MQSeries Servers (
5)

Ciara Windows NT 4.0 Server wit
h SP5

Dual PII 400 MHz 512 MB Intel Ether Express Pr
o

MQSeries Server (1) Amdahl Envist
a

Windows NT 4.0 Server wit
h SP5

Quad Pentium Pro 2
00 MHz

512 MB Intel Ether Express Pr
o

Performance Settings

The MSMQ-MQSeries Bridge has several definable attributes that can affect performance and message throughput. These
settings can be viewed and changed using the MSMQ-MQSeries Bridge Explorer by selecting a Bridge instance and right clicking
on properties.

The MSMQ-MQSeries Bridge software creates and uses four message pipes for message transport as follows:

MSMQ to MQSeries messages sent with normal service (transactional)
MSMQ to MQSeries messages sent with high service (non-transactional)
MQSeries to MSMQ messages sent with normal service (transactional)
MQSeries to MSMQ messages sent with high service (non-transactional)

An important setting on the Advanced tab is the number of threads that are used by the MSMQ-MQSeries Bridge software to
service each of these message pipes. Ideally, this value would be set to reflect the number of MQSeries and MSMQ queue
managers that the Bridge will service based on the number of CPUs. However, some limited testing was done using varying
numbers of threads. The results indicated that there is no noticeable difference in performance if more threads are allocated than
the number of MQSeries Queue Managers being serviced. However, if the thread count is lower than the number of MQSeries
Queue Managers that are to be serviced, the Bridge performance drops depending on the number of messages sent and the
number of threads allocated. This results from the number of jobs servicing the Queue Managers competing for access to the
available threads.

Other settings that have an impact on MSMQ-MQSeries Bridge are batch attributes on each individual message pipe. A batch is a
group of messages that get processed by the Bridge at the same time. These settings can be viewed and changed using the
MSMQ-MQSeries Bridge Explorer by selecting a Bridge instance and right clicking on the properties for each of the four message
pipes. The Batch tab exposes three properties on a message pipe that affect the number and size of batches used for each
message pipe.

Table 5. Batch properties

Batch Property Comments
Max. Number of Messages The maximum number of messages in a batch (defaults to 10).
Max. Accumulated Size The maximum size in bytes of a batch (defaults to 1024 bytes).
Max. Accumulated Time The maximum time in milliseconds during which messages are

batched (defaults to 512).

Transmission begins as soon as there are messages to be sent. When any of the above limits is reached, the message pipe checks
that the batch was fully received on the destination side.

To improve Bridge performance, these batch properties were set as follows during testing:

Max. Number of Messages: 1,000
Max. Accumulated Size: 300,000
Max. Accumulated Time: 256

Test Results

Test Results for Round-Trip 1-KB Messages

Non-transactional

A single MQSeries Queue Manager through a single MSMQ-MQSeries Bridge using the SNA Server 4.0 SP3 version provided a
maximum sustained rate of 370 TPS for a total of 740 msg/sec through the MSMQ-MQSeries Bridge. When the same test was
run using the MSMQ-MQSeries Bridge in Host Integration Server 2000, the sustained rate stayed the same at 370 transactions
per second.

By increasing the number of MQSeries Queue Managers that the MSMQ-MQSeries Bridge serviced to three (or tripling the
number of active message pipes), the rate increased to 525 TPS for a total of 1050 msg/sec. The limiting factor was the number of
outgoing messages per second that MSMQ could sustain to the connector queues of MSMQ routing server (350 msg/sec).

Transactional

The sustained demand for a single MQSeries Queue Manager through a single MSMQ-MQSeries Bridge was 65 TPS for a total of
130 msg/sec through the MSMQ-MQSeries Bridge in both SNA 4.0 SP3 and Host Integration Server 2000. The MSMQ-MQSeries

Bridge CPU load was less than 10%, but the disk queue length was 1.3. A disk queue length of 2.0 represents the maximum disk
processing possible. The test results indicate that the disk was being heavily used, but still had 35% of the disk processing idle.

Test Results for Round-Trip MSMQ 1-KB MQSeries 8-KB Messages

Non-transactional

While testing on the MSMQ-MQSeries Bridge using a single MSMQ message connector pipe and one MQSeries message
connector pipe, the maximum sustained rate was 175 TPS for a total of 350 msg/sec using the MSMQ-MQSeries Bridge in SNA
Server 4.0 SP3. The maximum sustained rate increased to 225 TPS for a total of 450 msg/sec when using the MSMQ-MQSeries
Bridge in Host Integration Server 2000.

Adding two additional MQSeries Queue Managers to the Host Integration Server 2000 version of the MSMQ-MQSeries Bridge
(total of 3 Queue Managers) increased the maximum sustained rate to 300TPS or 600 msg/sec.

Test Results for MQSeries to MSMQ One Way 1 KB Messages

Non-Transactional

On the MSMQ-MQSeries Bridge in SNA Server 4.0 SP3, the maximum sustained rate was 370 msg/sec. The messages were sent
from one Queue Manager to one independent client. The average CPU usage for the MSMQ-MQSeries Bridge was 19 percent.
Disk input/output and memory usage was relatively minor. Using the MSMQ-MQSeries Bridge in Host Integration Server 2000
had no impact on this maximum sustained rate. On Host Integration Server 2000, the processor, disk, and memory usage were
virtually the same as the results on SNA Server 4.0 SP3.

When two additional MQSeries Queue Managers were added to the Host Integration Server 2000 MSMQ-MQSeries Bridge (total
of 3 Queue Managers), the maximum sustained rate handled was 1010 msg/sec. CPU load increased to 57 percent, but the
memory and disk usage remained virtually the same.

Transactional

Transactional messages guarantee delivery, delivering once and only one message. Changing to transactional messages
decreases the total throughput, as would be expected. Using the MSMQ-MQSeries Bridge in SNA Server 4.0 SP3, the maximum
sustained rate handled was 197 msg/sec. The CPU load was similar at 20 percent, but disk activity increased to 0.95 of the queue
length. A disk queue length of 2.00 indicates a particular disk queue is saturated.

Testing the MSMQ-MQSeries Bridge in Host Integration Server 2000 did not make a difference in the throughput. The maximum
sustained rate handled was 197 msg/sec. CPU load, however, dropped to 15 percent. Disk activity was unchanged with a queue
length at 0.95.

Test Results for MQSeries to MSMQ One Way 8 KB Messages

Non-transactional

Increasing the message size had the expected effect. The maximum sustained rate that the MSMQ-MQSeries Bridge in SNA Server
4.0 SP3 could handle was 250 msg/sec. The MSMQ-MQSeries Bridge CPU usage stayed consistent only increasing to 21 percent.
Disk activity increased to 0.25 queue length. The maximum sustained rate increased to 345 msg/sec. when changing the MSMQ-
MQSeries Bridge in Host Integration Server 2000. Disk activity stayed at 0.25 queue length.

Adding two additional MQSeries Queue Managers to the MSMQ-MQSeries Bridge in Host Integration Server 2000 (a total of 3
Queue Managers) increased the sustained throughput to 495 msg/sec. The MSMQ-MQSeries Bridge CPU load increased to
almost 70 percent and disk queue length was 0.87.

Transactional

Changing to transactional messages and increasing the message size slows the throughput as would be expected. For the MSMQ-
MQSeries Bridge in SNA Server 4.0 SP3, the maximum sustained throughput was 85 msg/sec. The CPU load, however, decreased
to about 10 percent and the disk queue length was at 0.56. Using the MSMQ-MQSeries Bridge in the Host Integration
Server 2000 increased the maximum sustained throughput to 165 msg/sec. The performance counters in both MSMQ-MQSeries
Bridge computers were the same with 10 percent CPU load and 0.54 disk queue length.

Test Results for MSMQ to MQSeries One Way 1 KB Messages

Non-transactional

The MSMQ-MQSeries Bridge in SNA Server 4.0 SP3 was able to sustain a rate of 425 msg/sec with one message pipe from
MSMQ to MQSeries without any buffering. The messages were sent from one independent client to one Queue Manager. The
MSMQ-MQSeries Bridge CPU usage averaged to 34 percent over the 1000-second test. Disk input/output was low (queue length
was 0.03). Using the MSMQ-MQSeries Bridge in Host Integration Server 2000, the throughput increased to 450 msg/sec. The CPU
load average was again 34 percent with a disk queue length 0.03.

Boosting the number of MQSeries Queue Managers from one to three, the expected outcome would be an increase in maximum
sustained throughput. Tests on the MSMQ-MQSeries Bridge in Host Integration Server 2000 indicate this to a certain extent. The
MSMQ-MQSeries Bridge using three MQSeries Queue Managers was able to sustain a rate of 975 msg/sec with a CPU load at 84
percent and disk queue length at 0.086. However, the throughput could be conceivably higher since the limiting factor was the
sustained outgoing messages per second from the MSMQ client to the MSMQ routing server connector queue (about 325
msg/sec per client).

Transactional

Testing with transactional messages, the sustained rate through the MSMQ-MQSeries Bridge in a SNA Server 4.0 SP3 averaged
75 msg/sec. At this rate the CPU load was only running at 8 percent, but the disk queue length averaged to 1.25. Using the
MSMQ-MQSeries Bridge in Host Integration Server 2000, the maximum sustained demand remained at 75 msg/sec. The CPU
load was reduced to 4 percent and the disk queue length was decreased to 1.01. The messages began to back up on the MSMQ
client machine before they started to back up on the MSMQ-MQSeries Bridge thus causing the test to stop at the 75 msg/sec rate.

Observations
MSMQ transactional messages back up on the client side after 75 to 100 messages per second. This causes the transactional
message tests to stop and show low messages per second (below 10 msg/sec).

MSMQ non-transactional messages back up on the client side above 425 messages per second when sending to a single
MQSeries Queue Manager. When sending to multiple MQSeries queue managers, the average rate drops to about 350 messages
a second.

Roughly every 109 milliseconds, the MSMQ-MQSeries Bridge sends out a 64-byte message to each of the active Connector
Queues on MQSeries to determine if there are any messages. This polling results in a minimum of ten 64-byte messages per
second to each active MQSeries message pipe. This is adjustable via a registry setting in Host Integration Server 2000.

MQSeries takes 150-200 milliseconds to close a queue and 15-16 milliseconds to open a queue. This is an expensive operation,
so leaving a queue open for long periods of time proves more advantageous for performance.

With non-transactional messages, if the queue depth on the client or any message pipe to a connector queue grows above 32,000
1-KB messages, the MSMQ service (mqsvc.exe) starts to take processor time away from all other services. The processor time is
not spent on sending the messages, as the outgoing messages per second rate decreases to 100-200 messages per second.

If a variant full of strings is put into the body of a MSMQ message, the message then gets converted to Unicode, thus doubling
the size of the message. However, the MSMQ-MQSeries Bridge and MQSeries recognize the message as ANSI format. For
example, one KB of text converts to 2 KB when placed into a MSMQ message body. The MSMQ-MQSeries Bridge defines the size
of the message as 1 KB and MQSeries defines the body size as 1 KB.

The MSMQ Visual Basic plug-in does not allow you to specify the type of message body created. The default is string, which is
then converted to Unicode. The MSMQ C/C++ API allows the message type to be specified, so these interfaces should support
increased performance since the MSMQ message body could be decreased by 50 percent for text messages of strings. The Visual
Basic plug-in for the MQSeries client allows the format of the message body to be specified.

If a message is sent from MQSeries to MSMQ, the only prerequisite is that the Remote Queue Manager is identified in MQSeries
Queue Manager. If a message is sent to a non-existent queue, the overall performance of the MSMQ-MQSeries Bridge is
decreased and the messages wind up in the MSMQ-MQSeries Bridge Dead Letter Queue. MQSeries is not notified that the
message could not be delivered. On the other hand, MSMQ will not allow you to even open the queue if it is not identified in the
MSMQ GUI. If it is not identified on the MQSeries Queue Manager, the message is delivered to the MSMQ-MQSeries Bridge Dead
Letter queue. Transactional messages stay in the outgoing queue until the message expires. This also affects the performance
through the MSMQ-MQSeries Bridge causing it to decrease to 40 messages per second when there are only a few messages in
the Dead Letter queue. Performance can decrease to less than 1 message per second if there are tens of thousands of messages in
the outgoing queue. Performance on the MSMQ-MQSeries Bridge does degrade while these messages are passed through the
MSMQ-MQSeries Bridge.

If a quota limit is not set for the maximum number of messages resident in the MSMQ service and messages begin to pile up in
the queue, then performance of the MSMQ-MQSeries Bridge begins to degrade. Memory is associated with each message in the
MSMQ service, so the Available Bytes of Memory on the MSMQ-MQSeries Bridge computer is reduced. If enough messages are
put in to the queue, the machine becomes sluggish and unresponsive.

Final Thoughts
In regard to the limitations of the hardware used for testing and the messaging software used to put messages into the MSMQ-
MQSeries Bridge, it appears the MSMQ-MQSeries Bridge is, as a whole, virtually transparent in sending messages between
MSMQ and MQSeries. There are optional fields (Reply To Queue Manager, for example) that, when populated, increase the
amount of time required to send messages through the MSMQ-MQSeries Bridge. As new features (encryption, for example) are
added to the MSMQ-MQSeries Bridge, the amount of time to send messages will increase, thus causing the number of messages
per second to decrease and the MSMQ-MQSeries Bridge process to use more CPU. Limiting the number of times that the MSMQ
protocol and MQSeries protocol are needed by the MSMQ-MQSeries Bridge will be instrumental in keeping the amount of
overhead observed by the MSMQ-MQSeries Bridge to a minimal level.

Both MSMQ and MQSeries messaging software make it expensive on the network to open and close queues. However, if a queue
is not closed after long periods of time, it may have detrimental consequences on the machine. The performance testing software
opened the queue and sent all messages in the specified time (5000 messages in 10 seconds, for example), and then closed the
queue. Previous testing had determined that opening and closing the queue for each message caused the TPS to decrease a
minimum of 20 percent.

In comparing the MSMQ-MQSeries Bridge on the Windows NT 4.0 and Windows 2000 platforms, there is one noticeable
difference. MSMQ seems to have degraded its performance in the Connector queue. With MSMQ v1.0 and MQSeries v5.0, the
limiting factor was that MQSeries was bottlenecked at 500+ messages. Now with MSMQ v2.0 and MQSeries v5.1, the maximum
sustained rate that can be pumped into the Connector Queue from MSMQ is about 425 messages a second. An internal test of
MQSeries put the enqueueing at over 600 messages per second and the dequeueing at over 575 messages per second on an
eight-processor machine. The disk activity, processor activity, and memory usage were very low (less than 10 percent processor
time, 0.2 disk queue length, and 5 percent memory usage).

On the other hand, the changes made to MSMQ and MQSeries have increased the performance of the queues. On the Windows
NT 4.0 platform, the one-way MSMQ to MQSeries messages measured at 500 messages per second and MQSeries to MSMQ
measured 565 messages per second sustained. However, adding both pipes brought the total sustained messages per second
down to 600 (or 300 messages from either side) messages per second. Now, on the surface, the number of messages sent has
decreased in a one-direction fashion, but increased on multiple pipes being used. The MSMQ-MQSeries Bridge did not cause this
one directional slow down. Internal testing on MSMQ determined that a sustained rate of 400 messages per second is expected.

Microsoft Host Integration Server 2000

Sample Programs for COMTI

Host Integration Server 2000
Microsoft Corporation

October 2001

Summary: This article describes the sample programs for application integration using COMTI (COM Transaction Integrator) for
CICS and IMS included with the Host Integration Server 2000 Software Development Kit. (4 printed pages)

Contents

Introduction
Bounded Recordsets Sample
Programming Specifics Sample
Sync Level 2 Sample

Introduction
The source code for several sample programs that illustrate using features of the Microsoft® COM Transaction Integrator
(COMTI) for CICS and IMS is included on the Microsoft® Host Integration Server 2000 CD-ROM as a part of the Host Integration
Server Software Development Kit (SDK). COMTI allows developers to integrate component-based Microsoft Windows®
applications using COM, distributed COM, and COM+ with CICS and IMS transactions on IBM mainframes.

In addition to the COMTI samples included in the Host Integration Server SDK, there is a basic COMTI sample titled CedarBank
that is installed with COMTI when the COMTI feature option is selected during setup. The CedarBank sample is installed under the
system\Tutorials\CedarBank subdirectory below where Host Integration Server is installed (the default location is
C:\Program Files\Host Integration Server\system\Tutorials\CedarBank).

Note that documentation on COMTI is not included with the Host Integration Server SDK. Documentation on COMTI is included
under Application Integration Services as part of the Host Integration Server 2000 user documentation. The documentation is also
available in printable format on the Host Integration Server CD-ROM under the Documentation\Printable Books folder in the
Application Integration Services.pdf file.

The COMTI sample programs are located in the \SDK\Samples\COMTI subdirectory on the Host Integration Server 2000 CD-ROM.
These files are copied to your hard drive during Host Integration Server software or Host Integration Client software installation
when the Host Integration Server Software Development Kit option is selected. These samples are installed in the Samples\COMTI
subdirectory below where the Host Integration Server SDK software is installed
(C:\Program Files\Host Integration Server SDK, by default).

When installed as part of the MSDN Platform SDK, these samples are located under the Samples\NetDS\HIS\COMTI subdirectory
below where the MSDN Platform SDK has been installed (C:\Program Files\Microsoft SDK, by default).

These sample programs include the files in the following subdirectories:

Subdirectory Description
BoundedRecordsets\COBOL-CICS A sample program in COBOL using COMTI that illustrates the use of b

ounded recordsets. This subdirectory also contains a sample TLB file cr
eated using the COMTI Component Builder for this COBOL sample.

BoundedRecordsets\VB A sample class defined in Microsoft® Visual Basic® using COMTI that
illustrates the use of bounded recordsets.

ProgrammingSpecifics This folder contains a comprehensive sample that includes Visual Basic
client code as well as mainframe COBOL code and sample COMTI type
libraries. This sample is intended to be a complete end-to-end sample
demonstrating features of COMTI.

ProgrammingSpecifics\CICSNonlink A sample program in COBOL using COMTI that demonstrates how to r
eceive a COMTI fixed-sized data area greater than 32767. This sample i
s not intended to be a complete end-to-end program, but it demonstra
tes the receiving-side logic of a CICS Non-Link server application prog
ram using COMTI.

ProgrammingSpecifics\TCP A set of several sample programs in COBOL using COMTI that demons
trate how to use a CICS TCP server application.

SyncLev2 A sample program in COBOL using COMTI that demonstrates how to
use Sync Level 2.

These samples primarily use a remote environment of CICS using LU 6.2. These COMTI samples are designed to assist developers
in creating code for specific COMTI features.

In order to first start working with COMTI, it is recommended that developers use the CedarBank tutorial that comes with the
COMTI installation. The CedarBank tutorial illustrates how to use all of the COMTI Remote Environments and includes the COMTI
type libraries and the COBOL code for the mainframe for all of the environments (IMS, CICS, APPC, and TCP/IP). The CedarBank
sample also includes sample programs for the client-side code written in Microsoft Visual Basic and Microsoft Visual C++®.

Once connectivity has been established by working with the CedarBank tutorial, then the COMTI samples included with the Host
Integration Server SDK can be used to gain an understanding of more advanced COMTI features not covered by the CedarBank
tutorial.

Bounded Recordsets Sample
The Microsoft® COM Transaction Integrator (COMTI) for CICS and IMS can be used with Microsoft Visual Basic bounded
recordsets. This sample includes Visual Basic code and CICS COBOL code showing how to use bounded recordsets by calling into
a CICS transaction program via LU 6.2 (Remote Environment CICS using LU 6.2). The Visual Basic code is in the
COMTI\BoundedRecorsdsets\VB folder and demonstrates how to create a recordset and populate it with data to send to the
mainframe. Note that there is no code that actually displays the data that comes back from the mainframe. A developer can put a
breakpoint in the VB code using the debugger and use the immediate window to look at the data or insert further code to
examine the data that is returned.

In the COMTI\BoundedRecorsdsets\COBOL-CICS folder, there is a COMTI type library (TLB file) that can be used with this sample.
The type library is set up for accessing a transaction named GETI on the host. There is also sample COBOL code that can be
compiled and linked on the mainframe side. The compiled code should be set up to run on the host as a transaction named GETI
or the COMTI type library must be changed to reflect the name of the transaction if it is different.

Programming Specifics Sample
The Microsoft® COM Transaction Integrator (COMTI) for CICS and IMS supports a number of powerful features that are
illustrated by these samples. In the COMTI\ProgrammingSpecifics folder, there is a complete Microsoft Visual Basic project that
demonstrates the following features of COMTI:

Returning a Recordset
Variable Length Tables
Handling REDEFINES Clauses
Variably Sized Strings
Handling FILLER
Unbounded Recordsets
In/Out Variable Length Table

The Visual Basic project contains comments with the Visual Basic source code that indicates which COBOL (*.cbl) file contains the
associated COBOL code for the mainframe side. The sample type library is included for CICS using LU 6.2. There are seven
methods defined in the type library. Check on the properties for each method and look at the Host Names tab to see what the
Mainframe TP name is. The value of the mainframe TP name property can be changed to the name used when compiling the
sample COBOL programs.

Programming Specifics CICSNonlink Sample

In the COMTI\ProgrammingSpecifics\CICSNonlink folder there is sample COBOL code showing how to receive more than 32K
bytes of data in a single method call. This sample includes only the mainframe code (COBOL), and does not include the
corresponding Visual Basic or Visual C++ code for the PC side. It is intended to demonstrate the receiving side logic of a COMTI
Non-link server application. This COBOL program contains comments explaining what is being done in the code.

Programming Specifics TCP Sample

In the COMTI\ProgrammingSpecifics\TCP folder, there are sample COBOL Child Server programs that can be used for TCP/IP
connections. The Cicscs.cbl code is a sample program for TCP using CICS with Concurrent Server (analogous to CICS using LU
6.2). The Mscmtics.cbl code is a sample program for CICS calling a Link-to program (using CICS DPL). The Imsexpl.cbl code is a
sample program for using IMS in the Explicit mode. The Imsimpl.cbl code is a sample program for using IMS in the Implicit
mode. There are similar sample programs included with the CedarBank tutorial, which directly reflect the CedarBank data being

passed.

Sync Level 2 Sample
The Microsoft COM Transaction Integrator (COMTI) for CICS and IMS supports the use of Sync Level 2 transactions. This sample
includes COBOL source code illustrating transactional support (Sync Level 2) on the mainframe with CICS using LU 6.2. This
sample only includes COBOL source code, which contains comments describing each of the code sections. The sample code
demonstrates executing a Commit and identifying that a Rollback has been requested from COMTI. Please note that there is also
related documentation in Knowledge Base article Q220967, Explanation of COMTI Metadata Elements. This article explains COMTI
Metadata elements so that developers can better understand how to use Metadata to allow the COBOL program to initiate a
Rollback of a transaction.

http://support.microsoft.com/support/kb/articles/q220/9/67.asp

	Cover Page
	Host Integration Server 2000
	@NoTitle
	Host Integration Server Developer's Guide
	Application Integration
	Introduction to Application Integration
	Additional Resources

	MSMQ-MQSeries Bridge Programming
	Platforms Supported by MSMQ-MQSeries Bridge Extensions
	Queue Addressing Using MSMQ-MQSeries Bridge
	Addressing an MQSeries Queue in MSMQ
	Sending a Message to an MQSeries Queue in MSMQ
	Addressing an MSMQ Queue in MQSeries
	Sending a Message to an MSMQ Queue in MQSeries

	Converting Messages Using MSMQ-MQSeries Bridge
	Converting Messages Sent from MSMQ to MQSeries
	Converting MSMQ Properties
	Building an MQSeries Message

	Converting Messages Sent from MQSeries to MSMQ
	Converting MQSeries Fields
	Building an MSMQ Message

	The MSMQ-MQSeries Bridge Extensions Mechanism
	Data Structure of a Message Extension
	How MSMQ-MQSeries Bridge Creates a Message Extension
	MQMD Extension Field
	Error Extension Field
	Other Extension Fields

	How MSMQ-MQSeries Bridge Converts a Message Extension
	Sender and User Identifiers
	Version Identifiers

	Using Message Extensions
	Sending an MQSeries Message to MSMQ
	Sending an MSMQ Message to MQSeries

	Programming a Message Extension
	The MSMQ-MQSeries Bridge Extension Property API

	Programming Considerations Using MSMQ-MQSeries Bridge Extensions
	Transaction Support Using MSMQ-MQSeries Bridge
	Security Using MSMQ-MQSeries Bridge
	Troubleshooting the MSMQ-MQSeries Bridge Extensions

	Registry Settings Used By MSMQ-MQSeries Bridge Extensions

	MSMQ-MQSeries Bridge Reference
	MSMQ-MQSeries Bridge Extensions Reference
	EPAdd
	EPClose
	EPDelete
	EPDeleteAll
	EPGet
	EPGetBuffer
	EPOpen
	EPUpdate

	SDK Components for MSMQ-MQSeries Bridge Extensions
	Program and DLL Files for MSMQ-MQSeries Bridge
	Symbol Files for MSMQ-MQSeries Bridge
	Header Files for MSMQ-MQSeries Bridge
	Import Library Files for MSMQ-MQSeries Bridge

	Application Integration Samples
	Sample Programs for MSMQ-MQSeries Bridge
	EPRecv Sample
	EPSend Sample
	MQSRRecv Sample
	MQSRSend Sample
	MSMQRecv Sample
	MSMQSend Sample
	WMI MSMQ-MQSeries Bridge Sample

	Sample Programs for COMTI
	Bounded Recordsets Sample
	Programming Specifics Sample
	Programming Specifics CICSNonlink Sample
	Programming Specifics TCP Sample
	Sync Level 2 Sample

	Data Integration
	Introduction to Data Integration
	Additional Resources

	OLE DB Providers
	Using the OLE DB Provider for AS/400 and VSAM
	Goals of the OLE DB Provider for AS/400 and VSAM
	The OLE DB Environment
	DDM Record-Level Access
	Platforms Supported by the OLE DB Provider for AS/400 and VSAM
	Indexed File Access
	File and Record Attributes
	Configuring the OLE DB Provider for AS/400 and VSAM
	Configuring Data Sources for the OLE DB Provider for AS/400 and VSAM
	Creating New Data Links for the OLE DB Provider for AS/400 and VSAM
	Browsing Data Sources for the OLE DB Provider for AS/400 and VSAM

	Configuring Data Links for the OLE DB Provider for AS/400 and VSAM
	Provider
	Connection
	Advanced
	All

	Configuring Data Descriptions
	Host Data Types
	Local OLE DB Data Types

	Converting Existing Data Sources

	Registry Settings Used by the OLE DB Provider for AS/400 and VSAM
	Programming Considerations Using the OLE DB Provider for AS/400 and VSAM
	Record Access and Data Conversion
	Record Locking
	Client Cursor Engines Using the OLE DB Provider for AS/400 and VSAM
	Single Sign-On
	Error Codes Returned by the OLE DB Provider for AS/400 and VSAM

	Using the OLE DB Provider for DB2
	Goals of the OLE DB Provider for DB2
	Distributed Relational Database Architecture
	Platforms Supported by the OLE DB Provider for DB2
	IBM DB2 for MVS Support
	IBM DB2 for OS/400 Support
	IBM DB2 Universal Database Support

	OLE DB Provider for DB2 Requirements
	Configuring the OLE DB Provider for DB2
	Configuring Data Sources for the OLE DB Provider for DB2
	Creating New Data Links for the OLE DB Provider for DB2
	Browsing Data Sources for the OLE DB Provider for DB2

	Configuring Data Links for the OLE DB Provider for DB2
	Provider
	Connection
	Advanced
	All

	Creating Packages for Use With the OLE DB Provider for DB2

	Registry Settings Used By the OLE DB Provider for DB2
	Programming Considerations Using the OLE DB Provider for DB2
	Support for Isolation Levels Using the OLE DB Provider for DB2
	Transaction Support Using the OLE DB Provider for DB2
	Stored Procedure Support Using the OLE DB Provider for DB2
	Distributed Query Support Using the OLE DB Provider for DB2
	Query Designer Support Using the OLE DB Provider for DB2
	Data Transformation Services Support Using the OLE DB Provider for DB2
	SQL Server Replication Using the OLE DB Provider for DB2
	SQL Replication with DB2 for OS/400
	SQL Replication with DB2 for MVS
	SQL Replication with DB2 UDB for AIX
	SQL Replication with DB2 UDB for NT

	Code Page Support Using the OLE DB Provider for DB2
	ANSI Code Page Support Using the OLE DB Provider for DB2
	EBCDIC Code Page Support Using the OLE DB Provider for DB2
	ISO Code Page Support Using the OLE DB Provider for DB2
	DBCS Code Page Support Using the OLE DB Provider for DB2

	Data Conversion Using the OLE DB Provider for DB2
	Floating Point Considerations Using the OLE DB Provider for DB2
	Usernames and Passwords Using the OLE DB Provider for DB2
	Troubleshooting the OLE DB Provider for DB2

	ODBC Drivers
	Goals of the ODBC Driver for DB2
	ODBC Driver for DB2 Architecture
	Platforms Supported by the ODBC Driver for DB2
	ODBC Driver for DB2 Requirements
	Configuring ODBC Data Sources
	General
	Connection
	Security
	Target Database
	Locale
	Configuration Property Mappings Between the ODBC Driver for DB2 and the OLE DB Provider for DB2
	ODBC Connection String Attributes

	Creating Packages for Use with the ODBC Driver for DB2
	ODBC Conformance
	Support for ODBC 2 Core Functions
	Support for ODBC 2 Level 1 Functions
	Support for ODBC 2 Level 2 Functions
	Support for ODBC 3 Functions
	Support for ODBC Connection Attributes
	Support for ODBC Statement Attributes

	Programming Considerations Using the ODBC Driver for DB2
	Stored Procedure Support Using the ODBC Driver for DB2
	Support for Isolation Levels Using the ODBC Driver for DB2
	Code Page Support Using the ODBC Driver for DB2
	ANSI Code Page Support Using the ODBC Driver for DB2
	EBCDIC Code Page Support Using the ODBC Driver for DB2
	ISO Code Page Support Using the ODBC Driver for DB2
	DBCS Code Page Support Using the ODBC Driver for DB2

	Data Conversion Using the ODBC Driver for DB2
	Floating Point Considerations Using the ODBC Driver for DB2
	Usernames and Passwords Using the ODBC Driver for DB2
	Errors Returned by the ODBC Driver for DB2
	Troubleshooting the ODBC Driver for DB2

	ActiveX Controls
	Using the Data Queue ActiveX Control
	Advantages of Data Queues
	Platforms Supported by the Data Queue ActiveX Control
	Registry Settings Used by Data Queues
	Object Support Using Data Queues
	COM Interface Support Using Data Queues
	The IEIGDataQueueCtl Object
	The IEIGDataQueue Object
	The IEIGDataQueueItem Object
	IEIGDataQueueCtlEvents Notifications
	IEIGDataQueueEvents Notifications

	Programming Considerations Using the Data Queue ActiveX Control
	Code Page Support Using Data Queues
	DBCS Code Page Support Using Data Queues

	Usernames and Passwords Using Data Queues
	Troubleshooting the Data Queue ActiveX Control

	Using the Host File Transfer ActiveX Control
	Platforms Supported by the Host File Transfer ActiveX Control
	Configuring Data Descriptions for Host File Transfer
	Registry Settings Used By Host File Transfer
	Object Support Using Host File Transfer
	COM Interface Support Using Host File Transfer
	The IEIGFileTransferCtl Object
	IEIGFileTransferCtlEvents Notification

	Programming Considerations Using Host File Transfer
	Code Page Support Using Host File Transfer
	ISO Code Page Support Using Host File Transfer
	DBCS Code Page Support Using Host File Transfer

	Data Conversion Using Host File Transfer
	Usernames and Passwords Using Host File Transfer
	Troubleshooting the Host File Transfer ActiveX Control

	Data Integration Reference
	OLE DB Object and Interface Support
	OLE DB Object Support Comparison
	OLE DB Interface Support Comparison
	OLE DB Object Support in the OLE DB Provider for AS/400 and VSAM
	OLE DB Interface Support in the OLE DB Provider for AS/400 and VSAM
	OLE DB Provider for AS/400 and VSAM Command Object
	OLE DB Provider for AS/400 and VSAM DataSource Object
	OLE DB Provider for AS/400 and VSAM ErrorObject Object
	OLE DB Provider for AS/400 and VSAM ErrorRecord Object
	OLE DB Provider for AS/400 and VSAM Index Object
	OLE DB Provider for AS/400 and VSAM Rowset Object
	OLE DB Provider for AS/400 and VSAM Session Object
	OLE DB Provider for AS/400 and VSAM View Object
	OLE DB Property Support in the OLE DB Provider for AS/400 and VSAM

	OLE DB Object Support in the OLE DB Provider for DB2
	OLE DB Interface Support in the OLE DB Provider for DB2
	OLE DB Provider for DB2 Command Object
	OLE DB Provider for DB2 CustomErrorObject Object
	OLE DB Provider for DB2 DataSource Object
	OLE DB Provider for DB2 ErrorObject Object
	OLE DB Provider for DB2 ErrorRecord Object
	OLE DB Provider for DB2 Rowset Object
	OLE DB Provider for DB2 Session Object
	OLE DB Provider for DB2 Transaction Object
	OLE DB Property Support in the OLE DB Provider for DB2
	OLE DB Provider-Specific Property Support in the OLE DB Provider for DB2
	OLE DB Data Source Property Support in the OLE DB Provider for DB2

	ADO Object, Method, Property, and Collection Support
	ADO Object Support in the OLE DB Provider for AS/400 and VSAM
	ADO Method Support in the OLE DB Provider for AS/400 and VSAM
	ADO Property Support in the OLE DB Provider for AS/400 and VSAM
	ADO Collection Support in the OLE DB Provider for AS/400 and VSAM
	ADO Command Object in the OLE DB Provider for AS/400 and VSAM
	ADO Connection Object in the OLE DB Provider for AS/400 and VSAM
	ADO Error Object in the OLE DB Provider for AS/400 and VSAM
	ADO Field Object in the OLE DB Provider for AS/400 and VSAM
	ADO Recordset Object in the OLE DB Provider for AS/400 and VSAM

	ADO Object Support in the OLE DB Provider for DB2
	ADO Method Support in the OLE DB Provider for DB2
	ADO Property Support in the OLE DB Provider for DB2
	ADO Collection Support in the OLE DB Provider for DB2
	ADO Command Object in the OLE DB Provider for DB2
	ADO Connection Object in the OLE DB Provider for DB2
	ADO Error Object in the OLE DB Provider for DB2
	ADO Field Object in the OLE DB Provider for DB2
	ADO Recordset Object in the OLE DB Provider for DB2

	ADO Object Support in the ODBC Driver for DB2
	ADO Method Support in the ODBC Driver for DB2
	ADO Property Support in the ODBC Driver for DB2
	ADO Collection Support in the ODBC Driver for DB2
	ADO Command Object in the ODBC Driver for DB2
	ADO Connection Object in the ODBC Driver for DB2
	ADO Error Object in the ODBC Driver for DB2
	ADO Field Object in the ODBC Driver for DB2
	ADO Recordset Object in the ODBC Driver for DB2

	ADO Reference
	ActiveCommand Property
	ActiveConnection Property
	ActiveConnection Property Support Using the OLE DB Provider for AS/400 and VSAM
	ActiveConnection Property Support Using the OLE DB Provider for DB2
	ActiveConnection Property Support Using the ODBC Driver for DB2

	ActualSize Property
	AddNew Method
	AppendChunk Method
	Attributes Property
	BOF Property
	Bookmark Property
	CacheSize Property
	CancelBatch Method
	CancelUpdate Method
	Clear Method
	Clone Method
	Close Method
	CommandText Property
	CommandType Property
	ConnectionString Property
	CursorLocation Property
	CursorType Property
	DefinedSize Property
	Delete Method
	Description Property
	EditMode Property
	EOF Property
	Execute Method on Command Object
	Execute Method on Connection Object
	Filter Property
	Find Method
	GetChunk Method
	GetRows Method
	IsolationLevel Property
	Item Method
	LockType Property
	MaxRecords Property
	Mode Property
	Move Method
	MoveFirst Method
	MoveLast Method
	MoveNext Method
	MovePrevious Method
	Name Property
	NativeError Property
	Number Property
	NumericScale Property
	Open Method on Connection Object
	Open Method on Recordset Object
	OpenSchema Method
	adSchemaColumns
	adSchemaIndexes
	adSchemaPrimaryKeys
	adSchemaProcedures
	adSchemaProcedureParameters
	adSchemaProviderTypes
	adSchemaTables

	Precision Property
	OriginalValue Property
	Provider Property
	Refresh Method
	Requery Method
	Save Method
	Sort Property
	Source Property on Error Object
	Source Property on Recordset Object
	State Property
	Status Property
	Supports Method
	Type Property
	UnderlyingValue Property
	Update Method
	UpdateBatch Method
	Value Property
	Version Property

	Data Queue ActiveX Control Reference
	AddQueueItem Method
	Cancel Method
	CancelQueue Method
	CCSID Property
	ClearAll Method
	Connect Method
	ConnectionState Property
	ConnectionType Property
	CreateQueue Method
	CreateQueueContainer Method
	DeleteQueue Method
	Disconnect Method
	GetQueueItem Method
	LocalLU Property
	ModeName Property
	Password Property
	PCCodePage Property
	QueryAttribute Method
	QueueName Property
	RemoteLU Property
	SetAttribute Method
	StopQueue Method
	UserID Property

	Host File Transfer ActiveX Control Reference
	AppendToEnd Property
	Cancel Method
	CCSID Property
	Connect Method
	ConnectionState Property
	ConnectionType Property
	CreateIfNonExisting Property
	Disconnect Method
	GetFile Method
	LocalLU Property
	ModeName Property
	NetAddr Property
	NetPort Property
	OverwriteHostFile Property
	Password Property
	PCCodePage Property
	PutFile Method
	RDBName Property
	RemoteLU Property
	UserID Property

	Host Column Description
	Host Column Description File Format
	Host Column Description Attributes
	Host Column Description Example File

	Conversion from Host to OLE DB Data Types
	Default OLE DB Data Types
	DBDATE
	DBTIME
	DBTIMESTAMP
	DECIMAL
	NUMERIC

	Character Code Conversions
	Host CCSID and SNA OLE DB Provider
	Host CCSID and Data Source
	Host CCSID and Data Description
	Host CCSID and the Process Binary As Character Parameter

	Architecture
	SDK Components for Data Integration
	Program and DLL Files for Data Integration
	Symbol Files for Data Integration
	Header Files for Data Integration
	Import Library Files for OLE DB Data Integration
	Import Library Files for ODBC Data Integration
	OLE DB and ADO Import Library Files

	Data Integration Samples
	Sample Programs for Data Access
	Visual Basic ADO Sample
	Visual Basic Script ADO Sample
	Active Server Pages Samples
	OLE DB RowsetViewer Sample

	Sample Programs for Data Queues
	DQChatC Sample

	Sample Programs for Host File Transfer

	SNA Application Programming
	APPC Applications
	About the APPC Guide
	Operating Systems Support for APPC Development
	Finding Further Information

	APPC Programmer's Guide
	Introduction to APPC
	APPC Verb Overview
	APPC Verb Summary
	Windows APPC Overview
	APPC Verbs and Windows Extensions

	Using APPC Verbs in C Programs

	About Transaction Programs
	Communication Between TPs
	Fundamental Terms for TPs and LUs
	Sample TPs Illustrating Fundamental Concepts
	Configuring and Controlling TPs
	Creating TPs and Their Supporting Configuration

	Designing and Coding TPs
	Conversation States
	State Checks
	Changing Conversation States

	Confirmation Processing
	Receiving Data Asynchronously
	Conversation Security
	Basic and Mapped Conversations Compared
	Logical Records Used in Basic Conversations
	An Example of a Mapped Conversation

	Using Invoking and Invokable TPs
	Invoking TPs
	Invoking TPs and Contention
	Invokable TPs
	Subcategories for Invokable TPs
	Matching Invoking and Invokable TPs

	Configuring Invokable TPs
	Clients Running Windows 2000 or Windows NT
	Registry Entries for Clients Running Windows 2000 or Windows NT
	Example of Windows 2000 or Windows NT Registry Entries for an Invokable TP

	Clients Running Windows 98 or Windows 95
	Registry Entries for Clients Running Windows 98 or Windows 95
	Example of Windows 98 or Windows 95 Registry Entries for an Invokable TP

	Clients Running Windows Version 3.x
	Environment Variables for Clients Running Windows Version 3.x
	Translating SNA Service TP Names to ASCII for WIN.INI
	Example of WIN.INI Lines for an Invokable TP

	Clients Running OS/2
	Environment Variables for OS/2-Based Clients
	Translating SNA Service TP Names to ASCII for SNA.INI

	Clients Running MS-DOS

	Configuring TPs on Host Integration Server and SNA Server
	Configuring Invoking TPs on Host Integration Server and SNA Server
	Configuring Invokable TPs on Host Integration Server and SNA Server

	Arranging TPs Within an SNA Network
	TP Name Unique for Each TP
	TP Name Not Unique; Local LU Alias Unique
	TP Name Not Unique; Local LU Alias Unspecified
	Troubleshooting for Invokable TPs
	Simplifying APPC Configuration

	Sync Point Level 2 Support in Host Integration Server and SNA Server
	Sync Point Functional Overview
	Sync Point Support Architecture
	Sync Point Session Support
	Sync Point Session Activation
	Sync Point Session Deactivation

	Starting Local Sync Point TPs
	Sync Point Conversation Activation
	Locally Initiated Conversations
	Remotely Initiated Conversations
	Already Verified Support
	Presentation Header Support in Data Transfers
	User Control Data
	Implied Forget

	Sync Point Level 2 Confirm Support
	Sync Point Backout Support
	Additional Sync Point Return Codes
	Sending Backout on Sync Point Conversations

	LUWID, Conversation Correlators, and Session Identifiers
	Generating and Setting LUWIDs
	Extracting LUWIDs
	Session Identifiers

	Configuration Changes for Sync Point Support
	Accepting Incoming Attaches
	Sync Point Knows Transaction Names
	Sync Point Attach Manager
	Rejecting Remotely Initiated Conversations

	Sync Point Examples
	SYNCPT Verb Issued Locally
	SYNCPT Verb Issued Remotely
	BACKOUT Verb Issued Locally
	BACKOUT Verb Issued Remotely

	Windows CSV Overview
	Host Integration Server and SNA Server Asynchronous Support
	Before Using Windows CSV
	Creating Specific NetView User Alerts
	Using CSVs in C Programs
	Sample Programs
	CSV Verb Control Block
	Bit Ordering
	WINCSV Definition
	WINCSV.H File
	Issuing a CSV

	Support for APPC Automatic Logon

	APPC Reference
	APPC Management Verbs
	ACTIVATE_SESSION
	CNOS
	Setting a Session Limit to Zero

	DEACTIVATE_SESSION
	DISPLAY
	Host Integration Server and SNA Server Extensions
	Differences by Information Type
	SNA Global Information
	LU 6.2 Information
	Session Information
	Active Link Information
	LU 0 to 3 Information
	System Default Information
	LU 6.2 Definition Information
	Partner Definition Information
	Mode Definition Information
	Link Definition Information
	Management Services Information

	APPC TP Verbs
	GET_TP_PROPERTIES
	SET_TP_PROPERTIES
	TP_ENDED
	TP_STARTED
	Default LUs

	APPC Conversation Verbs
	ALLOCATE
	CONFIRM
	CONFIRMED
	DEALLOCATE
	FLUSH
	GET_ATTRIBUTES
	GET_LU_STATUS
	GET_STATE
	GET_TYPE
	MC_ALLOCATE
	MC_CONFIRM
	MC_CONFIRMED
	MC_DEALLOCATE
	MC_FLUSH
	MC_GET_ATTRIBUTES
	MC_POST_ON_RECEIPT
	MC_PREPARE_TO_RECEIVE
	MC_RECEIVE_AND_POST
	MC_RECEIVE_AND_WAIT
	MC_RECEIVE_IMMEDIATE
	MC_RECEIVE_LOG_DATA
	MC_REQUEST_TO_SEND
	MC_SEND_CONVERSATION
	MC_SEND_DATA
	MC_SEND_ERROR
	MC_TEST_RTS
	MC_TEST_RTS_AND_POST
	POST_ON_RECEIPT
	PREPARE_TO_RECEIVE
	RECEIVE_ALLOCATE
	RECEIVE_AND_POST
	RECEIVE_AND_WAIT
	RECEIVE_IMMEDIATE
	RECEIVE_LOG_DATA
	REQUEST_TO_SEND
	SEND_CONVERSATION
	SEND_DATA
	SEND_ERROR
	TEST_RTS
	TEST_RTS_AND_POST

	APPC Extensions for the Windows Environment
	WinAsyncAPPC
	WinAsyncAPPCEx
	WinAsyncAPPCIOCP
	WinAPPCCancelAsyncRequest
	WinAPPCCancelBlockingCall
	WinAPPCCleanup
	WinAPPCIsBlocking
	WinAPPCStartup
	WinAPPCSetBlockingHook
	WinAPPCUnhookBlockingHook

	Host Integration Server 2000 Enhancements to the Windows Environment
	GetAppcConfig
	GetAppcReturnCode
	GetCsvReturnCode

	Common Service Verbs
	CONVERT
	COPY_TRACE_TO_FILE
	DEFINE_TRACE
	GET_CP_CONVERT_TABLE
	LOG_MESSAGE
	TRANSFER_MS_DATA

	CSV Extensions for the Windows Environment
	WinAsyncCSV
	WinCSVCleanup
	WinCSVStartup

	Common APPC Return Codes
	Primary APPC Return Codes
	Secondary APPC Return Codes

	Common CSV Return Codes
	Primary CSV Return Codes
	Secondary CSV Return Codes

	APPC Sample Applications
	Sample APPC TPs in the SDK
	Building the TPs
	TPSETUP
	TPSTART
	APPC Send and Receive TPs
	Multithreaded Send and Receive TPs

	CPI-C Applications
	About the CPI-C Guide
	Operating Systems Support for CPI-C Development
	Finding Further Information on CPI-C

	CPI-C Programmer's Guide
	Introduction to CPI-C
	Windows CPI-C Overview
	Windows CPI-C Asynchronous Support
	Before Using Windows CPI-C
	Using Asynchronous Call Completion

	CPI-C Call Summary
	Starting a Conversation
	Sending Data
	Receiving Data
	Confirming Receipt of Data and Reporting Errors
	Getting Information
	Ending a Conversation
	Administering Side Information

	Initial Conversation Characteristics
	Side Information
	Configuration
	Windows 2000, Windows NT, Windows 98, and Windows 95 Considerations
	Windows 3.x Considerations
	OS/2 Considerations

	Writing CPI-C Applications
	Communication Between TPs
	Fundamental Terms for TPs and LUs
	Sample TPs Illustrating Fundamental Concepts
	Configuring and Controlling TPs
	Creating TPs and Their Supporting Configuration

	Designing and Coding TPs
	CPI-C Calls in C Programs
	CPI-C and LU 6.2
	Conversation States
	State Checks
	Changing Conversation States

	Confirmation Processing
	Conversation Security
	Basic and Mapped Conversations Compared
	Logical Records Used in Basic Conversations
	An Example of a Mapped Conversation

	Using Invoking and Invokable TPs
	Invoking TPs
	Invoking TPs and Contention
	Invokable TPs
	Subcategories for Invokable TPs
	Matching Invoking and Invokable TPs

	Configuring Invokable TPs
	Clients Running Windows 2000 or Windows NT
	Registry Entries for Clients Running Windows 2000 or Windows NT
	Example of Registry Entries for Windows 2000 or Windows NT

	Clients Running Windows 98 or Windows 95
	Registry Entries for Clients Running Windows 98 or Windows 95
	Example of Registry Entries for Windows 98 and Windows 95

	Clients Running Windows Version 3.x
	Environment Variables for Clients Running Windows Version 3.x
	Translating SNA Service TP Names to ASCII for WIN.INI
	Example of WIN.INI Lines for an Invokable TP

	Clients Running OS/2
	Environment Variables for OS/2-Based Clients
	Translating SNA Service TP Names to ASCII for SNA.INI

	Clients Running MS-DOS

	Configuring Host Integration Server to Support TPs
	Invoking TPs and the SNA Server Configuration
	Invokable TPs and the SNA Server Configuration
	Arranging TPs Within an SNA Network
	TP Name Unique for Each TP
	TP Name Not Unique; Local LU Alias Unique
	TP Name Not Unique; Local LU Alias Unspecified

	Troubleshooting for Invokable TPs

	Simplifying CPI-C Configuration

	Support for CPI-C Automatic Logon

	CPI-C Reference
	CPI-C Calls
	Accept_Conversation
	Allocate
	Cancel_Conversation
	Confirm
	Confirmed
	Convert_Incoming
	Convert_Outgoing
	Deallocate
	Delete_CPIC_Side_Information
	Extract_Conversation_Security_Type
	Extract_Conversation_Security_User_ID
	Extract_Conversation_State
	Extract_Conversation_Type
	Extract_CPIC_Side_Information
	Extract_Mode_Name
	Extract_Partner_LU_Name
	Extract_Sync_Level
	Extract_TP_Name
	Flush
	Initialize_Conversation
	Prepare_To_Receive
	Receive
	Confirmation
	Normal Deallocation
	ABEND
	Errors

	Request_To_Send
	Send_Data
	Send_Error
	Set_Conversation_Security_Password
	Set_Conversation_Security_Type
	Set_Conversation_Security_User_ID
	Set_Conversation_Type
	Set_CPIC_Side_Information
	Set_Deallocate_Type
	Set_Error_Direction
	Set_Fill
	Set_Log_Data
	Set_Mode_Name
	Set_Partner_LU_Name
	Set_Prepare_To_Receive_Type
	Set_Processing_Mode
	Set_Receive_Type
	Set_Return_Control
	Set_Send_Type
	Set_Sync_Level
	Set_TP_Name
	Specify_Local_TP_Name
	Specify_Windows_Handle
	Test_Request_To_Send_Received
	Wait_For_Conversation
	CPI-C Functions Not Supported

	Extensions for the Windows Environment
	WinCPICCleanup
	WinCPICExtractEvent
	WinCPICIsBlocking
	WinCPICSetBlockingHook
	WinCPICSetEvent
	WinCPICStartup
	WinCPICUnhookBlockingHook

	Common Return Codes

	CPI-C Sample Applications
	Sample CPI-C TPs in the SDK
	Building the TPs
	TPSETUP
	TPSTART
	APING and APINGD
	Multithreaded APINGD
	CPI-C Send and Receive TPs
	AREXEC and AREXECD
	AREMOTE

	LUA Applications
	About the LUA Guide
	Operating Systems Support for LUA Development
	Finding Further Information

	LUA Programmer's Guide
	LUA Concepts
	Windows LUA Overview
	Windows LUA Asynchronous Support
	Before Using Windows LUA
	Using LUA and Asynchronous Verb Completion

	LUs and Sessions
	Configuring for LUA
	LUA Verb Summary
	A Sample LUA Communication Sequence

	Writing LUA Applications
	Using LUA Verbs
	RUI and SLI Definitions
	Issuing an LUA Verb

	The LUA VCB Format
	LUA_VERB_RECORD
	LUA_COMMON
	LUA_SPECIFIC
	LUA_SPECIFIC.SLI_OPEN
	LUA_EXT_ENTRY

	LUA Synchronous and Asynchronous Verb Completion
	Compiling and Linking an LUA Application
	Resetting LUA LUs
	Multiple Processes and Multiple Sessions Using LUA
	Programming Techniques for LUA Pools
	Writing Portable LUA Applications
	LUA System Considerations
	LUA Considerations on Microsoft Windows 2000, Windows NT, Windows 98, and Windows 95
	LUA Considerations on Microsoft Windows 3.x
	LUA Considerations on Microsoft MS-DOS
	LUA Considerations on OS/2

	SNA Considerations Using LUA

	Support for LUA Single Sign-On
	Prerequisites for LUA Single Sign-On
	Registry Settings Used for LUA Single Sign-On
	LUA User Name and Password Replacement

	LUA Reference
	LUA RUI Verbs
	RUI_BID
	RUI_INIT
	RUI_PURGE
	RUI_READ
	RUI_TERM
	RUI_WRITE

	LUA SLI Verbs
	SLI_BID
	SLI_CLOSE
	SLI_OPEN
	Secondary with INITSELF
	Secondary with an Unformatted LOGON Message
	Primary Waiting for a BIND Command
	Primary with SSCP Access
	BIND, CRV, and STSN Routines
	BIND Example
	Recovering from SESSION_FAILURE
	Ending a Pending SLI_OPEN

	SLI_PURGE
	SLI_RECEIVE
	SLI_RECEIVE_EX
	SLI_SEND
	SLI_SEND_EX
	SLI_BIND_ROUTINE
	SLI_STSN_ROUTINE

	LUA Extensions for the Windows Environment
	RUI
	SLI
	WinRUI
	WinRUICleanup
	WinRUIGetLastInitStatus
	WinRUIStartup
	WinSLI
	WinSLICleanup
	WinSLIStartup

	SNA Server Enhancement to the Windows LUA Environment
	GetLuaReturnCode

	LUA Verb Control Blocks
	Common Structure of LUA VCBs
	Values for lua_message_type
	Command-Specific Structure of LUA VCBs
	SLI_OPEN VCB Structure

	LUA Common Return Codes
	LUA Primary Return Codes
	LUA Secondary Return Codes

	LUA Sample Applications
	LUA Code Samples in the SDK
	Building the LUA Samples
	Specifying a File Name for Table G for Code Conversion
	Code Samples Using the RUI API
	Code Samples Using the SLI API

	3270 Emulator Interface Specifications
	About the EIS Guide
	Operating Systems Support for 3270 Development
	Network Operating Systems Support for 3270 Development

	3270 Emulation Programmer's Guide
	Host Integration Server Concepts
	Structure of Host Integration Server Components
	The Role of the Base
	Localities and DMODs
	Application Localities
	Partners

	Messages
	Overview of Message Formats
	Buffer Header Format
	Buffer Element Format

	LPI Connections
	Paths and DMODs
	LPI Addresses
	Making Connections

	The DL-BASE/DMOD Interface
	About DL-BASE/DMOD
	Initialization
	Sending Messages
	Receiving Messages
	Opening a Connection
	Termination

	MS-DOS-Based 3270 Emulation
	Task Switching on MS-DOS and Windows 3.x
	Client Environment for MS-DOS-Based Emulators
	Background Operation
	Scheduler
	Semaphores

	DL-BASE/DMOD Entry Point Summary
	Sample Code: Initialization and Routing Procedure

	The Function Management Interface
	FMI Concepts
	Sessions and Connections
	Application Flags

	The SSCP Connection
	Opening the SSCP Connection
	LU Groups
	Resource Location for Open SSCP

	Closing the SSCP Connection
	Using the SSCP Session
	SSCP Session Characteristics
	SSCP Session Status

	RTM Parameters
	3270 User Alerts

	The PLU Connection
	Opening the PLU Connection
	BIND Checking

	Closing the PLU Connection
	Using the PLU Session
	PLU Session Characteristics
	PLU Session Status

	Outbound Chaining
	Inbound Chaining
	Segment Delivery
	Brackets
	Bracket Initiation
	Bracket Termination

	Direction
	Half-Duplex Flip-Flop Direction
	Half-Duplex Contention

	Pacing and Chunking
	Outbound Pacing
	Chunking

	Confirmation and Rejection of Data
	Confirmation and Rejection of Inbound Data
	Confirmation and Rejection of Outbound Data

	Shutdown and Quiesce
	Shutdown
	Quiesce

	Recovery
	Application CANCEL
	Direction After Receiving a Negative Response
	Direction After Sending a Negative Response
	Critical Failure
	RQR and CLEAR
	STSN
	Link Service Failure
	Local Node Failure
	Client Failure

	Application-Initiated Termination
	LUSTATs
	Response Time Monitor Data

	Data Flow
	Outbound Data
	Inbound Data
	Inbound Data from LUA Applications

	Status Messages
	Status-Acknowledge Message
	Status-Control Message
	Status-Control (ACKLUA) Message

	Status-Error Message
	Status-Resource Message
	Status-Session Message
	Status-RTM Message

	FMI Message Summary

	FMI Status, Error, and Sense Codes
	Status-Session Codes
	Error and Sense Codes
	Error Codes for Open Messages
	Error Codes for Open(SSCP) Error Response
	Error Codes for Open(PLU) Error Confirm

	Error Codes for Nack-2 Messages
	Error Codes for Status-Error Messages
	Sense Codes for SDI Messages

	Configuration Information
	3270 User Record Format
	Diagnostics Record Format
	Creating NetView User Alerts

	Diagnostics
	Error and Audit Log Messages
	Options for Logging
	SNA Server DMOD Logging Macros
	Message Severities
	Logging Macros
	Examples

	LOG_MESSAGE Common Service Verb

	Internal Tracing
	Internal Tracing Macros
	COM_ENTRY
	TRACEn

	Controlling Internal Tracing

	HLLAPI Parameter Tracing
	FMI Tracing

	Compiling and Linking 3270 Client Applications
	Building the 3270 Client Samples
	Client Interface Files for 3270 Applications
	3270 Include Files
	Compiler Options for 3270 Applications
	Linking 3270 Client Applications

	Support for 3270 Single Sign-On
	Prerequisites for 3270 Single Sign-On
	Registry Settings Used for 3270 Single Sign-On
	3270 User Name and Password Replacement

	3270 Emulation Reference
	DL-BASE/DMOD Entry Points
	CMDGoTSR
	CMDSemClear
	CMDSemRequest
	CMDSemSet
	CMDSemWait
	CMDStartFG
	CMDStopFG
	RegisterSwitchProc
	routproc
	sbpibegt
	sbpiberl
	sbpuinit
	sbpurcvx
	sbpusend
	sbputerm
	sepdbubl
	sepdburl
	sepdchnk
	sepdcrec
	sepdgetinfo
	sepdrout
	sepwrout
	SNAGetVersion

	FMI Message Formats
	Open(SSCP)
	Open(SSCP) Request
	Open(SSCP) Response
	Open(PLU)
	Open(PLU) Request
	Open(PLU) OK Response
	Open(PLU) Error Response
	Open(PLU) OK Confirm
	Open(PLU) Error Confirm
	Close(SSCP)
	Close(SSCP) Request
	Close(SSCP) Response
	Close(PLU)
	Close(PLU) Request
	Close(PLU) Response
	Data
	Status-Acknowledge
	Status-Acknowledge(Ack)
	Status-Acknowledge(Nack-1)
	Status-Acknowledge(Nack-2)
	Status-Acknowledge(ACKLUA)
	Status-Control
	Status-Control(...) Request
	Status-Control(...) Acknowledge
	Status-Control(...) Negative-Acknowledge-1
	Status-Control(...) Negative-Acknowledge-2
	Status-Control(...) ACKLUA
	Status-Error
	Status-Resource
	Status-RTM
	Status-Session

	FMI Extension for the Windows Environment
	GetFmiReturnCode

	AFTP File Transfer Protocol
	About the AFTP Guide
	AFTP Programmer's Guide
	Defined Constants
	Standard Types
	Null-Terminated Strings
	AFTP_ENTRY
	AFTP_PTR
	AFTP Line Flows
	AFTP File and Directory Concepts
	AFTP File Transfer Types
	AFTP and Special File Structures
	Working with AFTP Directories
	Directories on Windows 2000, Windows NT, Windows 98, and Windows 95

	Compiling the AFTP Application
	Linking the AFTP Application
	Overview of API Calls
	Creating or Destroying an AFTP Connection Object
	Establishing a Connection to the AFTP Server Computer
	Querying Connection Characteristics
	Transferring Files
	Specifying File Transfer Characteristics
	Querying File Transfer Characteristics
	Listing Files on the AFTP Server Computer
	Listing Files on the AFTP Client Computer
	Performing Directory Manipulation
	Performing File Manipulation
	Querying System Information
	Generating Message Strings
	Controlling Trace Information
	Loading the Initialization File

	AFTP Reference
	AFTP API Call Reference
	aftp_change_dir
	aftp_close
	aftp_connect
	aftp_create
	aftp_create_dir
	aftp_delete
	aftp_destroy
	aftp_dir_close
	aftp_dir_open
	aftp_dir_read
	aftp_extract_allocation_size
	aftp_extract_block_size
	aftp_extract_data_type
	aftp_extract_date_mode
	aftp_extract_destination
	aftp_extract_mode_name
	aftp_extract_partner_lu_name
	aftp_extract_password
	aftp_extract_record_format
	aftp_extract_record_length
	aftp_extract_security_type
	aftp_extract_tp_name
	aftp_extract_trace_level
	aftp_extract_userid
	aftp_extract_write_mode
	aftp_format_error
	aftp_get_data_type_string
	aftp_get_date_mode_string
	aftp_get_record_format_string
	aftp_get_write_mode_string
	aftp_load_ini_file
	aftp_local_change_dir
	aftp_local_dir_close
	aftp_local_dir_open
	aftp_local_dir_read
	aftp_local_query_current_dir
	aftp_query_bytes_transferred
	aftp_query_current_dir
	aftp_query_local_system_info
	aftp_query_local_version
	aftp_query_system_info
	aftp_receive_file
	aftp_remove_dir
	aftp_rename
	aftp_send_file
	aftp_set_allocation_size
	aftp_set_block_size
	aftp_set_data_type
	aftp_set_date_mode
	aftp_set_destination
	aftp_set_mode_name
	aftp_set_password
	aftp_set_record_format
	aftp_set_record_length
	aftp_set_security_type
	aftp_set_tp_name
	aftp_set_trace_filename
	aftp_set_trace_level
	aftp_set_userid
	aftp_set_write_mode

	AFTP Return Codes
	Entry Point Mappings

	AFTP Sample Applications

	Internationalization
	SNA National Language Support
	National Language Support in Windows 2000 and Windows NT
	SNANLS Code Page Support
	ANSI Code Page Support Using SNANLS
	ANSI/OEM Code Page Support Using SNANLS
	EBCDIC Code Page Support Using SNANLS
	ISO Code Page Support Using SNANLS
	OEM PC Code Page Support Using SNANLS
	Open Systems Code Page Support Using SNANLS

	SNANLS Dependencies

	SNANLS API Functions
	CloseNlsRegistry
	FindCloseCodePage
	FindFirstCodePage
	FindNextCodePage
	GetCodePage
	GetCodePageDisplayStr
	IsInstalledCodePage
	OpenNlsRegistry
	SnaNlsInit
	SnaNlsMapString

	The TrnsDT API
	TrnsDT Code Page Support
	Host EBCDIC SBCS Using TrnsDT
	Host EBCDIC DBCS Using TrnsDT
	Host EBCDIC Mixed SBCS and DBCS Using TrnsDT
	TrnsDT Conversions Possible

	TrnsDT Resource Files
	TrnsDT API Functions
	TrnsDT

	Host Integration Server 2000 Components and NLS Support
	SNA Server Components and NLS Support

	SNA Print Server Data Filters
	SNA Print Server Data Filter
	SNA Print Server Data Filter API
	PrtFilterAlloc
	PrtFilterFree
	PrtFilterJobData
	PrtFilterJobEnd
	PrtFilterJobStart

	Sample Programs for SNA Print Server Data Filter

	Device Interface Specification Drivers
	About the SNADIS Guide
	SNADIS Programmer's Guide
	SNALink Concepts in Host Integration Server and SNA Server
	Overview of SNALink
	SNALink Configuration and Management
	Structure of Host Integration Server and SNA Server Components
	The Role of the Base
	Localities and DMODs
	Component Localities
	Partners
	SNALink Structure

	Messages
	Overview of Message Formats
	Buffer Header Format
	Buffer Element Format

	LPI Connections
	Paths and DMODs
	LPI Addresses
	Making Connections

	The SNALink Interface
	Process Structure and Scheduling
	SNALink Initialization
	SNALink Termination
	Sending Messages
	The Dispatcher
	Receiving Messages
	The Work Manager
	Base/DMOD and SNALink Entry Point Summary
	Sample Code for SNALinkDispatchProc

	SNALink Configuration Information
	Accessing Configuration Information

	The Data Link Control Interface
	Supported Configurations
	Opening a Connection
	Opening the LINK LPI Connection
	Activating a Host Connection
	Leased SDLC Line (No XIDs Exchanged), Channel Adapter
	X.25, 802.2, or Switched SDLC Line (XIDs Exchanged)

	Activating a Peer Connection
	Fixed Link Roles
	Negotiable Link Roles

	Opening the STATION LPI Connection
	Node Identification and Signaling Information
	XID Retries
	Multiple Connections

	DLC Information Transfer
	DLC Flow Control

	Closing a Connection
	Outages
	SDLC Outage Codes
	802.2 Outage Codes
	X.25 Outage Codes
	DFT Outage Codes

	Connection Retries

	Incoming Call Support
	SDLC Multipoint Connections

	Setup Information
	Setup Registry Architecture
	Product Entries
	Service Entries

	Integrated Link Service Setup on Host Integration Server
	Integrated Link Service Configuration and Reconfiguration on Host Integration Server
	Constructing an Integrated Link Service DLL on Host Integration Server
	Components of an Integrated Link Service Configuration DLL on Host Integration Server
	Contents of IHVLinks Sample Kit on Host Integration Server

	Integrated Link Service Setup on SNA Server
	Changes from INF-Based Setup
	Integrated Link Service Setup Procedure on SNA Server
	Integrated Link Service Configuration and Reconfiguration on SNA Server
	Constructing an Integrated Link Service DLL on SNA Server
	Components of an Integrated Link Service Configuration DLL on SNA Server
	Contents of Integrated Link Service Sample Kit on SNA Server

	Windows INF-Based Setup
	Setup File Structure
	Link Service Setup Interface
	Disk Layout
	The Setup Resource Library
	Replaceable Text in Setup Resource Libraries
	The Online Help File

	Creating an INF-Based Setup Script
	INF-Based Setup Template Description
	Initialization Section
	Dialog Box Constants
	File Constants
	SNAServiceType Values
	General Constants
	Language-Dependent Dialog Box Constants
	Language-Dependent File Constants
	Date Section
	Input Dialog Box Information
	Input Dialog Box Scripts
	Identification Functions
	SNA Invocation Section
	NCPA Invocation Section
	Common Code Section
	Installation Control Section
	Global Variables
	Utility Function Overview

	Diagnostics
	Error and Audit Log Messages
	Options for Logging
	Host Integration Server and SNA Server DMOD Logging Macros
	Message Severities
	Logging Macros
	Examples

	Internal Tracing
	Internal Tracing Macros
	COM_ENTRY
	TRACEn

	Controlling Internal Tracing

	DLC Tracing
	Connection Tracing
	COM_TRC_IHV

	Compiling and Linking a SNALink
	Host Integration Server and SNA Server DLC Header Files
	Included Files
	Required Exports
	Compiler Options
	Linking

	Synchronous Dumb Card Interface
	The Driver Interface
	Architecture Overview
	The Interface Record
	Event Signaling
	Link Characteristics

	I/O Request Packets
	Initialization
	OPEN Call
	CLOSE Call
	IOCTL Command Summary
	Equates and Structure Layouts

	SNA Modem Status Interface
	SNA Device Driver Interface to Modem Status
	Supporting Modem Status in an SNA Link Service
	Modem API Summary
	DevIoctl Definitions to Support SNA Modem Status

	SNA Performance Monitor Interface

	SNADIS Reference
	Base/DMOD and SNALink Entry Points
	SNAGetBuffer
	SNAGetElement
	SNAGetLinkName
	SNALinkDispatchProc
	SNALinkInitialize
	SNALinkTerminate
	SNALinkWorkProc
	SNAReleaseBuffer
	SNAReleaseElement
	SNASendAlert
	SNASendMessage

	Message Formats
	Open(LINK)
	Open(LINK) Request
	Expanded Information About Message Formats for Open(LINK) Request with SDLC
	Optional Second Element (Only Used by X.25 SVC)

	Open(LINK) Response
	Close(LINK)
	Close(LINK) Request
	Close(LINK) Response
	Open(STATION)
	Open(STATION) Request
	Open(STATION) OK Response
	Open(STATION) Error Response
	Close(STATION)
	Close(STATION) Request
	Close(STATION) Response
	Request-Open-Station
	Station-Contacted
	Outage
	Status-Resource
	Send-XID
	DLC-Data

	Configuration Entry Points
	SNAGetConfigValue
	SNAGetSystemInfo

	Setup Functions
	Integrated Link Service Configuration Functions
	Functions Exported from a Link Service Configuration DLL

	CommandLineAdd
	ConfigureLinkService
	ConfigureLinkServiceEx
	DisplayHelpInfo
	RemoveAllLinkServices
	RemoveLinkService
	Utility Functions Used by a Link Service Configuration DLL

	AddPerfmonCounters
	bCreateService
	bDeleteService
	bStopService
	CheckForExistingLinkService
	ConvertHexStringToDWORD
	ExtractNextParameter
	fAddRegistryEntry
	fCanWeAdministerRemoteBox
	fConnectRegistry
	fDisConnectRegistry
	fFindAndReplaceString
	fFindString
	fFindStringInMultiSZ
	fQueryRegistryValue
	fRegistryKeyExists
	fRemoveRegistryEntry
	fRemoveRegistryValue
	fStringCompare
	LoadStringResource
	ParseNextField
	RemovePerfmonCounters
	INF-Based Setup Functions
	CreateSNARegEntry
	CreateSNAService
	DeleteSNAService
	EnterServiceName
	FindNextAvailableIndex
	FindSNAProductServices
	FindSNARegEntry
	FindSNAService
	GrepUniqueServiceInfo
	SetupMessage

	IOCTL Commands
	Function 0x41: Set Event/Semaphore Handle
	Function 0x42: Set Link Characteristics
	Function 0x43: Set V24 Output Status
	Function 0x44: Transmit Frame
	Function 0x45: Abort Transmitter
	Function 0x46: Abort Receiver
	Function 0x47: Off-Board Load
	Function 0x61: Get/Set Interface Record
	Function 0x62: Get V24 Status
	Function 0x63: Receive Frame
	Function 0x64: Read Interface Record

	SNA Modem API
	MODEM_STATUS
	SNAModemInitialize
	SNAModemAddLink
	SNAModemDeleteLink
	SNAModemTerminate

	SNA Perfmon API
	ADAPTERCOUNTER
	ADAPTERPERFDATA
	SNAInitLinkPerfmon
	SNAGetLinkPerfArea
	SNAGetPerfValues

	Administration and Management Programming
	Introduction to Host Integration Server Administration with WMI
	Administration Programmer's Guide
	WMI and Host Integration Server Architecture
	Platforms Supported by WMI and Host Integration Server
	Programming Considerations Using WMI and Host Integration Server

	Administration Sample Applications
	Active Server Pages SNAWebAdmin Sample
	VBScript ImportExport Sample

	Client Binary Setup
	Client Setup for Windows 2000, Windows NT, Windows 98, and Windows 95
	SNA Server Client Binary Files for Win32 Environments
	The Installation Process in 32-bit Windows Environments
	Typical SNA Server Client Parameters in the Win32 Environment
	Registry Entries for Host Integration Server Administrator Client
	Registry Settings for Administrator Client: SnaBase
	Registry Settings for Administrator Client: SnaBase Parameters
	Registry Settings for Administrator Client: SnaBase SnaTcp Parameters
	Registry Settings for Administrator Client: SNA Server

	Registry Entries for Host Integration Server End-User Client
	Registry Settings for End-User Client: SnaBase
	Registry Settings for End-User Client: SnaBase Parameters
	Registry Settings for End-User Client: SnaBase Client Parameters
	Registry Settings for End-User Client: SnaBase SnaTcp Parameters
	Registry Settings for End-User Client: SNA Server
	Registry Settings for End-User Client: Windows Help

	Client Setup for 16-bit Windows Environments
	SNA Server Client Binary Files for 16-bit Windows Environments
	The Installation Process in 16-bit Windows Environments
	Typical SNA Server Client Parameters in 16-bit Windows Environments
	Modifications to WIN.INI for SNA Server Clients
	Modifications to SYSTEM.INI for SNA Server Clients

	Appendices and Glossary
	Common Abbreviations
	Glossary
	Glossary

	Technical Articles
	@PhantomNode
	Accessing Host Transactions in .NET-based Applications Using COMTI
	Administration and Management of Data Access Using the OLE DB Provider for DB2
	Integrating RPG and CL Programs by Using the Microsoft OLE DB Provider for DB2
	Microsoft Host Integration Server 2000 Product Overview
	Microsoft MSMQ-MQSeries Bridge Performance Results
	Sample Programs for COMTI

